
Lectures on Proof Theory

Samuel Buss
University of California San Diego

Some day

Technical Report Some number
School of Computer Science

McGill University

Foreword

January 11th 1996

The 1995 McGill-Montréal Invitational Workshop on Complexity Theory
was held at McGill University’s Bellairs Research Institute in Barbados from
March 6 to March 11, organized by Pierre McKenzie (U. de Montréal) and
Denis Thérien (McGill U.).

The core of this year’s workshop was a series of lectures given by Sam Buss
from the University of California at San Diego, on the theme of logic (mostly
proof theory) and complexity. The participants thus had the priviledge of
being given a solid coverage of many beautiful recent results.

This year again, it was decided to keep a permanent record of the work-
shop and to produce a technical report containing the material presented by
Sam. The presentation has been kept rather informal and no attempt has
been made to overpolish the material.

Warm thanks go to the note-takers: K. Regan (Buffalo), J. Toran
(Barcelona), A. Maciel (McGill), E. Allender (Rutgers), P. McKenzie
(Montréal), P. Clote (Boston College), M. Bonet (U. of Pennsylvania), R.
Raz (Weizmann Institute), C. Zamora (McGill), C. Lautemann (Mainz) and
T. Pitassi (Pittsburgh). Above all, we are very much indebted to Sam for
having put so much energy in these lectures: they were very much enjoyed
by everyone.

Denis Thérien

i

Contents

Proof Theory and Complexity . 1
Interpolation Theorems for Propositional Logic . 37
Natural Proofs and split versions of bounded arithmetic 57
Buss’s Simplified ALOGTIME Algorithm for

Boolean Sentence Evaluation . 75
Bounded Arithmetic . 89
Cutting Planes Proof Systems . 105

iii

Proof Theory and Complexity

by Kenneth W. Regan and Jacobo Torán

Monday Morning, March 6

1 Preliminars

At the first meeting on Monday morning, March 6th, Sam was welcomed by
organizers Denis Therién and Pierre McKenzie. Sam mentioned that it was
of course the custom to thank the organizers; “here, it’s a sheer delight.” He
said he’d be flexible on what he could do, having brought material on the
following:

1. Introduction to Propositional Proof Lengths

2. Interpolation and “Natural Proofs.” (A theorem by Razborov that if
certain pseudorandom number generators (PSRGs) exist, then certain
Bounded Arithmetics (BAs) cannot prove P 6= NP.)

3. Introduction to Bounded Arithmetic.

4. Gödel’s Theorem on Lengths of Proofs

5. First-Order Proof Theory (cut-elimination, basic results)

6. Cutting-Planes Proofs

7. The Boolean Formula Value Problem is in ALOGTIME—newer proof.

In the end, we decided to hear virtually all of these topics, in the above order.
Scribe’s Note (KWR): I have added some of my own exposition to what

Sam had on his slides. Some of these are just “glosses” that fill in a few
sentences of explanation, and I have left them unmarked. Others, however,

1

introduce new content or raise points that were not mentioned during the
lectures, and here I’ve marked them “added by KWR.” I also took down
several questions that people asked during the lectures, and I felt it would
add “color” to include them in the notes. Let the Notes Begin!

2 Introduction to Lengths of Propositional

Proofs

First, an outline:

• Frege systems

• Resolution

• Abstract proof systems

• Extended Frege (eF) and substitution Frege (sF) systems

• Tautologies based on the Pigeon-Hole Principle (PHP)

• Best-known lower bounds, including a survey of the state of the art
for bounds on proof lengths in various restricted fragments of Frege
systems

For all of this work, we will use propositional formulas , which are built
up out of the following:

• Variables: p1, p2, p3, . . .; or informally, p, q, r, . . .

• Logical connectives: ¬, ∧ , ∨ , →, ↔, ⊕ ,. . . . We will talk about sys-
tems with subsets of these connectives, and more abstractly, of systems
with finite sets of connectives of any arities.

• Parentheses! (,).

• Propositional formulas: Typified by: p1, (¬p1), (p1 → (p2 ∨ p3)). This
uses “fully-parenthesized” syntax. We will often omit parentheses and
rely on the usual rules of precedence: ¬ binds tighter than { ∧ , ∨ },
which bind tighter than →, which binds tighter than ↔. Exclusive-or
⊕ is not assigned a precedence.

2

• The constants > (or True) for “true” and ⊥ (or False) for “false.”
These are often identified with ‘1’ for > and ‘0’ for ⊥, or vice-versa,
or ‘−1’ for > and ‘1’ for ⊥, or etc. Or we may dispense with these
constants altogether and define > ≡ (p1 ∨ ¬p1), ⊥ ≡ (p1 ∧ ¬p1).
The differences will not be important, and we shall be free to choose
whatever looks best at a given time.

Definition 2.1. Let φ be a propositional formula, with variables p1, . . . , pn.
A truth assignment ~a ∈ { 0, 1 }n assigns a true/false value to each pi, and
induces a value φ(~a). If φ(~a) = > then we say that ~a satisfies φ, and we
sometimes also write ~a |= φ.

A formula φ is a tautology (or: is valid) if it is true under all truth
assignments; i.e., if (∀~a ∈ { 0, 1 }n)~a |= φ. Sometimes one writes simply |= φ
to say that φ is valid. Two formulas φ and ψ are equivalent if φ ↔ ψ is a
tautology, which is the same as saying that φ and ψ have the same set of
satisfying truth assignments.

Let V stand for the language of tautologies, under a straightforward en-
coding scheme. Cook’s Theorem [Coo71] shows that P = NP iff V ∈ P;
i.e., iff there is a deterministic polynomial-time algorithm for recognizing
tautologies. V is complete for coNP under polynomial-time many-one re-
ducibility ≤p

m ; the NP complete language SAT is essentially the same as the
complement of V , going from φ to ¬φ.

It’s worth asking at this point: what methods do we use to test the
validity of a formula? In school one learns (1) the method of “Truth Tables,”
which takes time on the order of 2n. No “shortcut” method is known that
does any better than time-2n in the worst case. But (2) the normal way to tell
that something is valid is to prove it! Whether proofs with polynomial-size
lengths exist, and whether they can be efficiently found, are the proof-theory
sides of the question of whether SAT has small circuits or belongs to P. This
starts us on the road of examining specific proof systems for propositional
formulas.

3

2.1 Frege systems

A Frege proof system F has a finite set of schematic axioms and rules of in-
ference. The meaning of these terms is best conveyed by a concrete example:1

Rules of inference: Only one, called modus ponens (MP):

.
P P → Q

MP
Q

Axioms:

1. (P ∧ Q) → P

2. (P ∧ Q) → Q

3. P → (P ∨ Q)

4. Q → (P ∨ Q)

5. (P → Q) → ((P → ¬Q) → ¬P)

6. (¬¬P) → P

7. P → (Q → P ∧ Q)

8. (P → R) → ((Q → R) → (P ∨ Q → R))

9. P → (Q → P)

10. (P → Q) → (P → (Q → R)) → (P → R).

Here it is important to note that P , Q, and R are not single formulas, but
meta-symbols that can stand for any propositional formula. Commonly one
would call the above “one rule and ten axioms,” but formally each item
stands for an infinite set of instances of the rule or axiom. Each instance
is obtained by substituting some propositional formula for P , Q, and/or R.
(This distinction between axioms and axiom schemas becomes much more
important in predicate logic, where one has quantifiers, and especially in

1We consulted with Sam on which of many possible axiom sets to illustrate. Although
they all linearly simulate each other, some are “nicer” for basic theorems when you teach
this stuff in detail. Much of the other text in this subsection is added by KWR.

4

formal systems of arithmetic. For instance, Peano Arithmetic (PA) can be
given six single axioms plus the axiom schema of induction, but there is no
finite axiom set whose arithmetical consequences are exactly those of PA.)

Since every propositional variable is itself a formula, one can form the
“smallest instances” of each of the above by inserting the variables p, q, and
r in place of P , Q, and R. Then every other instance of the rule or axiom
is obtainable by a substitution σ of formulas for those variables. Generally,
one can define substitutions of formulas for the variables in any given propo-
sitional formula φ; this notion will be prominent later on.

It is now clear how to abstract the definition of a Frege system F to say
that it consists of

(1) a domain T of well-formed formulas over some propositional language
L,

(2) a finite set A of schematic axioms, and

(3) a finite set R of schematic rules.

Alternatively, one can define (3) as a finite set of partial functions on T . Each
rule R ∈ R has some arity k ≥ 1. In the propositional case, we can identify
the language L with the set of connectives allowed in the formulas in T . For
instance, the above system has language {¬, ∧ , ∨ ,→}. (In predicate
logic and arithmetic, the language may also include special distinguished
predicate and function symbols, for instance = (equality), <, S (for the
successor function), +, and ·; then the style of proof system we are building
is commonly called a Hilbert system.) In speaking of F as a Frege system, it
is taken for granted that L is propositionally complete, meaning that every
formula φ over the “standard basis” {¬, ∧ , ∨ } has an equivalent formula
φ′ over L.

A Frege proof Π in a system F = (L,A,R) is a sequence (ψ1, ψ2, . . . , ψm)
such that for all i, either ψi is an (instance of an) axiom, or there exist
j1, . . . , jk < i and a k-ary rule R ∈ R such that ψi = R(ψj1 , . . . , ψjk

). Then
Π is a proof of the theorem ψ = ψm, and we may variously write ` ψ, `Π ψ,
`F ψ, or F ` ψ.

The system F is sound if every theorem is valid, and complete if every
valid formula ψ has a proof. These properties are usually built into the term
“Frege system.”

5

Theorem 2.1 There exist (many) sound and complete Frege proof systems,
including the above.

(At this point, a few questions were raised. Someone brought up the
notion of implicational completeness : Write φ |= ψ if for every truth assign-
ment ~a to variables occurring in φ and/or ψ, ~a |= φ =⇒ ~a |= ψ. Write φ ` ψ
if adding φ as an axiom would allow one to construct a proof of ψ. (Note
that neither φ or ψ need be valid by themselves.) Then F is implicationally
complete if whenever φ |= ψ, also φ `F ψ. When F has modus ponens among
its rules of inference, this is easily seen to be equivalent to the simple no-
tions of completeness, but it is possible to craft “pathological” Frege systems
without MP that are complete but not implicationally complete. Similarly
define F to be implicationally sound if whenever φ `F ψ, then φ |= ψ. When
we generalize to substitution Frege systems , we will lose implicational sound-
ness, because the substitution rule e.g. allows ψ to be φ with its variables
renamed, but such φ will generally not be a consequence of φ.

Many of the notions defined in this and the next subsection extend natu-
rally to systems of predicate logic, first-order arithmetics, and even to higher-
order logics. They were used freely in these other contexts by Sam in later
lectures, and we were expected to carry them over. Adding four “quanti-
fier axiom schemas” to 1.–10. above yields a “Frege-style” system (rather,
a Hilbert system) for first-order predicate logic that is sound and complete.
However, when we move to arithmetics with + and ·, and with a computable
set of axioms and inference rules, at least one of soundness or completeness
goes out the window—of course this is Gödel’s First Incompleteness Theo-
rem.)

2.2 Complexity of Proofs

Now we can highlight the three principal complexity notions for proofs:

Definition 2.2. (a) The number of lines or steps in a proof Π =
(ψ1, . . . , ψm) equals m.

(b) The symbol-length of the proof is n = |Π| =
∑m

i=1 |ψi|.
(c) The depth d of the proof is the maximum AND/OR depth of a formula

ψi occurring in the proof.

6

By the length or size of a proof we usually mean the symbol-length. We
write F `n A to mean that A has a proof in F of at most n symbols.

The AND/OR depth is one notion of the complexity of an individual
formula ψ: Write ψ over the basis { ∧ , ∨ ,¬}, and use DeMorgan’s Laws
to bring the ¬s on the variables only. Then count the maximum number
of alternations between ∧ and ∨ in a path from the top operand to a
variable in the formula. (Alternatively, by careful padding we can rewrite ψ
in a “leveled” form such that all paths have the same sequence of ∧ and
∨ , and we can count the number of alternations in that.)

(Added by KWR: A fourth measure is the number of distinct proposi-
tional variables used in the proof; this is relevant to Sam’s result on “variable
renaming” being as powerful as general substitution (Theorem 6.3 below).
This is like a measure of space; see Immerman [Imm91] for a halfway-related
result. A fifth notion can be stated as follows: Draw a graph G whose nodes
are the formulas ψ1, . . . , ψn in the proof. Instances of axioms are sinks, while
ψn is a (not necessarily lone) source. Now suppose ψi is derived by a k-ary rule
of inference R, so that there are j1, . . . , jk < i such that R(ψj1 , . . . , ψjk

) = ψi.
Then draw arcs from ψi to each of ψj1 , . . . , ψjk

. If there is more than one way
that ψi could be derived, make some unique choice. Then G is a DAG that
represents the “flow of logic” in the proof. The maximum length of a path
from ψn to a sink is called the height of the proof, to avoid confusion with the
above notion of depth. If G is a tree, except for multiple edges into axioms,
then the proof is tree-like. Related “proof-structure” graphs and measures
come into play in others of Sam’s papers, particularly for Gentzen systems
rather than Frege systems.)

Theorem 2.1 yields an inductive procedure that cranks out a proof of any
given tautology ψ ∈ V . However, the induction causes exponential blowup
in both symbol-length and the number of lines as a function of the length of
ψ (or more specifically, as a function of the number of logical connectives in
ψ). This proof is no better or worse than that obtainable by slogging through
the truth table. The $64,000 question (if you want $64,000 Canadian, you’ll
need to collect about $100,000 Barbadian) is:

Open Problem 1. Do the tautologies have polynomial-size Frege proofs?
I.e., is there a polynomial p such that for all ψ ∈ V , there exists a proof Π
of ψ of length at most p(|ψ|)?

7

If so, then NP = coNP! This is because a nondeterministic TM on input
ψ can guess Π, and then in deterministic polynomial time verify that Π is
correct—this only requires checking that each concrete axiom or inference
in Π belongs to one of finitely many schemas. This would place the coNP-
complete set V into NP.

2.3 Robustness of proof systems

The following “robustness theorems” of Cook and Reckhow [CR79, Rec76]
show that the particular choice of a Frege system does not matter for our
present purposes. First we consider Frege systems over the same language,
such as { ∧ , ∨ ,¬,→}.
Theorem 2.2 ([CR79, Rec76]) Let F1 and F2 be Frege systems over the
same language. Then there is a constant c > 0 such that for all φ and n, if
F1 `n φ, then F2 `≤cn φ.

Proof. (Inserted by KWR, following p40 of [CR79].) For every schematic
axiom A of F1, let ηA be the “smallest instance” of A as defined above. By
completeness, there is an F2-proof πA of ηA. Likewise, for every schematic
rule R of F1, take the “smallest instance” R(η1, . . . , ηk) = η0. Then there is an
F2-proof πR of η0, in which η1, . . . , ηk appear as hypotheses. The neat point
(Lemma 2.5 in [CR79], proved simply by induction on formula structure)
is that for every substitution σ, the formula σ(ηA) has the F2-proof σ(πA)
defined by applying σ to all formulas in πA. (Here one can arrange that
πA has no variables other than those in ηA, or one can define σ to be the
identity on other variables.) Likewise, σ(πR) is an F2 proof of σ(η0) from
σ(η1), . . . , σ(ηk).

Now let π1 be a proof of φ in F1. For every instance ψ of a schematic
axiom A in π1, let σ be the (effectively unique) substitution such that σ(ηA) =
ψ and let the F2 proof π2 have the sequence σ(πA) in place of the occurrence
of ψ. For every application R(ψ1, . . . , ψk) = ψ of a rule, there is a single
substitution σ such that σ(η1) = ψ1, . . . , σ(ηk) = ψk and σ(η0) = ψ. By
induction we may suppose that ψ1, . . . , ψk have already been proved in the
F2-proof we are building. Hence they fill the roles of the hypotheses in the
F2-proof sequence πR, and so we need only splice the remainder of πR into
the segment of π2 corresponding to the occurrence of ψ in π1.

8

For the size analysis, let the constant K be the maximum of |πA| or |πR|
over the finitely many schematic axioms and rules of F1. The key is that for
every substitution σ,

|σ(πA)| ≤ |πA|·|σ(ηA)| ≤ K ·|σ(ηA)|.

A similar inequality holds for instances of rules R and proof segments πR.
This says that for every occurrence of a formula ψ in π1, the symbol-length
of the segment of the F2-proof π2 corresponding to that occurrence is linear
in ψ.

In order to talk about simulations between Frege systems over different
languages, we must first fix a translation from formulas φ of one system to
“equivalent” formulas φ′ of the other. There are two problems to overcome
here:

(1) First, something more than formal equivalence of φ and φ′ has to be
meant, because all tautologies are formally equivalent. One needs a no-
tion that the translated formula φ′ has the same “meaning” or “struc-
ture” as φ.

(2) A “direct translation,” by which one means substituting an equivalent
composition of functions in L2 for each L1-connective in the formula
φ, may not be polynomial-time computable. Consider the languages
L1 = { ∧ , ⊕ ,¬} and L2 = { ∧ , ∨ ,¬}, and φ over L1 of the form
φ = φ1 ⊕ φ2. One can define the translation

φ′ = (φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2),

but doing this slavishly recursively leads to exponential blowup if φ has
linear nesting depth.

Reckhow solved these problems in his thesis [Rec76]. His translation scheme
distinguishes systems over binary connectives and distinguishes {↔, ⊕ }
from the other binary connectives. Reckhow showed that among the binary
connectives apart from {↔, ⊕ }, “direct translations” have polynomial-
size overhead, and that translating from a formula over the standard basis
{ ∧ , ∨ ,¬} poses no special difficulty. The key is how to translate from

9

formulas φ over arbitrary bases into the standard basis. He presented a uni-
form way to do this via the method of Spira [Spi71] (see also [BCE91, BB94]),
which implicitly “re-balances” φ during the recursion. (Sam remarked that
[Spi71] was a conference in Hawaii, thus spiritual kin to the present gather-
ing.) Reckhow called this an “indirect translation.” The above all combines
to define a unique translation from any given language L1 to a given language
L2, and we can combine Reckhow’s terms “direct” and “indirect” and call
this the natural translation from L1 to L2.

2

Theorem 2.3 ([Rec76]) Let F1 and F2 be any two (sound and complete)
Frege systems, and let φ 7→ φ′ be the natural translation from F1 to F2. Then
there is a polynomial p such that for every F1-proof π of a tautology φ, there
is an F2-proof π′ of φ′ such that |π′| ≤ p(|π|). Moreover, π′ is computable in
polynomial time given π.

Proof Sketch. The main task is to verify that the Spira-based translation
into the standard basis has only polynomial blowup. Then one can adapt
the proof of the last theorem. Consider first the case where L1 has binary
connectives only, including ⊕ and/or ↔, so that φ is a binary tree. The
basic lemma, used earlier by Hartmanis and Stearns [HS65] to put CFLs
in DSPACE[log2 n], is that every binary tree T has a subtree S satisfying
1
3
|T | ≤ |S| ≤ 2

3
|T |.

To apply this lemma, make a new tree by adding a new root node labeled
∨ , with two new ∧ nodes as children. One ∧ has S as one child, and the
other child is what you get from T \S by substituting a ‘1’ for the edge from
the parent of S to T \S. The other ∧ node has for children the negation of
S and the result of a ‘0’ substitution on that edge into T \S. This process is
continued recursively on the four subtrees. At the bottom, we will be down
to positively and negatively signed literals—all the ⊕ and ↔ magically go
away in the steps that simplify T \S. The resulting tree has at most 2d levels
of alternating ∨ and ∧ , where d = log3/2 |T | = O(log |T |). The size is at
most O(|T |2).

In the case of, say, a 6-ary connective in L1, one would use a “1
7
, 6

7
”

tree-splitting lemma to get a similar log-depth, poly-size translation, though

2(Added by KWR: In their paper [CR79], Cook and Reckhow skipped these details,
saying that the p-simulation results for the “more natural” extended Frege systems (where
the above growth problem can be circumvented) superseded them in importance.)

10

with a larger polynomial blowup in size.
Once this translation is done, the rest is similar to the proof of Theo-

rem 2.2.

This prompted some discussion and related points. The same rebalanc-
ing idea shows that polynomial-size formulas equal non-uniform NC1. An
interesting question is whether the quadratic blowup above in the binary ⊕
case above can be improved to (nearly) linear. A recent IPL paper by Bonet
and Buss [BB94] shows that with a more-involved scheme for chopping up
the tree T , one can get a sub-quadratic simulation. (Is this related to Ben-
Or and Cleve’s sub-quadratic simulation of Barrington’s branching-program
theorem [BC88]? See also [CL94, Bar89].) Here I (KWR) feel it may be good
to study a recent paper by Kosaraju and Delcher [KD90, KD92], which is
based on a notably different idea of “fracturing” a tree of size t into many
little pieces, viz.

√
t-many subtrees, each of size roughly

√
t.

2.4 Resolution Proof Systems

A resolution clause is a finite set of literals, and stands for the disjunction
of the literals. For convenience, we use ∗ as a function to negate literals, so
that p∗i = (¬pi) and (¬pi)

∗ = pi.

Definition 2.3. A clause α3 is inferred from two clauses α1, α2 by the reso-
lution rule

.
α1 α2

Resα3
precisely when

(a) there is a unique literal x such that x ∈ α1 and x∗ ∈ α2, and

(b) α3 = (α1 ∪ α2) \ {x, x∗ }.
The resolution rule is a variant of modus ponens. In the case α1 = {x }

and α2 = {x∗ }∪B, where B is arbitrary, α2 is equivalent to α1 → B, and the
resolution rule yields B just as MP does. The same kind of thing holds for
bigger clauses α1. The restriction that x be unique in (a) loses no generality—
consider for instance α1 = (x ∨ y ∨ w) and α2 = (x∗ ∨ y∗ ∨ z). Resolving
on x alone would yield the useless tautological clause (y ∨ y∗ ∨ w ∨ z),
while eliminating x and y together to get (w ∨ z) is unsound .

11

Resolution is used to prove formulas φ that are in DNF, by obtaining
a resolution refutation of the CNF formula (¬φ), namely a sequence of res-
olution inferences that produces the empty clause. This refutation is also
called a resolution proof of φ. The so-called Davis-Putnam procedure is an
exponential-time deterministic algorithm that always produces a resolution
proof of a given DNF tautology φ. This shows that resolution is complete for
DNF formulas, and it is also clear that the resolution rule is sound .

Note that if the Davis-Putnam procedure ran in polynomial time, then
P would equal NP. The fact that it runs in polynomial time for φ of clause
size two is the proof that 2-SAT belongs to P. The Davis-Putnam procedure
and various refinements of it work in polynomial time for other classes of
formulas, and are used all the time as heuristics in practical applications.
(Someone remarked that two main reasons for its popularity are that it’s
easy to program, and that “it’s the kind of ‘blind dumb search’ on strings
of symbols that computers are good at.” Not to be too pejorative about
this: there are many well-developed heuristics to guide this search, and they
extend to general first-order resolution as well. Resolution is very important
in practice.) It appears that Tseitin [Tse68] was the first to study the lengths
of individual resolution proofs and of shortest proofs for a given φ—note that
this is a different matter from the running time of a deterministic algorithm
that generates a resolution proof of φ.

Allender brought up the limitation of resolution to DNF formulas. Every
Boolean formula ψ has a DNF equivalent with the same variables, but with
an exponential blowup in size. One can instead add new variables to obtain
a polynomial-sized ψ′ that is a tautology iff ψ is. (This is basically the same
idea as the standard reduction from general Boolean formula satisfiability to
CNF-SAT as presented in, say, [HU79].) These extra “extension variables,”
however, create more work for resolution itself.

One cause of theoretical interest in resolution is that in quite a few
cases, both upper bounds and matching lower bounds of exponential proof
size have been proved. More will be said about the complexity of resolution
proofs later. But first, let us consider what seems to be the most abstract
sensible idea of a proof system.

12

3 Abstract Proof Systems

The following definition was put forward by Cook et al. in much the same
breath of research as the fundamental NP-completeness results.

Definition 3.1. An abstract propositional proof system is a polynomial-time
computable function f such that Ran(f) = V ; i.e., the range of f is the set
of all Boolean tautologies. An f -proof of a formula A is a string w such that
f(w) = A.

Note that f need not be polynomially honest ; i,e, there need not be a
polynomial p such that for all w, p(|f(w)|) > |w|. If f is honest, then all
proofs have polynomial size. The following example makes this point clear:

Example 3.1. A given Frege proof system F yields the function fF(w) = A
if w is a valid F -proof of A, and fF(w) = (p1 ∨ ¬p1) otherwise.

