
Unshuffling a Square is NP-Hard

Sam Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

Michael Soltys†

Department of Computing & Software

McMaster University

Hamilton, Ontario L8S 4K1, Canada

soltys@mcmaster.ca

September 30, 2013

Abstract

A shuffle of two strings is formed by interleaving the characters into
a new string, keeping the characters of each string in order. A string
is a square if it is a shuffle of two identical strings. There is a known
polynomial time dynamic programming algorithm to determine if a
given string z is the shuffle of two given strings x, y; however, it has
been an open question whether there is a polynomial time algorithm
to determine if a given string z is a square. We resolve this by proving
that this problem is NP-complete via a many-one reduction from 3-
Partition.

1 Introduction

If u, v, and w are strings over an alphabet Σ, then w is a shuffle of u
and v provided there are (possibly empty) strings xi and yi such that u =
x1x2 · · · xk and v = y1y2 · · · yk and w = x1y1x2y2 · · · xkyk. A shuffle is
sometimes instead called a “merge” or an “interleaving”. The intuition for
the definition is that w can be obtained from u and v by an operation similar
to shuffling two decks of cards. We use w = u ⊙ v to denote that w is a
shuffle of u and v; note, however, that in spite of the notation there can
be many different shuffles w of u and v. The string w is called a square
provided it is equal to a shuffle of a string u with itself, namely provided

∗Supported in part by NSF grants DMS-1101228 and CCR-1213151.
†Supported in part by an NSERC Discovery Grant. This project was carried out while

the second author was visiting UCSD in Fall 2012.

1

w = u ⊙ u for some string u. This paper proves that the set of squares is
NP-complete; this is true even for (sufficiently large) finite alphabets.

The initial work on shuffles arose out of abstract formal languages, and
shuffles were motivated later by applications to modeling sequential exe-
cution of concurrent processes. To the best of our knowledge, the shuffle
operation was first used in formal languages by Ginsburg and Spanier [6].
Early research with applications to concurrent processes can be found in
Riddle [19, 20] and Shaw [22]. A number of authors, including [7, 8, 10,
11, 12, 13, 14, 17, 18, 23] have subsequently studied various aspects of the
complexity of the shuffle and iterated shuffle operations in conjunction with
regular expression operations and other constructions from the theory of
programming languages.

In the early 1980’s, Mansfield [15, 16] and Warmuth and Haussler [25]
studied the computational complexity of the shuffle operator on its own.
The paper [15] gave a polynomial time dynamic programming algorithm
for deciding the following shuffle problem: Given inputs u, v, w, can w be
expressed as a shuffle of u and v, that is, does w = u ⊙ v? In [16], this
was extended to give polynomial time algorithms for deciding whether a
string w can be written as the shuffle of k strings u1, . . . , uk, so that w =
u1 ⊙ u2 ⊙ · · · ⊙ uk, for a constant integer k. The paper [16] further proved
that if k is allowed to vary, then the problem becomes NP-complete (via a
reduction from Exact Cover with 3-Sets). Warmuth and Haussler [25]
gave an independent proof of this last result and went on to give a rather
striking improvement by showing that this problem remains NP-complete
even if the k strings u1, . . . , uk are equal. That is to say, the question of,
given strings u and w, whether w is equal to an iterated shuffle u⊙u⊙· · ·⊙u
of u is NP-complete. Their proof used a reduction from 3-Partition.

The second author [24] has recently proved that the problem of whether
w = u ⊙ v is in AC1, but not in AC0. Recall that AC0 (resp., AC1) is
the class of problems recognizable with constant-depth (resp., logarithmic
depth) Boolean circuits.

As mentioned above, a string w is defined to be a square if it can be writ-
ten w = u⊙u for some u. Erickson [4] in 2010, asked on the Stack Exchange
discussion board about the computational complexity of recognizing squares,
and in particular whether this is polynomial time decidable. This problem
was repeated as an open question in [9]. An online reply to [4] by Austrin [1]
showed that the problem of recognizing squares is polynomial time decidable
provided that each alphabet symbol occurs at most four times in w (by a
reduction from 2-Sat); however, the general question has remained open.
The present paper resolves this by proving that the problem of recognizing

2

squares is NP-complete, even over a sufficiently large fixed alphabet.
The NP-completeness proof uses a many-one reduction from the strongly

NP-complete problem 3-Partition (see [5]). 3-Partition is defined as
follows: The input is a sequence of natural numbers S = 〈ni : 1 ≤ i ≤ 3m〉
such that B = (

∑3m
i=1 ni)/m is an integer and B/4 < ni < B/2 for each

i ∈ [3m]. The question is: can S be partitioned into m disjoint subsequences
S1, . . . , Sm such that each Sk has exactly three elements with the sum of
the three members of Sk equal to B? Since 3-Partition is strongly NP-
complete, it remains NP-complete even if the integers ni are presented in
unary notation.

We learned from one of the referees that the NP-completeness of recog-
nizing squares has been independently proved by Rizzi and Vialette [21].

2 Mathematical preliminaries

Let w be a string of symbols over the alphabet Σ with w = w1 · · ·wn for
wi ∈ Σ, so n = |w|. A string u is a subword of w if w = v1uv2 for some strings
v1, v2. A string u′ is a subsequence of w if w = u′⊙v for some string v. Both
the subword u and the subsequence u′ contain symbols selected in increasing
order from w; the symbols of u must appear consecutively in w but this is
not required for u′. The exponential notation ui, for i ≥ 0, indicates the
word obtained by concatenating i copies of u. If u1, . . . , uk are strings, the
product notation

∏k
ℓ=1 uℓ indicates the concatenation u1u2 · · · uk−1uk.

Now suppose that w is a square. Figure 1 gives an example of how a
square shuffle w = u ⊙ u gives rise to a bipartite graph G on the symbols
of w. The graph G is defined based on a particular computation of w as a
shuffle u⊙u, as obtained by shuffling two copies of u.1 The vertices of G are
the symbols w1, . . . , wn of w, and, for each i, G contains an edge joining the
symbol of w corresponding to the i-th symbol of one copy of u to the symbol
of w corresponding to the i-th symbol of the other copy of u. W.l.o.g., if G
contains an edge joining wj and wk with j < k, then wj corresponds to a
symbol in the first copy of u, and wk corresponds to a symbol in the second
copy of u. This can be done without loss of generality, possibly by changing
the order in which the symbols of the u’s are shuffled out to form w. (So we
could instead define G as a directed graph if we wished.)

