
SIAM J. COMPUT.
Vol. 19, No. 4, pp. 673-677, August 1990

(C) 1990 Society for Industrial and Applied Mathematics
007

A NOTE ON BENNE’IT’S TIME-SPACE TRADEOFF FOR
REVERSIBLE COMPUTATION*

ROBERT Y. LEVINE’ AND ALAN T. SHERMAN

Abstract. Given any irreversible program with running time T and space complexity S, and given any
e > 0, Bennett shows how to construct an equivalent reversible program with running time O(T1+) and
space complexity O(S In T). Although these loose upper bounds are formally correct, they are misleading
due to a hidden constant factor in the space bound. It is shown that this constant factor is approximately
e21/, which diverges exponentially as e approaches 0. Bennett’s analysis is simplified using recurrence
equations and it is proven that the reversible program actually runs in time O(T+/S) and space
O(S(1 + In (T/S))).

Bennett claims that for any e > 0, the reversible program can be made to run in time O(T) and space
O(ST). This claim is corrected and tightened as follows: whenever T => 2S and for any e -> / (0.58 lg (T/S)),
the reversible program can be made to run in time O(T) and space f(S(T/S)’/2)fqO(S(T/S)). For
S <= T < 2S, Bennett’s 1973 simulation yields an equivalent reversible program that runs in time O(T) and
space O(S).

Key words, algorithms, reversible computation, time-space tradeoff

AMS(MOS) subject classifications. 68Q05, 68Q15

1. Introduction. A Turing machine is reversible if and only if its state-transition
function is injective. In other words, a program is reversible if for any input and for
any state in the program execution on that input, the preceding state is uniquely
determined from the current state. For example, the program "On input x and y,
output x + y." is not reversible because the input cannot be determined from the output,
but the related program "On input x and y, output (x + y, x)." is reversible. The notion
of reversible computation might someday radically alter the design of computers
because there are models of reversible computation in which computations do not
dissipate heat [3].

In 1973 Bennett [2] presented a general method for transforming any irreversible
program into an equivalent reversible program. This method works by reversibly
simulating the irreversible program. Let T and S denote, respectively, the time and
space bounds of the irreversible program. Bennett proved that his simulation runs in
time O(T) and space O(T+ S). Thus, because T can be exponential in S, the simulation
takes space exponential in S in the worst case.

In 1988 Bennett 1 improved his simulation by introducing a time-space tradeoff.
He proved the following result: given any e > 0, the revised simulation can be made
to run in time O(T1/) and space O(S In T). Although these loose upper bounds are
formally correct, they are misleading because there is a large hidden constant factor
in the space bound that depends on e; in fact, the tradeoff is between the exponent
in the reversible time and the constant factor in the reversible space. In this note we
exactly compute the constant factor in the space bound and show that it is approximately

* Received by the editors May 15, 1989; accepted for publication (in revised form) October 5, 1989.
t Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts 02173-0073.

This work was done while this author was a student at Tufts University.
t Computer Science Department, University of Maryland, Baltimore, Maryland 21228, and Institute

for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742.
Throughout this paper let In loge and lg log2.

673

D
ow

nl
oa

de
d

01
/1

2/
13

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

674 ROBERT Y. LEVINE AND ALAN T. SHERMAN

e21/. This constant factor diverges as e approaches 0, which is the interesting case in
which the reversible time approaches the irreversible time. Using recurrence equations
we also prove that Bennett’s revised simulation actually runs in time 19(T1+/S) and
space 19(S(1 +In (T/S))).

Bennett achieves his improved simulation by embedding his 1973 technique in a
clever general-purpose time-space tradeoff. Although unknown to Bennett, this general-
purpose time-space tradeoff was independently discovered by Chandra [5] in 1972.2

The rest of this note is divided into two sections. In 2 we give a simplified
analysis of Bennett’s time-space tradeoff using recurrence equations. We also plot the
tradeott curve for the reversible time and space for several values of T/S. In 3 we
compute the constant factor in the space bound and correct an error in Bennett’s paper.

