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ABSTRACT OF THE DISSERTATION
New Separations in Propositional Proof Complexity
by

Nathan Segerlind
Doctor of Philosophy in Computer Science
University of California, San Diego, 2003

Professors Samuel R. Buss and Russell Impagliazzo, Chairs

The problem of recognizing satisfiable formulas and propositional tautologies is
ubiquitous in computer science. Propositional proof systems are methods for es-
tablishing that a propositional formula is a tautology. In general, proof systems
correspond to algorithms for satisfiability so that lower bounds on proof sizes in a
given system correspond to lower bounds on the run time of the related satisfia-
bility algorithms. Moreover, the question of proof sizes is intimately connected to
questions such as NP versus coN P.

In this dissertation, we study the sizes of proofs in different propositional
proof systems. We prove new lower bounds on the sizes of proofs in the Res(k)
systems, we prove that constant-depth Frege systems with counting axioms do
not polynomially simulate constant-depth Frege systems with counting gates, and
we prove that constant-depth Frege systems with counting axioms polynomially
simulate Nullstellensatz refutations. As corollaries to these results, we obtain the
first separation of the Nullstellensatz and polynomial calculus systems with respect
to size, and an exponential separation between constant-depth Frege systems and
constant-depth Frege systems with counting axioms with respect to constant-width

CNFs. The lower bounds for the Res(k) systems include:

xi



1. The 2n to n weak pigeonhole principle requires size 2% to refute in
Res(y/log n/loglogn).

2. For each k, there exists a constant w > k so that random w-CNFs in n variables

require size 2°4™) to refute in Res(k).

3. We demonstrate sets of clauses on n variables that have polynomial size

Res(k + 1) refutations, but require size 2%"") to refute in Res(k).

Our lower bounds for proof sizes are proved using extensions of the switch-
ing lemma technique. The lower bound proofs for the Res(k) systems use a method
we call switching with small restrictions, and the lower bound proof for constant-
depth Frege with counting axioms uses a switching lemma that makes random
substitutions rather than 0/1 restrictions. The switching lemma for small restric-
tions allows us to prove the first separation between depth d circuits of bottom

fan-in £ + 1 and depth d circuits of bottom fan-in k.
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Chapter 1

Introduction

Propositional logic is the science of reasoning about statements that are
either true or false. Propositional formulas (also called Boolean formulas)
are expressions built up from variables that take the values TRUE and FALSE
using connectives such as and, or, implies, and not; for example, (A or B) implies
(C and(not D)). Some formulas are always true, no matter how truth assignments
are made to the variables; for example, (A and B) implies A and ((A and C) im-
plies B) implies ((C implies A) implies (C implies B)). Such formulas are called
tautologies. The recognition of tautologies is a central task in logic and computer
science and there are many systems for establishing that a given formula is a tau-
tology. This dissertation quantitatively compares the relative efficiency of various
systems for establishing that a formula is a tautology.

In computer science, the problem of recognizing tautologies often appears
in the guise of recognizing satisfiable formulas. A formula is said to be satisfiable
if there exists a truth assignment to the variables that makes the formula true.
Notice that a formula is a tautology if and only if its negation is not satisfiable.
This is the foundation of an important duality: any algorithm that can decide if a
formula is satisfiable corresponds to an algorithm that can decide if a formula is a
tautology and any algorithm that can decide if a formula is tautology corresponds

an algorithm that can decide if a formula is satisfiable.



The satisfiability problem is ubiquitous in both theoretical and applied
computer science. The famous P versus NP problem asks whether a polynomial-
time algorithm can recognize satisfiable formulas [77]. The recognition of satisfiable
formulas also has applications in areas such as artificial intelligence [8, 6, 7| and
the verification of hardware systems [5, 4]. For example, in hardware testing,
it is common to take a description of a circuit and compute a formula which is
satisfiable if and only if it is possible for a certain fault in production to cause a
run-time error. Indeed, because of its central role in the theory of N P-complete
problems, a vast host of computational problems, such as the solvability of systems
of polynomial equations over a finite field and the traveling salesman problem, are
equivalent to recognizing satisfiable formulas [84].

Propositional proof systems are methods for certifying that a propo-
sitional formula is a tautology. There are many propositional proof systems, but
all provide a straightforward, mechanistic procedure for verifying the correctness
of proofs. This is the defining characteristic of proof systems: it may not be easy
to find a proof that a formula is a tautology, but it should always be easy to
check that a proof is correct. Furthermore, we will consider only complete proof
systems. A proof system is complete if it has a proof for every tautology.

The best known propositional proof systems are ones in which the prover
begins with a small set of self-evident axioms and repeatedly applies inference rules,
such as “from A and A implies B infer B”, to successively derive new formulas until
the desired tautology is obtained. These systems are known in the proof complexity
literature as Frege systems [74]. There are proof systems that are not Frege
systems. For example, any algorithm which solves the satisfiability problem for
Boolean formulas also functions as a propositional proof system: a transcript of
the algorithm’s run on an input that outputs “unsatisfiable” provides a proof that
the input is the negation of a tautology. In general, any polynomial time mapping
f from strings onto the set of tautologies is viewed as a propositional proof system:

if f(S) = 7 then S is a proof of 7 [74]. The requirement that f is polynomial-time



computable captures the principle that the proofs should be easy to check, and the
requirement that f is onto captures the requirement the proof system is complete.
Systems of this form are called abstract propositional proof systems. The
sizes of proofs in abstract propositional proof systems is of great interest because
there exists such a system in which every tautology has a proof whose size is at
most polynomially larger than the size of the tautology if and only if NP is equal
to coN P [74].

While every Frege system is an abstract proof system, it is not known
whether or not every abstract proof system can have its proofs transformed into
Frege proofs with only a polynomial (or even subexponential) increase in size.
This problem, whether or not Frege systems can polynomially simulate [74] all
abstract propositional proof systems, has important consequences. If Frege systems
polynomially simulate every abstract proof system, then the NP versus colNP
problem is more concrete than is currently thought — it would be a question about
a specific Frege system rather than a question about all abstract proof systems.
If there exists an abstract proof system which is not polynomially simulated by
Frege systems, then this method for certifying tautologies would be more efficient
than classical propositional proof systems, possibly leading to new satisfiability
algorithms.

Most researchers believe that Frege systems cannot polynomially simulate
all abstract proof systems. However, proving lower bounds for the sizes of Frege
proofs seems to be a very difficult problem and at present there are no proven

superpolynomial size lower bounds for Frege proofs.

I.LA Circuit Complexity and Restricted Frege Systems

One of the difficulties for proving lower bounds on the sizes of Frege
proofs is that currently there is little understanding of the expressive power of

the propositional formulas used in Frege proofs. It is consistent with our current



knowledge that every function in NP could be computed by a small Boolean
formula. Without knowing which concepts can be expressed by small formulas, it
seems impossible to know what tautologies have small Frege proofs.

Some restricted classes of formulas are known to require exponential size
to compute certain functions. One such class is the class of constant-depth® formu-
las with the connectives AND, OR and NOT. Circuits of this form are known to
require exponential size to compute functions involving counting, such as modular
sums or whether a majority of the input variables is to TRUE [11, 66, 14]. Another
class of circuits with proven size lower bounds for specific functions is the class of
constant-depth formulas with the connectives AND, OR, NOT and counting gates?
modulo a prime p. When p and ¢ are distinct primes, constant-depth circuits with
counting modulo p gates are known to require exponential size to compute sums
modulo ¢ [83, 82]. By limiting Frege systems to use formulas only from these
classes, we obtain constant-depth Frege systems and constant-depth Frege
systems with counting gates [57].

Although the name “restricted Frege systems” suggests weakness, constant-
depth Frege systems are actually quite powerful and can simulate many of the
algorithms used by automated theorem provers and satisfiability solvers. Size
lower bounds for these proof systems imply run time lower bounds for the related
satisfiability algorithms. For example, satisfiability algorithms such as the Davis-
Putnam-Logemann-Loveland algorithm (DPLL) implicitly create proofs in resolu-
tion, a depth-one Frege system. Common extensions of these algorithms, such as
formula caching [81], also generate constant-depth Frege proofs. The Grébner ba-
sis algorithm (over a finite field) can be simulated by constant-depth Frege systems
with counting gates [70].

Although there are some proven size lower bounds for constant-depth

Frege systems, many issues remain open. All known lower bounds for constant-

'Formula depth is essentially the maximum number of alternations of AND and OR from an input
to the output. See section I.E for a more formal treatment.

2These gates have an unlimited number of Boolean (0/1) inputs and are true if the sum of the inputs
is divisible by p. See section I.E for a more formal treatment.



depth Frege systems exploit the inability of constant-depth formulas to express
counting functions.

Tautologies known to require exponential size constant-depth Frege proofs
include the pigeonhole principle, which expresses the impossibility of placing
n + 1 pigeons in n holes without collisions [48, 50, 51], the modular counting
principles, which express the impossibility of partitioning a set of size N into
pieces of size m when N is indivisible by m [54, 58, 56, 57|, and the Tseitin
graph tautologies, which generalize the fact that the sum of the degrees of a
graph cannot be odd [9]. The proof sizes needed for tautologies that do not involve
counting or involve it only weakly remain a mystery. Notable open problems
of this flavor are proving size lower bounds for constant-depth Frege proofs of
weak pigeonhole principles (the impossibility of placing 2n or n> many pigeons
into n holes without collision), finding constant depth tautologies that require
superpolynomial depth d proofs but have polynomial size depth d + 1 proofs,
and proving lower bounds on the expected size of a proof of unsatisfiability for
a randomly generated 3-CNF. The sizes of proofs of unsatisfiability for random
3-CNF's is especially important because it addresses whether difficult tautologies
are common or exceptional, and it has connections to the complexity of computing
approximate solutions to min-bisection and other NP-complete problems [78].