The bipartite graph G has a special “non-nesting” property: if G con-
tains an edge from wk to wℓ and an edge from wp to wq, then it is not the

1In general, there may be several such ways to express w as a square shuffle, even for
the same u.

3

c1 x x x c2 c1 x x x c2 c1 x x c2 c1 x x c2 c1 x c2 c1 x c2

Figure 1: Let w be the string (c1x
3c2)

2(c1x
2c2)

2(c1xc2)
2, or in product nota-

tion w =
∏2

k=0(c1x
3−kc2)

2. This figure shows the bipartite graph G associ-
ated with the square shuffle w = u⊙ u with u equal to c1xxxc2xc2c1xc1xc2.
It is not pictured, but we also have w = v ⊙ v with v = c1x

3c2c1x
2c2c1xc2.

a b a b a b b a

Figure 2: Examples of two crossing (and hence non-nested) edges for a graph
on abab, and two nested edges for a graph on abba. Nested edges cannot
appear in a graph obtained from a shuffle.

case that k < p < q < ℓ. This is because there are indices i and i′ such that
wk and wℓ correspond to the i-th symbols of the first and second copies of u,
and such that wp and wq correspond to the i′-th symbols of the two copies
of u. (Compare to Figure 2.) But then k < p implies i < i′ whereas q < ℓ
implies that i′ < i, and this is a contradiction.

In fact, as is easy to prove, if there is a complete bipartite graph G
of degree one (i.e., a perfect matching) on the symbols of w which is non-
nesting, then w can be expressed as a square shuffle w = u⊙ u so that G is
the bipartite graph associated with this shuffle.

The non-nesting property for G can also be viewed as an “anti-Monge”
condition, namely as the opposite of the Monge condition. A bipartite graph
on the symbols of the string w is said to satisfy the Monge condition pro-
vided that, instead of having the non-nesting condition, it is prohibited
that k < p < ℓ < q. In other words, the Monge condition allows nested
edges but prohibits crossing edges. The Monge condition has been widely
studied for matching problems and transportation problems. Many prob-
lems that satisfy the Monge condition or the “quasi-convex” condition are
known to have efficient polynomial time algorithms; for these see [3] and
the references cited therein. There are fewer algorithms known for problems
that satisfy the anti-Monge property, and some special cases are known to
be NP-hard [2]. This is another reason why we find the NP-completeness
of the square problem to be interesting: it provides a hardness result for
anti-Monge matching in a very simple and abstract situation.

4

The non-nesting property means that we can define a non-deterministic
finite-state queue automaton which accepts precisely the strings which are
squares, and this provides a convenient algorithmic characterization of the
strings which are squares. A queue automaton is defined similarly to a non-
deterministic PDA but with a queue instead of a stack. A queue automaton
reads its input w from left to right. The automaton’s queue is initially empty
and supports the operations push-right (enqueue) and pop-left (dequeue),
and the automaton accepts if its queue is empty after the last symbol of w
has been read.

The non-deterministic algorithm for our queue automaton which accepts
precisely the set of squares is as follows:

Repeatedly do one of the following:
a. Read the next input symbol σ and push it onto the queue, or
b. If the next input symbol σ is the same as the symbol at the top of

the queue, read past the input symbol σ and pop σ from the queue.

When either step a. or b. is performed, we say that the input symbol σ
has been consumed. In case b., we say that the symbol σ on the queue has
been matched by the input symbol. Note that a. is always allowed, and b.
only when the symbols match.

A configuration of the automaton is a “snapshot” of the computation,
and consists of the queue contents Q and the remaining part x of the input to
be read. A configuration is denoted Q‖x. A single step from configuration C
to configuration C ′ is denoted C ⊢ C ′. A sequence of zero or more steps
is denoted C⊢∗C ′. The condition C ⊢ C ′ can hold in one of two ways: if
C is Q‖σx, then either (a) C ′ is Qσ‖x, or (b) C ′ is Q′‖x where Q = σQ′.
The input w is accepted if ε‖w ⊢∗ε‖ε, where ε is the empty string. More
generally, a configuration C is accepted provided C⊢∗ε‖ε.

If a computation proceeds as

u1u2u3‖x1x2x3 ⊢∗ u2u3z1‖x2x3 ⊢∗ u3z1z2‖x3, (1)

then we say that the subword x2 of the input is consumed by the subword u2
of the queue. This means that the symbols of x2 are either matched against
symbols from u2, or are pushed onto the queue only after all the symbols
of u1 have been popped and before any symbol of u3 is popped. In addition,
no symbol of x1 or x3 is matched against a symbol from u2. The word z2
which is pushed onto the stack while x2 is consumed by u2 is called the

5

resultant.2 The following two simple lemmas, which will be used in the next
section, illustrate these concepts.

Lemma 1. If x2 is consumed by u2 yielding the resultant z2, then u2 and z2
are subsequences of x2. Furthermore, x2 = u2 ⊙ z2.

Proof. This holds since u2 is equal to the subsequence of symbols of x2 that
are matched against symbols of u2, and z2 is the subsequence of symbols
of x2 which are enqueued and so not matched against symbols from u2.

Lemma 2. Suppose e0, e are symbols that do not appear in the strings ui, xi,
or v for 1 ≤ i ≤ k. Consider the string w = e0u1eu2e · · · eukee0x1ex2e · · · exkev.
Any accepting computation of w must proceed as:

ε‖w ⊢∗ u1eu2eu3e · · · euke‖x1ex2ex3e · · · exkev (2)

⊢∗ u2eu3e · · · eukez1‖x2ex3e · · · exkev

⊢∗ u3e · · · eukez1z2‖x3e · · · exkev

⊢∗ ukez1 · · · zk−1‖xkev ⊢∗ z1 · · · zk‖v ⊢∗ε‖ε,

so that each xi is consumed by the corresponding ui with resultant zi.

Proof. The two occurrences of e0 must be matched with each other during
the accepting computation. By the non-nesting property, this means that
all the symbols between the two e0’s must be pushed onto the queue instead
of matching any prior symbol. At this point, there are exactly k many e’s
on the queue and an equal number of e’s remaining in the input. The non-
nesting property thus implies that the i-th occurrence of e pushed onto the
queue must be matched against the i-th occurrence of e in the second half
of w. From this it is evident, again by the non-nesting property, that the
accepting computation follows the pattern (2); therefore each xi is consumed
by ui.

