
The Boolean formula value problem

is in ALOGTIME

(Preliminary Version)

Samuel R. Buss∗

Department of Mathematics
University of California, Berkeley

January 1987

Abstract

The Boolean formula value problem is in alternating log time and,
more generally, parenthesis context-free languages are in alternating log
time. The evaluation of reverse Polish notation Boolean formulas is also in
alternating log time. These results are optimal since the Boolean formula
value problem is complete for alternating log time under deterministic
log time reductions. Consequently, it is also complete for alternating log
time under AC0 reductions.

1. Introduction

The Boolean formula value problem is to determine the truth value of a
variable-free Boolean formula, or equivalently, to recognize the true Boolean
sentences. N. Lynch [11] gave log space algorithms for the Boolean formula
value problem and for the more general problem of recognizing a parenthesis
context-free grammar. This paper shows that these problems have alternating
log time algorithms. This answers the question of Cook [5] of whether the
Boolean formula value problem is log space complete — it is not, unless log
space and alternating log time are identical. Our results are optimal since, for
an appropriately defined notion of log time reductions, the Boolean formula
value problem is complete for alternating log time under deterministic log time
reductions; consequently, it is also complete for alternating log time under AC0

reductions. It follows that the Boolean formula value problem is not in the log
time hierarchy.

There are two reasons why the Boolean formula value problem is interesting.
First, a Boolean (or propositional) formula is a very fundamental concept

∗Supported in part by an NSF postdoctoral fellowship.
The author’s electronic address is buss@cartan.berkeley.edu.

1

of logic. The computational complexity of evaluating a Boolean formula is
therefore of interest. Indeed, the results below will give a precise characterisation
of the computational complexity of determining the truth value of a Boolean
formula. Second, the existence of an alternating log time algorithm for the
Boolean formula problem implies the existence of log depth, polynomial size
circuits for this problem and hence there are (at least theoretically) good
parallel algorithms for determining the value of a Boolean sentence.

As mentioned above, N. Lynch [11] first studied the complexity of the
Boolean formula problem. It follows from Lynch’s work that the Boolean
formula value problem is in NC2, since Borodin [1] showed that LOGSPACE ⊆
NC2. Another early significant result on this problem was due to Spira [17] who
showed that for every formula of size n, there is an equivalent formula of size
O(n2) and depth O(log n). An improved construction, which also applied to
the evaluation of rational expressions, was obtained by Brent [2]. Spira’s result
was significant in part because because it implied that there might be a family
of polynomial size, log depth circuits for recognizing true Boolean formulas. In
other words, that the Boolean formula value problem might be in (non-uniform)
NC1. However, it was not known if the transformations of formulas defined by
Brent and Spira could be done in NC1. Recent progress was made by Miller
and Reif [13] who found improved algorithms for computing rational functions
on PRAM’s in O(log n)-time; however, they did not give improved circuits for
the Boolean formula value problem. Very recently, Cook and Gupta [7] and,
independently, Ramachandran [14] were successful in giving polynomial size,
O(log n log log n)-depth circuits for the Boolean formula value problem.

Our result improves on Cook, Gupta and Ramachandran since alternating
log time is a subset of NC1. Indeed, Ruzzo [15] showed that alternating log
time is the same as UE∗ -uniform NC1, where in this setting UE∗-uniformity is
a kind of alternating log time uniformity. It is shown below that alternating
log time can also be characterized as the set of decision problems which have
ALOGTIME-uniform formulas. We do not use Spira’s or Brent’s restructuring
methods but instead give a new algorithm based on a transformation of Boolean
formulas to Postfix-Longer-Operand-First (PLOF) formulas. It is still open
whether Spira’s and Brent’s original restructuring algorithms are in NC1 or
ALOGTIME.

Definition: Let Σ be the alphabet {∧,∨,¬, 0, 1, (,)}. The Boolean formulas
are given by the following inductive definition:

(a) 0 and 1 are Boolean formulas.

(b) If α and β are Boolean formulas, then so are (¬α), (α ∧ β) and (α ∨ β).

Definition: |α| is the length of α, i.e., the number of symbols in the string α.

The above definition of Boolean formulas uses ∧ and ∨ as infix operators.
For our purposes it is also useful to consider formulas in postfix (reverse Polish)
notation. The postfix formulas we consider satisfy an unusual additional

2

condition; namely, that for any binary operator, the longer operand must
appear first.

Definition: The Postfix-Longer-Operand-First formulas, or PLOF formulas,
are defined by the following inductive definition:

(a) 0 and 1 are PLOF formulas.

(b) If α is a PLOF formula then so is α¬.

(c) If α and β are PLOF formulas and if |α| ≥ |β| then αβ∨ and αβ∧ are
PLOF formulas.

The value of a Boolean or PLOF formula is defined in the usual way, where
0 and 1 represent False and True, respectively.

Main Theorem 1 The problem of determining the truth value of a Boolean
formula (or: PLOF formula) is in alternating log time.

An important area in research in computational complexity is to study the
circuit complexity of various decision problems (see Savage [16] or Cook [5] for
instance). A related, but less popular, approach to computational complexity
is to study the formula complexity of decision problems where a formula is a
circuit with fan-out one. It is well known that in the non-uniform setting a
decision problem has polynomial size, log depth circuits if and only if it has
polynomial size formulas. (One direction of the proof just expands the circuit
to a formula, the other uses the result of Spira mentioned above.) Ruzzo [15]
showed that a decision problem has UE∗-uniform polynomial size, log depth
circuits if and only if it is in ALOGTIME. The Main Theorem 1 plus the
discussion on reductions in §3 allows us to improve this to

Theorem 2 Let D be a decision problem. The following are equivalent:

(a) D is in ALOGTIME;

(b) D has ALOGTIME-uniform, polynomial size formulas.

(c) D has ALOGTIME-uniform, polynomial size, log depth formulas.

Corollary 3 There are polynomial size, log depth, ALOGTIME-uniform for-
mulas for the Boolean formula value problem.

The equivalence of (a) and (c) in Theorem 2 is essentially a restatement of
Ruzzo’s theorem. (See §2 for the definition of ALOGTIME-uniform.)

The outline of this paper is as follows: In §2 we present some background
on ALOGTIME, define ALOGTIME-uniform and how the Boolean formula
value problem is presented to an ALOGTIME Turing machine, and discuss
the definability of syntactic notions in ALOGTIME. In §3 log time reductions
between decision problems are defined; these reductions preserve the property
of being alternating log time computable or being in the log time hierarchy. In

3

§4 we give an ALOGTIME reduction of the Boolean formula value problem to
the PLOF formula value problem. Then in §5 an ALOGTIME algorithm for
the latter problem is given, thus finishing the proof of Main Theorem 1. In §6
we show that recognizing any parenthesis language (in the sense of Lynch) has
an ALOGTIME algorithm. Finally, §7 discusses various problems which are
complete for alternating log time under deterministic log time reductions.