One point of the general definition is that strong theories F such as PA
or ZF can also be used as propositional proof systems; the only condition is
that the theory is encoded in such a manner that validity of proofs can be
checked in polynomial time. This can be done by fiat by defining f so that w
is not a ZF proof itself, but the computation of a Turing machine that checks
validity of ZF proofs. So one can actually use this idea for any recursively
axiomatizable theory. But by and large all proof systems that have been
studied already have polynomial-time proof-checking under their natural en-
codings. Two other examples are cutting-planes proof systems , originated by
W. Cook, C. Coullard, and G. Turán in [CCT87], and “quantified proposi-
tional logic” (see [Dow85, KP90]).

Definition 3.2. A proof system f is super if every propositional tautology
has a polynomial-size f -proof.

A super proof system can be modified to an equivalent proof system f ′

in which f ′ is polynomially honest after all.

Theorem 3.1 ([CR79]) There exists a super proof system iff NP = coNP.

Proof. A super proof system would place the tautologies into NP, but V
is coNP-complete under polynomial-time many-one reductions. For the con-

13

verse, suppose NP = coNP, and let N be a polynomial-time NTM that
recognizes V . Then define f(w) = A if w = 〈A, c〉, where c is an accepting
computation of N on input A, and f(w) = (p1 ∨ ¬p1) otherwise. This f is
super.

This theorem is one of the prime motivations for the study of propo-
sitional proof length—it justifies the study of upper and lower bounds on
proof length for a variety of concrete propositional proof systems. Another
motivation from the practical side comes from building efficient automated
deduction systems. (Added by KWR: The statement I’ve heard of “Cook’s
program for proving NP 6= coNP” runs: Start with concrete proof systems
F1,F2, . . ., prove that F1 is not super, prove that F2 is not super, until one
gains enough knowledge to understand why no proof system can be super.)

Here it would be nice to have a theorem of the form “System F is super
iff a super proof system exists.” Is there in some useful sense a system F
for which one can demonstrate this concretely? By “concretely” we have in
mind giving a reducibility relation ≤ that preserves upward the property “is
super,” and showing that F is “complete” under ≤.

Definition 3.3 ([CR79]). Let F and F ′ be proof systems with the same
propositional language. Then say F ′ simulates F if there is a polynomial p
such that for every tautology φ and F -proof π of φ, there exists an F ′-proof
π′ of φ such that

|π′| ≤ p(|π|).
Also say that F ′ p-simulates F if the mapping from π to π′ is polynomial-time
computable.

Similar definitions can be made when F and F ′ have different languages,
provided a “natural translation” from F to F ′ is given.

Definition 3.4. A proof system is optimal if it p-simulates every other proof
system.

Open Problem 2. (1) Does there exist an optimal proof system?

(2) Are Frege systems optimal?

14

Let E stand for DTIME[2O(n)], and NE for the corresponding nondeter-
ministic time class. Kraj́ıček and Pudlák [KP89] showed that NE = E is a
sufficient condition for (1). They also show that if NE = co-NE, then there
is a propositional proof system that is optimal in the weaker non-uniform
sense of simulating every other proof system.

If (2) holds, then this would be a striking “complexity-theoretic con-
servation’ result,” saying that ordinary propositional logic is as efficient as
anything powerful axioms like those in ZF set theory can do on propositional
tautologies. Barrington remarked that refuting (2) would be “like” show-
ing that NP 6= ALOGTIME, though no clean-cut connection here is known.
Haken [Hak85] proved that certain families of DNF tautologies require ex-
ponential length for resolution proofs, so resolution proof systems cannot be
optimal even for DNF tautologies.

(Added by KWR: Here’s a stab at an optimal system that shows some of
the issues. Let N1, N2, . . . be a standard recursive enumeration of polynomial-
time NTMs, and define a given Ni to be sound if L(Ni) ⊆ V . Now define

f(w) = φ iff (∃i, c, v)[w = 〈φ, π, c〉 ∧
c is an accepting computation of Ni on input φ ∧
π is a proof in ZF that Ni is sound.

However, this is just p-simulation equivalent to ZF: Given a ZF proof π
of φ, let then Ni be an (N)TM such that L(Ni) transparently equals {φ };
then π is essentially a proof that Ni is sound, and the rest of w is clear.
Conversely, given a proof w in this system, the component π of w is already
a proof in ZF, and the c component maps to a proof in ZF that Ni accepts
φ of roughly the same size. Hence this system is super iff ZF is super.

Well, I was trying to do something interesting with universal NTMs
and/or consistency or arithmetical soundness statements about ZF, but this
isn’t it. Perhaps some known “conservation results” for ZF over arithmetical
theories can be applied? The problem of whether there are “super-complete”
or optimal proof systems seems to me rather different from analogous com-
plexity questions, such as whether NP ∩ coNP has complete sets. Sam
remarked in Barbados that we don’t have any complexity-theoretic conse-
quences of the existence of optimal proof systems.)

The next section describes a system that is suspected to be properly
higher than the Frege systems under p-simulation.

15

4 Extended Frege Systems

Given an ordinary Frege system F , an extended Frege proof, eF proof for
short, is a sequence of formulas A1, A2, A3, . . . such that for all i, either Ai

follows from earlier formulas by a rule of F , or Ai is an axiom instance of F ,
or else Ai is an extension formula of the form

pi ↔ φ

where φ is any formula and pi is a fresh “extension variable”; i.e., pi occurs
neither in φ nor in any of A1, . . . , Ai−1. We also speak of ‘pi ↔ φ’ as inferred
by the extension rule. The final formula An in the proof is not allowed to
have any extension variables.

The idea is that pi can now be used as an abbreviation for φ at all
subsequent steps of the proof. This can reduce the proof size (number of
symbols) greatly, though the number of steps is not reduced. Proof using
these rules can still be checked in polynomial time, so this is also a polynomial
abstract proof system. This notion was studied by Tseitin [Tse68], Statman
[Sta77], and by Cook and Reckhow [CR79, Rec76]. With the same provision
about “natural translations” in case the underlying Frege systems are over
different languages:

Theorem 4.1 ([CR79]) Any two extended Frege proof systems p-simulate
each other.

Hence we can regard “eF” as a single proof system, just as “F” itself is a
single Frege system, up to p-simulation equivalence. Since eF is a polynomial
abstract proof system, it follows that if all tautologies have polynomial-size
eF proofs, then NP = coNP. Statman proved that the size measure of eF
proofs is essentially the same as the step measure of ordinary Frege proofs.

Theorem 4.2 ([Sta77]) For any Frege proof of step-length n of a formula
A, A has an eF-proof of size O(n + |A|).

The proof idea is that the eF -proof introduces abbreviations for every
“active” subformula in the Frege proof of A.

Open Problem 3. (1) Can Frege proof systems (p)-simulate eF systems?

(2) Are eF proof systems optimal?

16

A major testing ground for problem (1) is the subject of the next section.

5 The Propositional Pigeonhole Principle

For each n ≥ 0, we define a propositional formula PHPn that expresses the
pigeonhole principle for n + 1 “pigeons” and n “holes.” For each “pigeon” i
and “hole” k, we allocate a propositional variable pik, with the intent that
setting this variable true means that pigeon i has been placed into hole k. If
we think of a function f from [n+1] = { 0, . . . , n } into [n] = { 0, . . . , n−1 },
then truth of pik signifies f(i) = k. The condition that every pigeon goes to
some hole is encoded by the antecedent

∧n
i=0

∨n−1
k=0 pik. The “Pigeonhole Prin-

ciple” states that then some hole must have more than one pigeon, expressed
by

∨n−1
k=0

∨
0≤i<j≤n(pik ∧ pjk). In full, for each n ≥ 1,

PHPn =
n∧

i=0

n−1∨
k=0

pik →
n−1∨
k=0

∨
0≤i<j≤n

(pik ∧ pjk). (1)

For example, with r = n − 1, PHP0 = “false → false,” and:

PHP1 = p00 ∧ p10 → p00 ∧ p10,

PHP2 = (p00 ∨ p01) ∧ (p10 ∨ p11) ∧ (p20 ∨ p21) →
(p00 ∧ p10) ∨ (p01 ∧ p11) ∨ (p00 ∧ p20) ∨
(p01 ∧ p21) ∨ (p10 ∧ p20) ∨ (p11 ∧ p21).

(Added by KWR: First, a historical note: Every Oxford and Cambridge
college has a “Porter’s Lodge” with racks of pass-through mail slots for Fel-
lows and students. These are called “pigeonholes” because of the resemblance
to a bird cote; indeed, the twice-daily college mail system is called the “pi-
geon post.” Among various accounts one hears for the origin of the term
“Pigeonhole Principle,” the one I give most credence is that a century-or-two
ago, a don at Trinity College, Cambridge, mused that since the College had
n Fellows, if n + 1 letters arrived in the post, at least one lucky Fellow was
bound to get at least two letters. However, Sam, Steve Maurer when I took
a course from him, and most others I’ve heard speak about n+1 pigeons go-
ing into n holes, which sounds more like how Andy Capp than an Oxbridge
don would say it. Another form mentioned by Sam is the “Dirichlet Box
Principle.”

17

Second, note that the left-hand side of (1) does not actually define a
function from [n+1] into [n]—it figuratively allows a pigeon to be assigned to
more than one hole! To encode faithfully the statement that “every function
from [n+1] into [n] is non-injective,” we must conjoin to the left-hand side
the clause

n∧
i=0

∧
0≤k<`≤n−1

(¬pik ∨ ¬pi`).

Call the resulting statement PHP ′
n. Note that this is intuitively a weaker as-

sertion than PHPn. A relevant technical counterpart to the idea of “weaker”
is that from hypothesis PHPn one can derive PHP ′

n in just a few more
proof lines and symbols; but the converse direction is not so clear. Sam
interchanged PHPn and PHP ′

n rather freely in his lectures, and (later com-
munication from him) this can be justified by defining

qij ≡ ‘g(i) = j’ ↔ pij ∧ (¬pi0 ∧ ¬pi1 . . . ∧ ¬pi,j−1).

This translation “factors through” to adapt the following proofs of PHP ′
n

into proofs of PHPn. The adaptation also preserves constant-depth proofs.
Ajtai [Ajt94] worked with a still-weaker third form that restricts atten-

tion to functions f that are onto [n], obtained by conjoining also

n−1∧
k=0

n∨
i=0

pik

onto the left-hand side of (1). The neatly symmetrical form given by Ajtai
for this, which we may call PHP ′′

n, is:

¬
[(

n∧
i=0

n−1∨
k=0

pik

)
∧

(
n−1∧
k=0

n∨
i=0

pik

)
∧


 n∧

i=0

∧
0≤k<`≤n−1

(¬pik ∨ ¬pi`)


 ∧


n−1∧

k=0

∧
0≤i<j≤n

(¬pik ∨ ¬pjk)





 . (2)

The point offered by Ajtai is that for negative results such as those in his
paper, using the weakest form (PHP ′′

n) makes the results apply to the others,
while for positive results such as those given by Sam, one should use the
strongest form (PHPn). Sam (later communication) remarks that PHP ′′

n

versus {PHPn,PHP ′
n } “sometimes makes a difference.”)

18

The form (2) makes it clear that for all n, PHPn and the two other forms
are (transparently equivalent to) DNF formulas. Hence they are “in-bounds”
for resolution, as well as for Frege proof systems. Kreisel was apparently the
first to discuss the propositional forms of the pigeonhole principle, but the
first in-depth analysis from the complexity point of view owes to the same
paper by Cook and Reckhow that we have been discussing all along. Note
that for each n, PHPn has size proportional to n3, so up to “polynomial
scaling,” it is OK to express complexity bounds in terms of n rather than
the true size of PHPn.

Theorem 5.1 ([CR79]) The tautologies PHPn have polynomial-size ex-
tended Frege proofs.

The sketch of their proof is a good example of the effect of the exten-
sion rule for cutting down proof size. The conceptual pattern is a proof
by reductio-ad-absurdum from the counterfactual hypothesis that f is 1-1.
(Note by KWR: Sam spoke in these functional terms, and Cook and Reckhow
actually used PHP ′

n. However, the Cook-Reckhow proof works immediately
for the most general case (i.e., for PHPn), and I’ve re-worked what was on
Sam’s slides to make this plain. Intuitively speaking, we’re allowing f to be a
“multi-valued” function with domain { 0, . . . , n } and values in { 0, . . . , n−1 },
and the right-hand side of (1) is read as saying that f must have a “collision.”
I’ve written F in place of f for the possibly-multivalued case.)

Proof. Write f : [n]
1-1→ [n − 1], where [n] is short for { 0, . . . , n }. Define

fm : [m] → [m − 1] inductively for m = n down to m = 1 by: fn = f , and
for m ≤ n − 1, i ∈ [m]:

fm(i) = if fm+1(i) < m then fm+1(i) else fm+1(m).

The idea is to prove the implication “fm is 1-1 → fm−1 is 1-1” for each m,
reducing things down to the assertion that f1 : { 0, 1 } → { 0 } is 1-1, which
is clearly absurdum. Frege proofs can do reductio-ad-absurdum.

More generally, let F stand for a possibly-multivalued function with
domain [n] and values in [n − 1]. Then define Fn = F and inductively for
m < n:

Fm(i) 7→ k if k < m and [Fm+1(i) 7→ k ∨ (Fm+1(i) 7→ m ∧ Fm+1(m) 7→ k)].

19

If one lets Bm stand for the formula asserting that Fm has domain [m], then
Bm+1 → Bm is immediate, since

Fm+1(i) 7→ m ∨ (
∨

k < m) Fm+1(i) 7→ k

follows from Bm+1. Now consider what happens if Fm has a collision; i.e., if
there exist i < j ∈ [m] and k ∈ [m − 1] such that Fm(i) 7→ k and Fm(j) 7→
k. If both values can arise from the first disjunct, then Fm+1(i) 7→ k and
Fm+1(j) 7→ k, contradicting the assertion that Fm+1 has no collisions. If both
can arise from the second disjunct, then Fm+1(i) 7→ m and Fm+1(j) 7→ m,
ditto. If one value, say Fm(j) 7→ k, comes from the first disjunct and the
other comes from the latter, we have Fm+1(j) 7→ k and Fm+1(i) 7→ m and
Fm+1(m) 7→ k. This is also a contradiction since i, j ≤ m − 1. Thus we
also get a reductio-ad-absurdum, starting from Fn having no collisions and
ending with F1 having no collisions as a multivalued function from { 0, 1 } to
{ 0 }, which contradicts the assertion B1 that F1 is total.

Now for the extended Frege proof , we introduce new “extension vari-
ables” qm

ik , each intended to stand for “fm(i) = k,” or in the multi-valued case,
“Fm(i) 7→ k.” Recall that we start with variables pik expressing “f(i) = k”
or “F (i) 7→ k,” The extension rules that introduce the new variables are

qn
ik ↔ pik and for m < n, (3)

qm
ik ↔ qm+1

ik ∨ (qm+1
im ∧ qm+1

mk). (4)

The whole point is that by using these extension variables at each stage,
the formal proof of each stage in the “reductio ad absurdum” has the same
symbol-length. Indeed, mimicking the prose details given above for the multi-
valued case, the symbols used in each stage are the same except for the
superscripts m. Since each individual stage has polynomial symbol-length,
the whole thing gets multiplied only by a factor of n, and is still polynomial.

However, if the above eF proof is converted into a Frege proof by remov-
ing the extension inferences and replacing the extension variables qm

ij by the
formulas they abbreviate, then the Frege proof would “bush out” by a factor
of 3 for the right-hand side of (4) at each stage, giving roughly 3n symbols.

20

That shows the difference between F and eF proofs. Note also here that the
number of lines of the Frege proof is basically unaffected by the presence or
absence of (4), in keeping with Statman’s theorem.

For some time, the PHPn formulas were considered a prime candidate
for an exponential separation between F and eF proofs, which if established
would be a major plank in Cook’s program. But there is an alternative
strategy that produces polynomial-sized Frege proofs of PHPn. Intuitively
speaking, it replaces the above use of induction by a clever stratagem for
encoding counting into propositional formulas, and establishing some basic
facts about counting via polynomial-sized Frege proofs. The stratagem in-
volves the log-depth circuits for vector addition and counting from Ofman
[Ofm63] and Wallace [Wal64].

Theorem 5.2 ([Bus87b]) The formulas PHPn do have polynomial-sized
Frege proofs.

(KWR: Sam’s proof is for PHP ′
n, but it can be adapted for PHPn.)

Proof. For each `, 0 ≤ ` ≤ n − 1, define M` to be the number of i in the
domain such that f(i) ≤ `. Formally,

M` := ‖{ i ∈ [n] :
∨

0≤k≤`

pik }‖.

Again we take the hypothesis that f is 1-1 (or “has no collisions”). Thus
M0 ≤ 1, since otherwise there would be a collision at k = 0. The objective
is to prove the successive inequalities:

M0 ≤ 1

M1 ≤ M0 + 1

M2 ≤ M1 + 1
...

Mn−1 ≤ Mn−2 + 1.

From this it follows that Mn−1 ≤ n. However, given that f : [n] → [n − 1]
is total on [n], it follows that Mn−1 = n + 1. This contradiction finishes the
outline of the Frege proof. It remains first to give a polynomial-size Frege
proof of each step, and then to show that the deduction Mn−1 ≤ n also can
be done in polynomial size.

21

First we need an encoding scheme in propositional logic for the numerical
quantities M`. We write M` in standard binary notation as an (a + 1)-bit
number, where a = blog2(n + 1)c, using leading zeroes if necessary. To these
bits we will associate a sequence of formulas

m̂` = m`
a,m

`
a−1, . . . ,m

`
0,

where each m`
i expresses whether the corresponding ith bit is 1 or 0.

To do this, it suffices to define formulas Count i, 0 ≤ i ≤ a, such that

(1) Each Count i has exactly n + 1 free variables x0, . . . , xn.

(2) Count i gives bit i (i.e., the place for 2i) of the binary representation of
the number of xj that are true.

(3) The formulas Count i behave correctly with regard to basic “inten-
sional” properties of counting in binary, and these properties have
polynomial-size Frege proofs.

(4) The size of Count i is polynomially bounded in n.

The idea is that for the x0, . . . , xn we are going to substitute formulas
for “f(0) ≤ `, . . . , f(n) ≤ `.” Then the resulting formulas Count `

i define the
bits m`

i .
Now properties (1), (2), and (4) are immediate to arrange because each

Count i is a symmetric function of n + 1 inputs, and every such function
belongs to (non-uniform) NC1. It remains to establish (3), and for this we
have to say more concretely how Count i is defined.

First idea: Define the sum of two a-bit numbers ny and nz, represented
by sequences of formulas

ŷ = ya, ya−1, . . . , y0

ẑ = za, za−1, . . . , z0,

by Add0(ŷ, ẑ) := y0 ⊕ z0, and for bits i > 0,

Add i(ŷ, ẑ) := yi ⊕ zi ⊕ Carry i,

22

where

Carry i =
∨
j<i


yj ∧ zj ∧ ∧

j<k<i

(yk ⊕ zk)


 .

The problem with this is that the “Carry” formulas have log depth in the
big ANDs and ORs. To see the knock-on effect of this, let us follow through
with our intended use of the formulas Add i. This is a kind of “divide and
conquer”: For all i, j define the number

Aij := ‖{xk : xk = > ∧ j ·2i ≤ k < (j + 1)·2i }‖.
In other words, this is the number of xk that are true in the jth segment of
size 2i in 0 . . . n. We can count up all these segments by the “d & c” recursion
with basis

A0j = if xj then 1 else 0,

and induction
Ai+1,j = Ai,2j + Ai,2j+1.

To express Aij by propositional formulas, we use the same encoding scheme
as above, seeking formulas aij

b to represent the bits of Aij in binary by the
sequence

âij = aij
i , . . . , aij

b , . . . , aij
0 .

For i = 0, we have that a0j
0 is just xj itself, and for bits b > 0, a0j

b = ⊥
(where we might encode ⊥ by (p1 ∧ ¬p1), say). Then the induction case is
represented by

ai+1,j
b = Add b(â

i,2j, âi,2j+1). (5)

Then Count i is given by aa0
i , i.e., by a

log2 n,0
i .

Alas, when we analyze the size blowup of the recursion (5), we get the

following: Each formula aij
b appears Θ(log2 n) times in ai+1,j′

b′ , for all b′ ≥
b, where j′ = bj/2c. Since we need to recurse up to i = log n, we have
in all (Θ(log2 n))log n) occurrences of the base variables xj. However, this
equals nΘ(loglogn), which is super-polynomial. Hence this scheme using the
straightforward log-depth definition of Add b is too big.

What we need to do to achieve polynomial size is to get the number of
occurrences of variables “like” aij

b in something like (5) down from O(log2 n)
to constant ; even O(log n) is not good enough. If our addition formula were
constant-depth, we’d be OK. (At this point, Barrington and I chimed in

23

that one could use a “redundant” or “signed bit” notation instead of stan-
dard binary; cf. the results on constant-depth addition in these notations by
Borodin, Cook, and Pippenger [BCP83]. But such a notation scheme would
cause other headaches. Sam added that since the numbers concerned have
size O(log n) bits, he could also have used a “ripple carry” circuit.)

The idea used in Sam’s proof is to achieve the same effect via carry-save
addition (CSA), a trick that goes back to the 1960s. This converts three
numbers n0, n1, n2 into two numbers m0,m1 such that n0+n1+n2 = m0+m1.
Each bit b of m0 is the bitwise sum mod 2 of the bits b of n0, n1, and n2,
while bit b of m1 is 1 if the sum of these bits is 2 or 3 (which would be
the carry propagated into the next column in the standard way of summing
n0+n1+n2), and 0 otherwise. Put another way, m1bm0b equals n0b+n1b+n2b

as a binary number between 0 and 3. We may also define “m1,−1” to be 0.
Now define the following “double-barreled” recursion:

C0,j = 0, S0,j = if xj then 1 else 0.

and for 1 ≤ i ≤ a − 1,

(Ci+1,j, Si+1,j) = CSA(CSA(Ci,2j, Si,2j, Ci,2j+1), Si,2j+1). (6)

The effect of the two applications of CSA is to give a constant-depth adder
from four numbers into two. Finally, Cij +Sij gives the desired quantity Aij.

Now do the propositional translations ŝij and ĉij of Cij and Sij as before.
The payoff is that in the propositional translation of (6), each sij

b and cij
b

appears some constant k number of times in si+1,j′
b and ci+1,j′

b+1 , where j′ =
bj/2c as before. Hence the base variables xj appear at most klog n = nk

times in slog n,0
b and clog n,0

b . Finally, the propositional translation âij of Aij is
obtained by one application of the original Add b(·, ·) formulas. Then from âij

we obtain propositional representations of Count i as before, and these have
polynomial size.

It remains to verify that the formulas Count i thus obtained are equivalent
to the earlier definition in terms of the quantities Aij, and that the nice
properties listed above carry through. Then polynomial-sized Frege proofs
of the sequence of inequalities for the M` can be put together. The details are
long but straightforward and not so interesting, “hence best omitted.”

24

5.1 A note on circuit complexity and proof-system
simulations

There is a natural connection between extended Frege systems and Boolean
circuits, since both models allow the introduction of “abbreviations.” The
formulas in any line of an eF -proof can be transformed into circuits, with
the idea that the symbols that come from extension rules correspond to gates
with fan-out greater than 1. Conversely a circuit can be transformed into
a formula in an extended Frege proof by introducing new variables for each
internal node of the circuit. Since the Circuit Value Problem is complete
for the class P [Lad75], one would expect some relationship between eF -
proofs and polynomial time computations. This intuition however has not
been formalized yet (as the reader can judge from the vagueness of this
paragraph—KWR).

Similarly Frege proofs can be connected to Boolean formulas, which are
the same as Boolean circuits of fan-out 1 at each gate. Since the Boolean
Formula Value Problem is in NC1 [Bus87a, BCGR92, Bus93], one tends to
associate Frege-proofs with NC1 computations. It would be very interesting
to formalize these connections, showing for example that a polynomial sim-
ulation of eF proofs by F proofs is possible if and only if the complexity
classes P and NC1 coincide (in the nonuniform case).

6 More Propositional Proof Systems and

Simulations

In this section we consider variations of the Frege proof systems that arise
when allowing different substitution rules. As we will see, all these systems
are polynomially equivalent to the eF proof systems.

Definition 6.1. A substitution Frege (sF) proof system is a Frege system
augmented with the substitution rule

ϕ(p)

ϕ(ψ)

that indicates that every occurence of the variable p in the formula ϕ, is
replaced by the formula ψ.

25

As the next result shows, Frege systems with substitution are as powerful
as extended Frege systems.

Theorem 6.1 Given a sF and an eF system with the same language, then

(a) [CR79] the sF system p-simulates the eF system.

(b) [Dow85, KP89] the eF system p-simulates the sF system.