For constant-depth Frege systems with counting gates, there are no proven
size lower bounds. Because constant-circuits with counting gates modulo a prime
are known to require exponential size to compute certain functions, such as ma-
jority or sums modulo another prime, it seems that proof size lower bounds for
these systems should be within our grasp. For this reason, there has been much
interest regarding proof systems that utilize modular counting in limited ways.
Three such systems are: constant-depth Frege systems with counting ax-
ioms [53, 54, 55, 56, 57, 58, 59, 68| (counting axioms state that a set of size N
cannot be partitioned into sets of size m when N is indivisible by m), the Nullstel-

lensatz system [56, 57, 59, 61, 60], which captures static polynomial reasoning,



and the polynomial calculus [70, 71, 63, 72, 73], which captures iterative poly-
nomial reasoning. One motivation for this line of research is the possibility that
constant-depth Frege proofs with counting gates might be efficiently simulated by
a subsystem, one with proven size lower bounds. For example, in circuit complex-
ity, any constant-depth circuit of ANDs, ORs, NOTs and sums modulo a prime
can be transformed into an equivalent OR-of-ANDs-of-polynomials with only a
quasipolynomial® increase in the size [79]. It is not known if the analogous depth
reduction result holds for Frege systems because it is not known if the translation
can be done in a way that preserves proof structure.

This dissertation furthers our knowledge of both lower bounds for proof
sizes in constant-depth Frege systems and the relationship between constant-depth
Frege systems with counting gates and its subsystems. We establish new lower
bounds for weak pigeonhole principles and random, constant-width CNF's in constant-
depth Frege systems known as the Res(k) systems. We also establish that constant-
depth Frege systems with counting axioms can polynomially simulate Nullstellen-
satz refutations, but cannot polynomially simulate constant-depth Frege systems

with counting gates or even the polynomial calculus.

I.A.1 The Res(k) Systems

Technically speaking, the Res(k) systems are not proof systems, but refu-
tation systems. A refutation system is a proof system that proves the input for-
mula is unsatisfiable. Because a formula is unsatisfiable if and only if its negation
is a tautology, a refutation is a proof that the negation of the input formula is a
tautology. Res(k) is a propositional refutation system whose formulas are ORs
of ANDs where each AND contains at most k£ variables (although some variables
may be negated) * [45].

The Res(k) systems can be viewed as intermediate between resolution

3A quasipolynomial function in n is on of the form n®(°6°™ where ¢ is a constant.

1A formula of this form is called a k-DNF and the Res(k) systems are sometimes called k-DNF
resolution.



and constant depth Frege systems. Resolution can be thought of as Res(1) and
depth two Frege can be thought of as Res(n) (where n is the number of variables).
An interesting phenomenon is that increasing the size of the conjunctions allowed
can affect the ability of the systems to prove tautologies that involve some count-
ing. The weak pigeonhole principle, which states that it is impossible to place 2n
pigeons into n holes without collisions, has quasipolynomial size Res(n0(es”“'n))
refutations whereas it requires exponential size resolution refutations. Therefore,

there must be a critical range for k£ between 1 and polylog(n) where these argu-

ments become possible in sub-exponential size.

I.B Contributions

In this dissertation, we present several new results on the sizes of proposi-
tional proofs. One of our lower bound techniques also establishes a new separation

in circuit complexity.

1. The 2n to n weak pigeonhole principle requires size 2®) to refute in
Res(y/logn/loglogn).

Our lower bounds for refutations of the 2n to n weak pigeonhole principle are

the first for Res(k) with £ > 3. The weak pigeonhole principle (for any num-
ber of pigeons) is known to require an exponential number of steps to refute
in resolution [29, 75, 17, 42, 24, 15, 16, 23, 20]. Atserias, Bonet and Este-
ban [47] gave exponential lower bounds for Res(2) refutations of the 2n to n
weak pigeonhole principle. Moreover, because there exist Res(polylog(n))
refutations of the 2n to n weak pigeonhole principle of quasipolynomial size
[37], our result brings the size of conjuncts allowed close to the range when

sub-exponential size proofs are known to be possible.

After this result appeared in conference [41], our techniques were extended
by Alexander Razborov to show that the weak pigeonhole principle requires

exponential size to refute in Res(elogn/loglogn), where € is a constant [21].



2. For each k, there exists a constant w > k so that random w-CNFs in

n variables require size 24" to refute in Res(k).

Our lower bounds for Res(k) refutations of random w-CNF's are the first such
lower bounds for Res(k) with & > 3. Resolution refutations of randomly
chosen sets of clauses were known to require exponential size [27, 24, 39].
Atserias, Bonet and Esteban [47] gave exponential lower bounds for random
3-CNFs in Res(2). We extend these results to Res(k), although the width of
the CNFs increases with & (it is 4k® +2). At present, the Res(k) systems are
the strongest fragments of constant-depth Frege systems for which we know
there are superpolynomial size lower bounds for refutations of random sets

of clauses.

3. We demonstrate sets of clauses on n variables that have polyno-
mial size Res(k + 1) refutations, but require size 2%") to refute

in Res(k).

Our separation between Res(k 4 1) and Res(k) is the first for £ > 3. Atserias,
Bonet and Esteban [47] proved a quasi-polynomial separation between Res(2)
and resolution; this separation was later strengthened to almost-exponential

by Atserias and Bonet [22]. Our result further improves this separation to

20(n)

4. Constant-depth Frege systems with counting axioms do not polyno-

mially simulate constant-depth Frege systems with counting gates.

The relative power of constant-depth Frege systems with counting axioms
and constant-depth Frege systems with counting axioms had been open for
some time. The motivation for this question is that while there are yet
no proven superpolynomial size lower bounds for proof sizes in constant-
depth Frege systems with counting gates, there are exponential lower bounds
for the sizes of proofs for some tautologies in constant-depth Frege systems

with counting axioms [53, 54, 55, 56, 57, 58, 59]. An efficient simulation of



constant-depth Frege systems with counting gates by constant-depth Frege
systems with counting axioms would give the desired proof size lower bounds

for the former system.

Our lower bounds shows that a polynomial simulation is not possible. More-
over, the tautologies for which we prove the lower bound for have polynomial
size proofs in the polynomial calculus, so we obtain the slightly stronger
result of a separation between proof sizes for the polynomial calculus and

constant-depth Frege systems with counting axioms.

5. Constant-depth Frege systems with counting axioms polynomially

simulate Nullstellensatz refutations.

We define a notion of reducibility from Boolean formulas to sets of polyno-
mials and show that if a Boolean formula reduces in small size to a set of
polynomials with a small Nullstellensatz refutation, then the formula has a

small constant-depth Frege with counting-axioms refutation.

This simulation has four consequences: It provides a general method for
finding small proofs in constant-depth Frege systems with counting axioms.
It shows that there are constant width CNFs that require exponential size
constant-depth Frege refutations but have polynomial size constant-depth
Frege with counting axioms refutations. When combined with result 4, it
establishes a size separation between Nullstellensatz and polynomial calculus
refutations. Moreover, it shows that techniques previously used to establish
lower bounds for constant-depth Frege systems with counting axioms are not

only sufficient but necessary.

The proofs of size lower bounds for constant-depth Frege systems with count-
ing axioms that appeared in papers such as [56, 57, 59, 68] followed the strat-
egy of converting an alleged small proof into a low degree Nullstellensatz
refutation and then proving that the low degree Nullstellensatz refutation

cannot exist. Low degree Nullstellensatz refutations are small because there
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are O(n?) monomials of degree d. Therefore, our simulation shows that if
there were a low degree Nullstellensatz refutation, there would be a small

constant-depth Frege with counting axioms proof.

6. Nullstellensatz refutations do not polynomially simulate polynomial

calculus refutations with respect to size.

Previously, it had been known that there are systems of polynomials in n
variables that have constant degree polynomial calculus refutations, but re-
quire degree Q(n/logn) Nullstellensatz refutations [42, 60]. However, it was
conceivable that the Nullstellensatz system could simulate the polynomial
calculus efficiently with respect to size using refutations of high degree and

small size. Our separation shows that this is not the case.

7. For each constant d and k, we give a function that is computable
by polynomial size depth d, bottom fan-in k 4+ 1 circuits and re-
quires exponential size to be computed by depth d, bottom fan-in

k circuits.

Our result refines results of Cai, Chen and Hastad [12]. They showed that
for each constant d, there exist functions computable with polynomial size,
depth d+1, bottom fan-in 2 circuits that require exponential size to compute
with depth d circuits, and that for each constant &, there exists a function of n
variables computable by depth d circuits of polynomial size and bottom fan-
in O(logn) that requires exponential size to compute with depth d circuits

of bottom fan-in k.

Our lower bounds for proof and circuit sizes are proved using extensions
of the switching lemma technique. A switching lemma is a guarantee that after
randomly setting some of the variables to 0 and 1, with high probability, a dis-
junction of small ANDs can be represented by a conjunction of small ORs, thus
“switching” an OR into an AND [11, 66, 14, 65]. Repeated application of such a

lemma allows one to decrease the depth of a circuit until it is either a CNF or a
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DNF. Such arguments were first developed to show that constant-depth circuits
require exponential size to compute the parity function. Switching lemmas are
used in the study of propositional proofs to transform small, constant-depth Frege
proofs into proofs in another system for which we can show that the proofs in
question do not exist.

The lower bound proofs for the Res(k) systems use a method we call
switching with small restrictions, and the lower bound proof for constant-depth
Frege with counting axioms uses a switching lemma that makes random substitu-

tions rather than 0/1 restrictions.

I.C Credits and Coauthors

The results on Res(k) refutations and circuit bottom fan-in was done
jointly with Sam Buss and Russell Impagliazzo and appeared previously in FOCS
2002 [41].