2. Background on Alternating Log Time

Our basic model for computation is the multitape Turing machine. The
random access model of Chandra, Kozen and Stockmeyer [3] is adopted; namely,
the input tape is randomly accessed rather than being scanned sequentially:
there is a special work tape onto which an address i can be written in binary
and each state of the Turing machine can read the i-th input symbol. This con-
vention is necessary since otherwise not all of the input could be reached within
O(log n) time. The usual definition for alternating log time (ALOGTIME) is
adopted, so

ALOGTIME =
⋃
c

ATIME(c · log(n) + c).

Here ATIME(h(n)) denotes the class of predicates computable in time h(n)
with unbounded alternations; similarly, TIME(h(n)) and Σk-TIME(h(n)) are
the classes of predicates computable in time h(n) with no alternations and with
k alternations (beginning with existential states), respectively. Thus,

LOGTIME =
⋃
c

TIME(c · log(n) + c).

Σk-LOGTIME =
⋃
c

Σk-TIME(c · log(n) + c).

The log time hierarchy is LH =
⋃

k Σk-LOGTIME.
Strictly speaking, ALOGTIME is a set of predicates; however, we shall say

a function f is in ALOGTIME if and only if the predicate

Af (c, i, z) ⇐⇒ “the i-th symbol of f(z) is c”

is in ALOGTIME. Similar conventions apply to a function being in
LOGTIME or in Σk-LOGTIME. Any such function must have polynomial
growth rate.

It is well known that every symmetric function is in non-uniform NC1; in ad-
dition, Ruzzo showed that every UE∗-uniform NC1 function is in ALOGTIME.
It follows that any sufficiently uniform, symmetric function is in ALOGTIME.
An important example is the counting function; namely, let Count be the
symmetric function from {0, 1}∗ to N so that

Count(x1, . . . , xn) = the number of xj ’s equal to 1.

4

The function Count is in fact in ALOGTIME as the usual polynomial size,
log depth circuits for ACount are UE∗-uniform.

A generalization of the Count function is the summation of a vector of
integers. The function which computes the sum of n integers each n bits long
is also in ALOGTIME.

For the purposes of describing alternating log time Turing machines we
assume that the alphabet of the Turing machine contains the alphabet Σ for
Boolean formulas plus additional work symbols and input and output symbols
as required. Of course, when using a family of circuits or formulas for computing
a predicate it is necessary to code the input in binary. This is can be done by
coding each input symbol as a fixed length string of bits; for example, since Σ
has seven symbols, a three bit code could be used. Similar conventions would
apply to coding the output of a Turing machine.

The concept of what it means for a family of circuits to compute a predicate
is well known and widely used (Savage [16]). Another related concept is that
of a family of formulas. One definition of a formula is that it is a circuit with
fanout one. A formal definition is:

Definition: Let Σ+ be Σ ∪ {x}. The formulas in the wide sense are defined
inductively by;

(1) If w ∈ {0, 1}∗, i.e., w is a string of 0’s and 1’s, then xw is a formula in the
wide sense. When w is the dyadic representation of i ∈ N, then xw is the
literal denoting the variable xi.

(2) 0 and 1 are formulas in the wide sense.

(3) If α and β are formulas in the wide sense, then so are (¬α), (α ∧ β) and
(α ∨ β).

We generally refer to formulas in the wide sense as just formulas and let the
context distinguish them from Boolean formulas†. A family of formulas is
an infinite sequence of formulas such that the n-th formula uses only literals
x1, ..., xn. A given predicate is computed by a family of formulas if and only if
the value of the predicate on inputs n bits long is expressed by the n-th formula
with the literal xi denoting the i-th input bit.

Ruzzo [15] discusses the relationship between a large number of uniformity
conditions on circuits. We shall use a condition called ALOGTIME-uniformity
for formulas. This is similar in spirit to the UBC-uniformity of Ruzzo, orig-
inally introduced by Borodin and Cook [4]; except that alternating log time
computablility is substituted for log space computability.

Definition: A family of formulas is ALOGTIME-uniform if and only if the
predicate F is in ALOGTIME where

†A better but nonstandard usage would be to use the name “Boolean sentence” for what
we called “Boolean formulas”, as “sentence” is a common designation for a variable-free
formula.

5

F (c, i, 0n) ⇐⇒ “the n-th formula has c as its i-th symbol”.

It is easy to verify that ALOGTIME-uniform, polynomial size, log depth
formulas are UE∗ -uniform circuits in the sense of Ruzzo. Conversely, a family
of UE∗-uniform circuits has an equivalent family of ALOGTIME-uniform,
polynomial size, log depth formulas.

A natural and important first question is whether the recognition problem
for Boolean formulas is in ALOGTIME; in other words, is there an alternating
log time Turing machine, which given as input a string of symbols from Σ, de-
termines if the input is a Boolean formula. The answer is yes; the ALOGTIME
algorithm uses the fact that counting is ALOGTIME computable. (Ibarra,
Jiang and Ravikumar [9] use a different approach and obtain the stronger result
that one-sided Dyck languages on k letters are in ALOGTIME.) For our
purposes, it is convenient to describe the alternating log time Turing machine
by specifying a finite game with two players: the first player is the Affirmer
and the second is the Denier — the Affirmer’s plays are existential moves for
the Turing machine and the Denier’s plays are universal moves. Of course,
to obtain an alternating log time algorithm, the game must have O(log n)
plays; each play is one bit of information. Furthermore it must be possible to
determine who won the game in alternating log time. The alternating log time
Turing machine will accept if and only if the Affirmer has a winning stategy
for the game (since the game is finite, one of the players will have a winning
strategy). To describe an algorithm to recognize Boolean formulas, consider
the following game:

The input string is A = α1α2 · · ·αn where each αi ∈ Σ; assume n > 1. Let
A[i, j] denote the substring αiαi+1 · · ·αj of A. The moves of the game are as
follows.

• The Denier first plays a number i such that 1 ≤ i < n. It takes log(n)
bits to specify i.

• The Affirmer then plays two numbers j and k such that 1 ≤ j ≤ i < k ≤
n. This takes 2 log(n) bits.

• That concludes the game.

The winner of the game is determined as follows:

(a) If αiαi+1 are an illegal pair of adjacent symbols, say (),)(, 0(, ∧∨, 0¬, etc.,
then the Denier wins. Also, if i = 1 but α1 is not (then the Denier wins.

(b) Otherwise, if αi is the symbol ¬, then the Affirmer will win if and only if
j = i − 1, αj is (, αk is) and the substring A[j, k] has equal numbers of
left and right parentheses.

(c) Otherwise, if αi is ∧ or ∨, then the Affirmer will wins if and only if αj is (,
αk is) and both of the substrings A[j + 1, i − 1] and A[i + 1, k − 1] have
equal numbers of left and right parentheses.

6

(d) If none of the above apply then the Affirmer wins the game.

It is not difficult to see that the game is correctly designed so that the Affirmer
has a winning strategy if and only if A is a Boolean formula; the Affirmer’s
strategy is to pick j and k so that A[j, k] is the subformula of A with αi as its
outermost logical connective. The game obviously has only O(log n) plays and
since Count is in alternating log time, there is an alternating log time algorithm
for determining which player won.