Proof. (a) Let A be a formula and P be an eF proof of A using the extension
rules p1 ↔ B1, . . . pk ↔ Bk. Let P = A1, . . . , An with An = A. It is not hard
to see that for every Aj, 1 ≤ j ≤ n, there is a polynomial size Frege proof of
the formula (

k∧
i=1

pi ↔ Bi

)
→ Aj.

In particular there is a Frege proof Q of size O(|P |3) of

(
k∧

i=1

pi ↔ Bi

)
→ A.

We can suppose that the pi ↔ Bi are numbered in reverse order of how they
appear in P so that pi does not appear in Aj for j > i. The last line of Q
can be written as

(p1 ↔ B1) ∧
(

k∧
i=2

pi ↔ Bi

)
→ A,

substituting B1 for p1 and removing B1 ↔ B1 one gets

(
k∧

i=2

pi ↔ Bi

)
→ A.

This process can be repeated k times until A is obtained, and therefore this
formula has a substitution Frege proof of size O(|P |3).

(b) Let ϕ1, ϕ2, . . . , ϕr be an sF -proof of ϕr with propositional variables
p1, . . . , pm. We need to construct an eF proof of ϕr. The eF -proof will have

26

the set of extension variables qi,k
1 , . . . , qi,k

m for 1 ≤ i ≤ k ≤ r, and will prove
successively the formula

¬ϕr →
k∨

i=1

¬ϕi(~qi,k)

for k = r, r − 1, . . . , 2, 1. This will suffice since when k = 1 we have an
eF -proof ending with

¬ϕr → ¬ϕ1(~q1,1),

and since ϕ1(~q1,1) is an axiom instance, ϕr follows in a few more steps.
We define next the extension rules for the variables qi,k

j . This is done
successively for k = r, r−1, . . . , 1, and whenever we define the extension rule
for qi,k

j we suppose that we have a short eF -proof for

¬ϕr →
k+1∨
i=1

¬ϕi(~qi,k+1).

When k = r, qi,k is defined by the rule

qr,r
j ↔ pj

qi,r
j ↔ ⊥ for i < r.

Obviously
¬ϕr → ¬ϕr(~qr,r).

For k < r we have three cases depending on how ϕk+1 has been obtained.
Case 1: If ϕk+1 is an axiom then let

qi,k
j ↔ qi,k+1

j for all i, j.

ϕk+1(~qk+1,k+1) has an eF -proof of one line, and the hypothesis

¬ϕr →
k+1∨
i=1

¬ϕi(~qi,k+1)

immediately implies

¬ϕr →
k∨

i=1

¬ϕi(~qi,k).

27

Case 2: If ϕk+1 is inferred by substitution

ϕl(p1, . . . , pm)

ϕk+1(ψ1, . . . , ψm)

then define qi,k
j as follows: For i 6= l

qi,k
j ↔ qi,k+1

j

and for i = l,

qi,k
j ↔ (¬ϕl(~ql,k+1) ∧ ql,k+1

j) ∨ (ϕl(~ql,k+1) ∧ ψj(~qk+1,k+1)).

Put another way, the definition of qi,k
j in the case i = l is:

qi,k
j ↔




ql,k+1
j if ¬ϕl(~ql,k+1)

ψj(~qk+1,k+1) otherwise.

By the way extensions are defined, from the formula ϕl(~ql,k) we could infer

ϕl(~ql,k+1) and ϕl(~ψj(qk+1,k+1)), but this last formula equals ϕk+1(~qk+1,k+1).
This establishes the implication

¬ϕk+1(~qk+1,k+1) → ¬ϕl(~ql,k).

Since l ≤ k, this combines with the induction hypothesis to yield a short eF
proof of

¬ϕr →
k∨

i=1

¬ϕi(~qi,k).

Case 3: If ϕk+1 is inferred by modus ponens

ϕl ϕl′

ϕk+1

then for i 6= l and i 6= l′ define

qi,k
j ↔ qi,k+1

j ,

28

and in case either i = l or i = l′, define

qi,k
j ↔




qi,k+1
j if ¬ϕi(~qi,k+1)

qk+1,k+1
j otherwise.

By the way extensions are defined, from ϕl(~ql,k) ∧ ϕl′(~ql′,k), we get

ϕl(~qk+1,k+1) ∧ ϕl′(~qk+1,k+1), which entails ϕk+1(~qk+1,k+1). Thus we have

¬ϕk+1(~qk+1,k+1) → ¬ϕl(~ql,k) ∨ ¬ϕl′(~ql′,k),

and since l and l′ are smaller than k + 1, this combines with the induction
hypothesis to yield an eF -proof of

¬ϕr →
k∨

i=1

¬ϕi(~qi,k).

The above theorem shows that the substitution rule is rather powerful.
The next two results show that the whole power of this rule can be achieved
using two weak forms of substitution, True-False substitution and variable
substitution.

Definition 6.2. The True-False substitution rules,

ϕ(p)

ϕ(>)
and

ϕ(p)

ϕ(⊥)

allow the substitution of the nullary constants > and ⊥ (true or false) for
the variable p in the formula ϕ.

Theorem 6.2 ([Bus95]) A Frege system augmented with T-F-substitution
can p-simulate extended Frege systems.

Proof. The idea is that for any formula ϕ, and any variable p in ϕ, T-F-
substitution can simulate in a polynomial number of steps any substitution
of a formula ψ for p. This can be done obtaining the formulas ϕ(>) and ϕ(⊥)

29

(using two T-F-substitutions), and deriving the valid formulas ψ ∧ ϕ(>) →
ϕ(ψ) and ¬ψ ∧ ϕ(⊥) → ϕ(ψ). These can be derived using a number of lines
that is linearly bounded in the number of connectives in ϕ(p). From these
formulas ϕ(ψ) can be easily inferred in a constant number of lines.

Another type of substitution that seems weak but is as powerful as the
general substitution is the renaming rule. This rule allows to rename and
identify different variables.

Definition 6.3. The renaming rule is

ϕ(p)

ϕ(q)

(p and q are propositional variables).

Theorem 6.3 ([Bus95]) A Frege system augmented with the renaming rule
can p-simulate extended Frege systems.

Proof. By the previous theorem it suffices to show that a Frege system
with renaming can simulate Frege proofs with T-F-substitutions. Let A be
a formula and P be a T-F-substitution Frege proof of A, and let p1, . . . , pk

be the variables that appear in P . One can first prove without renaming the
formulas (p1 ∧ . . . ∧ pk) → A(~p) and (¬p1 ∧ . . . ∧ ¬pk) → A(~p). This
can be done proving first the formula A(>, . . . ,>) (for the first case) that
does not have variables and therefore a proof only needs to prove its true
subformulas and disprove the false ones. Then one can prove the formula
(p1 ∧ . . . ∧ pk) ∧ A(>, . . . ,>) → A(~p). From these two, (p1 ∧ . . . ∧ pk) →
A(~p) can be inferred in a constant number of steps.

Let D be the formula

¬(p1 ∧ . . . ∧ pk) ∧ (p1 ∨ . . . ∨ pk).

We show that there is a Frege proof with renaming of the formula D → A,
(from this and the proofs of the formulas considered before, we can conclude
that there is a proof for A). To do this we construct a new proof P ′ to
simulate the proof P by proving D → B for each formula B in P . If B is
inferred in P by a Frege inference, then D → B can easily be inferred from

30

previous lines in P ′. The case left is when B comes from a T-F-substitution
like

B(pi)

B(>)
.

By hypothesis we have in P ′ D → B(pi) and we have to infer D → B(>).
Doing k − 1 renaming inferences we can get D(pi/pj) → B(pj) for all j 6= i.
(D(pi/pj) represents the replacement of pi with pj in D). Then one can get
proofs for the formulas pj ∧ B(pj) → B(>). Combining these one can infer
Di → B(>), where Di is the formula

¬(p1 ∧ . . . ∧ pi−1 ∧ pi+1 ∧ . . . ∧ pk) ∧ (p1 ∨ . . . ∨ pi−1 ∨ pi+1 ∨ . . . ∨ pk).

(Observe that D(pi/pj) is equivalent to Di). Now one can easily infer

D ∧ ¬Di → B(T)

since the hypothesis of this formula holds only for two possible values of
the variables. With this and Di → B(>), D → B(>) can be inferred in a
constant number of lines.

6.1 Tree-like versus non-tree-like proofs

A tree-like proof is one in which intermediate results (formulas) are used as
hypotheses for an inference only once. As the next theorem shows, in the
case of Frege systems, non-tree-like proofs can be transformed into tree-like
without changing the size very much.

Theorem 6.4 ([Kra94]) If A has a (non-tree-like) F-proof on size n then
A has a tree-like F-proof of size p(n) for some polynomial p.

Proof Sketch. If the F -proof has lines B1, . . . , Bk = A, the idea is to form
a tree-like F -proof which proves B1, then B1 ∧ B2, then B1 ∧ B2 ∧ B3, . . .,
until B1 ∧ B2 ∧ . . . ∧ Bk is proved.

Bonet in [Bon91] improved Kraj́ıček’s construction by giving better
bounds on the size of the tree-like proof.

31

6.2 Best known lower bounds for (extended) Frege
proofs

Theorem 6.5 (a) Let F be an arbitrary Frege system. There are tautolo-
gies that require quadratic size F proofs.

(b) Same holds for eF proof systems.

These results follow from the following theorem.

Theorem 6.6 ([Bus95]) Let A have n connectives and let m be the sum of
the sizes of the subformulas of A without repetition, and suppose also that A
is not an instance of a shorter tautology. Then

(a) Any extended Frege proof of A has Ω(m) symbols.

(b) Any Frege proof has Ω(n) lines.

Proof Sketch. Consider the formula A

⊥ ∨ (⊥ ∨ (⊥ ∨ (. . . ∨ (⊥ ∨ >)) . . .))

with n disjunctions. Each subformula of A must be “active” in any proof,
where “active” means its principal connective is used by some inference.
Otherwise, the subformula could be replaced everywhere by ⊥, and we would
still have a valid proof, but of a non-tautology. Each inference makes only a
constant number of subformulas active, so proof size must be

Ω(
∑ ‖{B : B is a subformula of A }‖) = Ω(m).

Although the formula A in the above proof is an easy one, in fact these
are the best known lower bounds on Frege proof size. These results constrast
with the exponential lower bounds that are known for other (weaker) proof
systems, like resolution.

Theorem 6.7 ([Hak85]) There is some constant c > 0 such that any res-
olution proof of the pigeonhole principle PHPn requires at least 2cn lines.

32

Since as we have seen, PHPn has polynomial size Frege proofs we get

Corollary 6.8 Resolution does not p-simulate Frege proof systems.

Exponential lower bound are known for Frege proof systems of constant
depth. In a language { ∧ , ∨ ,¬}; the depth of a formula is the number of
alternations of ∧ ’s and ∨ s (after ¬ has been pushed to the literals). A
constant depth Frege proof is one in which the formula depth is bounded by
a constant. The following was independently obtained by Kraj́ıček, Pudlák,
and Woods, and by Pitassi, Beame, and Impagliazzo.

Theorem 6.9 ([KPW91, PBI93]) Depth d Frege proofs of PHPn require

Ω(2n
1
6d

) symbols.

The next result shows that a Frege proof for a formula can be transformed
into a new one where the symbol-size is related to line-size and the depth of
the original proof.

Theorem 6.10 ([Bus95]) A depth d Frege proof with m lines can be trans-
formed into a depth d Frege proof with O(md) symbols.

Corollary 6.11 PHPn requires depth d Frege proofs of Ω(2n
1
6d

) lines.

References

[Ajt94] M. Ajtai. The complexity of the pigeonhole principle. Combina-
torica, 14:417–433, 1994.

[Bar89] D. Mix Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1. J. Comp.
Sys. Sci., 38:150–164, 1989.

[BB94] M.L. Bonet and S. Buss. Size-depth tradeoffs for Boolean formu-
lae. Inf. Proc. Lett., 29:151–155, 1994.

[BC88] M. Ben-Or and R. Cleve. Computing algebraic formulas using a
constant number of registers. In Proc. 20th STOC, pages 254–257,
1988.

33

[BCE91] N. Bshouty, R. Cleve, and W. Eberly. Size-depth tradeoffs for
algebraic formulae. In Proc. 32nd FOCS, pages 334–341, 1991.

[BCGR92] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An opti-
mal parallel algorithm for formula evaluation. SIAM J. Comput.,
21:755–780, 1992.

[BCP83] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for
well-endowed rings, and space-bounded probabilistic machines.
Inform. and Control, 58:113–136, 1983.

[Bon91] M. Bonet. The lengths of propositional proofs and the deduction
rule. PhD thesis, Univ. of California at Berkeley, 1991.

[Bus87a] S. Buss. The boolean formula value problem is in ALOGTIME.
In Proc. 19th STOC, pages 123–131, 1987.

[Bus87b] S. Buss. Polynomial-size proofs of the propositional pigeonhole
principle. J. Symb. Logic, 52:916–927, 1987.

[Bus93] S. Buss. Algorithms for Boolean formula evaluation and for tree
contraction. In P. Clote and J. Kraj́ıček, editors, Arithmetic,
Proof Theory, and Computational Complexity, pages 96–115. Ox-
ford University Press, 1993.

[Bus95] S. Buss. Some remarks on lengths of propositional proofs, 1995.
Submitted to Archiv für Mathematische Logik .

[CCT87] W. Cook, C. Coullard, and G. Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18:25–38,
1987.

[CL94] J.-Y. Cai and R. Lipton. Subquadratic simulations of balanced
formulae by branching programs. SIAM J. Comput., 23:563–572,
1994.

[Coo71] S. Cook. The complexity of theorem-proving procedures. In Proc.
3rd STOC, pages 151–158, 1971.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional
proof systems. J. Symb. Logic, 44:36–50, 1979.

34

[Dow85] M. Dowd. Model-theoretic aspects of P 6= NP. Typewritten
manuscript, 1985.

[Hak85] A. Haken. The intractability of resolution. Theor. Comp. Sci.,
39:297–308, 1985.

[HS65] J. Hartmanis and R. Stearns. On the computational complexity
of algorithms. Transactions of the AMS, 117:285–306, 1965.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison–Wesley, Reading, MA,
1979.

[Imm91] N. Immerman. DSPACE[nk] = VAR[k + 1]. In Proc. 6th Struc-
tures, pages 334–340, 1991.

[KD90] S.R. Kosaraju and A. Delcher. A tree-partitioning technique with
applications to expression evaluation and term matching. In Proc.
31st FOCS, pages 163–172, 1990.

[KD92] S.R. Kosaraju and A. Delcher. A tree-partitioning technique with
applications to expression evaluation and term matching, Novem-
ber 1992.

[KP89] J. Kraj́ıček and P. Pudlák. Propositional proof systems, the con-
sistency of first-order theories, and the complexity of computa-
tions. J. Symb. Logic, 54:1063–1079, 1989.

[KP90] J. Kraj́ıček and P. Pudlák. Quantified propositional logic and
fragments of bounded arithmetic. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 36:29–46, 1990.

[KPW91] J. Kraj́ıček, P. Pudlák, and A. Wood. Exponential lower bound to
the size of bounded depth Frege proofs of the pigeonhole princi-
ple, 1991. Typeset manuscript, to appear in the journal Random
Structures and Algorithms .

[Kra94] J. Kraj́ıček. Lower bounds to the size of constant-depth Frege
proofs. J. Symb. Logic, 59:587–598, 1994.

35

[Lad75] R. Ladner. The circuit value problem is log-space complete for
P. SIGACT News, 7:18–20, 1975.

[Ofm63] Y. Ofman. On the algorithmic complexity of discrete functions.
Soviet Physics—Doklady, 7(7):589–591, 1963. English transla-
tion.

[PBI93] T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Computational Complexity,
3:97–140, 1993.

[Rec76] R. Reckhow. On the lengths of proofs in the propositional calculus.
PhD thesis, University of Toronto, 1976. Computer Science TR
#87.

[Spi71] M. Spira. On time-hardware complexity tradeoffs for Boolean
functions. In Proceedings of the Fourth International Symposium
on Systems Sciences, pages 525–527, 1971.

[Sta77] R. Statman. Complexity of derivations from quantifier-free Horn
formulae, mechanical introduction of explicit definitions, and re-
finement of completeness theorems. In Proc. Logic Colloquium
’76, pages 505–517. North-Holland, 1977.

[Tse68] G. Tseitin. On the complexity of derivations in propositional cal-
culus. In A. Slisenko, editor, Studies in Mathematics and Mathe-
matical Logic, Part II, pages 115–125. 1968. English translation.

[Wal64] C. Wallace. A suggestion for a fast multiplier, 1964.

36

Interpolation Theorems for Propositional
Logic

Notes by Eric Allender and Alexis Maciel

Monday Evening, March 6

1 Introduction

Let ~p, ~q and ~r be vectors of variables and let A(~p, ~q) and B(~p, ~r) be two propo-
sitional formulas involving only the indicated variables. Suppose that A(~p, ~q)
implies B(~p, ~r). Since B does not involve any variable from ~q, whatever A
says about ~p should be sufficient to imply B. This intuition is formalized by
the Interpolation Theorem.

Theorem 1.1 Let A(~p, ~q) and B(~p, ~r) be propositional formulas involving
only the indicated variables. Also, suppose that A(~p, ~q) → B(~p, ~r) is a tau-
tology. Then there is a propositional formula C(~p) not involving q’s and r’s
such that

A(~p, ~q) → C(~p) and C(~p) → B(~p, ~r)

are tautologies.

Proof Let τ1, . . . , τn be the truth assignments to p1, . . . , pk for which it is
possible to make A(~p, ~q) true by further assignment of truth values to ~q. Let
C(~p) say that one of τ1, . . . , τn holds for ~p, i.e.,

C(~p) =
n∨

i=1

(p
(i)
1 ∧ p

(i)
2 ∧ · · · ∧ p

(i)
k)

where

p
(i)
j =

{
pj if τi(pj) = True
¬pj if τi(pj) = False

37

Then, clearly, A(~p, ~q) |= C(~p).
On the other hand, a truth assignment to ~p that satisfies C(~p) can be

extended to a truth assignment to ~p, ~q that satisfies A(~p, ~q). Since A(~p, ~q) |=
B(~p, ~r), every extension of this truth assignment to ~p, ~q, ~r must satisfy B(~p, ~r).
Therefore, C(~p) |= B(~p, ~r). ut

A stronger version of the interpolation theorem was proved by Craig for
first-order logic [6]. Also, note that the above proof allows C(~p) to be expo-
nentially big, as a function of the sizes of A(~p, ~q) and B(~p, ~r).

The following example exhibits a relationship between the size of inter-
polants and complexity theory.

Example 1.2 Consider the language FACT of all pairs (X,U) where X is
the binary representation of a number and U is the prefix of some prime V
that divides X. Let p1, . . . , pk code a pair (X,U). Let A(~p, ~q) be a formula
that is satisfiable if and only if (X,U) ∈ FACT. For example, A(~p, ~q) says
that (i) ~q codes numbers V1, . . . , Vm and Pratt primality witnesses for each
Vi, and that (ii) V1 · · ·Vm = X and U is the prefix of some Vi. Let B(~p, ~r) be a
formula that is satisfiable if and only if (X,U) /∈ FACT. For example, B(~p, ~r)
says that (i) ~r codes numbers V1, . . . , Vm and Pratt primality witnesses for
each Vi, and that (ii) V1 · · ·Vm = X and U is not the prefix of any of the Vi.
Then, (X,U) ∈ FACT ⇔ ∃~qA(~p, ~q) ⇔ ¬∃~rB(~p, ~r), so that

A(~p, ~q) → ¬B(~p, ~r)

is a tautology. Therefore, an interpolant C(~p) must express (X,U) ∈ FACT,
since (X,U) ∈ FACT ⇒ ∃~qA(~p, ~q) ⇒ C(~p) and C(~p) ⇒ ∀~r¬B(~p, ~r) ⇒
(X,U) ∈ FACT. ut

As a consequence, a polynomial upper bound on the size of interpolants
for propositional logic would immediately translate into a polynomial upper
bound on the size of formulas or circuits for the language FACT, depending
on how the size of an interpolant is defined. Note that FACT ∈ NP∩ coNP;
this is easily seen by using the formulas A(~p, ~q) and B(~p, ~r) above. On the
other hand, it is not known if FACT has polynomial-size formulas or circuits.
In fact, if this language has polynomial-size circuits, then so does factoring.
The conjecture would therefore be that FACT /∈ P/poly. Generalizing this
example gives the following:

38

Theorem 1.3 ([9]) If there is a polynomial upper bound on the circuit size
of interpolants in propositional logic, then

NP/poly ∩ coNP/poly = P/poly.

Proof Let ∃~qA(~p, ~q) express an NP/poly property R(~p) and let ∀~rB(~p, ~r)
express the same property in coNP/poly form. Then

∃~qA(~p, ~q) ⇒ ∀~rB(~p, ~r),

which is equivalent to
A(~p, ~q) → B(~p, ~r)

being a tautology. Let C(~p) be a polynomial circuit size interpolant such
that

A(~p, ~q) → C(~p) and C(~p) → B(~p, ~r)

are tautologies. Thus

∃~qA(~p, ~q) ⇒ C(~p) and C(~p) ⇒ ∀~rB(~p, ~r),

i.e., R(~p) ⇔ C(~p). Therefore, R(~p) has a polynomial-size circuit and thus is
in P/poly. ut

In the remainder of this lecture, we prove upper bounds on the size of
interpolants in two restricted cases: when A(~p, ~q) → B(~p, ~r) has a short cut-
free proof in the propositional sequent calculus, and when A(~p, ~q) → B(~p, ~r)
has a short resolution refutation. We also prove a monotone version of the
latter and one for resolution with limited extension.

2 The propositional sequent calculus

Let propositional formulas be built with the connectives >, ¬, ∧ and ∨ for
true, negation, conjunction and disjunction. A sequent is of the form

A1, A2, . . . , Ak → B1, B2, . . . , Bl

where k ≥ 0, l ≥ 0 and the Ai’s and Bj’s are formulas. The intended meaning
of the sequent is

(A1 ∧ A2 ∧ · · · ∧ Ak) → (B1 ∨ B2 ∨ · · · ∨ Bl).

39

(An empty conjunction has value true; an empty disjunction has value false.)
The propositional sequent calculus PK is a proof system in which each

line in a proof is a sequent. The axioms or initial sequents are

(1) p → p, p any propositional variable

(2) → >
The rules of inference of PK are as follows. Γ and ∆ represent formulas
separated by commas (cedents).

(1) Weak structural rules:
Γ → ∆
Γ′ → ∆′

provided every formula in Γ and ∆ appears also in Γ′ and ∆′, respec-
tively.

(2)

∧:left
A,B, Γ → ∆

A ∧ B, Γ → ∆
∧ :right

Γ → ∆, A Γ → ∆, B
Γ → ∆, A ∧ B

(3)

∨:left
A, Γ → ∆ B, Γ → ∆

A ∨ B, Γ → ∆
∨ :right

Γ → ∆, A,B
Γ → ∆, A ∨ B

(4)

¬:left
Γ → ∆, A
¬A, Γ → ∆

¬:right
A, Γ → ∆

Γ → ∆,¬A

(5) Cut rule:
Γ → ∆, A A, Γ → ∆

Γ → ∆

40

PK is sound: if PK ` Γ → ∆, then Γ → ∆ is valid. PK is also complete:
if Γ → ∆ is valid, then there is a PK proof of Γ → ∆. In fact, PK is cut-free
complete: if Γ → ∆ is valid, then there is a cut-free PK proof of Γ → ∆.
Obviously, cut-free completeness implies completeness. The cut-free com-
pleteness of PK can be proved by induction on the number of propositional
connectives occurring in Γ → ∆. (See [4].)

Note that ∧:left and ∨:right are dual. The same is true of ∨:left and
∧:right. In Γ → ∆, Γ is called the antecedent, and ∆ is called the succedent.
Let V (A) denote the set of variables occurring in A. Let |A| denote the num-
ber of symbols in formula A, and let |A|dag denote that number of symbols
in the circuit form of A. Let |P | and |P |dag denote the number of sequents
in the tree form and in the circuit form of a proof P .

3 Interpolation for cut-free proofs

Theorem 3.1 (Buss) Let P be a cut-free PK proof of A → B where V (A) ⊆
{~p, ~q} and V (B) ⊆ {~p, ~r}. Then, there is an interpolant C such that

(i) A → C and C → B are valid,

(ii) V (C) ⊆ {~p},
(iii) |C| ≤ 2|P | and |C|dag ≤ 2|P |dag.

Therefore, tree-like cut-free proofs have interpolants of polynomial formula
size and general cut-free proofs have interpolants of polynomial circuit size.