2. Time and space analysis using recurrence equations. Consider any irreversible
program that runs in time T and space S. We assume that T-2S, since otherwise it
would be better to use Bennett’s 1973 algorithm to produce an equivalent reversible
program that runs in time 19(T) and space 19(S). Bennett’s 1988 tradeoff algorithm
depends on three integral parameters m-> 1, k => 2, and n-> 0. The tradeott algorithm
reversibly simulates the irreversible program in segments of rn steps using Bennett’s
1973 algorithm. For n > 0, a total of k m-step segments are simulated by performing
k forward and k-1 backward simulations each consisting of mk’-1 steps. For n =0,
the 1973 algorithm is used. At the end of each forward simulation only the final
configuration is stored. At the end of each backward simulation one previously stored
configuration is erased. Using Bennett’s notation, let R(z, x, n, m, d) represent the
reversible simulation of mk" steps of the original irreversible program from configu-
ration z to configuration x in segments of size m. The parameter d, which takes on the
values 1 and -1, signals whether a forward or backward simulation is taking place.

We now consider the associated recurrence equations for the time and space
complexity of the simulation. Let P, and Q, be the number of steps in R(z, x, n, m, d)
with d 1 and with d -1, respectively. We then have the following coupled recurrence
equations

p,=kP,_+(k-1)Q,_ if n>0
(1)

rn if n=0

and

Q,,=f kQ_,+(k-1)P_, ifn>O
(2)

m if n=O.

Substituting (1) into (2) yields the second-order recurrence

f2kP,,_l-(2k-1)P_2 ifn>l
(3) Pn m(2k- 1) if n=l

/

(m if n=0,
which can be solved exactly by characteristic equations [4] to obtain

(4) P,,=m(2k-1) ’.
The space bound S, satisfies the recurrence equation

S,=f(k-1)m+S,,_ ifn>l
(5)

(k-1)m if n 1,

For another interesting application of this tradeoff, see the "cycling known-plaintext attack" against
group ciphers by Kaliski, Rivest, and Sherman [7].

D
ow

nl
oa

de
d

01
/1

2/
13

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A NOTE ON BENNETT’S TIME-SPACE TRADEOFF 675

which describes the number of stored intermediate configurations. By iteration [6] the
exact solution is

(6) S,=mn(k-1).

Bennett chooses rn S to ensure that each stored configuration takes at most S
space. From this assumption (4) and (6) yield, respectively, the following time bound
T’ and space bound $’ for the reversible program

(7) T’=S(2k-1)"

and

(8) S’=Sn(k-1).

Assuming

(9) T= Sk,
that is, assuming the number of simulated steps Sk" is equal to the running time of
the irreversible program, we have n (In (T/S))/ln k. Thus by appropriate choice of
k, the user can select any point along the tradeoff curve

T’ (2k- 1)
(10) 7= n(k_l).

Figure 1 shows the logarithm of this tradeoff curve for several values of T/S.
We now separately express T’ and S’ in terms of T, S, and k. By (7) and (9),

T’ 2 1 =(2_(1/k))(ln(r/s))/lnk_(11) -=

LOG (T’/S’)
8LO_G__(T/S) 0

6 "’.......... LOG (T/S) 8

4 ".................... LOG (T/S) 6

\
2 OG (T/S) 4

.................. LOG (T/S) 2

200 400 600 800 1000 1200 1400

k

FG. 1. Trade@ curves logo (T’/S’) for the reversible time and space as a function of the parameter k
and the ratio T/S of the irreversible time and space. e curves are drawn for T/S 102, 104, 106, lOs, 10.

D
ow

nl
oa

de
d

01
/1

2/
13

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

676 ROBERT Y. LEVINE AND ALAN T. SHERMAN

and thus

(12) (_) e(g) Tl+e(g)
T’= T s(k

where

(13) e(k)
In (2- (l/k))

In k

Similarly by (8),

In TS)
(14) S’=S

In k
T

(k-1)=c(k)Sln-
S

where

k-1
(15) c(k)

In k

Therefore, regardless of the relationship between T and S, given any e > 0 the reversible
program can be made to run in time O(T+/S) and space (R)(S(I+ln(T/S))).
Equations (12) and (14) differ from Bennett’s corresponding bounds in two respects.
First, our bounds are tight and include the dependence of T’ and S’ on S. Second,
the e used by Bennett is equal to 1/lg k, which is slightly larger and approximately
equal to e(k) for large k.