3 Main Result

Theorem 3. The set Square of squares is NP-complete. This is true even
for sufficiently large finite alphabets.

We shall prove the theorem for an alphabet with 9 symbols. As we dis-
cuss later, a modification of our proof shows that the theorem also holds for
alphabets of size 7. We conjecture that Theorem 3 holds even for alphabets

2Note that in (1) also x1 is consumed by u1 with resultant z1.

6

of size 2, but this would require substantially new proof techniques. (Over
a unary alphabet, Square is just the set of even length strings.)

The rest of the paper is devoted to the proof of Theorem 3. Clearly
the set of squares is in NP. To prove the NP-completeness, we shall give a
logspace computable many-one reduction from 3-Partition to Square.

Consider an instance of 3-Partition S = 〈ni : 1 ≤ i ≤ 3m〉 such that
the ni’s are given in unary notation and such that B = (

∑3m
i=1 ni)/m is an

integer. We also have B/4 < ni < B/2 for each i, but shall not use this fact.
Without loss of generality, the values ni are given in non-increasing order,
since 3-Partition remains strongly NP-complete with the ni’s sorted. The
many-one reduction to Square constructs a string wS over the alphabet

Σ = {a1, a2, b, e0, e, c1, c2, x, y},

such that wS is a square iff S is a “yes” instance of 3-Partition. The
string wS consists of three parts:

wS := 〈loaderS〉〈distributorS〉〈verifierS〉.

These are defined by

〈loaderS〉 = e0

m
∏

i=1

(b2Be)

〈distributorS〉 = e0

m
∏

i=1

((a1b
Ba2)

3e)

〈verifierS〉 =
3m
∏

k=1

[v4k−3Dkv4k−3v4k−2Dkv4k−2v4k−1Ekv4k−1v4kFkv4k]

where

vℓ = c1x
ℓyℓc2

Dk = (a21b
nka22)

3m−k+1

Ek = (a21b
Ba22)

3m−k(a1b
nka2)(a

2
1b

Ba22)
3m−k

Fk = (a21b
Ba22)

2(3m−k)

It is useful to let Uℓ := a21b
ℓa22 as this lets us shorten the expressions for

Dk, Ek, and Fk, so Dk = U3m−k+1
nk

, Ek = U3m−k
B a1b

nka2U
3m−k
B , and Fk =

U
2(3m−k)
B .

7

The length of wS is quadratic in m +
∑

i ni, so wS is polynomially
bounded. It is clear that wS can be constructed from S by a logspace
computation.

The actions of the loader and distributor are relatively easy to under-
stand, so we describe them first. As the next lemma states, the intended
function of the loader is to place m many blocks of 2B many b’s, separated
by e’s, onto the queue.

Lemma 4. Any accepting computation for wS starts off as

ε‖wS ⊢∗ e0(b
2Be)m‖〈distributorS〉〈verifierS〉.

In the subsequent part of the accepting computation, the i-th occurrence of
the subword (a1b

Ba2)
3 in 〈distributorS〉 will be consumed by the i-th occur-

rence of b2B in the queue.

Proof. This is an immediate consequence of Lemma 2 since there are only
two occurrences of e0 in wS , and since e has the same number of occurrences
between the two e0’s as after the second e0.

Consider how the subword (a1b
Ba2)

3 can be consumed by b2B. Since
there are no a1’s or a2’s in b2B , the a1’s and a2’s must be pushed onto the
queue. In addition, exactly 2B of the 3B many occurrences of b in (a1b

Ba2)
3

must be matched against the symbols of b2B . Thus, when the subword
(a1b

Ba2)
3 is consumed by b2B a resultant string of the form a1b

j1a2a1b
j2a2a1b

j3a2
must be pushed onto the queue where j1+j2+j3 = 3B−2B = B. Since the
automaton is non-deterministic, any such values for j1, j2, j3 can be achieved.
These observations, together with Lemma 4, prove Lemma 5:

Lemma 5. Given any sequence of non-negative integers 〈ik〉
3m
k=1 such that

∀j ∈ {1, 2, . . . ,m}, i3j−2 + i3j−1 + i3j = B, (3)

there exists a computation ε‖wS ⊢∗
∏3m

k=1(a1b
ika2)‖〈verifierS〉. Conversely,

if ε‖wS ⊢∗W‖〈verifierS〉 then W must be of the form
∏3m

k=1(a1b
ika2), so that

condition (3) holds.

We now turn to analyzing the effect of 〈verifierS〉. By Lemma 5, any ac-
cepting computation for ε‖wS reaches a configuration

∏3m
k=1(a1b

ika2)‖〈verifierS〉
satisfying (3). The intuition is that the sets Sj := {i3j−2, i3j−1, i3j} should
be a solution to the 3-Partition problem S. By (3), the members of
each Sj sum to B. Thus, the sets Sj are a solution to the 3-Partition iff
the sequence 〈ik〉

3m
k=1 is a permutation (a reordering) of S = 〈nk〉

3m
k=1.

8

By Lemma 5, to complete the proof of Theorem 3, it suffices to show
that

∏3m
k=1(a1b

ika2)‖〈verifierS〉 is accepted if and only if the sequence 〈ik〉
3m
k=1

is a permutation of S. We first prove the easier direction of this equivalence:

Lemma 6. Suppose 〈ik〉
3m
k=1 is a permutation of S. Then the configuration

∏3m
k=1(a1b

ika2)‖〈verifierS〉 is accepted. Therefore, if S is a “Yes” instance of
3-Partition, then ε ‖wS⊢

∗ε‖ε and wS is in Square.

We prove Lemma 6 after first proving Lemmas 9 and 10.

Definition 7. A computation accepting wS satisfies the V-Condition pro-
vided that for each ℓ (for 1 ≤ ℓ ≤ 12m) the second occurrence of the subword
vℓ in wS is consumed by the first occurrence of vℓ in wS . This means that
the symbols of the second vℓ are completely matched by those of the first vℓ.

Theorem 14, at the end of the paper, will prove that the V-Condition
must hold, but for now it suffices to just assume it.

Definition 8. A string z has k alternations of the symbols a1, a2 provided
(a1a2)

k is a subsequence of z but (a1a2)
k+1 is not.