Note that the proof below will not only show that A → C and C → B
are valid, but that A → C and C → B have short cut-free PK proofs. In
addition, the theorem also holds for proofs P that have cuts only on formulas
D such that V (D) ⊆ {~p, ~q} or V (D) ⊆ {~p, ~r}. On the other hand, it is not
known if similar bounds hold on the size of interpolants for general PK proofs.

Proof We will prove a slightly more general statement:

If P is a cut-free PK proof of Γ → ∆, if Γ is Γ1 ∪ Γ2 and ∆ is ∆1 ∪ ∆2

(possibly reordered), if V (Γ1, ∆1) ⊆ {~p, ~q} and V (Γ2, ∆2) ⊆ {~p, ~r}, then
there is an interpolant C such that

41

(i) Γ1 → ∆1, C and C, Γ2 → ∆2 are valid,

(ii) V (C) ⊆ {~p},
(iii) |C| ≤ 2|P | and |C|dag ≤ 2|P |dag.

The proof will be by induction on the number of inferences in P .
Base case: No inferences. If the initial sequent is qi → qi, then take C

to be (¬>), since qi → qi,¬> and ¬> → are valid. If the initial sequent is
ri → ri, then C can be >. If the initial sequent is pi → pi, then C will be
>, (¬>), pi, or (¬pi) depending on how the two instances of pi are split into
Γ1, Γ2, ∆1, ∆2. For example, if Γ1 and ∆2 are pi and ∆1 and Γ2 are empty,
then C can be pi. If the initial sequent is → >, then C will be > or ¬>.

Induction step: Consider the last inference.
Case (1): The last inference is

∨:right
Γ → ∆, A,B

Γ → ∆, A ∨ B

In this case, the interpolant for the upper sequent will still work for the lower
sequent. By hypothesis, A∨B is either contained in ∆1 or it is contained in
∆2. If A ∨ B ∈ ∆1, then an interpolant for the upper sequent is such that

Γ1 → ∆−
1 , A,B,C and C, Γ2 → ∆2

are valid, where ∆−
1 = ∆1 −{A∨B}. If A∨B ∈ ∆2, then an interpolant for

the upper sequent is such that

Γ1 → ∆1, C and C, Γ2 → ∆−
2 , A,B

are valid, where ∆−
2 = ∆2 − {A ∨ B}.

Case (2): The last inference is

∧:right
Γ → ∆, A Γ → ∆, B

Γ → ∆, A ∧ B

If A ∧ B ∈ ∆1, apply the induction hypothesis twice to get interpolants CA

and CB such that

Γ1 → ∆−
1 , A, CA CA, Γ2 → ∆2

42

Γ1 → ∆−
1 , B, CB CB, Γ2 → ∆2

are valid. Now,

Γ1 → ∆−
1 , A, CA ∨ CB Γ1 → ∆−

1 , B, CA ∨ CB

Γ1 → ∆−
1 , A ∧ B,CA ∨ CB

and
CA, Γ2 → ∆2 CB, Γ2 → ∆2

CA ∨ CB, Γ2 → ∆2

Therefore, (CA ∨ CB) is an interpolant.
If A ∧ B ∈ ∆2, apply the induction hypothesis twice to get interpolants

CA and CB such that

Γ1 → ∆1, CA CA, Γ2 → ∆−
2 , A

Γ1 → ∆1, CB CB, Γ2 → ∆−
2 , B

are valid. Similarly to before,

CA ∧ CB, Γ2 → ∆−
2 , A CA ∧ CB, Γ2 → ∆−

2 , B
CA ∧ CB, Γ2 → ∆−

2 , A ∧ B

and
Γ1 → ∆1, CA Γ1 → ∆1, CB

Γ1 → ∆1, CA ∧ CB

Therefore, (CA ∧ CB) is an interpolant.
All other cases are handled similarly. In addition, the size bounds on C

are easily verified. ut

4 Resolution

In this section we review the basic notions and definitions concerning resolution-
based theorem proving.

Definition 4.1. A literal is either a propositional variable p or a negated
variable ¬p (which will also be denoted p).

43

Definition 4.2. A formula in CNF - Conjunctive Normal Form is expressed
as a set of clauses {C1, . . . , Ck}, where each Ci is a set of literals {l1, . . . , lj}
interpreted as the disjunction of those literals, l1 ∨ . . . ∨ lj and the formula
is interpreted as the conjunction of the clauses. We will assume throughout
that no clause contains both p and p.

Definition 4.3. A resolution derivation from C1, . . . , Ck is a sequence D1, . . . , Dl

such that each Di is either

1. one of the Ci’s or

2. of the form Di = Dj1 ∪Dj2 \ {xr, xr} where Dj1 and Dj2 have xr, xr as
their only pair of complementary literals, and both j1 and j2 are less
than i. (Di is said to be the result of resolving Dj1 and Dj2 .)

Definition 4.4. A refutation is a derivation whose last element is ∅ (denoted
by the symbol 2).
This empty clause has the meaning of False; the only way it can be obtained
in a derivation is for Cj1 = {x}, Cj2 = {x} for some literal x and clearly x∧x
cannot be True.

If ϕ is a formula in DNF, then we may abuse notation slightly and speak
of ¬ϕ as being in CNF (whereas it would be more precise to consider the
formula in CNF that results by applying DeMorgan’s laws to ¬ϕ).

Although this form of proof is limited, it is in fact widely used and is
therefore of interest. The following well-known result shows that, at least for
proving DNF tautologies, resolution is a complete proof system.

Theorem 4.1 Let ϕ be in DNF. Then |= ϕ (i.e. ϕ is a tautology) iff there
is a resolution refutation of ¬ϕ.

Note that every resolution refutation has an associated graph, with nodes
labeled by clauses, and edges from C to D if clause D is the result of resolving
C with another clause. A resolution refutation is said to be tree-like if this
graph is a tree. Since any refutation can be made tree-like by merely repeat-
ing parts of the derivation if need be, tree-like resolution is also a complete
proof system for proving tautologies in DNF.

44

5 Interpolation for resolution

In this section, we show that a theorem analogous to Theorem 3.1 holds
also for resolution refutations. If we look at Theorem 1.1 and consider the
special case where A(~p, ~q) is in CNF, and B(~p, ~r) is in DNF, then saying that
A(~p, ~q) → B(~p, ~r) is a tautology is equivalent to saying that a set of clauses
of the form {Ai(~p, ~q)} ∪ {Bj(~p, ~r)} is unsatisfiable. Thus the interpolant
guaranteed by Theorem 1.1 has the form mentioned in the following theorem.

Theorem 5.1 [10, 8] Let Γ = {Ai(~p, ~q)}∪{Bj(~p, ~r)} have a resolution refu-
tation of length n. Then there is an interpolant C(~p) such that∧

i

Ai(~p, ~q) ⇒ C(~p)

and
C(~p) ⇒ ¬∧

j

(Bj(~p, ~r))

and C(~p) has circuits of size ≤ 3n.
If the refutation is tree-like, then C(~p) will have formulae of size O(n).

Proof
For each expression E in our resolution refutation, we will have a gate

CE in our circuit. (The circuit C2 for the final clause in the refutation will
be the circuit C(~p).)

1. If E = Ai(~p, ~q), then CE is the constant 0.

2. If E = Bj(~p, ~r), then CE is the constant 1.

3. If E = F ∪ G from (F ∪ {pi}, G ∪ {pi}), then

CE ::= (pi ∧ CF∪{pi}) ∨ (pi ∧ CG∪{pi})

4. If E = F ∪ G from (F ∪ {qi}, G ∪ {qi}), then

CE ::= CF∪{qi} ∨ CG∪{qi}

5. If E = F ∪ G from (F ∪ {ri}, G ∪ {ri}), then

CE ::= CF∪{ri} ∧ CG∪{ri}

45

(Note, circuit C2 has inputs only for 0, 1, pi, pi, as required.)
In order to finish the proof of the theorem, we must prove the following

lemma. (This is clearly sufficient to prove the theorem, since the output gate
of this circuit of C2, and τ(2) = ⊥ for every truth assignment τ . Note that
a truth assignment τ is the same as an input assignment to the circuit C2.)

Lemma 5.2 If τ is a truth assignment such that τ(E) = ⊥, then

τ(CE) = ⊥ =⇒ ∃i τ(Ai) = ⊥
τ(CE) = > =⇒ ∃i τ(Bi) = ⊥

(Note CE does not compute expression E in general.)

Proof (of the lemma)

1. If E = Ai(~p, ~q), then τ(CE) = ⊥. The hypothesis of the lemma is that
τ(Ai(~p, ~q) = ⊥, so the claim holds trivially in this case.

2. E = Bj(~p, ~r), then τ(CE) = > and τ(Bj(~p, ~r)) = ⊥, similar to case 1.

3. E = F ∪ G from (F ∪ {pi}, G ∪ {pi})
CE ::= (pi ∧ CF∪{pi}) ∨ (pi ∧ CG∪{pi})

Since τ(E) = ⊥, we have that τ(F) = τ(G) = ⊥
If τ(CE) = ⊥, then

case a: τ(pi) = >, then τ(CG∪{pi}) = ⊥ and τ(G ∪ {pi}) = ⊥. By
induction hypothesis, ∃i τ(Ai) = ⊥ .

case b: τ(pi) = >, then τ(CF∪{pi}) = ⊥ and τ(F ∪ {pi}) = ⊥. By
induction hypothesis, ∃i τ(Ai) = ⊥ .

If τ(CE) = >, then

case a: τ(pi) = >, then τ(CG∪{pi}) = > and τ(G ∪ {pi}) = ⊥. By
induction hypothesis, ∃i τ(Bi) = ⊥ .

case b: τ(pi) = >, then τ(CF∪{pi}) = > and τ(F ∪ {pi}) = ⊥. By
induction hypothesis, ∃i τ(Bi) = ⊥ .

46

4. E = F ∪ G from (F ∪ {qi}, G ∪ {qi})

CE ::= CF∪{qi} ∨ CG∪{qi}

Since τ(E) = ⊥, we know that τ(F) = τ(G) = ⊥.

If τ(CE) = ⊥, then τ(CF∪{qi}) = τ(CG∪{qi}) = ⊥.

case a: τ(qi) = >, then τ(CG∪{qi}) = ⊥ and τ(G ∪ {qi}) = ⊥. By
induction hypothesis, ∃i τ(Ai) = ⊥ .

case b: τ(qi) = >, then τ(CF∪{qi}) = ⊥ and τ(F ∪ {qi}) = ⊥. By
induction hypothesis, ∃i τ(Ai) = ⊥ .

If τ(CE) = >, then at least one of τ(CF∪{qi}) and τ(CG∪{qi}) is true.
Also, at least one of τ(F ∪ {qi}) and τ(G ∪ {qi}) is true. Note that:

If τ(F ∪ {qi}) = ⊥ and τ(CF∪{qi}) = >, then by inductive hypothesis,
∃j Bj(~p, ~r) = ⊥.

If τ(G ∪ {qi}) = ⊥ and τ(CG∪{qi}) = >, then by inductive hypothesis,
∃j Bj(~p, ~r) = ⊥.

Thus we need only worry about the cases where

case a:

τ(F ∪ {qi}) = ⊥, τ(CF∪{qi}) = ⊥; τ(G ∪ {qi}) = >, τ(CG∪{qi}) = >

case b:

τ(F ∪ {qi}) = >, τ(CF∪{qi}) = >; τ(G ∪ {qi}) = ⊥, τ(CG∪{qi}) = ⊥

But note that CF∪{qi}, CG∪{qi}, and Bj(~p, ~r) don’t have qi as a variable.

Thus if τ ′(qi) =

{ ⊥ if τ(qi) = >
> otherwise

and τ = τ ′ on all other variables,

then we have that

case a: τ ′(CF∪{qi}) = ⊥ (since τ(F) = τ ′(F) = ⊥ and τ(F ∪{qi}) = >
and τ(F ∪ {qi}) = >. By induction hypothesis, ∃j τ ′(Bj) = ⊥,
and τ ′(Bj) = τ(Bj).

47

case b: Similar to case a.

5. E = F ∪ G from (F ∪ {ri}, G ∪ {ri})
CE ::= CF∪{ri} ∧ CG∪{ri}

This is similar to case 4.

This completes the proof of the lemma and of the theorem.

ut

6 Monotone circuits from resolution refuta-

tions

A modification of the proof of the preceding section yields monotone circuits
for the interpolant, for a particular class of clauses being refuted.

Theorem 6.1 [10, 8]
Let Γ = {Ai(~p, ~q)}∪{Bj(~p, ~r)} have a refutation of length n, where either

the ~p variables occur only positively in the Ai’s or they occur only negatively
in the Bj’s. Then there is a monotone circuit C(~p) of size O(n) such that
for every τ ,

τ(C(~p)) = ⊥ =⇒ ∃i τ(Ai(~p, ~q)) = ⊥
τ(C(~p)) = > =⇒ ∃j τ(Bj(~p, ~r)) = ⊥

Note: in order to get a monotone circuit, we need to assume that the pl’s
either appear only positively in Ai or only negatively in Bj.

Proof We present the proof only in the case when the pl’s occur only neg-
atively in the Bj’s; the other case is similar.

We will build a circuit CE for each expression E in the resolution refuta-
tion.

1. E = Ai(~p, ~q), then CE is the constant 0.

2. E = Bj(~p, ~r), then CE is the constant 1.

48

3. E = F ∪ G from (F ∪ {pi}, G ∪ {pi}1

CE ::= CF∪{pi} ∨ (pi ∧ CG∪{pi})

4. E = F ∪ G from (F ∪ {qi}, G ∪ {qi})

CE ::= CF∪{qi} ∨ CG∪{qi}

5. E = F ∪ G from (F ∪ {ri}, G ∪ {ri})

CE ::= CF∪{ri} ∧ CG∪{ri}

Clearly, C2 is a monotone circuit of size O(n). As in the proof of the
preceding theorem, we base our proof of correctness on a lemma that we prove
by induction. The statement of the lemma for this monotone construction
is more complicated than the statement of the corresponding lemma in the
preceding result.

For any clause E appearing in the refutation, define two “sub-clauses”
EA and EB as follows. EA is the disjunction of all the literals occurring in E
that involve q-variables and p-variables; that is, all of the literals involving
r-variables are “erased”. EB is the disjunction of all of the literals occurring
in E that involve r-variables and the negative p-literals; that is, all q-variables
and all non-negated p-variables are “erased”. Note that EA and EB are not
necessarily disjoint.2

Note that the following lemma is clearly sufficient to prove the theorem,
since 2A = 2B = 2, and the output gate of the circuit is C2.

Lemma 6.2

τ(EA) = ⊥ and τ(CE) = ⊥ =⇒ ∃i τ(Ai) = ⊥

τ(EB) = ⊥ and τ(CE) = > =⇒ ∃i τ(Bi) = ⊥
1To prove the theorem when the pi’s occur only positively in the Aj ’s, define CE to be

(pi ∨ CF∪{pi}) ∧ CG∪{pi} in this case.
2To prove the theorem when the pi’s occur only positively in the Aj ’s, define EA to be

the result of erasing the r-literals and the positive p-literals from E, and define EB to the
result of erasing the q-literals from E. The rest of the argument is similar.

49

Proof (of the lemma)
By induction on the structure of, where E appears in the resolution refu-

tation.

1. If E = Ai(~p, ~q), then for all τ, τ(CE) = ⊥, so only the first implication in
the Lemma needs to be considered. Note also that EA = E, and thus if
the hypothesis for the first implication holds, then trivially τ(Ai) = ⊥.

2. E = Bj(~p, ~r), then τ(CE) = > and E = EB. Thus this is similar to
the previous case.

3. E = F ∪ G from (F ∪ {pi}, G ∪ {pi})
CE ::= (CF∪{pi}) ∨ (pi ∧ CG∪{pi})

Case a: τ(EA) = ⊥ and τ(CE) = ⊥. We consider two cases, depend-
ing on τ(pi).

If τ(pi) = >, then τ((G ∪ {pi})A) = τ(GA ∪ {pi}) = ⊥. Also,
τ(CG∪{pi}) = ⊥. Thus, by induction, there is some j such that
τ(Aj) = ⊥.

If τ(pi) = ⊥, then τ((F ∪ {pi})A) = τ(FA ∪ {pi}) = ⊥. Also,
τ(CF∪{pi}) = ⊥. Again, the claim follows by induction.

Case b: τ(EB) = ⊥ and τ(CE) = >.

In this case, note that (F ∪{pi})B = FB and thus τ(F ∪{pi})B =
⊥. Since CE = >, there are the following two cases.

If τ(CF∪{pi}) = >, then the induction hypothesis implies that for
some j, τ(Bj) = ⊥.

Otherwise, τ(pi∧CG∪{pi}) = >. Thus τ((G∪{pi})B) = ⊥. Again,
the induction hypothesis yields the desired result.

4. E = F ∪ G from (F ∪ {qi}, G ∪ {qi})
CE ::= CF∪{qi} ∨ CG∪{qi}

Case a: τ(EA) = ⊥ and τ(CE) = ⊥.

Note that τ(CF∪{qi}) = τ(CG∪{qi}) = ⊥. Also, either τ(F∪{pi}) =
⊥ or τ(G ∪ {pi}) = ⊥. In either case, the induction hypothesis
yields that for some j, τ(Aj) = ⊥.

50

Case b: τ(EB) = ⊥ and τ(CE) = >.

Note that EB = (F ∪ {qi})B ∪ (G ∪ {qi})B, and thus τ((F ∪
{qi})B) = τ((G ∪ {qi})B) = ⊥. Also, since τ(CE) = >, either
τ(CF∪{qi}) = > or τ(CG∪{qi}) = >. In either case the induction
hypothesis yields that for some j, τ(Bj) = ⊥.

5. E = F ∪ G from (F ∪ {ri}, G ∪ {ri})
CE ::= CF∪{ri} ∧ CG∪{ri}

This is similar to case 4.

ut

7 Lower bounds on proof length via mono-

tone circuits

In this section we will use the results of the preceding section to show that
known lower bounds on monotone circuit size provide lower bounds on the
lengths of resolution refutations.

Here is how to build a set of clauses that encode the clique and coloring
problems. Consider the following clauses:

{qi,1, qi,2, . . . , qi,n} for 1 ≤ i ≤ k
{¬qi,m,¬qj,m} for 1 ≤ m ≤ n and 1 ≤ i < j ≤ k
{¬qi,m,¬qj,l, pm,l} for 1 ≤ m < l ≤ n and 1 ≤ i, j ≤ k

The above clauses encode a graph that contains a k-clique as follows:

• The q’s encode a one-to-one function from {1, . . . , k} → {1, . . . , n} if
we set qi,j = 1 ⇔ q(i) = j. Thus the clause {qi,1, . . . , qi,n} which means
[(q(i) = 1∨ . . .∨ (q(i) = n)] says that q(i) is defined (we could also add
information saying that there is no more than one j such that q(i) = j,
but that isn’t needed for our purposes) and the clause {¬qi,m,¬qj,m}
(which is equivalent to [q(i) = m ⇒ q(j) 6= m]) ensures that the func-
tion is one-to-one.

51

• The p’s encode a graph if we take pm,l = 1 to mean that there’s an
edge between m and l. With this intuition, the last set of clauses
{¬qi,m,¬qj,l, pm,l} is equivalent to q(i) = m, q(j) = l ⇒ there is an
edge between m and l.

Thus,{pm,l : 1 ≤ m < l ≤ n} encodes a graph containing a k-clique iff there
exist assignments to the q variables making these clauses true.

Next, consider the sets of clauses that encode the property of being an
l-partite graph:

{ri,1, . . . , ri,l} for 1 ≤ i ≤ n
{¬ri,a,¬ri,b} for 1 ≤ i ≤ n, 1 ≤ a < b ≤ l
{¬ri,a,¬rj,a,¬pi,j} for 1 ≤ a ≤ l and 1 ≤ i < j ≤ n

Here the explanation is as follows:

• The first set of clauses encode the coloring function: ri,c = 1 means
vertex i has color c, (r(i) = c) and the second set of clauses means that
each vertex has at most one color.

• Finally, we make this a proper coloring with the last set of clauses: If
r(i) = a and r(j) = a then pi,j = 0, (i.e. there is no edge between
vertices i and j).

Claim: If k = l + 1 then these clauses (i.e.both sets together) are unsatisfi-
able.
Proof: Every assignment to the p’s gives a graph. If all clauses are satisfi-
able, there is some assignment to the q’s encoding a k-clique in the graph and
at the same time an assignment to the r’s that gives a proper k − 1-coloring
of the graph. This is of course impossible.

Theorem 7.1 Any resolution refutation of these clauses requires length 2Ω(
√

k),
if k ≤ 4

√
n.

52

Proof It is known that any monotone circuit that evaluates to 1 on all
of the k-cliques and evaluates to 0 on all of the k − 1-partite graphs must
have size at least 2Ω(

√
k), for k in this range. (A nice proof is found in [2];

a slightly stronger lower bound appears in [1]. All of these use the proof
technique developed in [11].) Since these clauses satisfy the restrictions in
the hypothesis of Theorem 6.1, a lower bound on the length of a refutation
follows immediately. ut

It should be noted that strong lower bounds on the length of resolution
refutations have been known since the work of [7]. For further discussion of
the history of such results, see [5]. However, the proof presented above seems
to be the first that explicitly makes use of circuit lower bounds. Further
progress in this direction for the stronger “cutting planes” proof system also
make use of these circuit lower bounds. These results are reported in [3, 10].

8 Interpolation for resolution with limited ex-

tension

It is natural to wonder if the results of the preceding sections can be extended
to proof systems that are more powerful than resolution. One improvement
in this direction involves the work on cutting planes [3] mentioned in the
preceding paragraph. Another improvement is actually an immediate conse-
quence of Theorem 5.1, and will be presented in this section.

The term “extension” refers to the process of taking some existing proof
system, and extending it by allowing the introduction of new variables (say,
σA) that can be used to represent the truth value of a propositional formula
A. This allows short representations of long formulae, and implicitly allows
a system such as resolution to deal with formulae that are not in CNF. The
following paragraphs make this notion more precise, for the specific case of
extending resolution in this way.

For every formula A, we will have a variable σA. In the case where A
consists of a single propositional variable p, σA is just the formula p.

Now we will define, for each formula A, a set of clauses LE(A).

Definition 8.1. “Limited Extension.” LE(A) is defined inductively. If
A = p, then LE(A) = ∅.

53

• LE(¬A) ::= { {σ¬A, σA} {σ¬A, σA} } ∪ LE(A).

• LE(A∧B) ::= { {σA∧B, σA}, {σA∧B, σB}, {σA∧B, σA, σB} }∪LE(A)∪
LE(B).

• LE(A∨B) ::= { {σA, σA∨B}, {σB, σA∨B}, {σA, σB, σA∨B, } }∪LE(A)∪
LE(B).

Note that these clauses ensure that any truth assignment satisfying the
clauses has σA equal to the negation of σ¬A, σA∧B is equal to the logical and
of σA and σB, etc.

Definition 8.2. Let A be any set of formulae. Then define

LE(A) ::=
⋃

{A∈A}
LE(A).

Note that it is clear that A has a resolution refutation if and only if
A ∪ LE(A) has a resolution refutation.

Theorem 8.1 (Buss) Let Γ = A ∪ B, where A = {Ai(~p, ~q)} and B =
{Bj(~p, ~r)}. Let Γ ∪ LE(Γ) have a resolution refutation of length n.

Then there is an interpolant C(~p) such that

∧
i

Ai(~p, ~q) ⇒ C(~p)

and
C(~p) ⇒ ¬∧

j

(Bj(~p, ~r))

and C(~p) has circuits of size ≤ 3n.

Proof Note that Γ ∪ LE(Γ) = (A ∪ LE(A)) ∪ (B ∪ LE(B)). Note that the
only variables that are shared between (A ∪ LE(A)) and (B ∪ LE(B)) are
the variables in ~p. Thus Theorem 5.1 gives us an interpolant with circuit size
O(n) for (A ∪ LE(A)) and (B ∪ LE(B)). That is,

(
∧
i

Ai(~p, ~q)) ∧ LE(A) ⇒ C(~p)

54

and
C(~p) ⇒ ¬(LE(B) ∧ ∧

j

(Bj(~p, ~r)))

It suffices to observe now that this same C(~p) is also an interpolant for
A and B. But this is obvious, because of the following observations.

Let τ be any truth assignment with domain {~p, ~q} that satisfies A. Then
there is a unique extension of τ that satisfies (A∪LE(A)). Thus if τ(C(~p)) =
⊥, must be the case that there is some i such that τ(Ai(~p, ~q)) = ⊥.