There is actually a slightly simpler algorithm for recognizing Boolean for-
mulas; however, the point of using the above algorithm was to demonstrate how
alternating log time suffices for parsing Boolean formulas. This technique can
be used to defining many simple syntactic properties of formulas. It should be
clear that the following predicate on a string A = α1 · · ·αn is in ALOGTIME:

Scope(i, j, A) ⇐⇒ “αi is a connective ¬, ∨ or ∧ and αj is a symbol
in the scope of αi”.

The definition of αj being in the scope of αi is that αi is a logical connective
and αj is a symbol in one of the operands of αi.

Suppose that αi and αj are not parentheses; we say that αi is to the left of
αj if and only if there is a subformula (β ∨ γ) or (β ∧ γ) of A such that either
|β| ≥ |γ|, αi is in β and αj is in γ, or |γ| > |β|, αi is in γ and αj is in β. The
predicates

Left(i, j, A) ⇐⇒ “Neither αi nor αj is a parenthesis and
αi is to the left of αj in A”,

Before(i, j, A) ⇐⇒ Left(i, j, a) ∨ Scope(i, j, A).

are in ALOGTIME.
Similar predicates for reverse Polish notation formulas are also in alternating

log time. The recognition problem for such formulas is easily solved using
counting: suppose A is a string containing only the symbols 0, 1, ¬, ∨, ∧.
Assign weights to these characters as follows:

k(α) =




−1 if α is ∨ or ∧
0 if α is ¬
1 if α is 0 or 1.

Then A is a reverse Polish notation formula if and only if (1)
∑n

i=1 k(αi) = 1
and (2) for each 1 ≤ j < n,

∑j
i=1 k(αi) > 0. This is easily checked in alternating

log time since the summation of a vector of integers is in alternating log time
(or alternatively, since all the weights are −1, 0 or 1, it can computed by just
using counting).

It is also easy to see that the recognition problem for PLOF formulas is in
ALOGTIME.

7

3. Log Time Reductions

An important tool for the characterization of the computation complexity
of decision problems is the use of reductions. When A and B are decision
problems, i.e., predicates, a (many-one) reduction from A to B is a unary
function f such that for all x, x ∈ A if and only if f(x) ∈ B.

Definition: Let C be a complexity class (e.g., LOGTIME, Σk-LOGTIME,
LH, ALOGTIME) and let f be a reduction of A to B. Then f is a C-reduction
of A to B if and only if f is of polynomial growth rate and the predicate Af is
in C where Af is defined as in §2.

Note Σk-LOGTIME reductions are the same as Πk-LOGTIME reductions.
The next two theorems express the properties we need reductions to satisfy:

Theorem 4 helps us establish the upper bound for the complexity of the Boolean
formula value problem and Theorem 5 gives the means to demonstrate a lower
bound.

Theorem 4 If B ∈ ALOGTIME and there is an ALOGTIME reduction from
A to B then A ∈ ALOGTIME.

Proof: Let M be an alternating Turing machine which accepts B in time
c · log(n) + c. (Our logarithms are always base 2.) So for any input of length n,
M halts within c · log(n) + c steps on every computational path. Let f be
an alternating log time reduction from A to B. We construct an alternating
Turing machine N which accepts A in O(log n) time. On input x, the machine
N runs as follows:

(1) First N determines an upper bound m∗ to the length |f(x)| of the input on
which M will be simulated. N does this by computing the length n of its
own input x and then determining m∗. Indeed, since f is of polynomial
growth rate, |f(x)| ≤ |x|r + r for some constant r, hence m∗ = r · n + r
suffices. (This can all be done deterministically in O(log n) time, see
Lemma 13 of §7.) Then N marks off c · log(m∗) + c blank tape cells
delimited by $’s (say). The tape head is positioned at the left end of the
block of blank tape cells. This tape is called the clock tape and is used to
limit the simulation of M .

(2) Then N simulates M with input f(x) as follows (the simulation algorithm
is hardwired of course): For moves of M which don’t query the input
tape, N merely directly simulates M . For moves of M which do query the
input tape, N existentially guesses the input symbol and then branches
universally to either (a) accept the guess as correct and continue the
simulation of M or (b) challenge the guess and use the ALOGTIME
algorithm for Af to compute the correct input symbol — after this
challenge N halts in an accepting state if the guessed input symbol was
correct or halts in a rejecting state otherwise.

8

(3) For each move of M which is simulated, N moves the clock tape head one
square to the right. If during the simulation, M enters an accepting or a
rejecting state then N halts and accepts or rejects, respectively. However,
if the clock tape head reaches the delimiting $ then M ’s time has expired
and N halts in a rejecting state.

That completes the description of N . Note that without the use of the clock
tape N might not always halt in O(log n) time since the simulation of M could
guess contradictory input symbols which, if unchallenged, could cause M to
loop. (However, we add parenthetically that there is a general way to add a
clock to log time Turing machines.)
Q.E.D. Theorem 4.

Theorem 5 Suppose B ∈ Σk-LOGTIME where k ≥ 1.

(a) If there is a deterministic log time reduction from A to B then A is in
Σk+1-LOGTIME.

(b) If s ≥ 1 and there is a Σs-LOGTIME reduction from A to B then A is in
Σk+s-LOGTIME.

In particular, the log time hierarchy (LH) is closed under LH-reductions.

Proof: It suffices to prove (b) since (a) is a special case of (b) with s = 1.
Suppose M is an alternating Turing machine which recognizes B in time
c · log(n)+c with k alternations. The Turing machine which N which recognizes
A runs as follows:

(1) As in the previous proof, N begins by deterministically setting up the clock
tape to limit the simulation of M to c · log(m∗) + c moves.

(2) Before beginning the simulation of M , N predetermines the nondetermin-
istic choices to be made while simulating M . It does this by alternating
k times to choose k blocks of c · log(m∗) + c bits. The i-th bit of the
j-th block determines the i-th nondeterministic choice made during the
j-th alternation of M — so the simulation of M is now completely
deterministic.

(3) Then N guesses existentially a string of c · log(m∗) + c input symbols and
universally chooses c · log(m∗) + c challenge bits. The string of input
symbols is to be the appropriate symbols which M should read from its
input tape during the simulation and the challenge bits specify whether
the input symbols are correct. A challenge bit equal to 1 indicates that
N will halt the simulation of M when the corresponding input symbol
would be used and will then use a Πs-LOGTIME algorithm for Af to
verify the correctness of the guessed input symbol.

(4) Finally, N deterministically simulates M until either M halts, a challenge
bit is on, or the clock tape indicates that time has expired.

9

That completes the description of N . If k is odd, the algorithm of N is a
Σk+s-LOGTIME algorithm. If k is even, it would be a Σk+s+1-LOGTIME
algorithm; but this case can be improved by modifying step (3) to universally
choose the input symbols and existentially choose the challenge bits and then
later use a Σs-LOGTIME algorithm for Af to verify the incorrectness of the
universally chosen input symbol. That gives a Σk+s-LOGTIME algorithm
when k is even.
Q.E.D. Theorem 5.