The value k is used in the subscripts in the statements of Lemma 9 and
Lemma 10 to match up with the way the two lemmas will be used in the
proof of Lemma 6.

Lemma 9. Let i1, . . . , i3m−k+1 and nk be natural numbers, and let W =
∏3m−k+1

j=1 (a1b
ija2). Suppose the V-Condition holds for a computation con-

taining the subcomputation

W‖v4k−3Dkv4k−3v4k−2Dkv4k−2(· · ·) ⊢
∗ W ′‖(· · ·). (4)

(The “(· · ·)” denotes the rest of the input string.) Then W ′ = W , and
ij ≤ nk for all j ≤ 3m − k + 1. Conversely, if each ij ≤ nk, then the
subcomputation (4) can be carried out.

Since W ′ = W , the computation (4) might seem to achieve nothing, and
thus be pointless; the point, however, is that it ensures that the values ij
are ≤ nk. This will be useful for the proof of Lemma 11.

Proof. By the V-Condition, and the non-nesting property, the computa-
tion (4) must have the form

W‖v4k−3Dkv4k−3v4k−2Dkv4k−2(· · ·) ⊢
∗ W ′′‖v4k−2Dkv4k−2(· · ·) ⊢

∗ W ′‖(· · ·),

9

where W ′′ is the resultant when the first Dk is consumed by W , and W ′ is
similarly the resultant when the second Dk is consumed by W ′′.

W and Dk both have 3m− k+1 alternations of a1, a2. Therefore, when
Dk is consumed by W , the j-th a1 (resp., a2) symbol in W must match an a1
(resp., a2) from the j-th block a1a1 (resp, a2a2) in Dk. The other a1 (resp.,
a2) in that block is pushed onto the queue as part of W ′′. Furthermore, the
subword bij in the j-th component of W must match ij of the b’s in the j-th
occurrence of bnk in Dk; this leaves nk − ij many b’s to be pushed onto the
queue as part of W ′′. This is possible if and only if ij ≤ nk for all j, and if

so, W ′′ =
∏3m−k+1

j=1 (a1b
nk−ija2).

The second Dk must be consumed by W ′′, and the same argument shows
that this means W ′ =

∏3m−k+1
j=1 (a1b

ija2) = W .

Lemma 10. Let i1, . . . , i3m−k+1 be natural numbers, and W =
∏3m−k+1

j=1 (a1b
ija2).

Suppose J ≤ 3m − k + 1 satisfies iJ = maxj{ij : 1 ≤ j ≤ 3m − k + 1}. Let
i′1, . . . , i

′
3m−k be the sequence 〈ij〉j≤3m−k+1 with iJ omitted, and let W ′ =

∏3m−k
j=1 (a1b

i′ja2). Then there is a computation

W‖v4k−1Ekv4k−1v4kFkv4k(· · ·) ⊢
∗ W ′‖(· · ·). (5)

The computation (5) will satisfy the V-Condition.
Lemma 12 below will prove a converse to Lemma 10 under the additional

assumption of the V-Condition. Lemma 10, however, is all that is needed
for Lemma 6.

Proof. We construct a computation of the form

W‖v4k−1Ekv4k−1v4kFkv4k(· · ·) ⊢
∗ W ′′‖v4kFkv4k(· · ·) ⊢

∗ W ′‖(· · ·). (6)

Recalling that Ek = U3m−k
B a1b

nka2U
3m−k
B and using iJ = nk, the first half

10

of the computation (6) has the form

3m−k+1
∏

j=1

(a1b
ija2)‖v4k−1U

3m−k
B a1b

nka2U
3m−k
B v4k−1

⊢∗

3m−k+1
∏

j=J

(a1b
ija2)v4k−1

J−1
∏

j=1

(a1b
B−ija2)‖U

3m−k−(J−1)
B a1b

nka2U
3m−k
B v4k−1

⊢∗

3m−k+1
∏

j=J

(a1b
ija2)v4k−1

J−1
∏

j=1

(a1b
B−ija2)U

3m−k−(J−1)
B ‖a1b

nka2U
3m−k
B v4k−1

⊢∗

3m−k+1
∏

j=J+1

(a1b
ija2)v4k−1

J−1
∏

j=1

(a1b
B−ija2)U

3m−k−(J−1)
B ‖U3m−k

B v4k−1

⊢∗

3m−k+1
∏

j=J+1

(a1b
ija2)v4k−1

J−1
∏

j=1

(a1b
B−ija2)U

3m−k
B ‖U

3m−k−(J−1)
B v4k−1

⊢∗ v4k−1

J−1
∏

j=1

(a1b
B−ija2)U

3m−k
B

3m−k+1
∏

j=J+1

(a1b
B−ija2)‖v4k−1

⊢∗

J−1
∏

j=1

(a1b
B−ija2)U

3m−k
B

3m−k+1
∏

j=J+1

(a1b
B−ija2)‖ε

=

J−1
∏

j=1

(a1b
B−i′ja2)U

3m−k
B

3m−k
∏

j=J

(a1b
B−i′ja2)‖ε = W ′′‖ε.

The first and fifth steps shown above use the fact that when a21b
Ba22 is

consumed by a1b
ija2 the resultant is a1b

B−ija2 as shown in the proof of
Lemma 9. The third step matches a1b

iJa2 with the equal a1b
nka2. The final

step matches v4k−1. The other steps push words v4k−1 and UB from the
input to the queue.

11

The second half of the computation (6) proceeds as follows:

J−1
∏

j=1

(a1b
B−i′ja2)U

3m−k
B

3m−k
∏

j=J

(a1b
B−i′ja2)‖v4k(a

2
1b

Ba22)
2(3m−k)v4k

⊢∗ U3m−k
B

3m−k
∏

j=J

(a1b
B−i′ja2)v4k

J−1
∏

j=1

(a1b
i′ja2)‖(a

2
1b

Ba22)
2(3m−k)−(J−1)v4k

⊢∗

3m−k
∏

j=J

(a1b
B−i′ja2)v4k

J−1
∏

j=1

(a1b
i′ja2)‖(a

2
1b

Ba22)
3m−k−(J−1)v4k

⊢∗ v4k

3m−k
∏

j=1

(a1b
i′ja2)‖v4k ⊢∗

3m−k
∏

j=1

(a1b
i′ja2)‖ε = W ′‖ε.