Similarly, if τ(C(~p)) = >, there must be some j such that τ(Ai(~p, ~q)) = ⊥
(since otherwise this τ could be extended to satisfy LE(B), in contradiction
to C being an interpolant for (A ∪ LE(A)) and (B ∪ LE(B))). ut

Acknowledgments Thanks are due to Malka Rosenthal and Jing Wu
for allowing us to incorporate here some material that they prepared as class
notes for a class taught by Eric Allender, covering some of this material.

References

[1] Alon, B., and R. Boppana, The monotone circuit complexity of Boolean
functions, Combinatorica 7 (1987) 1–22.

[2] Boppana, R., and M. Sipser, The complexity of finite functions, in Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity, J. van Leeuwen, ed., MIT Press/Elsevier, 1990, pp. 757–804.

[3] Bonet, M., T. Pitassi, and R. Raz, Lower bounds for cutting planes proofs
with small coefficients, STOC (1995).

[4] Buss, S.R., An Introduction to Proof Theory. Manuscript, 1995. To ap-
pear in Handbook of Proof Theory.

[5] Chvátal, V., and E. Szemerédi, Many hard examples for resolution, J.
ACM 35 (1988) 759–768.

[6] Craig, W., Linear reasoning. A new form of the Herbrand-Gentzen theo-
rem. Journal of Symbolic Logic 22 (1957) 250–268

55

[7] Haken, A., The intractability of resolution, Theoretical Computer Science
39 (1985) 297–308.

[8] Kraj́ıček, J., Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic, preprint.

[9] Mundici, D., Tautologies with a unique Craig interpolant, uniform vs.
nonuniform complexity, Annals of Pure and Applied Logic 27 (1984) 265–
273.

[10] Pudlák, P., Lower bounds for resolution and cutting planes proofs and
monotone computations, draft, 1995.

[11] Razborov, A., Lower bounds on the monotone complexity of some
Boolean functions, Dokl. Akad. Nauk. SSSR 281 (1985) 798–801 (in Rus-
sian); English translation in: Soviet Math. Dokl. 31 (1985) 354–357.

56

Natural proofs and split versions of bounded
arithmetic

Notes by Peter Clote and Pierre McKenzie1

Tuesday Morning, March 7th

In this lecture we will consider the concept of natural proofs [RR94] which
we will then apply to bounded arithmetic [Raz94].

The notion of a natural proof was introduced by Razborov and Rudich
[RR94], as an abstraction of the known non-monotone complexity lower
bound proofs for explicit Boolean functions. We define quasipolynomial-time
natural proofs here (the proofs discussed in [RR94] were polynomial-time
natural).

Definition 1 Represent an n-ary Boolean function fn : {0, 1}n → {0, 1} by
its truth table (this has size N = 2n). A combinatorial property C = {Cn}n≥1

is quasipolynomial-time natural against P/poly provided:

(0) For each n, Cn is a set of n-ary Boolean functions,

(1) Constructivity: {fn : {0, 1}n → {0, 1}|fn ∈ Cn} ∈ TIME(2(log N)O(1)
)/poly

(i.e. TIME(2nr
)/poly, for some constant r, as opposed to TIME((2n)r)/poly

in [RR94]),

(2) Largeness: |Cn| ≥ 2−cn · 22n
for some constant c (i.e. the probability

that a randomly chosen Boolean function on n variables belongs to Cn

is at least 1
2cn),

(3) Usefulness: If fn ∈ Cn for all n, then the family {fn}n≥1 /∈ P/poly.

1Thanks to S.R. Buss for the use of macros bussproofs.sty in order to typeset Gentzen
sequent calculus proofs.

57

In summary, C is quasipolynomial time natural against P/poly if the se-
quence {Cn}n≥1 belongs to QP/poly but no “traversing sequence” {fn}n≥1

belongs to P/poly. The intuition behind the constructivity condition is that
constructive proofs of NP 6⊆ P/poly ought to give a (quasi)polynomial time
property which is natural against P/poly. The largeness and the usefulness
conditions are observed properties of known lower bound proofs.

The main result of Razborov and Rudich is the non-existence, under the
strong pseudo-random number generator (SPRNG) conjecture, of certain
natural proofs.

Definition 2 (see [BlMi84]) Let Gn : {0, 1}n → {0, 1}2n be a pseudo-
random number generator. The hardness of Gn, H(Gn), is the least S > 0
such that, for some circuit C of size S,2

∣∣∣∣∣ Pr
x̄∈{0,1}n

[C(Gn(x̄)) = 1] − Pr
ȳ∈{0,1}2n

[C(ȳ) = 1]

∣∣∣∣∣ ≥ 1

S
.

(By Gn we of course mean a sequence {Gn}n≥0 so that S is a function of n.)

For example, the very poor generator Gn(x) = xx has constant hardness,
as seen by using the circuit C which, on input w, outputs 1 iff bit n of w
equals bit 2n of w. On the other hand, if Gn(x) were close to truly random,
then only a large circuit C could presumably pick up the subtle difference
between Pr[C(Gn(x̄)) = 1] and Pr[C(ȳ) = 1] (an extreme case for such a C
would output 1 on input w iff w is in the range of Gn; the size of C is then
an upper bound on H(Gn); however such a large C is an overkill because it
drives the probability difference very close to 1).

Conjecture 4. The SPRNG Conjecture states that for some ε > 0, there
exists a pseudo-random number generator {Gn}n≥0 having polynomial size
circuits, with H(Gn) ≥ 2nε

.

Theorem 3 [Razborov-Rudich [RR94]] If the SPRNG conjecture is true,
then there are no properties which are quasipolynomial-time natural against
P/poly.

2Circuits have arbitrary fan-in, and the size is the number of internal gates (which for
polynomial size circuits is within a polynomial factor of the number of wires).

58

Proof [Following Razborov-Rudich]. Assume that natural proofs Cn exist.
By constructivity and the usual simulation of Turing machines by circuits
(see [Bor77]), {Cn}n≥1 has circuit size 2nr

for r a constant.
Let k > 0 vary, and pick G(k) a purported pseudo-random number gen-

erator, that is, G(k) maps {0, 1}k to {0, 1}2k, {G(k)}k≥1 has circuits of size
polynomial in k, and H(G(k)) ≥ 2kε

for a fixed ε. We must show for a
contradiction that

H(G(k)) < 2kε

.

Let n = bkε/2rc and

Fn = {f : {0, 1}n → {0, 1}} ∼= {0, 1}2n

.

We iterate G(k) to form a function f (k) : {0, 1}k → Fn as follows. For x̄
∈ {0, 1}k, define

G
(k)
0 (x̄) = low order k bits of G(k)(x̄),

G
(k)
1 (x̄) = high order k bits of G(k)(x̄).

Then for y ∈ {0, 1}n, y = y1y2 . . . yn, define (dropping the (k) superscript on
the subscripted G’s)

Gy = Gyn ◦ Gyn−1 ◦ · · · ◦ Gy2 ◦ Gy1 : {0, 1}k → {0, 1}k

and for x̄ ∈ {0, 1}k define

(f (k)(x̄))(y) = low order bit of Gy(x̄). (7)

In this way indeed (f (k)(x̄)) ∈ Fn, for each x̄ ∈ {0, 1}k. Moreover (f (k)(x̄))
is computable with circuits of size polynomial in n (and polynomial in k,
since k and n are polynomially related); this is because G(k), hence G0 and
G1, have circuits of size polynomial in k, and (f (k)(x̄)) is computable using
a cascade of n subcircuits for G0 and G1.

By the usefulness property of the natural proof Cn, for all n0 there exists
k > n0 such that (f (k)(x̄)) /∈ Cn for any x̄ ∈ {0, 1}k. (Indeed suppose to the
contrary that only finitely many k had the property: (f (k)(x̄)) /∈ Cn for all
x̄ ∈ {0, 1}k. Then for some n0 and each k > n0 one could find x̄(k) such
that (f (k)(x̄(k))) ∈ Cn. This could be extended into a “traversing sequence”

59

of Cn in P/poly.) Hence, for infinitely many k, the circuit for Cn (which we
also denoted Cn) outputs 0 on input f (k)(x̄):

Pr
x∈{0,1}k

[Cn(f (k)(x)) = 1] = 0.

On the other hand, by the largeness property of Cn,

Pr
f∈Fn

[Cn(f) = 1] ≥ 2−cn,

for some constant c > 0.
Now we use a trick from [GGM86]. Let T be a complete binary tree of

height n. Enumerate the internal nodes of T as v1, v2, . . . , v
2n−1 so that a

node is enumerated only after its children have been enumerated. Denote by
T0 the set of leaves of T and by Ti, 0 < i ≤ n, the subforest of T induced by
T0 ∪ {v1, v2, . . . vi}.

Now for each node v in T , let xv be a variable ranging over {0, 1}k. For
each i, 0 ≤ i ≤ n, and for y a leaf and v the root of the (unique) tree in Ti

subtending y, define Gi,y ∈ {0, 1}k as follows:

Gi,y =

{
xv if y = v (y a tree by itself),
Gyn ◦ Gyn−1 ◦ · · · ◦ Gyn−height(v)+1

(xv) otherwise.

Finally, define
fi(y) = low order bit of Gi,y.

Note that the variables xv ∈ {0, 1}k on which fi depends are those such
that v is a root of one of the trees in Ti. For fixed xv’s, fi ∈ Fn, that is, fi is
a function on n Boolean variables.

Now when i = 0, fi(y) and fi(y
′) for y 6= y′ are independent, because, for

each y, G0,y is the independent variable xy. Hence

Pr
all xvs

[Cn(f0) = 1] = Pr
f∈Fn

[Cn(f) = 1)] ≥ 2−cn.

(Note that, here and further on, whether we take probabilities over all xv’s,
or only over those xv’s which are known to be relevant, makes no difference.)
Yet when i = 2n − 1, fi only depends on xv2n−1

and is exactly the function

f (k)(xv2n−1
) defined by equation (7), so that

Pr
xv2n−1

∈{0,1}k
[Cn(f2n−1) = 1] = Pr

x∈{0,1}k
[Cn(f (k)(x)) = 1)] = 0.

60

Therefore, there is some i ∈ {0, 1, . . . , 2n − 2} such that

Pr
all xvs

[Cn(fi) = 1] − Pr
all xvs

[Cn(fi+1) = 1] ≥ 2−cn/2n = 2−(c+1)n. (8)

Now how does fi differ from fi+1? Well, fi depends on all variables xv for
v a root in Ti, and Ti+1 differs from Ti by the addition of a node w having
as immediate children two roots in Ti, say w′ and w′′. Hence fi depends on
a set of variables V ∪ {xw′ , xw′′}, while fi+1 depends on V ∪ {xw}.

Among the possible settings for the set of variables xv ∈ {0, 1}k for v /∈
{w,w′, w′′} (the set of such xv’s includes V and all variables on which neither
fi nor fi+1 depends), choose a setting for which

Pr
xw′ ,xw′′

[Cn(fi) = 1] − Pr
xw

[Cn(fi+1) = 1] ≥ 2−(c+1)n. (9)

(This is possible because (8) asserts that the average of the probability dif-
ferences over all possible settings exceeds 2−(c+1)n.)

Now define C∗(xw′ , xw′′) as a circuit which calculates Cn(fi), with all
other xv’s fixed as per the setting chosen above. This circuit has 2k inputs.
The circuit first computes the size-2n truth table of fi by iterating over each
y ∈ {0, 1}n and by following the rules for constructing Gi,y, repeatedly using
the polynomial size circuits for G0 and G1. The circuit then feeds the truth
table for fi into the size-2nr

circuit for Cn. The total size of C∗ is thus in
O(2nr

).
Finally,

Pr
xw∈{0,1}k

[C∗(G(k)(xw)) = 1] = Pr
xw∈{0,1}k

[Cn(fi+1) = 1]

because computing fi+1 as a function of xw exactly amounts to computing

fi as a function of xw′ = G
(k)
0 (xw) and xw′′ = G

(k)
1 (xw). Moreover,

Pr
y∈{0,1}2k

[C∗(y) = 1] = Pr
xw′ ,xw′′

[Cn(fi) = 1]

by definition.
Therefore, substituting into (9),

∣∣∣∣∣ Pr
y∈{0,1}2k

[C∗(y) = 1] − Pr
x∈{0,1}k

[C∗(G(k)(x)) = 1]

∣∣∣∣∣ ≥ 2−(c+1)n.

61

Since C∗ has size at most d2nr
for some constant d, and 2−(c+1)n ≥ 1/(d2nr

)
for sufficiently large n, the hardness of G(k) verifies

H(G(k)) ≤ d2nr

= d2(kε/2r)r

= d2kε/2

< 2kε

,

for sufficiently large k.
This concludes the proof of the Razborov-Rudich theorem.
The early oracle results of Baker, Gill and Solovay indicate that if P 6=

NP then only a non-relativizable proof technique can establish this. The
Razborov-Rudich result just proved indicates that if P 6= NP then (assum-
ing one believes the SPRNG conjecture) a different approach is necessary
than the random restriction and algebraic boolean circuit lower bound tech-
niques so far introduced. In [Raz94] A.A. Razborov applied Theorem 3 to
show (essentially) that P 6= NP cannot be proved in a certain theory of
bounded arithmetic, provided that the SPRNG conjecture holds. Specifi-
cally, Razborov’s theorem below states that superpolynomial lower bounds
for languages in PH cannot be proved in a certain theory S2

2(α) of bounded
arithmetic, unless the SPRNG conjecture fails. Recall that if P = NP then
NP (and hence PH) has polynomial size circuits. As well, if NP has poly-
nomial size circuits then PH collapses (Karp-Lipton). Thus if S2

2(α) proves
P 6= NP then (presumably3) S2

2(α) proves a superpolynomial lower bound
for a set in PH, contradicting the SPRNG conjecture.

Bounded arithmetic was introduced by R. Parikh and more fully devel-
oped by J. Paris, A. Wilkie [PW83, WP87] and S.R. Buss [Bus86] (see as
well the monograph [Kra95] by J. Kraj́ıček).

Definition 4 (S.R. Buss [Bus86]) The language of bounded arithmetic con-
sists of the binary relation symbol ≤, the 0-ary constant symbol 0, the unary
successor function symbol S(x) = x + 1, the binary addition and multipli-
cation symbols +, ·, the unary function symbols bx

2
c, |x| = dlog2(x + 1)e,

and the binary function symbol x#y = 2|x|·|y| pronounced smash. Bounded
quantifiers [resp. sharply bounded quantifiers] are of the form ∃x < t, ∀x < t,
[resp. ∃x < |t|, ∀x < |t|], where t is a term.

(1) Σb
0 = Πb

0 = ∆b
0 is the collection of formulas in the language of bounded

arithmetic, all of whose quantifiers are sharply bounded;

3This depends on whether the contrapositive of the Karp-Lipton theorem can be proved
in S2

2(α). We haven’t checked whether the usual proof of Karp-Lipton formalizes in S2
2(α).

62

(2) Σb
n+1 is the smallest collection of formulas containing Πb

n, and closed un-
der ∧, ∨, sharply bounded quantifiers, and existential bounded quan-
tifiers ∃x < t;

(3) Πb
n+1 is the smallest collection of formulas containing Σb

n, and closed
under ∧, ∨, sharply bounded quantifiers, and universal bounded quan-
tifiers ∀x < t;

(4) Σb
∞ = ∪nΣb

n.

Theories of bounded arithmetic are formulated using Gentzen sequent
calculus. The collection BASIC consists of a finite number of axioms con-
cerning the function and relation symbols of bounded arithmetic ([Bus86], p.
30). For each axiom A ∈ BASIC, there is an initial sequent ` A. The first
order theory Sn

2 of bounded arithmetic includes the Σb
n-PIND induction rule

of inference:

Γ, Φ(ba/2c) →Φ(a), ∆

Γ, Φ(0) →Φ(t), ∆

where the eigenvariable a does not appear in the lower sequent, t is a term
of bounded arithmetic, and Φ is a Σb

n formula. The theory T n
2 includes the

Σb
n-IND induction inference:

Γ, Φ(a) →Φ(a + 1), ∆

Γ, Φ(0) →Φ(t), ∆

where the eigenvariable a does not appear in the lower sequent, t is a term
of bounded arithmetic, and Φ is a Σb

n formula.

It is known that the Σb
n-PIND rule is equivalent to the Πb

n-PIND rule, and
similarly the Σb

n-IND rule is equivalent to the Πb
n-IND rule [Bus86]. The fol-

lowing theorem, proved by cut elimination (together with a function algebra
characterization of the collection of polynomial time computable functions)
indicates that the theory S1

2 corresponds exactly to polynomial time.

Theorem 5 (S.R. Buss [Bus86] p. 86) A function f(~x) is polynomial time
computable if and only if there is a Σb

1 representation Φ(~x, y) of the graph
“f(~x) = y” of f for which S1

2 proves the sequent

` (∀~x)(∃y)Φ(~x, y) ∧ (∀~x, y, z)(Φ(~x, y) ∧ Φ(~x, z) ⊃ y = z).

63

Moreover, a language L is in the polynomial time hierarchy PH if and only
if L is definable by a Σb

∞ formula [Bus86].

Definition 6 (A.A. Razborov [Raz94]) Let α and β be new unary pred-
icate symbols. The second order theories Sn

2 (α, β), T n
2 (α, β) are defined by al-

lowing α, β to appear in the previous axioms and rules of inference for Sn
2 , T n

2 .
Let Σb

∞(α) denote all bounded formulas in language of {0, S, +, ·, bx
2
c, |x|, #}∪

{α}. Let Σb
1(X) [resp. Πb

1(X)] be the closure of X under ∧,∨, sharply
bounded quantification and existential [resp. universal] bounded quantification,4

and let Σb
i+1(X) be Σb

1(Π
b
i(X)), Πb

i+1(X) be Πb
i(Σ

b
i(X)). Define SΣb

i to be
Σb

i(Σ
b
∞(α), Σb

∞(β)).

Definition 7 The theory of Split Si
2, denoted by SSi

2 has initial sequents
` A for A ∈ BASIC and, along with the other rules of sequent calculus,
has the SΣb

i -PIND rule of inference. Split T i
2, denoted by ST i

2, is similarly
determined by the SΣb

i -IND rule of inference.
Let N ≥ 0 and n = |N | ' log(N), and suppose t(n) = nω(1), a super-

polynomial function. If S(N, x) is a Σb
∞-formula then let LB(t, S, α) be the

statement

¬[α codes a circuit of size ≤ t(n) such that
∀x ∈ {0, 1}n((α(x) outputs 1) ↔ S(N, x))]

Note that

a. The free variables of LB(t, S, α) are N and α, and that LB is a Σb
1(α, S)

formula, since the quantification ∀x ∈ {0, 1}n is of the form

(∀x < 2N)[|x| = |N | → · · ·]

b. By “α codes a circuit”, we mean that α encodes the gate types and gate
connections in some straightforward manner, (encoding for instance the
direct connection language or extended connection language of [Ruz81])
plus, optionally, α may encode the full truth-table description of the
functions computed by every gate in the bounded fan-in circuit.

4Note that in the case at hand X is closed under complementation.

64

The formula LB(t, S, α) states that the property defined by S is not
computable by α, an undetermined unary relation symbol ranging over all
circuits of superpolynomial size t. The remainder of this lecture is dedicated
to showing Razborov’s [Raz94] result that superpolynomial lower bounds are
not provable in S2

2(α), unless the SPRNG conjecture fails.

Theorem 8 Let SLB(t, S, α, β) be the formula

¬[α codes a circuit of size < (t
2
− 1) and β codes a circuit of size

< (t
2
− 1) and ∀x ∈ {0, 1}n[(α(x) = 1)⊕ (β(x) = 1) ↔ S(N, x)]].

If S2
2(α) ` LB(t, S, α) then SS2

2(α, β) ` SLB(t, S, α, β).

Proof If SS2
2 6` SLB(t, S, α, β), then by the completeness theorem of logic,

there is a model

(M,αM , βM) |= SS2
2 ∧ ¬SLB(t, S, α, β).

Define δM ⊆ M to encode the circuit αM ⊕ βM . Then

(M, δM) |= S2
2(α) ∧ ¬LB(t, S, α)

where the unary predicate symbol α is interpreted by δM . But by the com-
pleteness theorem, the hypothesis implies that all models of S2

2(α) satisfy
LT (t, S, α). Contradiction.

Noting that γ ⊕ (S ⊕ γ) ≡ S, we can rephrase SLB(t, S, α, β) by intro-
ducing a new predicate symbol γ. Let the formula CC(t, T (x), α) state

• if SS2
2 ` SLB(t, S, α, β) then

SS2
2 ` ¬CC(

t

2
− 1, γ, α) ∨ ¬CC(

t

2
− 1, S ⊕ γ, β)

where CC(t, T (x), α) states that

[α codes a circuit of size ≤ t and for all x ∈ {0, 1}n

(α(x) = 1 ↔ T (x))]

Here, CC stands for codes a circuit. Equivalently, in sequent form, SS2
2

proves

65

CC(t
2
− 1, γ, α), CC(t

2
− 1, S ⊕ γ, β) →

By [Bus90], S2
2 is ∀Σb

2-conservative over T 1
2 ; in other words, every formula

of the form ∀Σb
2 which is provable in S2

2 is provable in T 1
2 , and conversely.

The same proof yields that SS2
2 is ∀Σb

2-conservative over ST 1
2 . Since CC is

a Πb
1-formula, we know that this sequent is also provable in ST 1

2 .

Theorem 9 (A.A. Razborov [Raz94]) If SS2
2 ` SLB(t, S, α, β) for some

t = nω(1) and S ∈ Σb
∞, then the SPRNG conjecture is false.

Corollary 10 If the SPRNG conjecture holds, then S2
2(α) does not prove

superpolynomial lower bounds on circuit size for any bounded formula (i.e.,
for any polynomial time hierarchy predicate).

Proof of Theorem [This version of the proof is due to Krajicek]. We shall
prove that, if ST 1

2 proves

` CC(t, γ, α), CC(t, S ⊕ α, β) →
then there are quasipolynomial size circuits which are natural against P/poly.

First Step:
Convert the ST 1

2 proof and the sequent into statements in propositional logic,
using a technique first given by Paris-Wilkie [PW83] (see p. 293 of [Kra94]
for details of translation).

Expand the language to include a β-function which encodes sequences (as
in [Bus86]). As earlier mentioned in the case of T b

1 , ST b
1 can be shown to be

equivalent to the system with the SΠb
1-IND rule in place of SΣb

1-IND. Using
free-cut elimination [Bus86], without loss of generality, we may assume that
every formula in the ST 1

2 -proof is of the form

(∀y ≤ r)(∃z ≤ |r′|)Φ (10)

where Φ is a boolean combination of Σb
∞(α) and Σb

∞(β) formulas and of
formulas γ(. . .).

To convert to propositional logic:
Use variables ~q for the values of α(x), i.e. qi denotes α(i). Use variables ~r for
the values of β(x), and variables ~p for the values of γ(x). As follows, define
the translation 〈A(~x)〉n for the sequence ~n of natural numbers of the same
length as sequence ~x of variables.

66

1. If A(~n) is a true [resp. false] atomic sentence (such as m1 + m2 = m3,
etc.), then 〈A(~x)〉~n is 1 [resp. 0].

2. If t(~x) is a term, A(~x) is the atomic formula α(t(~x)) and m = t(~n),
then 〈A(~x)〉~n is qm.

3. If t(~x) is a term, A(~x) is the atomic formula β(t(~x)) and m = t(~n),
then 〈A(~x)〉~n is rm.

4. If t(~x) is a term, A(~x) is the atomic formula γ(t(~x)) and m = t(~n),
then 〈A(~x)〉~n is pm.

5. If A(~x) is B(~x) ∧ C(~x) [resp. B(~x) ∨ C(~x), resp. ¬B(~x)] then 〈A(~x)〉~n
is 〈B(~x)〉~n ∧ 〈C(~x)〉~n [resp. 〈B(~x)〉~n ∨ 〈C(~x)〉~n, resp. ¬〈B(~x)〉~n].

6. If t(~x) is a term, m = t(~n), and A(~x) is the formula (∃y ≤ t(~x))B(~x, y)
[resp. (∀y ≤ t(~x))B(~x, y)], then 〈A(~x)〉~n is

∨m
i=0〈B(~x, y)〉~n,i

[resp.
∧m

i=0〈B(~x, y)〉~n,i].

The formula (10) is converted into propositional form

2nO(1)∧
i=0

nO(1)∨
j=0

Ei,j (11)

where after simplifying formulas involving 1 (true) and 0 (false), each Ei,j

is either

1. Pi or ¬Pi

2. involves only ~p and ~q, or

3. involves only ~p and ~r.

Fixing N and letting f(x) be the characteristic function of the formula
S(N, x), we obtain by this process a propositional sequent calculus proof of

∧
i Ai(~p, ~q),

∧
j Bj(~p, ~r) →

where

1. {Ai(~p, ~q)}i is a set of clauses stating that ~q codes a circuit of size t
computing the function γ with graph given by ~p.