There are several different natural ways to characterize a decision problem
as complete for alternating log time. The key issue is what type of reduction
between decision problems should be used. The main choices are (a) LH-
reductions, (b) Σk-LOGTIME reductions for a fixed k ≥ 1 and (c) deterministic
log time reductions. Probably the most natural choice is to use LH-reductions
partly since the property of LH-reducibility is transitive and partly since an
LH-reduction is essentially a uniform version of an AC0 reduction. To see
this, recall that an AC0 reduction is one given by a family of constant depth,
polynomial size circuits with unbounded fanin (see Cook [5]). Note that a
Σ1-LOGTIME predicate can be expressed as a depth two, polynomial size
circuit with unbounded fanin as follows: the circuit is a disjunction of clauses,
one clause for each potential accepting computation path of the Σ1-LOGTIME
Turing machine; each clause is the conjunction of literals corresponding the
input values checked on that computation path. It is easy to extend this
to show that a Σk-LOGTIME predicate can be expressed as a depth k + 1,
polynomial size circuit with unbounded fanin.

Another but less natural choice of reducibility is Σ1-LOGTIME reducibility.
However, we shall use the yet stronger property (c) of deterministic log time
reducibility. Although it is not transitive, it is perhaps the strongest possible
reasonable notion of reducibility. Thus we establish below that the various
forms of the Boolean formula value problem are complete for ALOGTIME
under deterministic log time reductions. Of course this implies that they are
also complete under AC0 reductions.

4. Translation of Boolean formulas to PLOF formulas

As a first step towards proving the Main Theorem we give an alternating log
time reduction from the Boolean formula value problem to the PLOF formula
value problem. That is to say, there is an f : Σ∗ → Σ∗ so that for every Boolean
formula A, f(A) is an equivalent PLOF formula and so that the predicate

Af (c, i, A) ⇐⇒ “c is the i-th symbol in f(A)”.

is in ALOGTIME. Of course Af (c, i, A) is false if |f(A)| < i; it will always be
the case that |f(A)| ≤ |A|; in fact, |f(A)| will be equal to the total number of
symbols other than parentheses in A.

The definition of f and Af is very simple, just let

10

Af (c, i, A) ⇐⇒ “there is an αj , the j-th symbol of A, such that
αj is the symbol c and there are i− 1 symbols αk

such that Before(k, j, A)”.

It is clear that Af is in ALOGTIME since the αj is unique and may be
existentially guessed, since counting is in ALOGTIME, and since the predicate
Before(k, j, A) is in ALOGTIME. It is immediate from inspection that when
A is a Boolean formula then f(A) is an equivalent PLOF formula and hence A
and f(A) have the same truth value.

N. Lynch [11] showed that Boolean formulas can be translated to postfix
notation and vice-versa by log space algorithms. It is clear that the function f
can be modified to give an alternating log time algorithm for Lynch’s translation
of Boolean formulas to postfix notation. Also, her map from postfix notation
to infix notation is in alternating log time; again, the crucial idea is the use of
counting — the details are left to the reader.

5. The algorithm for the PLOF formula value problem

Since there is an alternating log time algorithm which translates a Boolean
formula into an equivalent PLOF formula, it will suffice to prove the next
theorem in order to prove Main Theorem 1.

Theorem 6 There is an alternating log time algorithm for determining the
truth value of a variable-free PLOF formula.

The input to the alternating log time algorithm is PLOF formula A which is
a string of symbols, A = α1 · · ·αn from the alphabet {0, 1,¬,∨,∧}. Hence the
length |A| of A is n. The algorithm will be described in terms of a game Γn

between the Affirmer and the Denier.

Definition: Let A be as above and suppose 1 ≤ j ≤ k ≤ n. Then A[j, k] is the
string αjαj+1 · · ·αk. The subformulas of A are the PLOF formulas of the form
A[j, k].

For 1 ≤ k ≤ n, Ak is the unique subformula of A of the form A[j, k] for
some j. The subformula Ak contains the symbol αi if and only if i ≤ k and
|Ak| > k − i. In other words, Ak contains αi if and only if Ak is A[j, k] and
j ≤ i ≤ k.

Definition: Let A be as above and 1 ≤ i ≤ j ≤ n. If i < j, then k is 1-selected
by (i, j) (in A) if and only if k is the largest number ≤ j such that Ak contains
αi+1. Otherwise, in the degenerate case i = j, we define k to be 1-selected by
(i, j) if and only if k = j.

More generally, k is (s + 1)-selected by (i, j) if and only if k is 1-selected by
(k0, j) where k0 is s-selected by (i, j).

The game Γn is played by the Affirmer who wishes to prove A has Boolean
value 1 (or True) and the Denier who wishes to prove A has value 0. In each
move both players assert the truth value of a subformula of A. The game Γn

11

is “oblivious” of A in that the choice of subformula under consideration in a
given move is independent of A insofar as is possible; thus the game is called
Γn instead of ΓA. The obliviousness is obtained by having a range (Li, Ri) in
round i of the game — the players must assert the truth value of the subformula
Aki

where ki is si-selected by (Li, Ri). The numbers Li, Ri, and si depend
only on i, n and the prior answers of the players during the game.

Since this “obliviousness” is one of the crucial ideas in the definition of
the alternating log time algorithm, we discuss it further. If we try to base
an algorithm on either Spira’s or Brent’s algorithm for restructuring Boolean
formulas, the following problem arises: after the Affirmer and Denier play a log
time game giving the truth values to subformulas which arise from Spira/Brent
restructuring, it is then apparently impossible to use an alternating log time
algorithm to determine who won the game. The reason for this is that there
is no known alternating log time algorithm for determining which subformula
was being considered at the i-th move of the game, since the subformula at
move i depends on the earlier subformulas which likewise depend on their
earlier subformulas, etc. This would give rise to an alternating O(log2 n)-
time algorithm for finding the i-th subformula. Actually, Ramachandran [14]
improved upon this by showing that Brent restructuring has an alternating
O(log n log log n)-time algorithm and Cook and Gupta [7] obtained the same
result for a variant of Spira’s algorithm.

Our method is to transform the Boolean formula into PLOF formula and
then, instead of using Spira or Brent restructuring, use a different method
of dividing the formula in half, so that a “divide-and-conquer” algorithm will
work. The crucial point is that after the Affirmer and Denier finish the game
there will be an alternating log time algorithm which can determine for any i
what subformula was considered during the i-th move and hence can determine
who won the game. The idea of transforming the Boolean formula to a PLOF
formula was foreshadowed by Lynch’s log space algorithm [11] which evaluates
longer subformulas first.

The moves of the game Γn are grouped into triples — the j-th triple consists
of moves numbered 3j − 2, 3j − 1 and 3j. As mentioned above, each move i has
associated with it numbers Li, Ri, si and ki; in addition there are numbers li,
ri, lAi and rA

i . We call (li, ri) the global range; it is the “publicly acknowledged”
range of disagreement between the Affirmer and Denier. The A-specific range
(lAi , rA

i) is the actual range of disagreement. The number si is always either 1
or 2. The ranges are defined so that

li ≤ lAi < rA
i ≤ ri

is always guaranteed to hold during any (unfinished) play of Γn for any PLOF
formula A.

The only exception to the moves being grouped in triples is the very first
move numbered 0. The initial move has paramenters L0 = l0 = lA0 = 0 and
R0 = r0 = rA

0 = n. The Affirmer must first answer 1 and the Denier must
answer 0 or they forfeit the game. This initial move is included only to make
the description of the game more uniform.