The separation between constant-depth Frege systems with counting gates
and constant-depth Frege systems with counting axioms was done jointly with Rus-
sell Impagliazzo and appeared previously in FOCS 2001 [68].

The simulation of Nullstellensatz refutations by constant-depth Frege
with counting axioms refutations was done jointly with Russell Impagliazzo and

appeared previously in ICALP 2002 [80].

I.D Outline of the Dissertation

We define the propositional proof systems used in this dissertation and
summarize the relevant in chapter II

In chapter III, we prove the switching lemma for small restrictions and
use it to prove the separation between depth d, bottom fan-in £ + 1 circuits and
depth d, bottom fan-in & circuits. This chapter uses no proof theory and may be

read independently of the other chapters.
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The lower bounds for the Res(k) proof systems are proved in chapter IV.
These results are proved using the switching lemma of chapter III and that chapter
is necessary prerequisite reading for this chapter.

In chapter V, we show that constant-depth Frege systems with counting
axioms can polynomially simulate Nullstellensatz refutations. This chapter stands
apart from chapters III and IV and can be read before either of those chapters.

The separation between constant-depth Frege systems with counting gates
and constant-depth Frege systems with counting axioms is proved in chapter VI.
It may be advisable to read chapters III and V before reading this chapter, de-
pending on how familiar the reader is with switching lemmas and proof systems
such as the Nullstellensatz system or constant-depth Frege with counting axioms.

The earlier chapters introduce these tools in a gentler way.

I.LE Notation and Background

I.E.1 Boolean Formulas and Circuits

A literal is a variable or its negation. A term is a constant 0 or 1 or
a conjunction (AND) of literals. Our convention is that a term is specified as a
set, of literals, with 1 corresponding to the empty set and 0 to any literal and its
negation. We say that a term 7' contains a literal [ if [ € T, and that a term T
contains a variable x if either x € T or —x € T. We will often identify literals with
terms of size one, and will write [ instead of {I/}. A DNF is a disjunction (OR)
of terms, specified as a set of terms. A k-DNF is a DNF whose terms are each
of size at most k. A clause is a 1-DNF, i.e. a disjunction of literals. The width
of a clause C, written w(C), is the number of literals appearing in C. The width
of a set of clauses is the maximum width of any clause in the set. A CNF is a
conjunction of clauses, specified as a set of clauses. A k-CNF is a CNF whose
clauses are each of width at most k. Two terms ¢ and ¢’ are consistent if there

is no literal [ such that [ € t and =l € ¢'.
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When we study constant-depth circuits and constant-depth Frege sys-
tems, we need to use AND and OR gates of unbounded fan-in. An OR gate of
unbounded fan-in has any number of inputs and evaluates to 1 if at least one of
the inputs evaluates to 1, and evaluates to 0 otherwise. Similarly, an AND gate of
unbounded fan-in has any number of inputs and evaluates to 0 if at least one of
the inputs evaluates to 0, and evaluates to 1 otherwise. An equivalent approach
we do not use in this dissertation is to use fan-in two gates and measure depth in
terms of the number of quantifier alternations.

By convention, all circuits are organized into alternating layers of AND
and OR gates, with connections appearing only between adjacent levels. NOT
gates may have only variables as their inputs. The output gate is said to be at
level one, the gates feeding into the output gate are said to be at level two, and so
forth. The depth of a circuit is the maximum level of an AND or OR gate in the
circuit. The size of a circuit is the number of AND and OR gates appearing in it.
The bottom fan-in of a depth d circuit is the maximum number of inputs to a
gate at level d.

A common augmentation of constant-depth circuits is the addition of
modular gates. While we will not use them directly in any of our results, such
systems motivate several of our results, and we include their definition for com-
pleteness. Let p and a be integers. A MOD,, , gate is a Boolean connective which
outputs true if the sum of its inputs is @ modulo p and outputs false if the sum of
its inputs is not @ modulo p. Constant-depth circuits with AND, OR and MOD p
gates are organized into levels so that all gates in the same level are of the same
type. The depth of a circuit is the maximum level of an AND, OR, or MOD p gate
in the circuit.

For more detail on the basics of constant depth circuits, the reader is
advised to consult the survey by Boppana and Sipser [13].

A restriction is a map from a set of variables to {0, 1, *}. For a formula

F, the restriction of F by a restriction p, F [,, is defined as usual, replacing
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each gate whose value becomes determined by that value. For any restriction p,

let dom(p) denote the set of variables to which p assigns the value 0 or 1.

I1.E.2 Miscellaneous Mathematical Notation

For graphs G = (V,E) and S C V we will write G — S to denote the
induced subgraph on V'\ S.
In this dissertation, we perform many manipulations on partitions of sets

into pieces of a fixed size. We make use of the following definitions:

Definition I.E.1 Let S be a set. The set [S]™ is the collection of m element
subsets of S; [S]" = {e | e C S, le] = m}. Fore, f € [S]", we say that e
conflicts with f, e L f, ife# fanden f #0.

When N is a positive integer, we write [V] for the set of integers {i | 1 <
i < N}. The collection of m element subsets of [N] are denoted by [N]|™, not by
[~]™

Throughout this dissertation, the word polynomial is used to mean “mul-

tivariate polynomial.”

Definition I.E.2 A monomial is a product of variables. A term is scalar mul-

tiple of a monomial.

I.E.3 Chernoff Bounds

In this dissertation, we make use of a simplified form of the Chernoff
bounds. These formulations come from standard references on applying such

bounds in algorithmics, (c.f. [32, 33]).

Lemma 1 Let Xy,...,X, be independent random indicator variables. Let p =

E[>T X,), then PrY1 X; < &) <e ™8 and Pr[>r, Xi > 2u] < e7#/*.



Chapter 11

A Survey of Propositional Proof

Systems

In this chapter, we summarize the propositional proof systems that are
the principal objects of study of this dissertation.

To allow for more elegant comparisons between different proof systems,
we treat all proof systems as refutation systems. Propositional proof systems are
usually viewed as deriving tautologies by applying inference rules to a set of ax-
ioms. However, it is useful to take the dual view that proof systems establish
that a set of hypotheses is unsatisfiable by deriving FALSE from the hypotheses.
Such systems are called refutation systems. The Nullstellensatz and polynomial
calculus systems demonstrate that sets of polynomials have no common solution,
and are inherently refutation systems. Frege systems are traditionally viewed as
deriving tautologies, but for ease of comparison, we treat them as refutation sys-
tems. This is especially appropriate when proving that a CNF is unsatisfiable, as
an unsatisfiable CNF may be viewed as a set of clauses such that no assignment
satisfies every clause.

To facilitate the comparison between refutation systems that work with
Boolean formulas, such as constant depth Frege, and refutation systems that work

with sets of polynomials, such as the Nullstellensatz system, we identify the logical

15
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constant FALSE with the field element 0 and the logical constant TRUE with the
field element 1. This way, there is no confusion when discussing propositional

formulas and polynomials in the same variables.

II. A Resolution

Resolution is a refutation system for propositional logic. It is one of the
most studied proof systems, and is used as the basis for many satisfiability algo-
rithms. Back-tracking algorithms such as DPLL that branch on a single variable
provide tree-like resolution refutations on unsatisfiable formulas. General resolu-
tion proofs correspond to adding a limited form of memoization (previously refuted

subproblems are saved for reuse rather than refuted again) to DPLL.

Definition II.A.1 Resolution is the refutation system whose lines are clauses

and whose only inference rule is

AVz —zVB
AV B

Resolution:

Let C be a set of clauses. A resolution derivation from C is a sequence
of clauses Fy, ..., F,, so that each F; either belongs to C or follows from the
preceding lines by an application of the resolution rule. For a set of clauses C, a
resolution refutation of C is a derivation from C whose final line is the empty
clause. The size of a resolution refutation is the number of lines it contains. S(C)
denotes the minimum size of a resolution refutation of C. If C is satisfiable, then
C has no refutation and we use the convention that S(C) is co. wr(C) denotes the
minimum width of a resolution refutation of C; if C is satisfiable then there is no

refutation and we use the convention that wg(C) is oo.

In this dissertation, we make use of the following well-known property of

resolution.
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Lemma 2 Let C; and Cy be unsatisfiable sets of clauses on disjoint sets of vari-
ables. If there is a resolution refutation ' of C1 U Cq, then there is a refutation T’

of either Cy or Cy. Moreover, w(I') < w(T).

Because of the simplicity of the resolution system, a great deal is known
about the refutation sizes required for many CNFs. The first lower bounds for
resolution refutations were proved by Tseitin who showed that a fragment known
as regular resolution requires exponential size to prove the pigeonhole principle
[29]. About fifteen years later, Haken showed that the resolution system requires
exponential size to refute the pigeonhole principle [75]. Subsequently, it was shown
that resolution requires exponential size to refute the pigeonhole principle, the
impossibility of placing m pigeons into n holes when m > n, regardless of the value
of m [42, 24, 15, 16, 23, 20]. Also, resolution refutations of randomly chosen sets
of clauses are known to require exponential size with high probability [27, 24, 39].

The resolution system plays a supporting role in chapter IV. The lower
bound proofs for the sizes of Res(k) refutations all have the following outline:
Suppose for the sake of contradiction there is a small Res(k) refutation. We apply
a switching lemma and convert the small Res(k) refutation into a narrow resolution

refutation, contradicting the results of [39].

II.LB The Res(k) Systems

The Res(k) refutation system is a generalization of resolution that rea-
sons with k-DNF's. As resolution refutations correspond to satisfiability algorithms
that branch on a single variable, Res(k) refutations correspond to algorithms that
branch on more general conditions: the value of any function of up to k vari-
ables. The sizes of Res(k) refutations were first studied by Krajicek [45], who
was motivated by the connection between Res(polylog(n)) and the provability of
combinatorial statements in the arithmetic theory 77 () (a fragment of Peano’s

arithmetic that allows induction only on certain bounded formulas). The first
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non-trivial lower bounds for Res(k) with £ > 1 (that do not follow from known
lower bounds for constant-depth Frege systems) were proved by Atserias, Bonet
and Esteban [47], who gave exponential lower bounds for Res(2) refutations of the

2n to n weak pigeonhole principle and of random 3-CNFs.