67

2. {Bj(~p, ~r)}j is a set of clauses stating that ~r codes a circuit of size t
computing γ ⊕ f .

3. f does not have a circuit of size 2t + O(1).

4. Each formula in the proof is a conjunction of disjunctions of formulas
involving only ~p, ~q or only ~p, ~r – see (11).

5. Each sequent has at most c many formulas for c a constant (independent
of N).

6. The proof has only 2nO(1)
many symbols.

Second Step: Remove the
∧

’s from the proof as follows. Given a sequent

∧p1
i E1,i, . . . ,

∧pc′
i Ec′,i →∧q1

i F1,i, . . . ,
∧qc′′

i Fc′′,i

replace it with the q1 · q2 · . . . · qc′′ many sequents

E1,1, E1,2, . . . E1,p1 , E2,1, . . . , Ec′,1, . . . , Ec′,pc′ →F1,i1 , F2,i2 , . . . , Fc′′,ic′′

Since each qi = 2nO(1)
and c′′ = O(1), this is still only 2nO(1)

many sequents.
In the proof, a cut on

∧P
i Fi occurring in the cut rule

Γ →∆,
∧p

i=1 Fi
∧p

i=1 Fi, Γ →∆

Γ →∆

is replaced by p many cuts; i.e.

Γ∗ →∆∗, Fp

Γ∗ →∆∗, F3

Γ∗ →∆∗, F2

Γ∗ →∆∗, F1 F1, F2, . . . , Fp, Γ
∗ →∆∗

F2, F3, . . . , Fp, Γ
∗ →∆∗

F3, F4, . . . , Fp, Γ
∗ →∆∗

F4, . . . , Fp, Γ
∗ →∆∗

...
Fp, Γ

∗ →∆∗

Γ∗ →∆∗

We thus obtain a treelike sequent calculus proof of

A1(~p, ~q), . . . , Ak(~p, ~q), B1(~p, ~r), . . . , Bl(~p, ~q),→

68

such that every formula in the proof is a disjunction of formulas which either
involve just ~p and ~q or involve just ~p and ~r.

Third Step: Convert to a refutation in resolution with limited extension.
Each sequent in the proof obtained in the second step has the form:

(12)

∨p1
i E1,i,

∨p2
i E2,i, . . . ,

∨pu
i Eu,i,→∨q1

i F1,i, . . . ,
∨qv

i Fv,i

where each Ea,i, Fa,i involves only {~p, ~q} or {~p, ~r}. Associate with the se-
quent (12), the following set of clauses

(13)

{{E1,i : i = 1, . . . , p1}, . . . , {Eu,i : i = 1, . . . , pu}}
∪

{F1,1}, {F1,2}, . . . , {F1,q1}, {F2,1}, . . . , {Fv,qv}
Now (13) is not a proper set of clauses, since clauses are supposed to contain
literals, so instead we really use the extension variables, to form the following
set (14) of clauses

(14)

{{σE1,i
}i=1,...,p1 , . . . , {σEu,i

}i=1,...,pu}}
∪

{{σ¬F1,1}, {σ¬F1,2}, . . . , {σ¬F1,q1
}, . . . , {σ¬Fv,qv

}}.
If the sequent (12) is Γ → ∆, then the set (14) of clauses is denoted (Γ →
∆)LE.

Lemma 11 If Γ → ∆ is derived in m lines of the sequent calculus proof
above, then

(Γ → ∆)LE ∪ LE(~p, ~q) ∪ LE(~p, ~r)

has a resolution refutation (not necessarily tree-like) of O(m2) resolution
inferences.

69

Proof By induction on m. The proof splits into cases depending on the last
inference.

Case(1) Γ → ∆ is A → A.

(a) {{σ¬A}, {σA}} ∪ LE(¬A) has a resolution refutation.

(b) If A =
∨n

i=1 Ai, then

{{σA1 , . . . , σAu}, {σ¬A1}, . . . , {σ¬A1}} ∪ LE(¬A1, . . . ,¬Au)

has a resolution refutation of O(n) inferences.

Case(2) Suppose A =
∨n

i=1 Ai involves only ~p, ~q. Then {σA} and {σA1 , . . . , σAu}
can be derived from each other in the presence of LE(A). So it is not im-
portant how we express formulas as disjunctions when we have a choice.

Case(3) ∧ :left and ∧ :right inferences involve only formulas that use just ~p,
~q or just ~p, ~r; these are therefore straightforward (the ∧ :right case is harder
than the ∧ :left case).

Case(4) An ∨ :left inference is of the form

∨
i Ei, Γ →∆

∨
j Fj, Γ →∆∨{Ei, Fj}i,j, Γ →∆

The induction hypotheses gives refutations R1 and R2

(Γ → ∆)LE

{σEi
}i

LE(~p, ~q)
LE(~p, ~r)




R1=⇒ Ø

(Γ → ∆)LE

{σFj
}j

LE(~p, ~q)
LE(~p, ~r)




R2=⇒ Ø

70

Combine these as follows.

(Γ → ∆)LE

{σEi
}i ∪ {σFj

}j

LE(~p, ~q)
LE(~p, ~r)




R′
1=⇒ {σFj

}
(Γ → ∆)LE

LE(~p, ~q)
LE(~p, ~r)




R2=⇒ Ø

Here, R′
1 is like R1 but uses {σEi

}i ∪ {σFj
}j in place of {σEi

}i.

Remark Note that the refutation produced is not tree-like since {σFj
}j may

be used multiple times in R2.

Case(5) The last inference is the cut rule.

Γ →∆,
∨

i Ai
∨

i Ai, Γ →∆

Γ →∆

The induction hypotheses gives refutations R1 and R2

(Γ → ∆)LE

{σ¬A1}, . . . , {σ¬Au}
LE(~p, ~q)
LE(~p, ~r)




R1=⇒ Ø

and
(Γ → ∆)LE

{σA1 , . . . , σAu}
LE(~p, ~q)
LE(~p, ~r)




R2=⇒ Ø

Combine these as below, with R′
1 minus any uses of {σ¬Ai

}.

(Γ → ∆)LE

LE(~p, ~q)
LE(~p, ~r)




R′
1=⇒ . . .

(Γ → ∆)LE

{σA1 , . . . , σAu}
LE(~p, ~q)
LE(~p, ~r)




R2=⇒ Ø

This completes the proof of the lemma.

The following is a corollary to Lemma 11 and an earlier interpolation
theorem for resolution.

71

Corollary 12 There is a circuit C(~p) of size 2nO(1)
such that,

(1) If C(~p) = 0, then {Ai(~p, ~q)}i is unsatisfiable.

(2) If C(~p) = 1, then {Bj(~p, ~r)} is unsatisfiable.

Note that the size of C(~p) is 2(log N)O(1)
which is quasipolynomial in N = 2n.

In case (1), when C(~p) = 0, the function γ(x) does not have a circuit of size
t = nω(1). In case(2), when C(~p) = 1, the function (γ ⊕ f)(x) does not have
a circuit of size t = nω(1), where we recall that f(x) does not have a circuit
of size 2t + 1.

Definition 13 Let C∗(~p) be defined by (¬C(~p)) ∨ C(~p ⊕ f) where ~p ⊕ f is

p0 ⊕ f(0̄), . . . , p2n−1 ⊕ f(2n − 1)

and where of course each f (̄i) is 0 or 1.

Theorem 14 Under the above assumptions, C∗(~p) forms a quasipolynomial time/poly
natural property against P/poly.

Proof

(1) Constructivity

C∗ has circuits of size 2(log N)O(1)
since C does.

(2) Largeness
For all γ, either C∗(γ) or C∗(γ ⊕ f) holds. Therefore at least half of
all Boolean functions satisfy C∗.

(3) Usefulness

(a) If ¬C(~p), i.e. C(~p) = 0, then γ := ~p does not have circuit of size t.

(b) If C(~p⊕ f), i.e. C(~p⊕ f) = 1, then (~p⊕ f)⊕ f = ~p(= γ) does not
have circuit of size t.

Therefore, if C∗(γ), γ does not have a polynomial size circuit. This concludes
the proof of Theorem 14 and Theorem 9.

72

References

[BlMi84] M. Blum and S. Micali, How to generate cryptographically strong
sequences of pseudo-random bits, SIAM J. on Computing 13, 4 (1984),
pp. 850-864.

[Bor77] A. Borodin, On relating time and space to size and depth, SIAM J. on
Computing 6, 4 (1977), pp. 733-744.

[Bus86] S. Buss. Bounded Arithmetic, volume 3 of Studies in Proof Theory. Bib-
liopolis, 1986. 221 pages.

[Bus90] S.R. Buss. Axiomatizations and conservation results for fragments of
bounded arithmetic. In W. Sieg, editor, Logic and Computation, pages 57–
84. American Mathematical Society, 1990. Contemporary Mathematics
106, Proceedings of a Workshop held at Carnegie Mellon University, June
30 - July 2, 1987.

[GGM86] O. Goldreich, S. Goldwasser and S. Micali, How to construct
random functions, J. of the Association for Computing Machinery 33, 4
(1986), pp. 792-807.

[Kra94] J. Kraj́ıček. On Frege and extended Frege systems. In P. Clote and
J. Remmel, editors, Feasible Mathematics II, pages 284—319. Birkhäuser,
1994.

[Kra95] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge University Press, 1995.

[PW83] J. B. Paris and A. J. Wilkie. Counting problems in bounded arithmetic.
In C. A. di Prisco, editor, Methods in Mathematical Logic, pages 317 –
340. Springer Verlag Lecture Notes in Mathematics, 1983. Proceedings of
Logic Conference held in Caracas, 1983.

[Raz94] A.A. Razborov. Unprovability of lower bounds on circuit size in certain
fragments of bounded arithmetic. Izvestiya of the RAN, 1994.

[RR94] A. Razborov and S. Rudich, Natural proofs, Proc. of the 26th ACM
Symp. on the Theory of Computing (1994), pp. 204-312.

[Ruz81] W.L. Ruzzo. On uniform circuit complexity. J. Comput. System Sci.,
22:pp. 365–383, 1981.

73

[WP87] A.J. Wilkie and J.B. Paris. On the schema of induction for bounded
arithmetic formulas. Annals of Pure and Applied Logic, 35:261 – 302,
1987.

74

Buss’s Simplified ALOGTIME Algorithm for
Boolean Sentence Evaluation

Notes by Toniann Pitassi

Tuesday Evening, March 7

1 Introduction

In this session, Sam presented a new, simpler ALOGTIME algorithm for
the Boolean sentence value problem (BSVP).

Definition 1.1. A boolean formula is defined inductively by: (1) A literal
1 (true), 0 (false) or x1, x2, x3, ... is a boolean formula; (2) If α and β are
boolean formulas then so are (¬α), (α ∧ β), (α ∨ β).

Definition 1.2. The boolean sentence value problem (BSVP) is the problem
of, given a variable-free Boolean formula, determining if it evaluates to 1
(true). In other words, to recognize true Boolean sentences.

Definition 1.3. |α| is the number of symbols in the expression α.

Obviously, BSVP is in P , by any obvious algorithm for evaluating the for-
mula. An interesting question, open for quite a long time, was to show that
BSVP has polynomial-size formulas. Sam’s motivation to solve this problem
comes from a problem in logic. Cook showed that PV proves CONS(EF),
where CONS(EF) is a formula expressing the partial consisency of Extended
Frege– for all n, there is no n symbol Extended Frege proof of 0 = 1. Cook
also showed a relationship between PV proofs and polynomial-size Extended

75

Frege proofs. By this relationship, it follows that there exist polynomial-size
Extended Frege proofs of [[Con(EF)]]n, where [[Con(EF)]]n is a proposi-
tional formula, in n variables, expressing the fact that no n-symbol Extended
Frege proof ends in 0 (false). A related question is whether or not there are
polynomial-size Frege proofs of [[Con(F)]]n for all n. A natural way to show
this is to show inductively that every formula in a Frege proof must be valid,
and therefore, the final formula cannot be 0 (false). To carry this out for-
mally, one needs a polynomial-size formula, φ(x1, .., xn) that defines the truth
of formulas of at most n symbols, and this is exactly the boolean sentence
value problem! Using Sam’s algorithm for BSVP, he was able to show that
[[Con(F)]]n does have polynomial-size Frege proofs. See [B2] for this proof,
and consequences of this result.

In 1977, Nancy Lynch showed that BSVP is in LOGSPACE. Her al-
gorithm used a depth-first evaluation, always evaluating longer subformulas
first. This algorithm inspired Sam’s first algorithm[B87], so we will describe
it first.

Theorem 1.1 (Lynch, 1977) BSVP ∈ LOGSPACE.

Proof To evaluate (α ∧ β) where |β| > |α|, first evaluate β and save its
value, and then evaluate α and combine the results. Then, if |α| = n, the
algorithm will never need to save more than log(n) intermediate results. To
see this, note that if γ1, .., γk are subformulas for which intermediate results
are saved, then

|γi| ≥
k∑

j=i+1

|γj|.

So,
∑k

i=1 |γi| ≥ 2k−1. Note that Lynch’s algorithm works even when other
connectives such as parity are present.

Next, we will present an algorithm due to Buss (1992) for the BSVP
which works on formulas in which ANDs and ORs are alternating in layers
and there are no negations. The algorithm scans the formula from left-to-
right only and maintains two counters. If the formula has depth d, then only
2dlog de + 1 many bits of storage are needed. The algorithm is as follows.

76

Algorithm for BSVP with connectives ∧ and ∨:

Input: a Boolean sentence φ.
Initialize: Ignore Flag = 0

Ignore Depth = 0
Input tape head at leftmost symbol of φ

Loop:
Read current symbol α from input tape
If Ignore Flag = 1

If α = “(”, increment Ignore Depth by 1
If α = “)”

decrement Ignore Depth by 1
if Ignore Depth = 0, set Ignore Flag = 0

Endif
Endif
If Ignore Flag = 0

If α = “0” set Val = 0
If α = “1” set Val = 1
If α = “∧” and Val = 0, set Ignore Flag = 1
If α = “∨” and Val = 1, set Ignore Flag = 1

Endif
Move input tape head right one square

Endloop
Output: Val

The above algorithm shows that the BSVP for formulas with connectives
AND, OR and NOT can be evaluated in space O(log d) where d is the depth
of the formula.

Definition 1.4. A formula is balanced if its depth is O(log n).

Theorem 1.2 The balanced BSVP is in SPACE(log log n).

Later we’ll discuss the following theorem.

Theorem 1.3 The balanced BSVP is complete for ALOGTIME under de-
terministic logtime reductions.

77

2 Background on ALOGTIME

Definition 2.1. The class alternating logtime (ALOGTIME) is defined as
follows. The basic underlying model is a multiptape Turing Machine, with
two types of states, existential and universal states. The input tape is ac-
cessed randomly–that is, there is a special index tape onto which an address
i can be written in binary, and each state of the Turing machine can read the
i-th input symbol. With this convention, it is possible to access the entire
input within O(log n) time. A language L is in ALOGTIME if there exists
a machine of the above type that runs for O(log n) steps on inputs of length
n, and accepts exactly L. For a more formal description of ALOGTIME,
see [B87], or [CKS].

Definition 2.2. Deterministic Logtime (LOGTIME) is defined to be the
class of predicates computable in O(log n) time with no alternations, and
Σk −LOGTIME is the class of predicates computable in O(log n) time with
k alternations of quantifiers, beginning with existential states. The Logtime
hierarchy, LH is ∪kΣk − LOGTIME.

Definition 2.3. Let R be a predicate on {0, 1}∗. R ∈ NCk if and only if
R has a family of polynomial-size, O(logk n)-depth, bounded fan-in circuits.
R ∈ ACk if and only if R has a family of polynomial-size, O(logk n)-depth
unbounded fan-in circuits.

There are several natural uniformity conditions that can be put on the
complexity class NCk. See [Ruzzo], and [Cook] for two standard definitions
of uniform NCk. Their definitions agree for k > 1, but appear to differ for
k = 1. For Cook, uniform NC1 equals ALOGTIME.

Thus, we have the following inclusions between the complexity classes
that we have just defined:

LOGTIME ⊂ Σ1 − LOGTIME ⊂ Σ2 − LOGTIME ⊂ · · · ⊂
ALOGTIME = uniformNC1 ⊆ LOGSPACE ⊆ NC2 ⊆ · · · ⊆ NC.

The fact that the logtime hierarchy is proper is due to Sipser.

78

2.1 Reductions

Definition 2.4. Let C be a complexity class. A function f is in C if and
only if the predicate Af (c, i, x) =“the ith symbol of f(x) is c” is in C and f
is of polynomial growth rate.

Definition 2.5. Let A and B be decision problems. A C-reduction of A to
B is a function f ∈ C such that for all x, x ∈ A if and only if f(x) ∈ B.

If there is an ALOGTIME-reduction from A to B and if B ∈ ALOGTIME,
the A ∈ ALOGTIME. Also, if there is a LH-reduction from A to B and if
B ∈ LH, then A ∈ LH.

Definition 2.6. A is ALOGTIME-complete if and only if A ∈ ALOGTIME
and every decision problem in ALOGTIME is LH-reducible to A.

Theorem 2.1 (Main Theorem 1) BSV P ∈ ALOGTIME.

Theorem 2.2 (Main Theorem 2) For every A ∈ ALOGTIME, there is a
deterministic logtime reduction of A to BSV P .

Corollary 2.3 BSV P is ALOGTIME-complete.

3 A first attempt to prove BSV P ∈ ALOGTIME

Theorem 3.1 (Spira, 1971) Let A be a boolean formula of size n = |A|.
There is an equivalent formula A∗ of size O(n2) and depth O(log n).

In 1974, Brent [Br] improved this to be A∗ of size O(n), and extended it
to arithmetic formulas.

79

Proof We prove the theorem inductively by applying the following trans-
formation. First, find a subformula B of A such that 1/3|A| ≤ |B| ≤ 2/3|A|.
Let C0 be the formula A where B has been replaced by the constant 0 (false).
Similarly, let C1 be the formula A where B is replaced by 1 (true). Then
A∗ = (B∗∧C∗

1)∨(¬B∗∧C∗
0), where B∗, C∗

0 and C∗
1 are obtained by recursively

applying the same transformation.

The above “1/3 - 2/3 trick” gives a method of dividing a formula into
two pieces of approximately the same size. This trick gives a basis for a two
player game for determining the value of a boolean sentence, A. The two
players are the Pebbler and the Challenger who claim that A has value 1 and
0, respectively.

The game is played as follows. In the first round, the pebbler places a
pebble labelled 1 on the root node of the tree representation of the formula
A. The Challenger then challenges this pebble value. Set A1 := A. Upon
entering the ith round (i > 1), there is a “scarred” subformula Ai−1 such that:
(1) the root of Ai−1 has been pebbled with a truth value and that value has
been challenged and (2) some subformulas of Ai−1 have been removed (leaving
scars), by being pebbled but not challenged. During round i, a (scarred)
subformula Bi−1 of Ai−1 is chosen so that 1/3|Ai−1| ≤ |Bi−1| ≤ 2/3|Ai−1|;
the pebbler pebbles the root of Bi−1 with a truth value. If this truth value
is challenged by the Challenger, then set Ai := Bi−1. Otherwise Ai is set to
Ai−1 with subformula Bi−1 removed (leaving a scar). The game ends when
Ai has size at most 1. The winner of the game is the player who has not
contradicted herself at the end of the game.

Theorem 3.2 If A is true, the Pebbler has a winning strategy. Otherwise,
the Challenger has a winning strategy.

Proof If A is true, then the Pebbler always tells the truth. Obviously, the
Pebbler will win because she never contradicts herself. Similarly, if A is false,
then the Challenger always tells the truth, and thus wins. In otherwords,
“honesty is the best policy.”

The above game yields an alternating algorithm for the BSVP as follows.
Step one: Simulate a playing of the game, where the Pebbler’s moves are

80

existentially chosen and the Challenger’s moves are universally chosen. Step
two: Determine who won the game and accept if and only if the Pebbler won.
In step one, only two bits of choices are needed—one bit for the pebbled
value and one bit indicating if the pebble was challenged. The game lasts
only log3/2 |A| rounds, so step one is in ALOGTIME. But step two is harder
to implement in ALOGTIME. The basic problem is that computing what
Ai is and where the pebbles are after i rounds, as a function of the play of
the game so far, is difficult to do.

Cook, Gupta [CG], and Ramachandran [R] have a variant of the above
algorithm where they prove that BSVP is in O(log n log log n) alternating
time.

4 ALOGTIME algorithm for BSV P

In this section, a sketch of the ALOGTIME algorithm for the BSVP is given.
Complete details can be found in [B93]

As above, the ALOGTIME algorithm for BSV P will be described as
a pebbling game between the Pebbler and the Challenger. In this game,
the Pebbler places pebbles on nodes of the boolean sentence: each pebble is
labelled with either 0 or 1 (indicating that the Pebbler asserts this value for
the subformula rooted at that node). After the Pebbler places some pebbles,
the Challenger must respond by challenging one of the pebbled positions: this
represents an assertion by the Challenger that the pebble value is incorrect.
Furthermore, we will assume that if the Challenger challenges some position
U , then all pebble positions below U are correctly labelled. The pebbling
game is organized into rounds: during each round, the Pebbler pebbles a
set of nodes and the Challenger either challenges a newly pebbled node, or
rechallenges the previously challenged node. A player loses the game by
asserting incompatible input and output values for a boolean gate. A player
may also lose by violating the rules of the game. Below we will describe the
exact rules for the pebbling game.

(1) Without loss of generality, a boolean sentence has leaves numbered
from 1 to 2d+1 − 1, from left to right. (We can add dummy nodes if
necessary to force this numbering.) The rank of a leaf numbered j is
the maximum value i such that 2i|j.

81

(2) At round i, there are distinguished leaves Li, Ci, Ri (left, center and
right respectively) and distinguished nodes Ai and Bi (indicating above
and below, respectively).

(3) The rank of Ci is at least d − i. The rank of Li is equal to the rank of
Ri which is equal to d − i.

(4) Ai and Bi are ancestors of Ci. Bi is the highest pebbled ancestor of Ci

that has not yet been challenged. Ai is the lowest challenged ancestor
of Ci. Informally, the players have agreed at Bi but disagree at Ai.

(5) Leaves below Ai but not below Bi are numbered in the ranges (Li −
2d−i, Li + 2d−i), (Ri − 2d−i, Ri + 2d−i). (See Figure 1 for a picture of
nodes Li, Ri, Ci, Ai, Bi.)

(6) At round 0, the Pebbler pebbles the root with 1, and the Challenger
challenges the root node. In preparation for round 1, set A1 equal to
the root node, set C1 = B1 = leaf of rank d (the leaf numbered 2d);
and set L1 and R1 to the leaves numbered 2d−1 and 2d + 2d−1.

(7) During round i ≥ 1, let Ui be the least common ancestor of Li and Ci,
and let Vi be the least common ancestor of Ci and Ri. Let U1

i , U2
i , V 1

i , V 2
i

be their children. (See Figure 2 for a picture of these nodes.) The peb-
bler must state whether Ui is an ancestor of Vi and must pebble Ui,
U1

i , U2
i , Vi, V 1

i and V 2
i . This requires seven bits. The Challenger must

then challenge one of the pebbled nodes, Ui, Vi, U
1
i , U2

i , V 1
i , V 2

i , Ai. (If
Ui and Vi are not between Ai and Bi, the Challenger should rechallenge
Ai.) It requires three bits for the Challenger to specify which of the
pebbled nodes to challenge. For round i + 1, the values of Li+1, Ri+1,
and Ci+1 are set according to Tables 1 and 2. Note that Ai+1 is the
node challenged by the Challenger in round i, and Bi+1 is the (unique)
highest pebbled node below Ai+1.

82

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢¢

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

¢
¢

¢
¢

¢
¢¢

A
A
A
A
A
AA

u

u

u

u u u

Ai

Bi

Ci RiLi

Figure 1

The triangles delineate subtrees. In general, it is not
necessary for Li and Ri to be descendents of Ai. On the
other hand, it is also permissable for Li and Ri to be
descendents of Bi.

83

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢¢

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢
¢

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

¢
¢

¢
¢

¢
¢¢

A
A
A
A
A
AA

u

u

u

u u u

Ai

Bi

Ci RiLi

u
u u

u
u u

¢
¢

A
A

¢
¢

A
A

Ui

U1
i U2

i

Vi

V 1
i V 2

i

Figure 2

Figure 2 illustrates a possible configuration for the break-
points chosen in round i. Handdrawn lines indicate paths
in the tree.