This is easily seen to be a correct computation. This proves Lemma 10.

We can now prove Lemma 6. Suppose that S = 〈nj〉
3m
j=1 and that 〈ij〉

3m
j=1

is a permutation of 〈nj〉
3m
j=1 witnessing that S is a “Yes” instance of 3-

Partition. For a fixed value k with 1 ≤ k ≤ 3m+ 1, let Wk be the string
∏3m−k+1

j=1 (a1b
i′ja2) where i

′
1, . . . , i

′
3m−k+1 is the sequence obtained by remov-

ing k − 1 of the largest elements of the sequence 〈ij〉
3m
j=1. (When there are

multiple equal values ij , they can be removed from the sequence in arbi-
trary fixed order, say according to the order they appear in the sequence).
The members nj of S are non-increasing; thus nk is equal to the maximum
value i′j, j ≤ 3m− k + 1, that is used in Wk. Therefore, Lemmas 9 and 10
imply that

Wk‖v4k−3Dkv4k−3v4k−2Dkv4k−2v4k−1Ekv4k−1v4kFkv4k ⊢∗ Wk+1‖ε.

Combining these computations for 1 ≤ k ≤ 3m gives W1‖〈verifierS〉 ⊢
∗ε‖ε.

Lemma 5 gives ε‖wS⊢
∗W1‖〈verifierS〉. Thus ε‖wS ⊢∗ε‖ε. This proves Lemma 6.

The next lemma gives the converse of Lemma 6, under the assumption
that the V-Condition holds. This, together with Theorem 14 stating that
the V-Condition must hold, will prove Theorem 3.

Lemma 11. Let S be an instance of 3-Partition, 〈ik〉
3m
k=1 satisfy condi-

tion (3) of Lemma 5, and W =
∏3m

k=1(a1b
ika2). Suppose that W‖〈verifierS〉 ⊢

∗ε‖ε
with a computation that satisfies the V-Condition, so ε ‖wS⊢

∗ε‖ε and wS is
in Square. Then S is a “Yes” instance of 3-Partition.

12

The main new tool needed for proving Lemma 11 is a converse of Lemma 10:

Lemma 12. Let 1 ≤ k ≤ 3m, let i1, . . . , i3m−k+1 be natural numbers, and
Wk =

∏3m−k+1
j=1 (a1b

ija2). Suppose that maxj{ij} ≤ nk. Further suppose
there is a computation

Wk‖v4k−1Ekv4k−1v4kFkv4k(· · ·) ⊢
∗ Wk+1‖(· · ·) (7)

that satisfies the V-Condition. Then there is a J such that iJ = maxj{ij} =
nk and such that, letting i′1, . . . , i

′
3m−k be the sequence 〈ij〉j with iJ omitted,

we have Wk+1 =
∏3m−k

j=1 (a1b
i′ja2).

Before we prove Lemma 12, we indicate how it, and the V-Condition
assumption, imply Lemma 11 and thus imply Theorem 3. Suppose C is a
computation ε‖wS ⊢∗ε‖ε that obeys the V-Condition. For 1 ≤ k ≤ 3m+ 1,
let Vk be the string such that C contains the configuration

Vk ‖
3m
∏

ℓ=k

[v4ℓ−3Dℓv4ℓ−3v4ℓ−2Dℓv4ℓ−2v4ℓ−1Eℓv4ℓ−1v4ℓFℓv4ℓ] .

In other words, Vk is the content of C’s queue just before the first v4ℓ−3 is
consumed. For 1 ≤ k ≤ 3m, define V ′

k to be the string such that C contains
the configuration

V ′
k ‖ v4k−1Ekv4k−1v4kFkv4k

3m
∏

ℓ=k+1

[v4ℓ−3Dℓv4ℓ−3v4ℓ−2Dℓv4ℓ−2v4ℓ−1Eℓv4ℓ−1v4ℓFℓv4ℓ] .

Claim 13. We have:

(a) V1 is equal to
∏3m−k+1

j=1 (a1b
ija2) for some sequence 〈ij〉

3m
j=1 satisfying (3).

(b) For 1 ≤ k ≤ 3m + 1, Vk equals
∏3m−k+1

j=1 (a1b
i′ja2) for some sequence

〈i′j〉j which is obtained from 〈ij〉
3m
j=1 by removing (instances of) the

k − 1 largest entries of 〈nj〉
3m
j=1.

(c) For 1 ≤ k ≤ 3m, V ′
k equals Vk, and its maximum i′j value is less than or

equal to nk.

The claim is proved by induction on k. Part (a), and the equivalent
k = 1 case of (b), follows from Lemma 5. Part (c) for a given k follows
from Lemma 9 and from the induction hypothesis that (b) holds for the
same value of k. Part (b) for k > 1 follows from Lemma 12 and from the

13

induction hypothesis that (b) and (c) hold for k − 1. Since V3m+1 = ε,
part (b) implies that the sequence 〈ij〉

3m
j=1 is a reordering of 〈nj〉

3m
j=1. And,

since (3) holds, 〈ij〉
3m
j=1 witnesses that S is a “Yes” instance of 3-Partition.

This completes the proof of Lemma 11, and thereby Theorem 3, modulo the
proofs of Lemma 12 and Theorem 14.

Proof. (of Lemma 12.) Consider a particular computation C as in (7) that
satisfies the V-Condition. C has the form

Wk‖v4k−1Ekv4k−1v4kFkv4k(· · ·) ⊢
∗ Z‖v4kFkv4k(· · ·) ⊢

∗ Wk+1‖(· · ·)

where Z is the resultant of Ek being subsumed by Wk. By assumption, Wk

has 3m − k + 1 alternations of a1, a2, whereas Ek has 2(3m − k) + 1 and
Fk has 2(3m− k). The string Ek is a concatenation of “blocks” of the form
a1b

nka2 or the form UB = a21b
Ba22. Each subword a1b

ija2 in Wk has its
symbol a1 matched by some a1 in Ek and its a2 matched by some a2 in the
same block or a later block of Ek: these symbols a1 and a2 in Ek determine
a contiguous sequence of blocks in Ek which is consumed by a1b

ija2. We
call these blocks the “j-consumed” portion of Ek, and denote it Yj. The
resultant of a1b

ija2 and its j-consumed portion is denoted Zj . There may
also be blocks of Ek which are not part of any j-consumed portion, and
these are called “non-matched” blocks of Ek. The string Z is then the
concatenation of the words Zj , for 1 ≤ j ≤ 3m − k + 1, interspersed with
the non-matched blocks of Ek.