3. Calculation of the constant factor in the space bound. The constant factor for
the space bound is the term c(k) in (14). To express this factor in terms of e(k) we
first compute the Taylor series expansion of e(k) around 1/k to obtain

(16) e(k) =1-- In 2-2--8k----
Letting

In 2 1
(17) eo(k)

In k-lg k

be the first term in this expansion (i.e., eo(k) is Bennett’s e), we have In k (ln 2)/eo(k)
and k =21/e(k). Therefore, by (15)

eo(k) 21/eo(k) co(k) ,/(18) c(k) =in 2
..(1)--- in 2

2 (k).

The most interesting case is when e(k) tends to 0--that is, when the reversible time
approaches the irreversible timembut in this case the term c(k) diverges.

To illustrate how the constant factor c(k) diverges when e(k) approaches 0,
consider what happens when aT <= T’<= bT for some constants 1 < a _-< b. In this case,
the identity e(k) (In (T’/T))/ln (T/S) from (12) implies that

In a In b
_<e(k)<-(19)

In (T/S)- --In (T/S)"

Note that to be able to find an integer k that satisfies (19), it is necessary for

Although Bennett did not explicitly state the dependence of T’ and S’ on S, the details of his proof
given in the appendix of [1] suggest that he was aware of this dependence.

D
ow

nl
oa

de
d

01
/1

2/
13

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

A NOTE ON BENNETT’S TIME-SPACE TRADEOFF 677

a(T/S) emax, where emax=max{e(k): k->2}= e(2)0.58. Since k=>2, (18) implies
that

(20)
co(k) 21/ok)<=c(k)<eo(k) 21/o(k)"
2 In 2 In 2

Using the fact that e(k)< eo(k)<2e(k), it follows that

2e(k) ke(k) 21/2k < c(k) < 2/(21)
21n2 ln2

By (19),

(22)
(lna)/ln(T/S) 2,r/s))/2n)<c(k)<(21nb)/ln(T/S) 20,r/s))/n

2 In 2 In 2

and hence

lga () /(’g’ 21gb () /lg

23
2 In TS)

< c(k <ln(TS)
Equation (14) then yields the space bounds

(24) lg S < S’ < 2(lg b)S
2

which grow superlogarithmically in T/S.
We conclude with one more refinement of Bennett’s results. Bennett claims that

for any > 0, the reversible program can be made to run in time O(T) and space
O(ST). But as Bennett notes, his depends on T; hence, Bennett’s argument does
not hold for arbitrary 6. We correct Bennett’s claim as follows. For any 6
1/(emax lg (T/S)), we can choose k such that a b=2/, in which case (24) yields
the tighter space bound

Zs <s’<?s(25)

Equation (25) proves that whenever T2S and for any 6 1/(emax lg (T/S)), the
reversible program can be made to run in time O(T) and space (S(T/S)/:)
o(s(r/s)).

Although Bennett’s clever time-space tradeoff provides a better way to transform
any irreversible program into an equivalent reversible program, its practical utility is
diminished by its huge constant factor in the space bound. It remains an open question
whether or not Bennett’s algorithm yields an optimum tradeoff.

REFERENCES

[1] C. H. BENNETT, Time trade-offs for reversible computation, SIAM J. Comput., 18 (1989),
pp. 766-776.

[2], Logical reversibility of computation, IBM J. Res. Devel., 17 (1973), pp. 525-532.
[3] C.H. BENNETTAND R. LANDAUER, Thefundamentalphysical limits ofcomputation, Scientific American,

253 (1985), pp. 48-56.
[4] G. BRASSARD AND P. BRATLEY, Algorithms: Theory & Practice, Prentice-Hall, Englewood Cliffs, NJ,

1988.
[5] A. K. CHANDRA, Efficient compilation oflinear recursiveprograms, Stanford Artificial Intelligence Project

Memo AIM-167, STAN-CS-72-282, Computer Science Department, Stanford University, Stanford,
CA, April 1972.

[6] T. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press and

McGraw-Hill, Cambridge, MA, 1990, to appear.
[7] B. S. KALISKI JR., R. L. RIVEST, AND A. T. SHERMAN, IS the data encryption standard a group?

(Results of cycling experiments on DES), J. Cryptology, (1988), pp. 3-36.

D
ow

nl
oa

de
d

01
/1

2/
13

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