Definition I1.B.1 Res(k) is the refutation system whose lines are k-DNF's and

whose inference rules are given below (A, B are k-DNF’s, 1 < j < k, and

L, ..., 1; are literals):
A AV - AVI;
Subsumption: ——— AND-introduction: Vh . Vi
AV AV AL
AV /\5:1 li BV V{:I i AV /\{:1 Li

Cut: AND-elimination:

AV B AV
Let C be a set of k-DNFs. A Res(k) derivation from C is a sequence of k-DNFs
Fy, ..., F,, so that each F; either belongs to C or follows from the preceding lines
by an application of one of the inference rules. For a set of k-DNFs C, a Res(k)
refutation of C is a derivation from C whose final line is the empty clause.
The size of a Res(k) refutation is the number of lines it contains. Sk(C) denotes
the minimum size of a Res(k) refutation of C. If C is satisfiable, then C has no

refutation and we use the convention that Sk(C) is oc.

We do not use the exact definition of the Res(k) system in our arguments;

the main property we use is strong soundness: if F' is inferred from Fi, ..., F},
and ?y,...,t; are consistent terms of Fy, ..., F; respectively, then there is a term ¢
of F' implied by /\g:1 t;. In other words, any reason why Fi, ..., Fy are true implies

a reason why F'is true. This is stronger than mere soundness'

Lemma 3 Res(k) is strongly sound.

!An example of an inference rule that is sound but not strongly sound is —% The rule is sound

zV-z©

because the conclusion is always true, but the term y does not imply x nor does it imply —z.
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II.C Constant-Depth Frege Systems

Constant-depth Frege systems arise naturally in three settings. The first
is as a generalization of proof systems such as resolution: whereas resolution al-
lows the formation of only clauses, constant-depth Frege systems are able to form
constant-depth formulas. The second is as a proof-theoretic analog of the circuit
class AC? of constant-depth formulas. The third is in the study of first-order the-
ories of arithmetic. Paris and Wilkie showed that proofs in IA, (a fragment of
Peano’s arithmetic that allows induction only on bounded formulas) can be trans-
lated into small constant-depth Frege proofs [62]. Hence, establishing size lower
bounds for constant-depth Frege proofs is a way of obtaining independence results
for these arithmetic theories.

A Frege system is a sound, implicationally complete propositional proof
system over a finite set of connectives with a finite number of axiom schemata and
inference rules. By the methods of Cook and Reckhow [74], any two Frege systems
simulate one another up to a polynomial factor in size and a linear factor in depth.

For concreteness, the reader can keep in mind the following Frege system.

Definition I1.C.1 Let F be the proof system whose connectives are NOT gates,

-, and unbounded fan-in OR gates, \/, and whose inference rules are:

. _— ) A AVB (mA)VC
Azioms: AV -A Weakening: VG Cut: VO
. VXVvVY , V(XUY)
M Do Do
erging V(XU Unmerging VXVVY

Let H be a set of formulas. A derivation from H is a sequence of for-
mulas f1,..., fm So that for each i € [m], either f; is a substitution instance of an
aziom, f; is an element of H, or there exist j,k < ¢ so that f; follows from f; and
fx by the application of an inference rule to f; and fi. For a given formula F', a
proof of F is a derivation from the empty set of hypotheses whose final formula is

F'. For fized set of hypotheses H, a refutation of H is a derivation from H whose
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final formula is FALSE. The size of a derivation is the total number of symbols ap-
pearing in it. We say that a family of tautologies (unsatisfiable formulas) 7, each
of size s(n), has polynomial size constant-depth Frege proofs (refutations)
if there are constants ¢ and d so that for all n, there is a proof (refutation) of T,
so that each formula in the proof has depth at most d, and the proof (refutation)
has size O (s¢(n)).

In general, tautologies that involve counting are known to require large
constant-depth Frege proofs. Intuitively, this is because constant-depth formulas
cannot compute functions that involve counting. For example, the pigeonhole
principle, the modular counting principles, and the Tseitin graph tautologies, are
all known to require exponential size constant-depth Frege proofs [48, 50, 51, 9]. It
is not currently known if there are polynomial size constant-depth Frege refutations
of the weak pigeonhole principle (the impossibility of placing 2n pigeons into n
holes), or if a random 3-CNF can be expected to require exponential size constant-

depth Frege refutation.

II.D Constant-depth Frege Systems with Counting Gates

The proof systems whose lines are constant-depth circuits with modular
counting gates are called constant-depth Frege systems with counting gates. From
the perspective of mathematical logic, these systems correspond to fragments of

Peano’s arithmetic which allow counting quantifiers [62, 52].

Definition I11.D.1 Fiz a constant m. Let F,, be the proof system whose connec-
twes are NOT gates, unbounded fan-in OR gates, and unbounded fan-in MOD,, ,
gates, for 0 < a < m—1. The inference rules of F,, are those of F, with the addi-
tion of the following axiom schema: MOD,, (D), for 1 <a < m—1, “MOD,, .(0),

and for each a,

MODm,a(Al, e Ak, Ak—|—1) — (MODm,a(Al, e Ak) A _|Ak_|_1)
V (MODpa-1(A1, ..., Ag) N Agga)
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The sizes of proofs and refutations are defined analogously as for the Frege

system F.

Note that these systems augment constant-depth Frege systems not only
with modular counting gates, but with infinitely many axiom schema. While
these axioms have polynomial-size Frege proofs, they do not have polynomial-
size constant-depth Frege proofs. This is why the simulation of [74] does not show
that constant-depth Frege systems can simulate constant-depth Frege systems with
counting axioms with a polynomial increase in size and a linear increase in depth.
If we were to simply add counting gates to a constant-depth Frege system without
these axioms, the simulation would apply and the new system could be simulated
by constant-depth Frege systems with only a small increase in size.

Despite the successes for proving size lower bounds for constant-depth
circuits with counting gates [82], there are no known superpolynomial lower bounds

for constant-depth Frege systems with counting gates.

II.LE Constant-depth Frege Systems with Counting Axioms
Modulo m

Constant-depth Frege systems with counting axioms are a powerful frag-
ment of constant-depth Frege systems with counting gates. One of the central
results of this dissertation is that constant-depth Frege systems with counting ax-
ioms do not polynomially simulate constant-depth Frege systems with counting
gates.

After the discovery of lower bounds on the sizes of constant-depth Frege
proofs of the pigeonhole principle, it was discovered that there exist counting prin-
ciples that are stronger than the pigeonhole principle in a proof-theoretic sense.
Consider the “parity principle”: when n is odd, it is impossible to partition a set
of N elements into sets of size two. Because a perfect matching from a set of size

n—+1 to a set of size n provides exactly such a partition, this principle implies the
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pigeonhole principle. However, constant-depth Frege proofs of the parity principle
require exponential size even when the pigeonhole principle is allowed as an ax-
iom [53, 55]. This launched a study of the sizes of proofs needed when modular

counting axioms are added to constant-depth Frege systems.

Definition II.E.1 Letm > 1 and N #,, 0 be given. LetV be a set of N elements.

For each e € [V]™, let there be a variable z..

Countx = \/ /\ T, \/ (Te A z)

vEV \ e€[V]™
edv

Constant-depth Frege with counting axioms modulo m are constant-
depth Frege systems that allow the use of substitution instances of Count (wzth
N #,, 0) as azioms. The sizes of proofs and refutations are defined analogously as

for the Frege system F.

It is known that constant-depth Frege systems with counting axioms mod-
ulo p require exponential size to prove counting axioms modulo ¢ when ¢ has a

prime factor that is not a factor of p [54, 55, 56, 57, 58, 59].

II.LF Nullstellensatz Refutations

One way to prove that a system of polynomials fi, ..., fx has no common
roots is to give a list of polynomials py, . . ., px so that Zle pifi = 1. Because we are
interested in translations of propositional formulas, we add the polynomials 2% —
as hypotheses to guarantee all roots are zero-one roots. This method, known as the
Nullstellensatz system, was first introduced as a tool for proving lower bounds
for constant-depth Frege systems with counting axioms [56]. The Nullstellensatz
system is efficient in the sense that if there is a low-degree Nullstellensatz refutation
of a system of polynomials, then such a refutation can be found by solving a system

of linear equations.
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Definition I1.F.1 For a system of polynomials f1,..., fr in variables x4,...,x,
over a field F', a Nullstellensatz refutation is a list of polynomials pq, ..., pg,
T1,...,Tn satisfying the following equation:
k n
dopifi+ Y ri(a—z) =1
=1 j=1
For a polynomial q, Nullstellensatz derivation of q from f;,... fi is
a list of polynomials py,...,px, T1,...,T, Satisfying the following equation:

k n
opifi+) (@l —x) =4
i=1 j=1

The degree of the refutation (derivation) is the mazimum degree of the
polynomials p;f;, ; (x? — xj). We define the size of a Nullstellensatz refutation

(derivation) to be the number of monomials appearing in py,...,px and fi,..., fx.

Hilbert’s weak Nullstellensatz guarantees that over a field, all unsatisfi-
able systems of polynomials have Nullstellensatz refutations [3]. We can define
Nullstellensatz refutations over any ring, but such systems are no longer complete.
In this dissertation, we work with Nullstellensatz refutations of polynomials over
Z,, and for the sake of generality, we make no assumptions on m unless otherwise
stated.