84

Challenged Pebbler says Pebbler says
Node Ui B Vi Vi B Ui

Ci+1 = Ci Ci+1 = Ci

V 1
i Ri+1 = Ri − 2δi Ri+1 = Ri − 2δi

Li+1 = Li + 2δi Li+1 = Li − 2δi

Ci+1 = Ri Ci+1 = Ri

V 2
i Ri+1 = Ri + 2δi Ri+1 = Ri + 2δi

Li+1 = Ri − 2δi Li+1 = Ri − 2δi

Ci+1 = Li Ci+1 = Li

U1
i Ri+1 = Li + 2δi Ri+1 = Li + 2δi

Li+1 = Li − 2δi Li+1 = Li − 2δi

Ci+1 = Ci Ci+1 = Ci

U2
i Ri+1 = Ri + 2δi Ri+1 = Ri − 2δi

Li+1 = Li + 2δi Li+1 = Li + 2δi

Ui or Vi Game ends Game ends

Challenged Node: Ai

Pebbler says Pebbler says Pebbler says Pebbler says
Ai B Ui, Vi Ui, Vi D Ai Ui D Ai B Vi Vi D Ai B Ui

Ci+1 = Ci Ci+1 = Ci Ci+1 = Ci Ci+1 = Ci

Ri+1 = Ri + 2δi Ri+1 = Ri − 2δi Ri+1 = Ri + 2δi Ri+1 = Ri − 2δi

Li+1 = Li − 2δi Li+1 = Li + 2δi Li+1 = Li + 2δi Li+1 = Li − 2δi

Tables 1 and 2

85

Because there are at most 2d−i+1 leaves which are below Ai but not at or
below Bi, it follows that one of the players will be forced into an “obvious
mistake” before round d. We will now define who the winner of a play of the
game is. Li and Ri can be found in ALOGTIME. Similarly, Ci, Ai and Bi

can be computed in ALOGTIME. (Least common ancestors can be found
by counting parenthesis.) To determine the winner, we nondeterministically
guess the first place in the game where an obvious mistake was made. This
gives the loser of the game. The obvious mistakes that can cause a player to
lose the game are as follows:

(a) Asserting incompatible values to inputs and outputs of a gate.

(b) Asserting an incorrect value of a leaf node.

(c) (Pebbler) Pebbling a node with both 0 and 1.

(d) (Pebbler) Being incorrect about whether Ui is above Vi, Ai is above Ui

or Ai is above Vi.

(e) (Challenger) Challenging a node at or below a previously unchallenged
pebble, or challenging a node above a previously challenged pebble.

The conversion of the pebbling game into an ALOGTIME Turing ma-
chine is fairly straightforward. Given a boolean sentence φ as input, M
computes O(log n) bits describing play of the game using existential guesses
for the Pebbler’s moves and universal choices for the Challenger’s moves; M
then accepts if and only if the Pebbler won this play of the game. Since the
game lasts O(log n) rounds, and each round requires only a constant number
of bits, it follows that M runs in time O(log n) time.

4.1 Some Extensions

(1) Parenthesis context-free languages are in ALOGTIME. [B87]

(2) Input driven languages are in ALOGTIME. [Dymond] Input driven
languages are characterized by deterministic pushdown automata with
pushing and popping determined by only the input symbol.

(3) There are log-depth arithmetic circuits for evaluating arithmetic for-
mula over addition and multiplication, and over addition, multiplica-
tion and division. [BCGR]

86

5 Completeness of BSV P

In this section, we will sketch the proof of the previously stated theorem
that the BSVP problem is complete for ALOGTIME, under deterministic
logtime reductions.

The proof idea is as follows. Let M be an ALOGTIME Turing machine.
For a given input x, M(x) is a tree, labelled as follows. Existential configura-
tions will be labelled by ∨’s, universal configurations will be labelled by ∧’s,
accepting configurations will be labelled by 1’s and rejecting configurations
will be labelled by 0’s. Thus, we will get a boolean formula with value 1 or
0 depending on whether M(x) accepts or rejects. With some cleverness, it
can be shown that this Boolean formula is computable in ALOGTIME as
a function of x (modulo assumptions on M).

6 Related Open Problems

One classic open problem is whether or not Division is in ALOGTIME. The
best algorithm currently known is by Beame, Cook and Hoover [BCH].

Another open problem concerns Dyck languages. The Dyck language is
the set of balanced formulas where the underlying symbols are two distinct
types of parenthesis. Two-sided Dyck language consists words over the same
alphabet, but now we can cancel in either direction. For example, the fol-
lowing word is in the two-sided Dyck language over {], [, (,)}:])([][.

It is an open problem to determine whether or not two-sided Dyck lan-
guages are in ALOGTIME. Another way to state this problem is whether
or not the word problem for a k-generator free group with k ≥ 2 is in
ALOGTIME. Lipton and Zalcstein [LZ] showed that this problem is in
LOGSPACE. In addition, this problem is known to be hard for ALOGTIME.
However, it is not known to be in ALOGTIME, or complete for LOGSPACE.
For related work and results in this area, see the UCSD thesis by Dave Robin-
son, where he studied the word problem for finitely generated infinite groups.

References

[B87] Buss, S. “The Boolean formula value problem is in ALOGTIME”,
in Proceedings of the 19-th Annual ACM Symposium on Theory of

87

Computing, May 1987, pp. 123-131.

[B93] Buss, S. “Algorithms for Boolean formula evaluation and for tree con-
traction,” in Arithmetic, Proof Theory and Computational Complexity,
Editors: P. Clote and J. Kraj́ıček, Oxford University Press, 1993, pp.
96-115.

[Br] Brent, R. P., “The parallel evaluation of general arithmetic expres-
sions,” Journal Assoc. Comput. Mach., v. 21, 1974, pp.201-206.

[BCGR] Buss, S., Cook, S.A., Gupta, A., and Ramachandran, V., “An op-
timal parallel algorithm for formula evaluation,” SIAM Journal on
Computation v. 21, 1992, pp.755-780.

[CKS] Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., “Alternation”, J.
Assoc. Comput. Mach., v. 28, 1981, pp.114-133.

[LZ] Lipton, R.J., Zalcstein, Y., “Word problems solvable in logspace,” J.
Assoc. Comput. Mach., v. 24, 1977, pp.522-526.

[Lynch] Lynch, N., “Log space recognition and translation of parenthesis
languages,” J. Assoc. Comput. Mach., v. 1975, 1977, pp.583-590.

[Spira] Spira, P. M., “On time hardware complexity tradeoffs for Boolean
functions,” In Proceedings of the Fourth Hawaii International Sympo-
sium on System Sciences, 1971, pp.525-527.

88

Bounded Arithmetic

by Maria Luisa Bonet and Ran Raz

Wednesday Morning, March 8

The whole motivation of what follows is witnessing in the following sense:
If T |= ∀x∃y(...), what can be said about the computational complexity of
determining y , given x as an input?

First we will recall the definitions of the Polynomial Time Hierarchy.

1 The Polynomial Time Hierarchy

The following are the usual definitions of the polynomial time hierarchy.

P = 4P
1 is the set of predicates on N which are recognized by a

polynomial-time Turing machine.
PF = P

1 is the set of functions on N which are computed by a
polynomial-time Turing machine.

NP = ΣP
1 is the set of predicates on N which are recognized by a non

deterministic polynomial-time Turing machine.
ΣP

i ={predicates Q : for some R ∈ 4P
i and some polynomial q ,

Q(~x) ⇐⇒ (∃y ≤ 2q(|~x|))R(~x, y)} , where |x| = dlog2(x + 1)e is the length of
the binary representation of x .

ΠP
i ={predicates Q : for some R ∈ ΣP

i , Q(~x) ⇐⇒ ¬R(~x)}
P
i+1 is the polynomial time closure of ΣP

i , i.e., the set of functions

computable by a polynomial-time Turing machine with an oracle for a

(complete) predicate in ΣP
i .

4P
i+1 ={predicates Q : Q has characteristic function in P

i+1}.

89

The boxes are the function analog of the triangle.

...
...

...
...

∆P
3

P
3

⊆ ⊇
ΠP

2 ΣP
2 ∪|

⊇ ⊆
∆P

2
P
2

⊆ ⊇
Co − NP = ΠP

1 ΣP
1 = NP ∪|

⊇ ⊆
∆P

1 = P P
2 = PF

The above classes comprise the Meyer-Stockmeyer polynomial time hierarchy.
It is not known whether the inclusions are proper!

2 The Link to Mathematical Logic

We use the first order language of N with function symbols 0, S, +, ·,], |x|
and b1

2
xc , and predicate symbol ≤ .

b1

2
xc = greatest integer ≤ x

2

x]y = 2|x|·|y|

The] (“smash”) function allows us to write terms 2q(|x|) where q is any
polynomial with nonnegative coefficients. Ed Nelson was the first one to
define the smash function.

A bounded quantifier is a quantifier of the form ∀x ≤ t or ∃x ≤ t , where
t is a term. ∀x ≤ t is thought of as part of the syntax. A sharply bounded
quantifier is a bounded quantifier of the form ∀x ≤ |t| or ∃x ≤ |t| . Sharply

bounded quantifiers are polynomial time feasible. You can check all values

≤ |t| . ∀x and ∃x are unbounded quantifiers.
We define a hierarchy Σb

i and Πb
i of bounded formulas by counting

alternations of bounded quantifiers, ignoring sharply bounded quantifiers.

So Σb
0 = Πb

0 is the set of formulas with all quantifiers sharply bounded.

90

If A ∈ Σb
i then (∀x ≤ t)A is in Πb

i+1 , and (∀x ≤ |t|)A and (∃x ≤ t)A are
in Σb

i .
Dually, if A ∈ Πb

i then (∃x ≤ t)A is in Σb
i+1 , and (∃x ≤ |t|)A and

(∀x ≤ t)A are in Πb
i .

∧,∨,¬,→ are treated in the usual way.

Theorem 2.1 Let i ≥ 1. A predicate Q is in Σp
i iff there is a Σb

i - formula ϕ

such that for all ~n ∈ Nk ,

Q(~n) ⇔ N |= ϕ(~n)

This is theorem is due essentially to Stockmeyer-Wrathall [Sto76, Wra76],
and this exact form follows from a result of Kent-Hodgson [KH82].

3 Classical Theories of Bounded Arithmetic

The Σb
i -IND axioms are:

A(0) ∧ ∀x(A(x) → A(Sx)) → ∀xA(x)

where A is any Σb
i -formula.

Definition 3.1. T i
2 is the first order theory with language 0, S, +, ·,], b1

2
xc, |x|,≤ ,

and with axioms:

1. A finite set of open axioms defining simple properties of the function
and relation symbols, called BASIC.

2. The Σb
i -IND axioms.

T2 is
⋃

i T
i
2 .

The subscript 2 means that] is present.
Another approach to bounded arithmetic is theory I∆0 , introduced by R.

Parikh, which has the symbols 0, S , + and · only and has induction for all
bounded formulas. This theory and an extension I∆0 + Ω1 has been studied
extensively by J. Paris, A. Wilkie and others. The additional axiom Ω1 means

91

essentially that the function] is total. Up to choice of language, we have that
T2 and I∆0 + Ω1 are essentially the same theory.

The Σb
i -PIND axioms are:

A(0) ∧ ∀x(A(b1

2
xc) → A(x)) → ∀xA(x)

(where A is any Σb
i -formula).

The Σb
i -LIND axioms are:

A(0) ∧ ∀x(A(x) → A(Sx)) → ∀xA(|x|)
(where A is any Σb

i -formula).

Both the PIND and LIND axioms are intuitively weaker than the regular
induction axiom. The first has stronger assumptions for the same conclusion
as IND. The second has the same assumptions as IND, but weaker conclusion.
Since the length function is not total, LIND is not the same as IND.

Definition 3.2. Si
2 is the theory BASIC +Σb

i -PIND.

Theorem 3.1 ([Bus86]) : Si+1
2 ` Σb

i -IND, for all i ≥ 0.

Theorem 3.2 ([Bus86], [BI95]) : Si
2 ≡ BASIC+Σb

i −LIND, for all i ≥ 1.

Corollary 3.3 ([Bus86]) :For i ≥ 1, T i
2 ` Si

2 and Si+1
2 ` T i

2 .

Corollary 3.4 S2 ≡ T2 . (Recall these are essentially the same as I∆0 +Ω1 .)

Open: Is the hierarchy below proper?

T 0
2 6= S1

2 ⊆ T 1
2 ⊆ S2

2 ⊆ T 2
2 ⊆ · · ·

Remark: If the polynomial hierarchy collapses and T2 proves it, then the
hierarchy of theories of bounded arithmetic collapses.

Proof of theorem 3.1 (Si+1
2 ` Σb

i -IND. Hence T i
2 ⊆ Si+1

2):

Let A(x) ∈ Σb
i . From now on we work in Si+1

2 .
Suppose A(0) ∧ ∀x(A(x) → A(Sx)). Let B(y) be:

∀x ≤ c(A(x .− y) → A(x)).

So B ∈ Πb
i+1 .

Claim(Si+1
2): ∀y(B(b1

2
yc) → B(y)).

92

Proof of the claim: Assume B(b1
2
yc). We will prove B(y). ∀x ≤ c , we

have to prove A(x .− y) → A(x).

A(x .− y) ⇒ A(x .− 2b1

2
yc) ⇒ A(x .− b1

2
yc) ⇒ A(x)

2 (of claim)

Now, by Πb
i+1 -PIND on B , B(0) → B(c). But B(0) is obvious. Also

B(c) → (A(0) → A(c)). Hence A(c) holds. Since c is arbitrary, ∀xA(x) is

true. 2

4 The Main Theorem for Si
2

Theorem 4.1 ([Bus86]) : (i ≥ 1). Let A be a Σb
i -formula. Suppose that

Si
2 ` ∀x∃yA(x, y). Then there is a function f ∈ PTC(ΣP

i−1) = P
i , a formula

B ∈ Σb
i and a term t so that:

1. Si
2 ` ∀x∀y(B(x, y) → A(x, y))

2. Si
2 ` ∀x∃!yB(x, y)

3. Si
2 ` ∀x(∃y ≤ t)B(x, y) [due to Parikh]

4. For all x, N |= B(x, f(x)).

Conversely, If f ∈ PTC(ΣP
i−1) then there is a formula B ∈ Σb

i and a term

t so that (2), (3) and (4) hold.
Special Case: when i = 1, f is a polynomial time function.

Corollary 4.2 : The functions which are definable in Si
2 by Σb

i -formulas are
precisely the functions in PTC(ΣP

i−1) = P
i .

We can restate the main theorem using predicates instead of functions:

Theorem 4.3 ([Bus86]) :(i ≥ 1). Suppose A(x) ∈ Σb
i and B(x) ∈ Πb

i and
Si

2 ` A ↔ B . Then there is a predicate Q ∈ ∆P
i so that for all n ∈ N ,

Q(n) ⇔ N |= A(n) ⇔ N |= B(n).

Conversely, if Q ∈ ∆P
i then there are A and B so that the above holds.

93

Special Case: (i = 1).
If A(x) is a formula such that S1

2 proves that A is equivalent to a Σb
1

and a Πb
1 -formula (in other words, S1

2 proves A ∈ NP ∩ coNP), then A(x)

represents a predicate in P .

5 Proof of the Witnessing Theorem for Si
2

5.1 Introduction and First Step

Use Gentzen’s sequent calculus to express Si
2 -proofs.

A sequent calculus (LK) proof contains sequents:

A1, . . . , Ak → B1, . . . , Bl

which mean:
A1 ∧ · · · ∧ Ak → B1 ∨ · · · ∨ Bl

Initial sequents contain only atomic formulas and can be:
Logical axioms: A → A for example
Equality axioms
BASIC axioms: x ≤ y → |x| ≤ |y|for example

Quantifier rules include:

Γ → ∆, A(t)

Γ → ∆,∃xA(x)

and
Γ → ∆, A(b)

Γ → ∆,∀xA(x)

(where b is an eigenvariable that doesn’t appear in the lower sequent).

Bounded quantifier rules include:
∃ ≤: right :

Γ → ∆, A(s)

s ≤ t, Γ → ∆, (∃x ≤ t)A(x)

∀ ≤: right :
b ≤ t, Γ → ∆, A(b)

Γ → ∆, (∀x ≤ t)A(x)

94

(where b is an eigenvariable that doesn’t appear in the lower sequent), and
similarly (∃ ≤: left) and (∀ ≤: left) rules.

Instead of induction axioms, the sequent calculus, LK, uses induction

rules:

Σb
i -IND will be:

Γ, F (b) → F (S(b)), ∆

Γ, F (0) → F (t), ∆

and Σb
i -PIND will be:

Γ, F (b1
2
bc) → F (b), ∆

Γ, F (0) → F (t), ∆

where b is an eigenvariable and does not occur in the lower sequent.

Theorem 5.1 ([Gen69], [Tak87]) (free cut elimination theorem) : If
Γ → ∆ is Si

2 (or T i
2) provable, then it has an Si

2(T
i
2) proof in which every cut

formula is a Σb
i -formula.

In particular, if every formula in Γ → ∆ is in Σb
i , then Γ → ∆ has a proof

of Si
2(T

i
2), such that every formula appearing in the proof is in Σb

i .

STEPS OF THE PROOF OF THE MAIN THEOREM FOR Si
2

STEP 1: We start with an Si
2 -proof P of ∃yA(x, y). By cut elimination

there is an Si
2 -proof P ∗ of (∃y ≤ t)A(x, y) such that every formula in P ∗ is

a Σb
i or Πb

i formula.
STEP 2: Given the proof P ∗ , we can immediately get an algorithm to

compute a function f(x) such that for all x ∈ N ,

A(x, f(x))

In other words, P ∗ is a “program” for computing f(x). The proof of step 2
follows...

5.2 Second Step

Fix i ≥ 1.

Definition 5.1. Let A(~a) be a Σb
i -formula, ~a includes all free variables of

A . Witnessi,~a
A (w,~a) is a formula defined inductively as follows:

95

1. If A ∈ Σb
i−1 ∪ Πb

i−1 then

Witnessi,~a
A (w,~a) ⇔ A(~a)

2. If A = B ∧ C , then

Witnessi,~a
A (w,~a) ⇔ Witnessi,~a

B (β(1, w),~a) ∧ Witnessi,~a
C (β(2, w),~a)

3. If A = B ∨ C , then

Witnessi,~a
A (w,~a) ⇔ Witnessi,~a

B (β(1, w),~a) ∨ Witnessi,~a
C (β(2, w),~a)

4. If A = (∃x ≤ t(~a))B(~a, x), then

Witnessi,~a
A (w,~a) ⇔ Witnessi,~a,b

B(~a,b)(β(2, w),~a, β(1, w))wedgeβ(1, w) ≤ t(~a)

5. If A = (∀x ≤ |t(~a)|)B(~a, x), then

Witnessi,~a
A (w,~a) ⇔ (∀x ≤ |t(~a)|)Witnessi,~a,b

B(~a,b)(β(x + 1, w),~a, x)

6. If A = ¬B , use prenex operations to put A in the above forms.

Proposition 5.2 1. Si
2 ` A(~a) ↔ (∃w ≤ tA)Witnessi,~a

A (w,~a) for some
term tA

2. Witnessi,~a
A (w,~a) ∈ ∆P

i (= P when i = 1)

3. Witnessi,~a
A is provably equivalent to a Σb

i and a Πb
i formula, by the

theory Si
2 .

The Witnessing Theorem follows now from the following lemma.

Lemma 5.3 (main): Suppose Si
2 ` Γ → ∆ where Γ and ∆ contain only Σb

i

formulas. Let ~c be the free variables of Γ, ∆. Then there is a function f such
that:

1. f is Σb
i defined by Si

2

96

2. Si
2 ` Witnessi,~c∧

Γ
(w,~c) → Witnessi,~c∨

∆
(f(w,~c),~c)

3. f ∈ PTC(ΣP
i−1) = P

i (this is polynomial time when i = 1)

Proof : By induction on the number of inferences in a free-cut free Si
2 -proof

of Γ → ∆.
The free cut free proof contains only Σb

i -formulas and it explicitly contains
an algorithm for computing f . As an example of how to prove the main

lemma, suppose that P is a free cut free proof and the last inference in P is:

A(b1
2
ac) → A(a)

A(0) → A(b)

By the induction hypothesis, there is a function g such that

1. g is Σb
i -defined by Si

2

2. g is in PTC(ΣP
i−1) (this is P when i = 1)

3. Si
2 ` Witnessi,~a,~c

A(b1/2ac)(w, a,~c) → Witnessi,a,~c
A(a)(g(w, a,~c), a,~c)

4. Si
2 ` ∀a∀~c [g(w, a,~c) ≤ tA(a,~c)]

Define f to be the function such that

f(w, 0,~c) = w

f(w, b,~c) = g(f(w, b1
2
bc,~c), b,~c) if b 6= 0

Claim:

1. f ∈ PTC(ΣP
i−1) (= P when i = 1).

2. Si
2 can Σb

i -define f and prove that f satisfies the conditions of the

lemma.

3. Si
2 ` Witnessi,~c

A(0)(w,~c) → Witnessi,b,~c
A(b)(f(w, b,~c), b,~c)

(1) is true since f is defined form g by a limited recursion operation. (3)
is true since Witnessi,a,~c

A(a) is a Σb
i -formula, and Si

2 can prove this by Σb
i -PIND

directly from the induction hypothesis of (3). (2) can be proved in Si
2 by

Σb
i -PIND. 2

97

5.3 Some Comments

Theorem 5.4 ([Bus90]) : (i ≥ 1). Si+1
2 is ∀Σb

i+1 - conservative over T i
2 .

Proof idea: First show that T i
2 can Σb

i+1 -define all the P
i+1 -functions (same

as Si+1
2).

Second, reprove the Si+1
2 -witnessing lemma, but now f is Σb

i+1 -defined
by T i

2 , and T i
2 proves

Witnessi+1,~c∧Γ (w,~c) → Witnessi+1,~c∨∆ (f(w,~c),~c)

2

Theorem 5.5 ([Bus86]) :(i = 0 case). S1
2(PV) is ∀Σb

i -conservative over
PV.

Recall that PV is an equational theory of polynomial time functions,
introduced by [Coo75].

6 Bounded Arithmetic Hierarchy

T2 = S2
...
⊇

S4
2

¹
T 3

2

⊇
S3

2

¹
T 2

2

⊇
S2

2

¹
T 1

2

⊇
S1

2

¹
T 0

2 (PV) = PV

98

In the figure above, ¹ means: “conservatively extended”.

7 Bounded Arithmetic and Constant Depth

Frege Proofs

Paris-Wilkie [PW81] developed the following connection between provability
in I∆0 (or I∆0 + Ω ≡ S2) and lengths of proofs of constant depth Frege

proofs:
Allow extra predicate symbols α and function symbols f , which may be

used in induction axioms. Translate closed first-order bounded formulas into
propositional logic as follows:∗

(a): (f(i) = j)PW is pi,j a propositonal variable.

(b): α(i)PW is qi a propositional variable.

(c): other atomic sentences become > or ⊥ , according to whether they are

true or false.

(d): Boolean connectives are unchanged.

(e): [(∀x ≤ t)A(x)]PW is
∧value(t)

i=0 [A(i)]PW

(f): [(∃x ≤ t)A(x)]PW is
∨value(t)

i=0 [A(i)]PW

Theorem 7.1 ([PW81]) : If I∆0(f, α) ` ∀xA(x, f, α), with A a bounded
formula, then the tautologies [A(i, f, α)]PW have polynomial size, constant
depth Frege proofs.

Theorem 7.2 ([PW81]) : Same holds for I∆0 + Ω1(f, α), but with
quasipolynomial (= 2log nO(1)

) size Frege proofs.

Proof idea : Translate a bounded proof of A(b, f, α) into propositional logic,

by applying the PW-transformation to its formulas. Induction inferences are

“unwound” into a series of cut inferences.

∗A “closed” formula is a formula with no free variables, i.e., a sentence.

99

Theorem 7.3 ([PWW88]) : I∆0 + Ω1(f) ` (∀x > 0)WPHP (x, f), where
WPHP (x, f) = “f is not a one-to-one map from [2x] to [x]” = (∃y ≤
2x)(f(y) > x) ∨ (∃y, z ≤ 2x)(y 6= z ∧ f(y) = f(z)) (a Σb

1 formula).

Corollary 7.4 The tautologies PHP 2n
n have quasi-polynomial size constant-

depth Frege proofs.

Theorem 7.5 ([Ajt88]) The tautologies PHPn do not have polynomial-size,

constant-depth Frege proofs. Hence I∆0(f) 6` (∀x)PHP (x, f).

Theorem 7.6 ([BIK+92]) The tautologies PHPn do not have quasipolynomial-
size, constant-depth Frege proofs. Hence S2(f) 6` (∀x)PHP (x, f).

8 Bounded Arithmetic and Extended Frege

Proofs

Cook [Coo75] defined an equational theory of polynomial time computable
functions (PV). Let f , g be polynomial time computable functions.