Let us consider the possible resultants Zj. We can write Ek as Ek =
P1P2P3 where P1 = P3 = U3m−k

B and P2 = a1b
nka2. There are several cases

to consider.

Case a. Yj is (a21b
Ba22)

ℓ for some ℓ ≥ 1, and thus is a subword of either
P1 or P3 in Ek. When Yj is consumed by a1b

ija2, one of the two
initial a1’s, any ij of the b’s, and then one of the two final a2’s are
matched; the remaining symbols of Yj become the resultant Zj and
are pushed onto the queue. Therefore, Zj is equal to

Zj = a1b
B−m1

ℓ
∏

s=2

(a22a
2
1b

B−ms)a2 (8)

where m1 + m2 + · · · + mℓ = ij . Note that Yj and Zj both have ℓ
alternations of a1, a2.

14

Case b. Yj spans from P1 to P3 and equals (a21b
Ba22)

ℓ1a1b
nka2(a

2
1b

Ba22)
ℓ2

where ℓ1, ℓ2 ≥ 1. Arguing as in the previous case, Zj is equal to

a1b
B−m1a22

ℓ1
∏

s=2

(a21b
B−msa22)a1b

nk−mℓ1+1a2

ℓ1+ℓ2
∏

s=ℓ1+2

(a21b
B−msa22)a

2
1b

B−mℓ1+ℓ2+1a2

where m1 + m2 + · · · + mℓ1+ℓ2+1 = ij . In this case, Yj and Zj both
have ℓ1 + ℓ2 + 1 alternations of a1, a2.

Case c. Yj is a1b
nka2, namely, Yj = P2. In this case, Zj is equal to just

bnk−ij . If ij = nk, then Zj is just ε: this is called a “full cancellation”
case. Note that Zj has zero alternations of a1, a2, whereas Yj has one
alternation.

Case d. Yj is (a21b
Ba22)

ℓa1b
nka2. We now have

Zj = a1b
B−m1a22

ℓ
∏

s=2

(a21b
B−msa22)a1b

nk−mℓ+1 (9)

where m1 + · · ·+mℓ+1 = ij . Zj consists of a part with ℓ alternations
of a1, a2 followed by a subsequent a1 (and possibly b’s). In the “full
cancellation” case, mℓ+1 = nk, and since ij ≤ nk, we have nk =
mℓ+1 = ij and, for s ≤ ℓ, ms = 0. Otherwise, Zj ends with one or
more b’s.

Case e. The case where Yj is a1b
nka2(a

2
1b

Ba22)
ℓ is completely analogous to

case d., and we omit it.

For simplicity, let’s assume for the moment that neither case d. nor e. occurs.
This means that there is at most one occurrence of either case b. or c., and
the rest of the cases are case a. In cases a. and b., Zj has the same number of
alternations of a1, a2 as Yj . Of course the number of alternations in the non-
matched blocks does not change. Therefore, Z has 2(3m−k)+1 alternations
of a1, a2 if case c. does not occur, and has 2(3m− k) alternations if case c.
does occur. The word Fk has 2(3m− k) alternations of a1, a2, and since Fk

is consumed by Z, Lemma 1 implies that Z cannot have more alternations
of a1, a2 than Fk. Therefore, it must be that case c. occurs and case b. does
not.

We claim that case c. must occur as a full cancellation case. If not, then
Z will consist of a subword with 3m − k alternations of a1, a2 that came
from P1, followed by some non-zero number of b’s from the Zj of case c.,

15

and then by another subword with 3m− k alternations of a1, a2 that came
from P3. In other words, (a1a2)

3m−kb(a1a2)
3m−k is a subsequence of Z.

It is not, however, a subsequence of Fk, contradicting the fact that Fk is
consumed by Z. It follows by Lemma 1 that case c. must have occurred
in the full cancellation version. Let J be the value of j for which case c.
occurred; since it was a case of full cancellation, iJ = nk.

Therefore, Z has 2(3m−k) alternations of a1, a2, and is the concatenation
of the 3m − k many Zj ’s that arose in case a. (the empty ZJ has been
dropped) and of zero or more non-matched a21b

Ba22’s. The fact that Fk and
Z both have 2(3m− k) alternations of a1, a2, means that the way Fk can be
consumed by Z is tightly constrained. First, any non-matched block a21b

Ba22
in Z must consume (and fully match) an identical block in Fk leaving a
resultant of ε. Second, any Zj with ℓ alternations of a1, a2 will be of the
form (8) and must consume a subword Gj = (a21b

Ba22)
ℓ of Fk. The first a1

of Zj must match one of the two first a1’s of Gj ; the final a2 of Zj must
match one the final two a2’s of Gj ; the other subwords a

2
1 and a22 of Zj must

match identical subwords in Gj ; and the ℓB − ij many b’s in Zj all must
match b’s in Gj . This can always be done, no matter what the values of
the ms’s in Zj are. Since Gj has ℓB many b’s, the consumption of Gj by Zj

yields a resultant W ′
j equal to a1b

ija2.
It follows that, when Fk is consumed by Z, the resultant equals the con-

catenation of the strings W ′
j = a1b

ija2, omitting the word wJ (which trig-
gered case c.). In other words, the resultant is just Wk+1, proving Lemma 12
in this case.

We still have to consider the case where case d. or e. occurs. The cases
are symmetric, so suppose case d. occurs, and thus the rest of the Zj’s are
generated by case a. Suppose Zj is obtained via case d., and so is equal
to (9). We claim that this must be a full cancellation case of case d., with
nk = ij. If not, then Z contains 3m − k alternations of a1, a2 up through
Zj , followed by the final a1 of Zj and at least one b at the end of Zj, and
then followed by 3m − k alternations of a1, a2 in the remaining part of Z.
In other words, (a1a2)

3m−ka1b(a1a2)
3m−k is a subsequence of Z. It is not a

subsequence of Fk however, contradicting the fact that Fk is to be consumed
by Z. Thus we must have a full cancellation case of case d.