Nullstellensatz refutations modulo p are known to require super-constant
degree to refute polynomial versions of the pigeonhole principle [71, 63|, counting
principles of modulus ¢ when ¢ is coprime with p [56, 57|, and the linear induction

principles (if z; is true, and x; implies z;, for all 4, then z,, must be true) [61, 60].

I1.G The Polynomial Calculus

The polynomial calculus is a method for demonstrating that a system of
polynomials fi, ..., fr has no roots by expressing the polynomial 1 by iteratively
taking linear combinations of previously derived polynomials or multiplying pre-

viously derived polynomials by arbitrary polynomials [70]. The system is efficient
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in that if there exists a degree d polynomial calculus refutation of a system of
polynomials in n variables, then the refutation can be found in time n°@ by a

variant of the Grobner basis algorithm.

Definition I1.G.1 Let fi,..., fix be polynomials over a field F'. A polynomial
calculus refutation of fi,..., fy over F' is a sequence of polynomials g1, ..., gm
s0 that, g, = 1, and for each i € [m)|, either g; is f; for somel € [k], g; is 1> — x;
for some l € [n], g; is ag; + bg, for some j,l < i,a,b € F, or g; is x,g; for some
j<i,l€ln].

The size of a polynomial calculus refutation is the total number of mono-
maials appearing in the polynomials of the refutation. The degree of a polynomial
calculus refutation is the maximum degree of a polynomaial that appears in the refu-

tation.

The polynomial calculus is known to require exponential size to refute
the pigeonhole principle [71, 63] and the algebraic translations of random 3-CNFs
(72, 69].

The polynomial calculus system can simulate Nullstellensatz refutations
with no increase in size or degree. Moreover, the polynomial calculus is more
efficient than the Nullstellensatz system in with respect to degrees [61, 60]. The
polynomial calculus can refute the linear induction principles in constant degree
whereas this system requires super-constant degree Nullstellensatz refutations.
One of the results of this dissertation is that the polynomial calculus can prove
principles in polynomial size that require super-polynomial size Nullstellensatz

refutations.



Chapter 111

A Switching Lemma for Small

Restrictions

A switching lemma is a guarantee that after the application of a randomly
chosen restriction, a disjunction of small ANDs can be represented by a conjunction
of small ORs, thus “switching” an OR into an AND [11, 66, 14, 65]. One thing
that all of these switching lemmas had in common was that the random restrictions
used set a majority of the variables.

In this chapter, we prove a switching lemma that is allowed to set a
small number of the variables, even as few as n! ¢ out of n. The trade-off is that
ORs of extremely small ANDs are transformed into ANDs of modestly small ORs.
Therefore, our switching lemma cannot be iterated to prove lower bounds for proof
systems of depth more than two. However, one application of our switching lemma
suffices to prove lower bounds for the Res(k) proof systems, because each line in
such a proof is of depth two with small bottom fan-in.

At the end of this chapter, we apply our switching lemma to obtain an
exponential separation between depth d circuits of bottom fan-in £ + 1 and depth

d circuits of bottom fan-in k.

25
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III.A Switching with Small Restrictions

A common formulation of switching lemmas is that after the application of
a random restriction, a DNF can be represented by a short decision tree. Functions
represented by a height h decision tree can be computed by an A-CNF and by an
h-DNF, so this formulation allows OR gates to be switched to an AND gates. The
decision tree formulation of the switching lemma is especially useful for proving
size lower bounds for Res(k) refutations because of a connection between decision

trees and resolution refutations that we prove in chapter IV, section IV.A.

Definition III.A.1 A decision tree is a rooted binary tree in which every inter-
nal node is labeled with a variable, the edges leaving a node correspond to whether
the variable is set to 0 or 1, and the leaves are labeled with either 0 or 1. Every
path from the root to a leaf may be viewed as a partial assignment. For a decision
tree T and v € {0,1}, we write the set of paths (partial assignments) that lead
from the root to a leaf labeled v as Br,(T). For a partial assignment p, T' [, is the
decision tree obtained by deleting from T every edge whose label conflicts with p
and contracting along each edge whose label belongs to p. We say that a decision
tree T strongly represents a DNF F if for every m € Bry(T), for allt € F,
t 2= 0 and for every m € Br(T), there exists t € F, t [,= 1. The representation
height of F', h(F), is the minimum height of a decision tree strongly representing
F.

If a function is computed by a height h decision tree, then we can compute
the function with an h-CNF: for each branch that leads to a leaf labeled 0, include
the clause stating that that branch is not taken. In chapter VI we use the fact that
if F' is strongly represented by a height h decision tree, then it can be computed
by a degree h polynomial over any field.

Our switching lemma will exploit a trade-off based on the minimum size
of a set of variables that meets each term of a k-DNF. When this quantity is

small, we can build a decision tree by querying these variables and recursing on
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the (k—1)-DNFs created. When this quantity is large, the DNF has many disjoint

terms and is likely to be satisfied by a random restriction.

Definition III.A.2 Let F' be a DNF, and let S be a set of variables. If every term
of F' contains a variable from S, then we say that S is a cover of F. The cover

number of F, c(F), is the minimum cardinality of a cover of F.

For example, the 3-DNF zyz V -z V yw has cover number two.
The switching lemma is shown to hold for all distributions which satisfy
certain properties. When we apply the switching lemma, we will show that the

random restrictions used satisfy these properties.

Theorem 4 Let k > 1, let sg,...,8,_1 and pi,...,pr be sequences of positive
numbers, and let D be a distribution on partial assignments so that for everyi < k
and every i-DNF G, if ¢(G) > si_1, then Pryep [G [,# 1] < p;. Then for every
k-DNF F:

Procn [M(F 1) > 3 | < S0 olEi=le)y,

=1

Proof: We proceed by induction on k. First consider k = 1. If ¢(F') < s, then
at most sy variables appear in F'. We can construct a height < sy decision tree
that strongly represents F' [, by querying all of the variables of F' [,. On the other
hand, if ¢(F') > so then Pr,ep [F' [,# 1] < p1. Therefore, h(F [,) is non-zero with
probability at most pIQZ?;II % = p; (because k = 1).

For the induction step, assume that the theorem holds for all £-DNFs,
and let F' be a (k + 1)-DNF. If ¢(F) > s, then by the conditions of the lemma,
Proep [F [,# 1] < pr+1. Because pyiq < Zfill 95 %ip;, we have that h(F [,) is
non-zero with probability at most Zf;l 93— 8i Di.

Consider the case when ¢(F) < s,. Let S be a cover of F' of size at
most sg. Let m be any assignment to the variables in S. Because each term of F

contains at least one variable from S, F' [, is a k-DNF. By combining the induction
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hypothesis with the union bound (and the fact F [,[,= F [[,), we have that

Prep [Br € (0,1)° A((F 1,) 1) > Sis] < 22(SE, 25 )
< Y2 (=5 )Pi

In the event that Yz € {0,1}°, h((F 1,) Ix) < S2F4 si, we construct
a decision tree for F' [, as follows. First, query all variables in S unset by p,
and then underneath each branch, 3, simulate a decision tree of minimum height
strongly representing (F' [,) [g. For each such 3, let 7 = (p U ) [g, and note that
h((F T,) 1) = h((F [,) Ix). Therefore the height of the resulting decision tree is
at most s, +max, .1y h((F [,) [x) < Zf:o Si.

Now we show that the decision tree constructed above strongly represents
F |,. Let m be a branch of the tree. Notice that 7 = 8Uc, where 3 is an assignment
to the variables in S \ dom(p) and o is a branch of a tree that strongly represents
(F [,) Ig. Consider the case that 7 leads to a leaf labeled 1. In this case, o
satisfies a term t' of (F' [,) [3. We may choose a term ¢ of F' so that ¢’ = (¢ [,up),
and m = 8 U o satisfies the term ¢ [, of F' [,. Now consider the case that 7 leads
to a leaf labeled 0. There are two cases, (F' [,) [g= 0 and (F [,) [s# 0.
(F I,) 1= 0, then for every term ¢ of F' [,, t is inconsistent with 4 and hence with
n. If (F [,) [p# O then because the sub-tree underneath 3 strongly represents
(F'T,) I, for every term t of (F [,) [, t is inconsistent with o. Therefore, every

term of F' [, is inconsistent with either 3 or o, and thus with 7 = U 0. n

We usually use this theorem in the following normal form for the param-

eters:

Corollary 5 Let k, s and d be positive integers, let v and 0 be real numbers from
the range (0,1] and let D be a distribution on partial assignments so that for every

k-DNF G, Pryep [G [,# 1] < d2-%e@)” " For every k-DNF F:
Pryep [B(F 1,) > 25] < dk2 7"

where §' = 2(5/4)% and ' = ~*.



Proof: Let s; = (6/4)(s""), and p; = d2=%. Note that s;_,/4 > (6/4)s;_,
(6/4)(8/4) 71" > (6/4)'s" = s;. It follows that Y5 s; < 7.0 s;/47
2s;. Also, for any i-DNF G, with ¢(G) > s,_1, Pryep [G [,# 1] < d2-9@)” <

. i—1
d270si1 = 90/ HTT)T = go—dsi, Thus, we can apply theorem 4 with parame-

IN

ters p1,..., Pk, So,---,Sk_1. For every k-DNF F:

ok o(Zhd Sj)pi

=1

IN

Proep [R(F 1,) > 2s] < Prpep [h,(F ) > Zf:_()l 5
< X 2i(d2) < dk2-2 = qra- o

ITT.A.1 Switching with Small Restrictions

In this subsection, we show that small, uniform restrictions meet the con-
ditions for the switching lemma. Using corollary 5, k-DNF's can then be converted
into decision trees — using restrictions that set only a polynomially small fraction
of the bits. We include it here for comparison with previous switching lemmas.
Later, it will be used to prove the lower bound on Res(k) refutations of random

CNFs. More complicated distributions are used for our other results.