12

The A-specific range (lAi , rA
i) is set so that the Affirmer and Denier have

disagreed on the truth value of the subformula ArA
i

but have agreed on the
truth values of subformulas of A which together contain each symbol αm with
m ≤ lAi . (This latter fact will require proof.) Each triple of moves halves the
global range (li, ri); more precisely, for all i = 3j − 2,

li − ri =
⌊

n

2j−1

⌋
.

For notational convenience, set

Halfj =
⌊

n

2j−1

⌋
−

⌊
n

2j

⌋
.

and

SQuartj =
⌊

1
2
Halfj

⌋

LQuartj =
⌈

1
2
Halfj

⌉
.

Thus SQuartj + LQuartj = Halfj ; SQuart and LQuart stand for “small
quarter” and “large quarter”.

Before telling what the values for the parameters li, ri, si, Li, Ri, lAi and rA
i

are during the game, let us first explain what the players Affirmer and Denier
are required to do. The subformula under consideration is Aki

where ki is
si-selected by (Li, Ri) — each player plays a single bit 0 or 1 for False or True,
respectively, according to:

Rule (F): First the Affirmer asserts a value for the subformula Aki
. Then

depending on whether ki is in the A-specific range, the Denier plays
according to one of the following three cases:

(a) If lAi < ki < rA
i then the Denier also asserts a value for the subformula

Aki
.

(b) If ki ≤ lAi then the Denier agrees with the Affirmer by giving the
same answer.

(c) If rA
i ≤ ki then the Denier disagrees with the Affirmer.

For the next round the A-specific range is set as follows:

• If the Affirmer and Denier agreed, set lAi+1 = max(lAi , ki) and
rA
i+1 = rA

i .
• If they disagreed, set lAi+1 = lAi and rA

i+1 = min(rA
i , ki).

That completes the description of Rule (F) and we are now ready to describe
the details of the game Γn. Move (0) for Γn has already been described. For
move (1) the global and A-specific ranges are set by li = lAi = 0 and ri = rA

i = n.
The parameters for moves (3j − 2), (3j − 1) and (3j) are set as follows: (for
ease in subscripting let m = 3j − 2)

13

Figure 1: Subformulas selected during a triple of moves. (Drawn with correct
relative magnitudes except k3j−2 may be larger than l3j−2 + LQuartj .)

Set l3j = l3j−1 = l3j−2 and r3j = r3j−1 = r3j−2.

Move (3j − 2): For i = 3j − 2, let si = 1, Li = lm and Ri = rm − Halfj . So
ki is 1-selected by the range (li, ri − Halfj). The players answer in this
and the successive moves according to Rule (F).

Move (3j − 1): Now let i = 3j − 1. For this move set si = 2, Li = lm, and
Ri = rm−Halfj (so only the value of si changes from the previous move).

Move (3j): Now let i = 3j. Set si = 1, Li = rm − Halfj − 1 and Ri =
rm − SQuartj .

After move (3j) set l3j+1 and r3j+1 as follows:

(a) If the Affirmer and Denier disagreed on either move (3j − 2) or (3j − 1),
set l3j+1 = lm and r3j+1 = rm − Halfj . (Note that move (3j) is ignored
in this case.)

(b) If they agreed on both moves (3j − 2) and (3j − 1) but disagreed on move
(3j), then set l3j+1 = lm + LQuartj and r3j+1 = rm − SQuartj .

(c) If they agreed on all three moves, set l3j+1 = lm + Halfj and r3j+1 = rm.

That finishes the description of how the game Γn is played – the game ends
when li + 1 = ri which happens after O(log n) moves, in fact in 3blog2 nc + 1
moves. (The 3 is because moves come in triples and the +1 is for the first
move.) Thus there are exactly 6blog2 nc + 2 bits played by the Affirmer and
Denier combined.

The alternating log time algorithm for the PLOF formula value problem
runs as follows: first 6blog2 nc + 2 bits are alternately existentially and univer-
sally generated — these bits are the players’ moves in the game Γn. Second,
the algorithm determines who won the game. The Affirmer will lose the game
unless she has forced the Denier into an incorrect, contradictory, or blatantly
false answer. There are four ways in which the Denier could lose the game:

14

(1) If during some move, part (b) or (c) of Rule (F) applied but the Denier
did not properly agree or disagree with the Affirmer.

(2) If during some move, part (a) of Rule (F) applied and the selected
subformula Aki

is a literal 0 or 1 but the Denier asserted that it had
value 1 or 0, respectively.

(3) If there are two subformulas Aki
and Akm

such that Akm
is Aki

¬ (so
km = ki + 1) and such that during moves m and i, part (a) of Rule (F)
applied and the Denier answered identically for the truth values of Aki

and Akm
in moves i and m.

(d) Similarly for ∧ or ∨; there are three subformulas Aki
, Akm

and Aks
such

that Akm
and Aks

are the direct subformulas of Aki
but the Denier gave

answers during moves i, k and s which contradict the definition of the
operators ∨ and ∧ (and part (a) of Rule (F) applied for moves i, m
and s).

There is an alternating log time algorithm which determines if one of these four
conditions holds; to see this, we need the following ALOGTIME subroutines:

(i) Compute Halfj , SQuartj and LQuartj as a function of j and A: this is
clearly in alternating log time.

(ii) Compute l3j−2 and r3j−2 as a function of j, A and the plays by the
Affirmer and Denier during the game: For each triple of moves the
global range is changed so that

l3s+1 = l3s−2 + γs

r3s+1 = r3s−2 − δs

where γs is 0 or LQuarts or Halfs and where δs is 0 or SQuarts or
Halfs. Clearly γs and δs are easily computed from the players’ moves in
Γn. (Note: this is where we are using the “obliviousness” of Γn.) So l3j−2

and r3j−2 can be computed by

l3j−2 =
∑

1≤s<j

γs,

r3j−2 = n −
∑

1≤s<j

δs

by the beforementioned alternating log time algorithm for the summation
of a vector of integers.

(iii) Compute si, ki, Li and Ri as a function of j, A and the plays of the
Affirmer and Denier during the game: The values of si, Li and Ri are
trivially computed in alternating log time by using (i) and (ii). Then ki

can be computed by using the parsing techniques discussed in §2.

15

(iv) Determine if part (a), (b) or (c) of Rule (F) applied in move i of Γn — as
a function of i, A and the plays of the Affirmer and Denier during the
game: Check (in alternating log time) the following two conditions

(β) Is there an s < i such that ks ≥ ki and such that the Affirmer and
Denier agreed in move (s)?

(γ) Is there an s < i such that ks ≤ ki and such that the Affirmer and
Denier disagreed in move (s)?

If only (β) holds then part (b) of Rule (F) applied during move i, if only
(γ) holds then part (c) applied, if neither holds then part (a) applied, and
finally, if both hold then the Rule (F) had already been violated earlier
in the game and hence the winner (namely the Affirmer) had already
been determined before move i.