Now consider what immediately follows Zj in Z. It must either be of
the form a21b

Ba22 (obtained from a non-matched block), or, referring to (8),
be the word of the form

Zj+1 = a1b
B−m′

1

ℓ′
∏

s=2

(a22a
2
1b

B−m′
s)a2,

16

obtained from case a. for Yj+1. We claim it is impossible for Zja
2
1b

Ba22 to be
a subword of Z. If so, (a1a2)

3m−ka21(a1a2)
3m−k is a subsequence of Z, and

thus Z is not a subsequence of Fk. As before, this is a contradiction.
We have eliminated the other possibilities, so ZjZj+1 is a subword of Z

and nk = mℓ+1. Therefore, ms = 0 for all s ≤ ℓ, and we have

ZjZj+1 = a1b
B(a22a

2
1b

B)ℓ
ℓ′
∏

s=1

(a22a
2
1b

B−m′
s)a2.

Note that ZjZj+1 contains ℓ + ℓ′ alternations of a1, a2. Also note that
the subword YjYj+1 contains ℓ + ℓ′ + 1 many such alternations. There-
fore Z has 3m − k alternations of a1, a2, namely one fewer than Ek (as
desired). Similarly to the argument four paragraphs above, it follows that
ZjZj+1 must consume a subword G of Fk of the form (a21b

Ba22)
ℓ+ℓ′ . Since

m′
1 + · · ·+m′

ℓ′ = ij+1, ZjZj+1 has (ℓ+ ℓ′)B− ij many b’s. Hence the resul-
tant when G is consumed by Zj is equal to a1b

ij+1a2. If follows again that
when Fk is consumed by Z it yields the resultant Wk+1 as desired.

This completes the proof of Lemma 12.

The V-Condition. The proof of Theorem 3 will be finalized once we
prove that the V-Condition must hold:

Theorem 14. Any accepting computation ε||wS ⊢∗ε‖ε satisfies the V-condition.

Let

V =

ℓ−1
∏

i=0

v2ℓ−i =
∏

j=ℓ,...,2,1

(c1x
jyjc2)

2, (10)

i.e., V = vℓvℓ · · · v2v2v1v1. (The dependence of V on ℓ is suppressed in the
notation.) The symbols c1, x, y, c2 occur only in the subwords vℓ of wS, and
V is the subsequence of wS containing these symbols, but in reversed order.
(We use the reversed order since it makes the proof below a little simpler
to state.) Clearly, any expression of wS as a square shuffle induces a square
shuffle for V . Therefore Theorem 14 is a consequence of Theorem 15:

Theorem 15. Let ℓ ≥ 1. The only accepting computation ε‖V ⊢∗ε‖ε is the
one that matches each vk in V with the other vk in V .

As a side remark, it is interesting to note that Figure 1 illustrates that
Theorem 15 would not hold if the vj ’s were instead defined to equal c1x

jc2
with the y’s omitted. Theorem 15 follows from the next three lemmas.

17

Definition 16. Each subword xj or yj shown in the definition of V in (10)
is called an x-block or a y-block, respectively. We also refer to them as
full x-blocks or full y-blocks after they have been pushed onto the queue to
emphasize that the complete subword xj or yj has been pushed onto the
queue without any x or y from the block being matched.

Lemma 17. If C is an accepting computation of V , then C does not match
any x (resp., y) with another symbol from the same x-block (resp., y-block).

Proof. V contains an even number of c1’s and an even number of c2’s. Con-
sider some x- or y-block β in C. There is either an odd number of c1’s before
(and therefore, after) β in V , or an odd number of c2’s before (and after)
β in V . If there are, say, odd numbers of c1’s then some c1 before β must
match some c1 after β during C. The non-nesting condition now implies
that no two symbols in β can be matched.

Lemma 18. Suppose C is an accepting computation for V , and C does not
completely match the first subword vℓ of V with the second vℓ of V (i.e., at
least one symbol from the second vℓ of V is pushed onto the queue). Then
there is a point in C where the queue contains either two full x-blocks or two
full y-blocks.

Proof. The proof splits into cases depending on how C starts off. For the
first case, suppose the first c1 of V does not match the second c1 of V .
By the non-nesting condition, this implies that the subword xℓyℓc2c1x

ℓyℓ is
pushed onto the queue. This puts two full x-blocks and two full y-blocks on
the queue, so the lemma holds in this case. So, henceforth assume that the
first c1 matches the second c1.

Now suppose the first x-block xℓ does not completely match the sec-
ond xℓ. Therefore, some of the x’s in the first xℓ match symbols from some
xj with j < ℓ. This x-block xj comes after the first two y-blocks (which
equal yℓ), so by the non-nesting condition, these two y-blocks are on the
queue by the time the algorithms consumes the x-block xj . So the lemma
holds in this case as well. Assume henceforth that the first c1x

ℓ is completely
matched with the second c1x

ℓ by C.
Finally, suppose that the first subword yℓc2 does not completely match

the second yℓc2. In this case, we claim that, after consuming the second c2,
C’s queue will contain ymc2y

mc2. To see this note that either the two
yℓ’s completely match (so m = 0) and then the c2’s are not matched by
assumption, or the two yℓ’s do not completely match (so m > 0) and then
the c2’s must be pushed to the queue since they cannot be matched while

18

a y is at the top of the queue. At any rate, the queue contains two c2’s
once the second c2 is consumed. By the non-nesting property, the second c2
on the queue must match the fourth c2 of V or a later c2 of V . Therefore,
the two x-blocks xℓ−1 that come prior to the fourth c2 are pushed onto the
queue, and the lemma holds again in this case.

Lemma 19. If C is an accepting computation for V and at some point
in C the queue contains two full x-blocks (respectively, contains two full
y-blocks), then there is a later point at which the queue contains two full
y-blocks (respectively, contains two full x-blocks).

Proof. Suppose C has two full x-blocks xm and then xj in the queue. Note
j ≤ m. Let the computation continue until xm has been matched, and then
until xj has been matched. The symbols of xm are matched by symbols from
x-blocks xs that have s < m (since the block xj was intervening). Therefore,
xm’s symbols must match x’s from at least two distinct x-blocks. Between
these two x-blocks there is a y-block, and by the non-nesting condition this
y-block is pushed onto the queue in its entirety. Similarly the x-block xj

is matched against symbols from at least two distinct x-blocks, and again
there is a y-block between those two x-blocks that is entirely pushed onto
the queue. Therefore, once the xj is matched, there are at least two full
y-blocks in the queue.