Definition III.A.3 Letn > 0 andp € [0,1]. Define D, to be the family of random
restrictions which arises by assigning variables x with probability 1 — p, and 0, 1
each with probability ¥ .

Lemma 6 Leti > 1, G be an i-DNF, and p be chosen from D,. Then Pr|G [,#

_ (@)t

1] <e @ .

Proof: Because every covering set of G has size at least ¢(G), there is a set of
variable-disjoint terms of size at least ¢(G)/i (such a set can be found by greedily
choosing a maximal set of disjoint terms). Each of these variable-disjoint terms is
satisfied with independent probability at least (p/2)’. Therefore,

<G

Proen, (G [,# 1)< (1- (3)") T <o (B =" .
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Combining this with the switching lemma shows that a k-DNF is strongly

represented by a short decision tree when restricted.

Corollary 7 Let k > 1 be given. There exists v > 0 so that for any k-DNF F,

w>0,p>n Y& Pryep,[R(F [,) > w] < go—rwn /2

Proof: In the notation of corollary 5, set p=n="%*’ d=1,y=1, s = w/2 and

§ = (log e)% = (loge) ”;;2% Combining lemma 6 with corollary 5 shows that for

every k-DNF F'
Proep, [h(F 1,) > w] < k27200/20" /4 = fg—wloge)n=1/2/(4kk¥2k")
Because k is fixed, we may take v = (loge)¥/(4FkF2k"). n

We take a moment to contrast corollary 7 with Hastad’s switching lemma.
Recall that whenever F' [, is strongly represented by a height w decision tree, it is

also computed by a w-CNF.

Theorem 8 ([14], c.f. [13, 65]) Let positive integers k and w be given. Setting
¢ = (1++/5)/2 andy =2/1Iné (note that v > 4), we have that for any k-DNF F,

Pryep,[F' [, cannot be computed by a w-CNF| < (y(1 —p)k)®

To collapse a k-DNF to a w-CNF using theorem 8, it is necessary for
1 — p, the probability of a variable being unset, to be strictly less than %k On the
other hand, corollary 7 will collapse a k-DNF to a w-CNF when the probability of

a variable being unset is as large as 1 — n™*.

III.B An Application to Circuit Bottom Fan-in

Our first application of the switching lemma is an exponential size sepa-
ration between depth d circuits of bottom fan-in £ and depth d circuits of bottom

fan-in k£ + 1.
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Our circuits are organized into alternating layers of AND and OR gates,
with connections appearing only between adjacent levels. NOT gates may have
only variables as their inputs. The output gate is said to be at level one, the gates
feeding into the output gate are said to be at level two and so forth. The depth
of a circuit is the maximum depth of an AND or OR gate in the circuit. The size
of a circuit is the number of AND and OR gates appearing in it. The bottom
fan-in of a depth d circuit is the maximum number of inputs of a gate at level
d. For more detail on the basics of constant depth circuits, consult the survey by

Boppana and Sipser [13].

I11.B.1 The Functions

Definition IT1.B.1 [10, 13] Let integers d and my, ..., mg be given, and let there

be variables x;, . ;, for 1 <i; < mj.

mj,...,,mgq __ ... . .
N AN O E

11<my i2<ma tg<myq
Where () = \/ if d is even, and () = A\ if d is odd.
The Sipser function £ is f;" " with m; = \/W, My =+ =
Mg—1 = m and mg = \/chm/Z.
The modified Sipser function g7 is gf:l’“"md’k , withmy = \/m/logm,

me =---=mg 1 =m, and mg = 4y/dmlogm/2.

Notice that the function f]* depends on md_lm many variables and it
can be computed by a circuit of depth d and size linear in the number of variables.
Furthermore, we will often identify these functions with the circuits defining them.

Our result builds upon the earlier result that it is impossible to decrease
the bottom fan-in of a circuit computing a Sipser function without without increas-
ing the size or the depth. Moreover, ¥, circuits of small bottom fan-in circuits

require exponential size to compute fj".
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Theorem 9 [1/] For all d > 1, there exists ¢4 > 0 so that if a depth d, bottom
fan-in k circuit with an AND gate at the output and at most S gates in levels 1
through d — 1 computes f', then either k > m< or S > 2™,

For all d > 1, there exists By > 0 so that if a depth d + 1, bottom fan-in
k circuit with an OR gate at the output and at most S gates in levels 1 through d

computes fT*, then either S > 2™’ o k> mpPa,

We use the modified Sipser function g;n’k“ to obtain the exponential

separation between depth d + 1, bottom fan-in k£ + 1 and depth d + 1, bottom
fan-in k circuits. Notice that the function g;"’k has 4m?~'y/d/2 many blocks
and 4km?1y/d/2 many variables. Moreover, it can be computed by a circuit

of depth d + 1, bottom fan-in £ and size linear in the number of variables. For

each 11,...,%9, we say that the variables z; _; 1,...,% . i,k come from block

(i1,...,1q). Variables in the same block occur in the same bottom-level conjunction
k

of g7"".

I11.B.2 The Lower Bounds

We will show that depth d + 1 circuits with bottom fan-in k£ require
exponential size to compute g;"’kH. In light of theorem 9, it suffices to consider
only circuits with an AND gate at the output level. Furthermore, we consider only
the case when d is even. This ensures that all gates at depth d are OR gates. The
case for odd d is dual and we simply invert the random restriction used. Each
gate at depth d computes a k-DNF, and we will apply a random restrictions which
almost certainly collapse all of the k-DNF's to narrow CNF's and thus collapse the
circuits to depth d circuits with small bottom fan-in. On the other hand, the

m.k+1

random restrictions will probably leave g, containing f7* as a sub-function,

and thus we obtain a contradiction to theorem 9.

Definition II1.B.2 Let m, d and k be given. Set m; = \/m/logm, mgy = --- =

Mma—1 = m and mg = 4y/dmlogm/2.
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Let Bg,l(’)kﬂ be the random distribution on partial assignments given by the
following experiment: for each iy < mq,...,iq < mg, with independent probability

probability % either set x;, .. i,; = *, for all j € [k + 1], or uniformly choose a 0/1

assignment to {x;, i | j € [k + 1]} which sets at least one of the variables to 0.
The dual distribution, B:fikﬂ, selects a restriction according to B;?(’)kﬂ and then

inverts the 0s and 1s.

Lemma 10 Let k > 1 be given. There exists a constant vy, > 0 so that for every
k-DNF F:
PrpeBQ"’k“ [F I 1] < 277t

,0

Proof: We say that two terms 7" and 7" are block-disjoint if no variable of T’
shares a block with a variable of 7". More formally, whenever a variable z;, ;. o

appears in 7" and a variable z;, appears in 7", we have that (i1,...,i4) #

wddt
(J1,---,7a)- Because each term involves at most k variables, there must be a set
of ¢(F)/k many variable-disjoint terms, and hence a set of ¢(F)/(k(k + 1)) many
block-disjoint terms.

We now show that each term is satisfied with probability at least Gik.
Because the literals of a term come from at most & distinct blocks, the chance that
every variable in the term is set to 0 or 1 is at least 1/2%. Conditioned on this
event, the probability of satisfying the term is at least 1/3*. To see this, consider
the chance of satisfying each literal of the term in turn, conditioned on the event
of satisfying the previous literals. If a variable from that block has already been
set to 0, then clearly the probability of satisfying the current literal is 1/2. If not,
then suppose there [ variables in the block of the current variable that have not
yet been set to a value. The probability of satisfying the current literal is at least
(271 —1)/(2' —1). Because there are k + 1 variables and the term has size at most
k, 1 > 2, and thus the probability is at least 1/3.

The events of satisfying block-disjoint terms are independent, therefore

we have:
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1 c(F)/(k(k+1))
PrpEBgfbk‘H [F r;ﬁ‘é 1] < (1 - G_k)

Set = —logy(1 — &)/ (k(k + 1)). m

Symmetrically, the dual result holds for £.-CNF's when we apply a random

- k41
restriction from BJ;".

Lemma 11 Let k > 1 be given. There exists a constant €, so that for all d, for
all w sufficiently large with respect to k, and for every depth d + 1, bottom fan-in
k circuit C of size S < 2% when by p is chosen from B;'f(’)kﬂ (B;'Hkﬂ ), with
probability at least 3/4 , C |, is is equivalent to a depth d, bottom fan-in w circuit
with at most S gates in levels 1 through d — 1.

Proof: We will solve for the particular values of ¢, and w after going through the
calculations.

We consider the case when d is even; the case when d is odd is handled
by using the restrictions Bgﬁkﬂ instead of B;rf(’)kﬂ. Each gate at depth d is an OR
gate and its inputs are AND gates of fan-in at most k. For each gate g at depth
d, we let Fy denote the k-DNF computed by the sub-circuit at g.

Suppose that there is a partial assignment p € BZ?(’)k so that for each depth
d gate g of C, h(F, [,) < w. For each g at depth d, let T, be the shortest decision
tree representing F, [,. We can compute C [, with a depth d, bottom fan-in w
circuit with at most S gates in levels 1 through d — 1 by starting with C, replacing
each level d gate g with the conjunction of the negated branches of Bry(7,) and
then merging these conjuncts with the AND gate at depth d — 1 to which ¢ sends
its output.

We now show that for p chosen according to the distribution Bgf(’)k, with
probability at least 3/4, every depth d gate g of C has h(F, [,) < w.