That completes the proof that the winner of the game can be determined
in alternating log time. In order to finish the proof of Theorem 6 and Main
Thoerem 1 we must show that the Affirmer has a winning strategy if and only
if the Boolean formula A is true (has value 1). This will be clear provided we
can prove that during any game in which the Denier has obeyed Rule (F),
the following two conditions hold: (1) for any move i and any symbol αs with
s ≤ lAi , the symbol αk occurs in some previously selected subformula Akm

with
m < i; and (2) the A-specific range is included in the global range, i.e.,

li ≤ lAi < rA
i ≤ ri.

These follow readily from the next lemma:

Lemma 7 In the definition of moves (3j − 2), (3j − 1) and (3j), it is always
the case that

(a) l3j−2 < k3j−2 ≤ r3j−2 − Halfj,

(b) l3j−2 + LQuartj ≤ k3j−1 ≤ r3j−2 − Halfj ≤ r3j−2 − SQuartj,

(c) r3j−2 − Halfj ≤ k3j ≤ r3j−2 − SQuartj ≤ r3j−2,

(d) For every t such that l3j−2 < t ≤ l3j−2 + LQuartj, the symbol αt is
in one of the subformulas Ak3j−2 or Ak3k−1 . For every t such that
l3j−2 < t ≤ l3j−2 + Halfj, the symbol αt is in one of the subformulas
Ak3j−2 , Ak3j−1 or Ak3j

.

Proof: (Refer to Figure 1 above.)
(a) It is obvious that l3j−2 < k3j−2 ≤ r3j−2 − Halfj by the definition on

k3j−2.
(b) From the definitions of k3j−2 and k3j−1 we know that Ak3j−1 is the

subformula A[k3j−2 + 1, k3k−1]. Suppose k3j−1 < r3j−2 − Halfj − 1 (otherwise
the entire lemma is trivially true). Clearly, α1+k3j−1 can not be a negation

16

sign (¬) since this would contradict the fact that k3j−1 was 1-selected by
(k3j−2, r3j−2 −Halfj). Hence Ak3j−1 is an operand of a binary operator αs and
indeed it is the first operand. The latter statement is shown by noting that
Ak3j−1 being the second operand would violate the definition of k3j−2, since a
better choice for the value of k3j−2 would have been k3k−1 + 1. Since A is a
PLOF , the first operand of αs is at least as long as its second operand; namely,

(s − 1) − k3j−1 ≤ k3j−1 − k3j−2.

Also, s > r3j−2 − Halfj by the definition of k3j−1. So

2k3j−1 ≥ (s − 1) + k3j−2

> (r3j−2 − Halfj − 1) + (l3j−2 + 1).

Hence

2(k3j−1 − l3j−2) > (r3j−2 − l3j−2) − Halfj

=
⌊ n

2j−1

⌋
−

(⌊ n

2j−1

⌋
−

⌊ n

2j

⌋)

=
⌊ n

2j

⌋
.

So, k3j−1 ≥ l3j−2 + LQuartj .
Part (c) of the lemma is obvious from the choice of k3j .
It follows by the discussion regarding part (b) that the first claim of part

(d) holds. Let u be 1-selected by (k3j−1, r3j−2 − SQuartj); we claim that
u ≥ l3j−2 + Halfj . This claim implies that u = k3j and that the second part
of (d) holds. The proof of the claim is similar to the proof in (b) above that
k3j−1 > l3j−2 + LQuartj and goes as follows: If u < r3j−2 − SQuartj then the
subformula Au must be the first and longer operand of a binary operator αv

with v > r3j−2 − SQuartj . Hence,

(v − 1) − u ≤ u − k3j−1

and thus

2u ≥ v − 1 + k3j−1

≥ (r3j−2 − SQuartj) + (l3j−2 + LQuartj).

From whence, u ≥ l3j−2 + Halfj follows easily.

Q.E.D. Lemma 7, Theorem 6 and Main Theorem 1.

We have now completed the proof that the Boolean formula value problem
has an alternating log time algorithm. It should be remarked that some authors
formulate the Boolean formula value problem slightly differently: they allow
variables to appear in the Boolean formula and then the Boolean formula
value problem has as inputs a Boolean formula plus a truth assignment to the

17

variables. It is easy to see that there is an alternating log time reduction from
this alternative formulation to our formulation. Hence there is an alternating
log time algorithm for this alternative formulation.

However, there is another radically different way of formulating the Boolean
formula value problem; namely as a table of nodes with pointers from a node
to its parent and children. In this formulation the formula value problem is
equivalent to the reachability problem and hence is logspace complete — this
was shown by Dowd and Statman [6] and independently by Tompa.

6. Parenthesis Languages are in ALOGTIME

Parenthesis languages, first studied by McNaughton [12], are context-free
grammars of the form (V, T ,P, S) which have two distinguished terminal
symbols “(” and “)” in T ; the variable S ∈ V is the start symbol, V is the set
of variables and every production in P is of the form

A → (x)

where A ∈ V, x ∈ (V ∪ T)∗ and x contains no parentheses. (The sets V, T
and P are finite and disjoint.)

As an example, the set of Boolean formulas with value 1 (True) is a
parenthesis language with V = {T, F}, S = T , T = Σ and the productions
P ∈ P being:

T → 1 T → (T ∧ T)
F → 0 F → (T ∧ F)
T → (¬F) F → (F ∧ T)
F → (¬T) F → (F ∧ F)
T → (T ∨ T) T → (F ∨ T)
T → (T ∨ F) F → (F ∨ F)

Lynch [11] showed that every parenthesis context-free language is in log
space and Cook and Gupta [7] showed that parenthesis context-free languages
have log space uniform, polynomial size circuits of depth O(log n log log n) —
we improve this to:

Main Theorem 8 Every parenthesis context-free language is in alternating log
time.

Proof: (Outline) We shall sketch briefly how the proof of Main Theorem 1 can
be extended to handle a general parenthesis language. Let G = (V, T ,P, S)
be a parenthesis language. For A ∈ V, let GA be the parenthesis language
(V, T ,P, A), i.e., GA is the language generated by starting with the variable A.
We define the G-formulas to be the strings of symbols which are members of
some GA; note that G-formulas are not necessarily members of the parenthesis
language G.

We shall shift our viewpoint from the recognition of members of G to the
evaluation of G-formulas (this technique is due to McNaughton). The value of

18

a G-formula will be a member of ℘(V), the power set of V (so there is only a
finite number of possible values). Given any string α ∈ (V ∪ T)∗, the value of
α is the set {A : α ∈ GA}. Thus to determine if α ∈ G one computes the value
of α and checks if it contains the symbol S as a member.

Each production P ∈ P is of the form

A0 → (α1A1α2A2 · · ·αnAnαn+1)

where each Ai ∈ V and each αi is in T ∗ and is parenthesis-free. Let A denote the
set of sequences 〈α1, . . . , αn+1〉 obtained in this way from a P ∈ P. We define
Postfix-Longer-Operands-First G-formulas, or, for short, PLOFG formulas as
follows: for each (n + 1)-ary sequence s ∈ A and each permutation σ on n
elements, sσ is an n-ary function sσ : ℘(V)n → ℘(V), so that if Y1, . . . , Yn ⊂ V
then sσ(Y1, . . . , Yn) is the set Y0 such that for all A ∈ V, A ∈ Y0 if and only if
there is a production P ∈ P of the form

A → (α1A1α2 · · ·αnAnαn+1)

where Ai ∈ Yσ(i) for i = 1, 2, . . . n and where s is 〈α1, α2, . . . , αn+1〉. Now the
PLOFG formulas are formulas which use the operators sσ in postfix (reverse
Polish) notation with operands of each sσ required to be in non-increasing order
of length.