The dual argument works with x and y interchanged.

We can now prove Theorem 15:

Proof. The proof is by induction on ℓ. The base case ℓ = 1 is trivial. Suppose
ℓ > 1. If an accepting computation C matches the first two subwords
c1x

ℓyℓc2 against each other completely, then the rest of the computation C
is an accepting computation on the rest of V , namely V minus these first two
subwords. By the induction hypothesis, the latter accepting computation
matches each pair of subwords c1x

jyjc2, and the theorem holds. Otherwise,
if the first two subwords c1x

ℓyℓc2 of V are not completely matched by C,
then Lemma 18 states that C contains some point where its queue contains
either two full x-blocks or two full y-blocks. Lemma 19 then implies that
C’s queue must contain two full x- or y-blocks infinitely often, which is a
contradiction.

That completes the proof of Theorem 15, and thereby the proof of The-
orem 14, giving us the V-Condition that was needed for the proof of Theo-
rem 3.

19

We conclude by indicating how to modify the proof of Theorem 3 to
use an alphabet size of only 7. The first idea is that the symbol e0 can be
eliminated by using two extra occurrences of vℓ subwords. Eliminating the
use of the symbol e is more difficult however. We briefly sketch how this
can be done with a modified definition of ws:

w′
S := 〈loader′S〉〈distributor

′
S〉〈verifier

′
S〉.

The string 〈verifier′S〉 is defined like 〈verifierS〉, but with each subword vℓ
replaced by vℓ+4. Then define

〈loader′S〉 = v1

m
∏

i=1

(

a21b
2B+3a22

)

v1

〈distributor′S〉 = v2

m
∏

i=1

(

a21(a1b
B+1a2)

3a22

)

v2v3(a
2
1b

Ba22)
3mv3v4(a

2
1b

Ba22)
3mv4.

We claim that Lemma 5 still holds for 〈loader′S〉〈distributor
′
S〉, and thus w′

S

defines a logspace computable many-one reduction from 3-Partition to
Square. We leave the details of the proof to the reader.

References

[1] P. Austrin, How hard is unshuffling a string (reply). CS Theory Stack
Exchange reply to [4]. http://cstheory.stackexchange.com/q/692,
August 2010.

[2] R. E. Burkhard, E. Çela, G. Rote, and G. J. Woeginger,
The quadratic assignment problem with a monotone anti-Monge and a
symmetric Toeplitz matrix: Easy and hard cases, Mathematical Pro-
gramming, 82 (1998), pp. 125–158.

[3] S. R. Buss and P. N. Yianilos, Linear and O(n log n) time
minimum-cost matching algorithms for quasi-convex tours, SIAM Jour-
nal on Computing, 27 (1998), pp. 170–201. An extended abstract of
this paper appeared in Proceedings of the 5th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 1994, pp. 65-76.

[4] J. Erickson, How hard is unshuffling a string? CS The-
ory Stack Exchange posting. http://cstheory.stackexchange.com/
questions/34/how-hard-is-unshuffling-a-string, August 2010.

20

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.

[6] S. Ginsburg and E. Spanier, Mappings of languages by two-tape
devices, Journal of the A.C.M., 12 (1965), pp. 423–434.

[7] J. Gischer, Shuffle languages, petri nets, and context-sensivite gram-
mars, Communications of the ACM, 24 (1981), pp. 597–605.

[8] H. Gruber and M. Holzer, Tight bounds on the descriptional com-
plexity of regular expressions, in Proc. Intl. Conf. on Developments in
Language Theory (DLT), Springer Verlag, 2009, pp. 276–287.

[9] D. Henshall, N. Rampersad, and J. Shallit, Shuffling and un-
shuffling, Bulletin of the EATCS, 107 (2012), pp. 131–142.

[10] M. Jantzen, The power of synchronizing operations on strings, Theo-
retical Computer Science, 14 (1981), pp. 127–154.

[11] , Extending regular expressions with iterated shuffle, Theoretical
Computer Science, 38 (1985), pp. 223–247.

[12] J. Jedrzejowicz, Structural properties of shuffle automata, Gram-
mars, 2 (1999), pp. 35–51.

[13] J. Jedrzejowicz and A. Szepietowski, Shuffle languages are in P,
Theoretical Computer Science, 250 (2001), p. 31=53.

[14] , On the expressive power of the shuffle operator matched with
intersection by regular sets, Theoretical Informatics and Applications,
35 (2005), pp. 379–388.

[15] A. Mansfield, An algorithm for a merge recognition problem, Discrete
Applied Mathematics, 4 (1982), pp. 193–197.

[16] , On the computational complexity of a merge recognition problem,
Discrete Applied Mathematics, 1 (1983), pp. 119–122.

[17] A. J. Mayer and L. J. Stockmeyer, The complexity of word prob-
lems — this time with interleaving, Information and Computation, 115
(1994), pp. 293–311.

[18] W. F. Ogden, W. E. Riddle, and W. C. Rounds, Complexity of
expressions allowing concurrency, in Proc. 5th ACM Symposium on
Principles of Programming Languages (POPL), 1978, pp. 185–194.

21

[19] W. E. Riddle, A method for the description and analysis of complex
software systems, SIGPLAN Notices, 8 (1973), pp. 133–136.

[20] , An approach to software system modelling and analysis, Com-
puter Languages, 4 (1979), pp. 49–66.

[21] R. Rizzi and S. Vialette, On recognizing words that are squares for
the shuffle product, in Computer Science – Theory and Applications, 8th
International Computer Science Symposium in Russia, CSR, Lecture
Notes in Computer Science 7913, 2013, pp. 235–245.

[22] A. C. Shaw, Software descriptions with flow expressions, IEEE Trans-
actions on Software Engineering, SE-4 (1978), pp. 242–254.

[23] T. Shoudai, A P-complete language describable with iterated shuffle,
Information Processing Letters, 41 (1002), pp. 233–238.

[24] M. Soltys, Circuit complexity of shuffle, in International Workshop on
Combinatorial Algorithms 2013, vol. 8288 of Lecture Notes in Computer
Science, Springer, 2013.

[25] M. K. Warmuth and D. Haussler, On the complexity of iterated
shuffle, Journal of Computer and System Sciences, 28 (1984), pp. 345–
358.

22