Let g be a depth d gate of the circuit. By combining lemma 10 with
corollary 5, setting d =1, vy =1 s = w/2 and § = -y, shows that
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—wn~k 4k
PrpeBgfék [R(Fy) > w] < k27%/

Because there are at most S = 2%" many gates at depth d, by the union
bound, there exists a gate with h(F,) > w with probability at most 2@(¢x—7%/4*)Hlogk,

We simply take ¢ sufficiently small so that this probability is less than 1/4. [

Theorem 12 For all k > 1, d > 1, there exists ex,€q > 0 so that for every m
sufficiently large, every size S, depth d + 1 bottom fan-in k circuit for g;n’kﬂ has

S > 2ekm

Proof: We will have to take m sufficiently large to apply theorem 9 and lemma 11,
and large enough for an application of the Chernoff bounds. Set w = m® (with ¢4
from theorem 9) and S = 2%" (with € from lemma 11). Furthermore, we consider
the case when d is even; the case when d is odd is handled by using the restrictions
BZL{HI instead of BZ?(’)HI.

Suppose, for the sake of contradiction, that C is a size S, depth d, bottom
fan-in k circuit computing ggl’kﬂ.

Fix an OR gate at depth d in g:ln’kH. When p is chosen from the distribu-
tion BZ(’)’“H, the expected number of blocks underneath this gate that are left unset
is ZW. By the Chernoff bounds, with probability at most e~V 4mlosm/2/4
are there fewer than \/m blocks left unset by p underneath this gate.

Because there are m® %2 /,/logm many depth d gates in g7"**', by the
union bound, the probability that there exists a depth d gate underneath which
there are fewer than \/m many blocks unset is at most
(m?=3/2 ] \/logm)e~Vamlosm/2/4 "and this tends to 0 as m tends to infinity.

On the other hand, by lemma 11, with probability at least 3/4 , C [, is
is equivalent to a depth d, bottom fan-in w circuit with at most S gates in levels

1 through d — 1.
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Therefore we may choose p € Bg?&kﬂ so that underneath each depth d

gate of ggn’kH there are at least y/dmlogm/2 many blocks unset by p, and C [, is

equivalent to a depth d, bottom fan-in w circuit with < S gatesinlevels 1,...,d—1.
Because C [, computes g;n’kH [p, a restriction of it computes f;*: set

some blocks to 0 and collapse the other blocks to a single variable. This gives a
depth d circuit with < S gates in levels 1,...,d — 1, and bottom fan-in w that

computes f7*, a contradiction to theorem 9. n
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Chapter 1V

Lower Bounds for the Res(k)

Refutation Systems

Our lower bounds are proved using the small restriction switching lemma
of chapter III. In section IV.A we show how to transform a Res(k) refutation
of a set of clauses whose lines are represented by short decision trees into a nar-
row resolution refutation of that same set of clauses. This conversion is used in
combination with the switching lemma to show prove lower bounds for Res(k) refu-
tations. Lower bounds for Res(k) refutations of the weak pigeonhole principle are
proved in section IV.B and lower bounds for Res(k) refutations of random CNF's
are proved in section IV.C. The separations between Res(k + 1) and Res(k) are
proved in sections IV.D and IV.E.

IV.A Decision Trees and Res(k) Refutations

All of our lower bounds for Res(k) refutations use the fact that when the
lines of a Res(k) refutation can be strongly represented by short decision trees, the

Res(k) refutation can be converted into a narrow resolution refutation.

Theorem 13 Let C be a set of clauses of width < h. If C has a Res(k) refutation
so that for each line F' of the refutation, h(F) < h, then wg(C) < kh .

37



38

Proof: We will use the short decision trees to construct a narrow refutation of C
in resolution augmented with subsumption inferences: whenever A C B, infer B
from A. These new inferences simplify our proof, but they may be removed from
the resolution refutation without increasing the size or the width.

For each initial clause C' € C, we let T be the decision tree that queries
the (at most h) variables in C, stopping with a 1 if the clause becomes satisfied
and stopping with a 0 if the clause becomes falsified. For a line F' of the Res(k)
refutation that is not a hypothesis, let Tr be a decision tree of minimum height
that strongly represents F'.

For any partial assignment 7 let C; be the clause of width < h that
contains the negation of every literal in 7, i.e., the clause that says that branch =
was not taken. We construct a resolution refutation of width < kh by deriving C;
for each line F of the refutation and each 7 € Bro(TF).

Notice that for m € Bro(Tp), C = 0, and for each C € C, for the unique
7 € Bry(Te), Cr = C.

Let F' be a line of the refutation that is inferred from previously derived
formulas Fi,...,Fj, j < k. Assume we have derived all C; € Bry(TF,) for 1 <
i < j. To guide the derivation of {C | m € Bro(Tr)}, we construct a decision
tree that represents AJ_, F;. The tree (call it T) begins by simulating, Ty, and
outputting 0 on any 0O-branch of Tp . On any 1-branch, it then simulates Tp,,
etc. If all 7 branches are 1, T outputs 1; otherwise 7" outputs 0. The height
of T is at most jh < kh, so the width of any such Cj, with 7 € Br(7T) is at
most kh. The set of clauses {C,, | 0 € Bro(T')} can be derived from the previously
derived clauses by subsumption inferences because every o € Bry(T') contains some
m e U, Bro(Tr,).

We now show that for every o € Bry(T), there exists a t € F so that
o satisfies t. Choose m € Bri(Tr,),...,m; € Bri(TF;) so that m U---Um; = 0.
Because the decision trees T, ..., T, strongly represent the k-DNFs Fi, ..., Fj,
there exist terms t; € Fi,...,t; € Fj so that /\g:1 t; is satisfied by o. By strong
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soundness of Res(k), there exists ¢ € F' so that o satisfies ¢.

Let o € Bro(TF) be given. Because Tr strongly represents F, o falsifies
all terms of F. By the preceding paragraph, for all 7 € Br(T), if 7 is consistent
with o, then m € Bry(T) (otherwise, o would not falsify the term of F' satisfied
by 7). For each node v in T, let 7, be the path (viewed as a partial assignment)
from the root to v. Bottom-up, from the leaves to the root, we recursively derive
Cr, V C,, for each v so that m, is consistent with 0. When we reach the root,
we will have derived C,. If v is a leaf, then m, € Bry(7T') so it has already been
derived. If v is labeled with a variable that appears in o, call it x, then there is a
child u of v with 7, = m, U {x}. Therefore, C,, V C, = C,, V C,. By induction,
the clause C;, V C, has already been derived. If v is labeled with a variable z
that does not appear in o, then for both of the children of v, call them w1, vo, the

paths m,, and m,, are consistent with . Moreover, C,rv1 vC,=zVC(C,, VC, and

C’m2 VC, =-xVC;, VC,. Resolving these two previously derived clauses gives
us Cr, V Cj. n

We will use this theorem after we apply a random restriction which si-
multaneously collapses every line of a Res(k) refutation to a short decision tree.
Hence, we can use a width lower bound for resolution refutations of a restricted

tautology to give a size lower bound for Res(k) refutations of the original tautology.

Corollary 14 Let C be a set of clauses of width < h, let I" be a Res(k) refutation
of C, and let p be a partial assignment so that for every line F of I', h(F [,) < h.
Then wgr(C [,) < kh.

IV.B Lower Bounds for the Weak Pigeonhole Principle

Definition IV.B.1 The m to n pigeonhole principle, PHPY, s the following

set of clauses:

1. For each i € [m], V¢ %ij-
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2. For each 1,1 € [m| with i # i, ~xz;; V ~xy ;.

Theorem 15 For every ¢ > 1, there exists € > 0 so that for all n sufficiently

large, if k < \/logn/loglogn, then every Res(k) refutation of PHPS™ has size at

least 2.

The idea of the proof for Theorem 15 is as follows: Suppose there is a small
Res(k) refutation of the weak pigeonhole principle. Then, by applying a random
restriction we obtain a low width resolution refutation of the restricted pigeonhole
principle. By the well-known lower bounds on the width of resolution refutations
of the pigeonhole principle, this is impossible.

In order to make the random restriction method work, we prove lower
bounds for for the pigeonhole principle restricted to a low degree graph. Because
these principles reduce to the pigeonhole principle by setting some variables to 0,
this suffices to prove lower bounds for the pigeonhole principle. The difficulty with
applying random restrictions directly to the clauses of the pigeonhole principle
is that there are clauses of high width which are not satisfied with very high
probability. If we were to choose random subset of the holes and place into each
hole a randomly chosen pigeon, then a clause of the form \/" | z; ; would be satisfied
with probability no better than the chance that hole j is in the random subset (this
will be no better than a constant in our proof). At the heart of this problem is
that each hole j appears in cn distinct variables, 1 ;, ..., %, j, and restricting the

principle to low degree graph solves this.

Definition IV.B.2 Let G = (U UV, E) be a bipartite graph. The pigeonhole
principle of G, PHP(QG), is the set of clauses

1. For eachu e U

Voo

veEV
{u,v}€E
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2. For each u,u’ € [m], with v # ', and each v € V with {u,v} € E and
{v',v} € E

Ly V Ty K

Definition IV.B.3 Let G = (U UV, E) be a bipartite graph. The maximum
degree of G, A(G), is defined to be max,cy deg(v).

Furthermore, we assume that all Res(k) refutations have been put into a
normal form in which no term of any DNF asks that two pigeons be mapped to

the same hole. See, for example, [47].

Definition IV.B.4 Let G = (U UV, E) be a bipartite graph. A term is said to
be in pigeon-normal-form if it does not contain two literals x,, and x, , with
u # u'. A DNF is said to be in pigeon-normal-form if all of its terms are in
pigeon-normal-form and a Res(k) refutation is said to be in pigeon normal form if

every line is in pigeon-normal-form.

Every Res(k) refutation of PH P(G) can be transformed into a refutation
in pigeon normal form which at must doubles the number of lines in the proof.
When there is an AND-introduction inference that creates a line not in pigeon

normal form, say
AVZyy AVZy, --- AV

AN Zyy ATy A N3 i

Replace the inference by a derivation that cuts AV, , with =z, ,V -z, ,

to obtain AV -z, ,. Cut this with AV z,, to obtain A. We may proceed through
the rest of the proof with A because it subsumes AV ,, A Zy » A /\g:3 l;.