Because of the use of the permutations σ it is clear that for every G-
formula there is an equivalent PLOFG formula. It should also be clear that
there is an alternating log time algorithm for converting a potential member
of G into an equivalent PLOFG formula. (If α can not be converted then
either the parentheses in α are not balanced or α has a substring of the
form (β1(γ1)β2 · · ·βn(γn)βn+1) where the βi’s contain no parentheses and the
sequence 〈β1, . . . , βn+1〉 is not in A. These conditions can be recognized in
alternating log time and imply that α is not in G.)

The evaluation of a PLOFG formula is again described in terms of a game
between the Affirmer and Denier. Now the players must specify a subset of
V as a value for each subformula instead of Boolean values 0 and 1. The game
and the determination of the winner proceed much as in the game Γn described
above but with an important modification: the triples of moves are replaced by
(k + 1)-tuples of moves where k is maximum arity of the function symbols sσ.
If global range (li, ri) has been set for i = (k + 1)j − k, then set L = li and
R = ri − Halfj . The subformulas selected during the next k + 1 moves are as
follows:

In move i = (k + 1)j − k, ki is 1-selected by (L,R).

In move i = (k+1)j−(k−m), ki is (m+1)-selected by (L,R) (for 0 ≤ m < k).

In move i = (k + 1)j, ki is 1-selected by (R − 1, r(k+1)j−k − SQuartj).

As before, ri − li =
⌊

n
2j−1

⌋
when i = (k + 1)j − k.

The reader may check that all the details work out.

19

Q.E.D. Main Theorem 8.

7. Complete Problems for ALOGTIME

The results obtained above are the best possible since we can prove the
Boolean formula value problem and the PLOF formula value problem are
alternating log time complete.

Main Theorem 9

(a) The Boolean formula value problem is ALOGTIME-complete under deter-
ministic log time reductions.

(b) The PLOF formula value problem is ALOGTIME-complete under deter-
ministic log time reductions.

(c) The postfix (reverse Polish) Boolean formula value problem is ALOGTIME-
complete under deterministic log time reductions.

Corollary 10 The Boolean formula value problem, the PLOF formula value
problem and the postfix notation Boolean formula value problem are each complete
for ALOGTIME under AC0 reductions.

Corollary 11 There is a deterministic log time reduction from the (infix no-
tation) Boolean formula value problem to the postfix notation Boolean formula
value problem, and vice-versa.

Corollary 11 is rather surprising at first glance; however, it should be noted
that it does not assert that the natural translation of infix formulas to postfix
formulas is in deterministic log time. Indeed, the proofs of Main Theorem 1
and Main Theorem 9 give a fairly complicated translation.

A. Yao [18] and J. Hastad [8] prove that there is an oracle which separates the
polynomial time hierarchy; this immediately implies that the (unrelativized) log
time hierarchy is proper. Hence the computational complexity of the Boolean
formula value problem can be precisely characterized by:

Corollary 12 The Boolean formula value problem is in ALOGTIME but not
in the log time hierarchy.

The general idea of the proof of Theorem 9(a) is as follows. Let A be
a predicate in ALOGTIME and M be an alternating Turing machine which
recognizes A such that M always halts in time c · log n+ c on inputs of length n.
We shall define below a deterministic log time function f such that for any
input x to M , f(x) is a variable-free Boolean formula which evaluates to True if
and only if M accepts x, i.e., x ∈ A. The Boolean formula f(x) will essentially
be the execution tree of M on input x; the ∨’s and ∧’s in f(x) correspond to
existential and universal configurations of M , respectively, and the 0’s and 1’s
correspond to rejecting and accepting configurations of M . The difficult part

20

of the proof of Theorem 9(a) is showing that f can be picked so that Af is a
deterministic log time predicate.

We assume without loss of generality that each configuration of M has at
most two possible successor states. For each configuration s of M there are
two successor configurations denoted `(s) and r(s); the degenerate cases are
`(s) = r(s) when s is a deterministic configuration and s = `(s) = r(s) when s
is a halting configuration. More generally, for ρ ∈ {`, r}∗, we define ρ(s) in the
obvious way so that 0(s) = s and ρr(s) = r(ρ(s)) and ρ`(s) = `(ρ(s)) where 0
is the empty word. Let I(x) denote the initial configuration of M on input x.
We define Boolean formulas α(ρ, x) where |ρ| ≤ c · log(|x|) + c as follows:

Case (1): If |ρ| = c · log(|x|) + c then define α(ρ, x) to be the literal 1 if ρ(I(x))
is an accepting configuration of M and to be the literal 0 otherwise.

Case (2): If |ρ| < c · log(|x|) + c then set φ` = α(ρ`, x) and φr = α(ρr, x)
and define α(ρ, x) to be the formula (φ` ∧ φr) if ρ(I(x)) is a universally
branching configuration of M and to be (φ` ∨ φr) otherwise.

The function f is defined by f(x) = α(0, x).
It is clear that f(x) is a variable free Boolean formula which has value 1

(i.e., True) if and only if x ∈ A. To prove Theorem 9(a) it remains to show
that f is a deterministic log time function; or equivalently, that there is a
deterministic log time Turing machine N which on input x and i produces as
output the i-th symbol of f(x). Basically what N needs to do is determine
the location of the i-th symbol of f(x) by determining the string ρ ∈ {`, r}∗
of maximum length such that the i-th symbol of f(x) is in the subformula
α(ρ, x) of f(x). After determining this ρ, N simulates M to determine the
corresponding configuration ρ(I(x)) of M on input x and from this obtains the
correct i-th symbol of f(x).

Lemma 13 (Dowd [6]) There is a deterministic log time Turing machine which,
on input x, outputs the value n = |x| coded in binary.

Proof: The operation of the Turing machine proceeds as follows. First
determine the least value of i such that n < 2i: this is easily done in O(log n)
time since we assume that the index tape and its tape head are unaffected when
the input tape is accessed. Once the value 2i is obtained, written on the input
tape, it is now easy to do a binary search to determine the value of n. Finally
the index tape is copied to the output tape. 2

Lemma 14 If ρ ∈ {`, r}∗ then |α(ρ, x)| = 2s+2−3 where s = c · log(|x|)+c−|ρ|.

Proof: This is easily shown by induction on s. 2

We next give the algorithm for N which computes the i-th symbol of f(x).
The naive method of executing this algorithm will not be O(log n) time so we
shall later indicate how to improve its execution.

Input: x, i

21

Step (1): Compute n = |x|.
Step (2): Compute d = c · log n + c. (This is easy since our logarithms are

base two.)

Step (3): If i ≥ 2d+2 − 3, output a blank symbol and halt.