‖f(x) = g(x)‖|x|=n is a propositional formula with variables xn−1, . . . , x0

representing the bits of x , and variables ~y representing the computations of

f(x) and g(x).
‖f(x) = g(x)‖|x|=n says: “if ~y correctly represents computations of f(x)

and g(x), then f(x) = g(x)”.

‖R(x)‖|x|=n is defined similarly, for R a polynomial time predicate.

Theorem 8.1 ([Coo75]) : If PV ` ∀x(f(x) = g(x)), then the tautologies
‖f(x) = g(x)‖|x|=n , n = 0, 1, 2, . . . have polynomial size extended Frege proofs.

Application:
PV (and S1

2) can prove: there is no integer w which codes a 1 to 1 map
from [n] to [n − 1]. Thus the tautologies PHPn have polynomial size
extended-Frege proofs.

Theorem 8.2 ([Coo75]) : If f is a propositional proof system, and f incor-
porates a Frege-system then if PV ` Con(f) then extended-Frege p-simulates
f .

Theorem 8.3 ([Dow79]) : PV ` Con(substitution-Frege). Hence
extended-Frege p-simulates substitution-Frege.

100

9 Bounded Arithmetic Relativized Separa-

tions

Theorem 9.1 ([BK94]) : For i ≥ 1, Si
2(α) 6= T i

2(α).

For T i
2 versus Si+1

2 even better results are known:

Theorem 9.2 ([KPT91]) : For i ≥ 0, if T i
2 = Si+1

2 then the polynomial
time hierarchy collapses to ΣP

i+2 = ΠP
i+2 = 4P

i+1/poly .

Their proof relativizes, so also:

Theorem 9.3 ([KPT91]) : For i ≥ 0, T i
2(α) 6= Si+1

2 (α)

Recently, an improvement was given:

Theorem 9.4 ([Bus95], [Zam]) : For i ≥ 0, if T i
2 = Si+1

2 then

• T i
2 = S2

• T i
2 proves that the polynomial time hierarchy collapses to ΣP

i+3 = ΠP
i+3 =

ΣP
i+1/poly

• There is a constant k such that T i
2 can prove every polynomial time

hierarchy predicate that can be expressed as a Boolean combination of k

ΣP
i+2 predicates.

References

[Ajt88] M. Ajtai. The complexity of the pigeonhole principle. In Pro-
ceedings of the 29-th Annual IEEE Symposium on Foundations of
Computer Science, pages 346–355, 1988.

[BI95] Samuel R. Buss and Aleksandar Ignjatović. Unprovability of con-
sistency statements in fragments of bounded arithmetic. Annals of

Pure and Applied Logic, 74:221-244, 1995.

101

[BIK+92] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák, and
A. Woods. Exponential lower bounds for the pigeonhole principle.
In Proceedings of the 24-th Annual ACM Symposium on Theory of

Computing, pages 200–220, 1992.

[BK94] Samuel R. Buss and Jan Kraj́ıček. An application of Boolean
complexity to separation problems in bounded arithmetic. Proc.

London Math. Society, 69:1–21, 1994.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986. Revision
of 1985 Princeton University Ph.D. thesis.

[Bus90] Samuel R. Buss. Axiomatizations and conservation results for

fragments of bounded arithmetic. In Logic and Computation,
proceedings of a Workshop held Carnegie-Mellon University, 1987,
volume 106 of Contemporary Mathematics, pages 57–84. American

Mathematical Society, 1990.

[Bus95] Samuel R. Buss. Relating the bounded arithmetic and polynomial-
time hierarchies. Annals of Pure and Applied Logic, 75:67–77, 1995.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the proposi-

tional calculus. In Proceedings of the 7-th Annual ACM Symposium
on Theory of Computing, pages 83–97, 1975.

[Dow79] Martin Dowd. Propositional Representation of Arithmetic Proofs.
PhD thesis, University of Toronto, 1979.

[Gen69] Gerhard Gentzen. Collected Papers of Gerhard Gentzen. North-
Holland, 1969. Editted by M. E. Szabo.

[KH82] Clarence F. Kent and Bernard R. Hodgson. An arithmetic char-
acterization of NP. Theoretical Computer Science, 21:255–267,

1982.

[KPT91] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arith-
metic and the polynomial hierarchy. Annals of Pure and Applied

Logic, 52:143–153, 1991.

102

[PW81] J. B. Paris and A. J. Wilkie. ∆0 sets and induction. In W. Guzicki,
W. Marek, A. Pelc, and C. Rauszer, editors, Open Days in Model
Theory and Set Theory, pages 237–248, 1981.

[PWW88] J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the
pigeonhole principle and the existence of infinitely many primes.
Journal of Symbolic Logic, 53:1235–1244, 1988.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical
Computer Science, 3:1–22, 1976.

[Tak87] Gaisi Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd
edition, 1987.

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy.
Theoretical Computer Science, 3:23–33, 1976.

[Zam] Domenico Zambella. Notes on polynomially bounded arithmetic.
To appear in J. Symb. Logic.

103

104

Cutting Planes Proof Systems

Notes by Clemens Lautemann and Carlos Zamora-Cura

Wednesday Evening, March 8

1 Sam’s talk about CP systems.

In this talk Sam Buss presented the basic ideas about Cutting Plane Proof
Systems. The cutting plane refutation system CP is an extension of reso-
lution, where unsatisfiable propositional logic formulas in conjuctive normal
form are recognized by showing the non-existence of boolean solutions to
associated families of linear inequalities. Sam spoke about the equivalence
between CP and its subsystem CP2; and its relation with Frege Systems.

1.1 Preliminaries

The cutting planes system CP is a Refutation System for propositional logic
formulas in conjuctive normal form (CNF). In CP the truth values true
and false are interpreted by 1 and 0, and propositional formulas are ex-
pressed by systems of linear inequalities. The basic idea is that a clause
{x1, . . . , xk} can be rewritten as an integer inequality i1 + · · ·+ ik ≥ 1; where
ij := xj if xj is a positive literal, and ij := 1 − xj otherwise. For example
take the following CNF :

(x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y)

is represented by the family

x + y ≥ 1

1 − x + y ≥ 1

x + 1 − y ≥ 1

1 − x + 1 − y ≥ 1

105

of linear inequalities, one for each clause.
We can simplify the last three of these inequalities to

−x + y ≥ 0

x − y ≥ 0

−x − y ≥ −1

More generally, for a clause C define I(C) to be the inequality

∑
i

αipi ≥ 1 − m,

where

αi =




1 if xi ∈ C
−1 if ¬xi ∈ C
0 if neither in C

and m is equal to the number of negated variables in C.
The idea of CP proofs rests on the following fact:

Fact 1 A set Γ of clauses is satisfiable if and only if the set of integer in-
equalities {IC : C ∈ Γ} is satisfiable, over {0, 1}.

More formally, we state that a line in a cutting plane proof is of the form:

α1p1 + α2p2 + · · · + αkpk ≥ m

where αi,m ∈ Z, and p1, . . . , pk are variables valued in the set {0, 1}. We will
call α1p1 + α2p2 + · · · + αkpk a CP expression.

The system CP has as axioms:

p ≥ 0

−p ≥ −1;

and as rules of inference:

106

• Addition:
E ≥ a , F ≥ b

E + F ≥ a + b,

• Multiplication by c ∈ N:
E ≥ b

c · E ≥ c · b,
• Division by c ∈ N, c > 0, b ∈ Z, if c | E with quotient E ′, then

E ≥ b

E ′ ≥
⌈

b
c

⌉
,

A formula B in conjuctive normal form has a cutting plane refutation, if
there is a sequence s0, . . . , sm of linear inequalities, such that

• sm is 0 ≥ 1,

• for all i ≤ m, either si is a cutting plane axiom, or it is the translation
of one of the clauses of B, or there exist j, k < i such that si is obtained
form sj, sk by one of the rules of inference.

A formula B is said to have a cutting planes proof if its negation has a cutting
planes refutation.

1.2 Power of CP.

One of the central problems of propositional logic is to find useful methods
for recognizing tautologies; since A is a tautology if and only if ¬A is not
satisfiable this is essentially the same as the problem of finding methods for
recognizing satisfiable formulas. Three of the principal propositional proof
systems are Frege Proof Systems, the Sequent Calculus System, and the
Resolution Refutation Proof System. Therefore, in order to measure the
power of CP it is important to compare how CP is related to some of these
proof systems.

One sign of the importance and strength of cutting planes proofs is
given by the following theorem proved by Cook, Coullard and Turan in
[Cook-Coullard-Turan], which shows how CP can p-simulate resolution.

107

Theorem 1.1 The cutting planes proof system can p-simulate resolution.

Proof. We will only sketch the proof. Given a refutation in resolution of a
set Γ of clauses, translate it into a cutting planes refutation of {IC}C∈Γ.

A resolution inference1

C1 , C2

C
,

solving on some variable x, is simulated by the following (we can assume
without loss of generality that C1 \ {x} = C and C2 \ {¬x} = C):

∑
αipi + x ≥ 1 − m ,

∑
αipi − x ≥ 1 − m − 1∑

2αipi ≥ 2 − 2m − 1∑
2αipi ≥ 2 − 2m − 1∑

αipi ≥ 1 − m

where we are using addition, and division rules.
So, each application of a resolution inference rule can be p-simulated, be-

cause the transformation function is polynomially time computable. 2

It is perhaps not surprising that CP is more “efficient” than resolution,
since addition of two inequalities may amount to a simultaneous resolution
on many variables. To quantify the efficiency of CP over resolution, consider
a combinatorial principle called the pigeonhole principle PHPn; which states
that there is no injection from {0, . . . , n} into {0, . . . , n − 1}:

∧
0≤i≤n

∨
0≤j<n

pij ⊃
∨

0≤i<i′≤n

∨
0≤j<n

(pij ∧ pi′j)

The negation of PHPn can be formulated by a propositional CNF formula
denoted ¬PHPn of size O(n3). We will measure the size of a proof by the
total number of logical connectives.

1Suppose that C and D are clauses and that x ∈ C and ¬x ∈ D are literals. The
resolution rule applied to C and D is the inference

C , D

(C \ {x}) ∪ (D \ {¬x}).

108

Theorem 1.2 PHPn has polysize cutting plane.

Proof. The ¬PHPn clauses become the inequalities:

αi : pi,0 + · · · + pi,n−1 ≥ 1 , i = 0, . . . , n

βi,m,j : −pi,j − pm,j ≥ −1 , 0 ≤ i < m ≤ n and 0 ≤ j < n

Now, firstly we derive inductively on k for each fixed j:

−p0,j − p1,j − · · · − pk,j ≥ −1 , k = 1, . . . , n.

Base case: β0,1,j is what we want. Inductive step:

k−1∑
i=0

βi,k,j = −p0,j − · · · − pk−1,j − kpk,j ≥ −k

this plus [−p0,j − · · · − pk−1,j ≥ −1](k − 1) and combined with the previous
step we have

−kp0,j − kp1,j − kp1,j − · · · − kpk−1,j − kpk,j ≥ −2k + 1.

Dividing by k gives:

−p0,j − · · · − pk,j ≥
⌈−2k + 1

k

⌉
= −1

Summing all these formulas for all n values on j gives (with k = n):

∑
i,j

−pi,j ≥ −n,

and summing αi for all n + 1 values of i gives

∑
i,j

pi,j ≥ n + 1.

Finally, summing the two very last inequalities we have

0 ≥ 1.

2

109

Another theorem, which we will leave without proof, proved by Goerdt
in [Goerdt] states a relation between Frege Proof Systems and CP.

Theorem 1.3 Frege Proof Systems F can p-simulate the cutting planes proof
systems.

1.3 CPk and CP .

For an integer k ≥ 2, the proof system CPk is obtained from CP by restricting
the division rule to division by k. The system CP2 is quite strong, and the
following theorem will show that CP2 is p-equivalent to CP.

Theorem 1.4 For k ≥ 2, CPk p-simulates CP.

Proof. Here, we only present the case k = 2, all other cases are similar.
Suppose CP2 is trying to simulate

m · α ≥ n

α ≥
⌈

n
m

⌉
,

where α is a linear combination of variables. Let 2p−1 < m ≤ 2p. Letting
r0 be equal to the sum of negative coefficients in α, and using addition of
axioms, we get α ≥ r0. Iterate:

• from α ≥ ri derive

(2p − m)α ≥ (2p − m)ri

2pα ≥ n + (2p − m)ri,

here we are using addition with m · α ≥ n,

2pα ≥ n + (2p − m)ri

α ≥
⌈

n+(2p−m)ri

2p

⌉
,

here we are using division by 2, p times.

• set

ri+1 =

⌈
n + (2p − m)ri

2p

⌉
.

110

Note that

ri+1 ≥ n

m

(
m

2p

)
+ ri

(
2p − m

2p

)
.

So, after polynomially many iterations we will have that

ri+1 >
n

m
− 1

m
.

Thus, ri+1 =
⌈

n
m

⌉
. 2

The most interesting open question concerning CP is to exhibit a com-
binatorial family of tautologies requiring superpolynomial CP proof size.

2 Lower bound on the size of CP proofs with

small coefficients.

In this talk, Ran Raz presented a new paper of his with Maria Bonet and Toni
Pitassi, in which they proved an exponential lower bound for the length of CP
proofs for the k–clique tautology, under the restriction that all coefficients in
the proof be polynomially small in n. The proof is a reduction to monotone
circuits that separate k–cliques from (k − 1)–cocliques, which by a result of
Alon and Boppana require exponential size.

2.1 The k-clique tautology

This tautology expresses the fact that a (k − 1)-coclique (i.e., a complete
(k− 1)-partite graph) on n vertices cannot contain a k-clique as a subgraph.
In order to represent this fact by a propositional formula, we will use propo-
sitional variables xij, 1 ≤ i ≤ k, 1 ≤ j ≤ n and yij, 1 ≤ i ≤ k − 1,
1 ≤ j ≤ n. We use truth assignments to the xij as encodings of k-cliques
and truth assignments to the yij as encodings of (k − 1)-cocliques: A clique
on k vertices from {1, . . . , n} will be encoded by ordering its vertices in some
way as v1, . . . , vk and assigning 1 to xij iff vi = j. Similarly, the classes of
a (k − 1)-coclique are ordered, and we assign 1 to yij iff vertex j belongs to

111

class i. Note that these representations are not unique, however, every k-
clique and every (k− 1)-coclique can be represented. The k-clique tautology
now states ”if x is a clique and y is a (k − 1)-coclique then some class of
y must contain two vertices of x.” Its negation can be written as the con-
junction of the following propositional formulas (which will also be given as
CP -inequalities):

1. xi1 ∨ · · · ∨ xin
n∑

j=1
xij ≥ 1

1 ≤ i ≤ k
2. ¬(xij ∧ xij′) −xij − xij′ ≥−1

1 ≤ i ≤ k, 1 ≤ j < j′ ≤ n
3. ¬(xij ∧ xi′j) −xij − xi′j ≥−1

1 ≤ i < i′ ≤ k, 1 ≤ j ≤ n

4. y1j ∨ · · · ∨ y(k−1)j

k−1∑
i=1

yij ≥ 1

1 ≤ j ≤ n
5. ¬(yij ∧ yi′j) −yij − yi′j ≥−1

1 ≤ i < i′ ≤ k − 1, 1 ≤ j ≤ n
6. xij ∧ xi′j′ → ¬(ylj ∧ ylj′) −xij − xi′j′ − ylj − ylj′ ≥−3

1 ≤ i, i′ ≤ k, 1 ≤ j < j′ ≤ n, 1 ≤ l ≤ k − 1

The formulas of type 1 - 3 and of type 4, 5 state that x is a k-clique
and y is a (k − 1)-coclique, respectively2. The conjunction of all formulas of
type 6 stipulates that any two clique vertices belong to different classes of
the coclique, i.e., that the clique is a subgraph of the coclique.

2.2 The construction of the circuit

Let a CP -proof for the clique tautology, i.e., a CP refutation of the formulas
above, be given. Each line L of this proof is of the form

∑
ij

αL
ijxij +

∑
ij

βL
ijyij ≥ γL

.
We will use k × n matrices over {0, 1} to represent truth assignments to

x and (k − 1) × n matrices to represent truth assignments to y. We will say
that a matrix x is a k-clique if it represents a truth assignment which encodes

2We write x for the (k × n)-matrix (xij), y for the ((k − 1) × n)-matrix (yij).

112

a k-clique. Similarly, a matrix y will be said to be a (k − 1)-coclique if it
represents a truth assignment which encodes a (k−1)-coclique. We will now
construct, for every line L, some monotone circuits which separate all those
k-cliques x from all those (k − 1)-cocliques y which together falsify L. To be
more precise, call a pair < α, β > of numbers attainable for L, if there is a
k-clique x and a (k − 1)-coclique y such that

∑
αL

ijxij = α and
∑

βL
ijyij = β.

For every attainable pair < α, β > with α + β < γL, we will construct a
monotone circuit CL

αβ with inputs ejj′ , 1 ≤ j < j′ ≤ n, which takes as input
(a 0 − 1-string encoding3) an n-vertex graph G and outputs

(1) 1 if G is (represented by) a k-clique x such that∑
αL

ijxij = α;

(2) 0 if G is (represented by) a (k−1)-coclique y such

that
∑

βL
ijyij=β.

Before proceeding with the construction, let us assume that we have been
successful for the last line L ≡ 0 ≥ 1. The only attainable pair for L is
< 0, 0 >, and as 0 + 0 < 1 there is one circuit CL

00 which separates all k-
cliques from all (k− 1)-cocliques which falsify L. Since L is always false, CL

00

separates all k-cliques from all (k − 1)-cocliques. Indeed, if G is a k-clique,
then any encoding x of G satisfies

∑
αL

ijxij = 0 and consequently CL
00(G) = 1,

by (1). Similarly, if G is a (k− 1)-coclique then any encoding y of G satisfies∑
βL

ijyij = 0, and by (2), CL
00(G) = 0.

We now construct the circuits CL
αβ inductively.

• If L is a logical axiom, L cannot be falsified, so for no attainable pair
< α, β > it can be true that α + β < γL. Hence no construction is
required.

• If L is any of the inequalities of form 1 - 3, then all attainable pairs are
of the form < α, 0 >. But since all k-cliques satisfy L, we have that
α ≥ γL, so again, no construction is required.

• Similarly, no construction is necessary if L is one of the inequalities of
form 4 or 5.

3This encoding is such that for some ordering of the vertices v1, . . . , vn, ejj′ iff (vj , vj′)
is an edge of G.

113

• If L is the inequality −xij−xi′j′−ylj−ylj′ ≥ −3 then the only attainable
pair < α, β > with α + β < −3 is < −2,−2 >. We set CL

−2−2 = ejj′ .

(1) If x encodes a k-clique G, and −xij − xi′j′ = −2 then both j and
j′ belong to the clique, so ejj′(G) = 1.

(2) If y encodes a (k− 1)-coclique G, and −ylj − ylj′ = −2 then j and
j′ belong to the same class, so ejj′(G) = 0.

• If L is the result of a multiplication step then L = d × M , for some
previous line M . Obviously < α, β > is attainable for L and α+β < γL

iff < α, β > is of the form < dα′, dβ′ >, where < α′, β′ > is attainable
for M and α′ + β′ < γM . L is falsified by precisely the same x, y as M ,
so CL

dαdβ := CM
αβ has the desired properties.

• Similarly, if L = dM
d
e, for some previous line M then a pair 〈α, β〉 is

attainable for L with α + β < γL iff < αd, βd > is attainable for M
with αd + βd < γM . We set CL

αβ := CM
dα dβ.

• Let L = M + N , and let < α, β > be attainable for L. Call a number
δ x-consistent with α if there is a k-clique x such that

∑
ij αL

ijxij = α
and

∑
ij αM

ij xij = δ, similarly, δ is y-consistent with β if
∑

ij βL
ijyij = β

and
∑

ij βM
ij yij = δ, for some (k − 1)-coclique y. If α + β < γL, αM

is x-consistent with α, and βM is y-consistent with β, then we have
that < αM , βM > is attainable for M , 〈αN , βN〉 := 〈α − αM , β − βM〉
is attainable for N , and αM + βM < γM or αN + βN < γN (since
αM + αN + βM + βN = α + β < γL = γM + γN). Therefore one of the
circuits CM

αMβM , CN
αNβN exists and can be used in the construction of

CL
αβ. We let DL

αMβM be CM
αMβM , if αM +βM < γM , and CN

αNβN otherwise.

Finally, we set CL
αβ :=

∨
αM

∧
βM

DL
αMβM , where the disjunction ranges over

all those αM which are x-consistent with α and the conjunction ranges
over all those βM which are y-consistent with β.

(1) Let x be an encoding of a k-clique G and let
∑

αL
ijxij = α.

Then, for αM :=
∑

αM
ij xij, consider some y-consistent βM . If

αM +βM < γM then DL
αMβM = CM

αMβM and, by induction hypoth-

esis, CM
αMβM (G) = 1. If αM + βM ≥ γM then αN + βN < γN ,

114

and DL
αMβM = CN

αNβN . Again by induction hypothesis, we have

CN
αNβN (G) = 1. Thus

∧
βM

DL
αMβM (G) = 1 hence CL

αβ(G) = 1.

(2) Let G be a (k − 1)-coclique and let y be an encoding of G with∑
βL

ijyij = β. Let βM :=
∑

βM
ij yij, and consider some value αM

which is x-consistent with α. If αM +βM < γM then DL
αMβM (G) =

CM
αMβM (G) = 0, otherwise, DL

αMβM (G) = CN
αNβN (G) = 0. Thus for

each αM some DL
αMβM yields 0 for G, so CL

αβ(G) = 0.

This completes the construction.

2.3 Complexity analysis

We can best express the size of the circuit in terms of p, the maximum
number of attainable pairs for any line in the proof. Thus, if aL is the number
of different values of

∑
αL

ijxij, over all k-cliques x, and bL is the number of
different values of

∑
βL

ijyij, over all (k−1)-cocliques y, then p = max
L

{aL ·bL}.

Proposition 1 The circuit constructed in the last section has at most sp2

many gates (not counting input gates), where s is the number of addition
steps in the proof.

Proof. Imagine the circuit organised in levels, where the ith level corresponds
to the ith addition line L in the CP proof and contains the output gates of
all subcircuits CL

αβ. We show by induction on i that up to the ith level there
are most ip(p − 1) non-input gates.

i = 0 : Without addition steps there are only input gates.

i > 0 : Each of the circuits DL
αMβM used in the construction of DL

αβ resides in

some level j ≤ i − 1. For each αM the disjunction
∨
βM

DL
αMβM costs

bM − 1 extra gates, and there are aM many such disjunctions, costing

at most aM(bM − 1). Their conjunction
∧
αM

(∨
βM

DL
αMβM

)
costs another

aM − 1 gates. Since there are aLbL many circuits CL
αβ on level i, we

need no more than aLbL(aMbM − 1) ≤ p(p − 1) extra gates to go from
level i − 1 to level i. 2

115

Now we are in a position to apply Alon & Boppana’s lower bound. They

showed in [AB 87] that for k = 1
4

(
n

log n

) 2
3 , the separation of k-cliques and

(k−1)-cocliques on n vertices requires monotone circuit size 2Ω(nε), for every
ε < 1

3
.

Theorem 2.1 Let k = 1
4

(
n

log n

) 2
3 , and let, for each n ∈ N , Πn be a CP

proof for the k-clique tautology. Assume further that for some polynomial p
each Πn has only coefficients between −p(n) and p(n). Then, if s(n) is the
number of addition steps of Πn, we have s(n) = 2Ω(nε), for every ε < 1

3
.

Proof. This follows directly from the proposition, together with the lower
bound from [AB 87], since with coefficients between −p(n) and p(n) there
can be no more than nl attainable pairs in any line of Πn, for some l.

snl = 2Ω(nε′) =⇒ s = 2Ω(nε′−l log n) = 2Ω(nε), where ε′ < 1
3

is chosen such

that nε′ − l log n > nε for large enough n. 2

116

References

[AB 87] N.Alon, R.B.Boppana, The monotone circuit complexity of
Boolean functions, Combinatorica 7(1), 1987, pp. 1–22.

[Buss-Clote] S.Buss, P.Clote, Cutting Planes, connectivity, and threshold
logic, september 2, 1994.2

[Cook-Coullard-Turan] W. Cook, C.R.Coullard, and G.Turan, On the Com-
plexity of cutting plane proof systems. Discrete Applied Mathe-
matics, 18:25-38, 1987.

[Goerdt] A.Goerdt, Cutting Plane versus Frege Proof Systems. In Egon
Börger, editor, Computer Science Logic 1990, volume552, pages
174-194, 1992. Springer Lecture Notes in Computer Science.

117