Step (4): Set ρ equal to the empty word.
Set s equal to d + 2.
Set j equal to i.

Step (5): (Loop while s ≥ 2)
Select one case (exactly one must hold):

Case (5a): If j = 0, output “(” and halt.
Case (5b): If 0 < j < 2s−1 − 2, set j = j − 1 and set ρ = ρ`.
Case (5c): If j = 2s−1 − 2, exit to step (6).
Case (5d): If 2s−1 − 2 < j < 2s − 4, set j = j − (2s−1 − 2) and

set ρ = ρr.
Case (5e): If j = 2s − 4, output “)” and halt.

Set s = s − 1.
If s ≥ 2, reiterate step (5) otherwise exit to step (6).

Step (6): Simulate M for |ρ| steps to determine the configuration ρ(I(x)).
If |ρ| < d and ρ(I(x)) is a universally branching state, output
“∧”.
Otherwise, if |ρ| < d, output “∨”.
Otherwise, if ρ(I(x)) is an accepting state, output “1”.
Otherwise, output “0”.

It should be clear by inspection that this algorithm correctly computes the
i-th symbol of f(x). In an iteration of the loop in step (5), it has already been
ascertained that the i-th symbol of f(x) is the j-th symbol of the subformula
α(ρ, x). The subformula α(ρ, x) is of the form (φ` ∗ φr) where ∗ is either
∨ or ∧; the five cases correspond to the j-th symbol being (a) the initial
parenthesis, (b) in the subformula φ`, (c) the logical connective symbol, (d) in
the subformula φr or (e) the final parenthesis.

Except for step (5), each step in the algorithm takes O(log n) time. In
particular, for step (6), the simulation of M is hardwired and N simulates each
operation of M with only one operation. Step (5), however, is more difficult:
there are O(log n) iterations of the loop and each iteration takes O(log n) time
in a naive implementation — we need each iteration to take constant time.

The reason that each iteration takes O(log n) time is that in case (5d), for
example, to subtract 2s−1 −2 from j both the high and low order bits of j must
be modified; but j has O(log n) bits so it takes too much time just to move the
tape head from one end of j to the other. Similar problems arise in comparing
j to 2s−1 − 2 and 2s − 4. Also, even when just decrementing j by 1 in case (5b)
it may take O(log n) time to propagate a borrow.

Fortunately all these problems con be avoided by a simple trick. Before
starting step (5), N breaks j into two parts: the low order 2 + log d bits of j

22

are stored on a tape in unary notation; the remaining high order bits of j are
kept on a different tape in binary notation. So to decrement j by 1, N merely
changes one tape square on the unary tape and moves that tape head one
square. To subtract 2s−1 − 2 from j, N need only change two squares on the
unary tape and modify one square of the binary tape (since j ≤ 2s − 4). A
complication arises when there is a carry or borrow out of the (2 + log d)-th
bit position of j. N handles this by allowing the unary tape to overflow (and
cause a carry) or underflow (and cause a borrow). To do this the unary tape
is initialized with a marker indicating where the overflow or underflow occurs;
since the unary part of j is changed by −1 or +2 at most d = c · log n+ c times,
at most one marker is needed. During the iterations of the loop in step (5)
N remembers whether or not an underflow/overflow has occurred. N also
initializes the binary tape with a marker which indicates how far the borrow or
carry will propagate.

We can now summarize how N executes step (5) in O(log n) time. First j
is split into binary high-order and unary low-order parts — these are stored on
separate tapes along with borrow/carry information. Then the loop is executed
for s = d+2 to s = 3+log d maintaining the value of j in the split binary/unary
form. After these iterations the higher-order, binary portion of j is equal to
zero. The unary portion of j is now converted back to binary notation and the
remaining iterations of the loop with s = 2 + log d to s = 2 are executed in the
normal naive fashion with j in binary notation.

The above proves Theorem 9(a). Theorem 9(b) can be proved by a similar,
somewhat easier, deterministic log time reduction of an arbitrary ALOGTIME
predicate to the PLOF formula value problem. Theorem 9(c) is a consequence
of 9(b).

8. Conclusion

We have shown that the Boolean formula value problem is complete for
alternating log time under deterministic log time reductions. A variant of
this problem, the postfix notation Boolean formula value problem is also
alternating log time complete under deterministic log time reductions. This
complements the result of Ladner [10] that the circuit value problem is complete
for polynomial time under log space reductions. It is a longstanding open
problem whether for every circuit there is an equivalent formula with the size
of the formula bounded by a polynomial of the size of the circuit; we conclude
that this unlikely to be the case unless P = ALOGTIME.

Acknowledgments

I have benefited greatly from discussions with Vijaya Ramachandran and
Stephen Cook and from correspondence with Martin Dowd.

23

References

[1] A. Borodin, On relating time and space to size and depth, SIAM J.
Comput., 6 (1977), pp. 733–744.

[2] R. P. Brent, The parallel evaluation of general arithmetic expressions,
J. Assoc. Comput. Mach., 21 (1974), pp. 201–206.

[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation,
J. Assoc. Comput. Mach., 28 (1981), pp. 114–133.

[4] S. A. Cook, Deterministic CFL’s are accepted simultaneously in polyno-
mial time and log squared space, in Proceedings of the 11-th Annual ACM
Symposium on Theory of Computing, 1979, pp. 338–345.

[5] , A taxonomy of problems with fast parallel algorithms, Information
and Control, 64 (1985), pp. 2–22.

[6] M. Dowd, Notes on log space representation. typewritten manuscript,
1986.

[7] A. Gupta, A fast parallel algorithm for recognition of parenthesis languages,
Master’s thesis, University of Toronto, January 1985.

[8] J. Hastad, Almost Optimal Lower Bounds for Small Depth Circuits, vol. 5
of Advances in Computing Research, JAI Press, 1989, pp. 143–170.

[9] O. H. Ibarra, T. Jiang, and B. Ravikumar, On some languages in nc1

(summary). manuscript, 1987.

[10] R. E. Ladner, The circuit value problem is log space complete for P,
SIGACT News, 7 (1975), pp. 18–20.

[11] N. A. Lynch, Log space recognition and translation of parenthesis lan-
guages, J. Assoc. Comput. Mach., 24 (1977), pp. 583–590.

[12] R. McNaughton, Parenthesis grammars, J. Assoc. Comput. Mach., 14
(1967), pp. 490–500.

[13] G. L. Miller and J. H. Reif, Parallel tree contraction and its application,
in Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, 1985, pp. 478–489.

[14] V. Ramachandran, Restructuring formula trees. Unpublished manu-
script, May 1986.

[15] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22
(1981), pp. 365–383.

[16] J. E. Savage, The Complexity of Computing, John Wiley, 1976.

24

[17] P. M. Spira, On time hardware complexity tradeoffs for Boolean functions,
in Proceedings of the Fourth Hawaii International Symposium on System
Sciences, 1971, pp. 525–527.

[18] A. C.-C. Yao, Separating the polynomial time hierarchy by oracles, in
Proceedings of the 26th Annual Symposium on Foundations of Computer
Science, IEEE Computer Society, 1985, pp. 1–10.

25