IV.B.1 Random Restrictions

Definition IV.B.5 For a bipartite graph G = (U UV, E) and a real number p €
0,1], let M,(G) denote the distribution on partial assignments which arises from

the following experiment:
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Independently, for each v € V, with probability 1 — p choose to match
v and with probability p leave v unmatched. If v is matched, uniformly select a
neighbor u of v, set z,, to 1, and for every w # u that is a neighbor of v, set X,
to 0.

Let V, be the set of vertices of V' matched by p, let U, be the set of vertices
of U matched by p, and let S, = U, U V,,.

These restrictions randomly associate pigeons with holes in an injective
way. While some pigeons can be associated with multiple holes, no two pigeons
can be associated with the same hole. It is easy to check that for any p € M,(G),
we have that PHP(G) [,= PHP(G — S,).

Lemma 16 Letp € [0,1], 7 € [k] be given. Let G = (UUV, E) be a bipartite graph
with A = A(G). Let F be an i-DNF in pigeon-normal-form.

(log e)(1—p)te(F)

PrpeMp(G) [F [o7 1] <2 iATFL

Proof: For a term T, define the holes of T as Holes(T') = {v | zy, € T or 1y, €
T}. We say that two terms 7" and 7" are hole-disjoint if Holes(7")NHoles(71") = .

Because F' contains at least ¢(F') /i many variable-disjoint terms, and each
hole v € V appears in at most A many variables, F' must contain at least c(F')/iA
many hole-disjoint terms.

The events of satisfying hole-disjoint terms are independent, and for a
given term, T, the probability that 7' [,= 1 is at least (1 —p)’/A’. This is because
with probability (1 — p)¢, every hole of T is matched, and with probability at least
1/A® the holes are matched in a way that satisfies T' (here we use that F is in
pigeon-normal-form). Therefore, we have the following inequalities:

c(F) e(F)

Pr, [F [, 1] < (1= (1—p)'/A7) "8 < (enmat) 5 p-Sesiimres
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IV.B.2 Width Lower Bounds for Resolution

For the lower bound proof to work, we need a graph G so that after
the application of a random restriction p , with high probability, PHP(G) |,
requires high width to refute in resolution. We call such graphs robust, and in

this subsection we probabilistically demonstrate robust, low degree graphs.

Definition IV.B.6 A bipartite graph G is said to be (p, w)-robust, if when p is
selected from M,(G), with probability at least £, wg(PHP(G) 1,) > w.

All we need for the size lower bound is the following lemma, we prove
in the next sub-subsection. Readers who believe that random graphs should be

robust can skip to the proof of the lower bound.

Lemma 17 For all ¢ > 1, there exists d > 0, so that for n sufficiently large, there
exists a (3/4,n/24)-robust graph with A(G) < dlogn on the vertex sets [cn| and

[n].

Existence of Robust Graphs

As a starting point, we use a now standard lower bound of wgz(PHP(QG))

in terms of the expansion of G.

Definition IV.B.7 For a verter u € U, let N(u) be its set of neighbors. For a
subset V! C V| let its boundary be OV' = {u € U | |[N(u)NV'| =1}. A bipartite
graph G is said to be an (m,n,r,f)-expander if |V| = m, |U| = n, and for all
VICV, [V <r, [0V > fIV'].

Theorem 18 [39] If G is a bipartite graph that is an (m,n,r, f)-expander, then
wr(PHP(G)) > rf/2.

Definition IV.B.8 Let Gy np be the distribution on bipartite graphs with vertex

sets [m] and [n] in which every edge is included with independent probability p.

The following lemma was proven by Atserias, Bonet and Esteban [47].
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Lemma 19 [{7] Let m = cn, ¢ = 8™ o = L gnd f =20 Let G be selected

mq

according to the distribution G, 4.

[V )

Pr¢ |G is an (m,n,am, f) expander | >

Lemma 20 Let m = cn, let ¢ > % and let G be selected according to the
distribution G, p q-

Prg[wgr(PHP(G)) > n/12] >

[SLRIN )

Proof: Let a = qu and f = %. Because amf/2 = (1/mq)m(ng/6)/2 = n/12, an
application of theorem 18 shows that when G is selected according to Gm,n, ascinm,
with probability at least 2/3, wg(PHP(G)) > n/12.

Now consider G selected according to G, 4, With ¢ > %. Whenever
G is an edge-induced subgraph of G, wr(PHP(G1)) > wr(PHP(Gy)) because a
refutation of PHP(G)) can always be transformed into a refutation of PHP(Gy)
by setting some variables to 0. Therefore, by increasing the probability of including
an edge, the probability of having no small resolution refutation for PH P(G) only

increases. u

We now prove lemma 17.

Proof: Set m = ¢n, p = 3/4 and ¢ = 192f7inm

. Consider the joint distribution
that arises by selecting G' according to G ng and p according to Ms/u(G). We
will bound the probability that the degree is too large, that too many holes are
matched, and that the restricted graph is expanding.

By the Chernoff bounds, for each v € [n] the probability that v has degree
in excess of 2mgq is at most e~™4/4. By the union bound, the probability that there

~ma/4 - Similarly, the

exists some v € [n] of degree in excess of 2mgq is at most ne
probability that there exists some v € [m] of degree in excess of 2mg is at most
me~"4/*. Therefore, the probability that the maximum degree of G exceeds 2mgq

is bounded as follows:

nefmq/4 + mefnq/él — nefm192clnm/m + mefn19201nm/m — O(n7191)
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Remember that V, is the set of holes matched by the restriction p. By
the Chernoff bounds, the probability that [V,| > 2n(1 — p) = n/2 is at most
" _ oon/16

We now bound the probability that G — S, is an expander. First, up
to renaming vertices, G — S, is distributed as Gy, n,,¢; With n, = n — |V,| and
m, = m — |U,|. This is because for fixed sets of vertices V; C V and Uy C U,
when we condition on the event that V, = Vj and U, = Uy, the edges {u,v} with
u e U\Uyand v € V' \ V; are included in G — S, with independent probability
g. Now, condition on the event that |V,| < n/2. We have that m, = m — |U,| >
m —n/2 > m/2 and thus ¢ = 192clnm/m > 192clnm,/m > 192clnm,/2m, =
48 -2cIlnm,/m,. Because :’:—: < /5 = 2¢, we can apply lemma 20 and deduce that
wr(PHP(G — S,)) > n,/12 with probability at least 2. Because n, > n/2, with
the same probability, wg(G — S,) > n/24.

Combining the three inequalities from the preceding paragraphs shows

that the probability that G' contains a vertex of degree in excess of 192¢ Inm, that
V, contains more than n/2 vertices, or that wg(PHP(G — S,)) < n/24, is at most

1
g +O(n_191) +e—n/16

For sufficiently large n, this probability is bounded above by % By aver-
aging over the choices of the edges, there exists a bipartite graph G on vertex sets
[en] and [n] with A(G) < 2mg = 384clIn(cn), so that upon selection of p € R3/4(G),
wr(G — S,) > n/24 with probability at least . ]

IV.B.3 Size Lower Bounds for Res(k)

To prove the size lower bounds for Res(k) refutations of PHP" we first
prove size lower bounds for the weak pigeonhole principle restricted to a robust

graph, and then we reduce these principles to PHP:".
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Lemma 21 Foranyc > 1 andd > 0, there exists € > 0 so that for all n sufficiently

large, if k < \/logn/loglogn and G is a (3/4,n/24)-robust bipartite graph with
vertez sets of sizes cn and n and A(G) < dlogn, then Sy(PHP(G)) > 2™.

Proof: By lemma 16, for each 7 € [k] and every i-DNF F,
_ (loge)(1-3/4)’c(F) __ (loge)e(F)
Proems . () [Fl,#1] <2 i@legmi™ =2 ididlogm)Ft,
In the interest of obtaining a better bound, we will not appeal to corollary
5, but directly apply the theorem 4. We define sequences sg, ..., s, and pq,..., pg

for use in the switching lemma. Set sy = 2-(n/24 — 1). For each i € [k], set

.- ( loge ) o
' 2idi(dlogn)*) T
For each 7 € [k] set p; = 272%. For any i-DNF F so that c(F) > s,_1, we
have the following inequality:

(loge)s;_1 (loge)s;_1

Prpe s u(c) [F 1o 1] < 27 #4@hsm™T = 27 2ifalos it = 27%% = p,

It can be shown that there exists € > 0 so that for sufficiently large n,
sg > nf. To avoid distraction, we show this in in lemma 23, at the end of this
subsection. Suppose that I is a Res(k) refutation of PH P(G) of size less than 2™

By an application of theorem 4 and the union bound, we have:

k—1 k
€ k_IS'
Proesy () [3F €T, W(F [,) > Zsi < 2" Zpﬂzj:i 7

k k
< 95k ZPZQZ?;} Sj — szgzéc:i Sj
=1 =1

1

15i SO

We now bound pi22§=i % for each 7 > 0. For each 7, 5,41 <
Zf;l s; < 3s;. This gives us the following inequality:

pZQZf;zl 55— 22?;3 Sj—25i S 2(4/3—2)si — 2—(2/3)&' S 2_(2/3)5k S 2_(2/3)7’1,6
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Therefore:

Proe sy ac) [BF € T, h(F 1,) > (n/24 — 1) /k]

k—1
< Prpemyc) |3F €T, h(F 1)) > ) s
=0
k k
< ZpiQZj?;} 5 < Z2—(2/3)n< < |2~ (@/3nc _ glogk—(2/3)n°

i=1 i=1

For n sufficiently large, this probability is strictly less than 1/2. Be-
cause G is (3/4,n/24)-robust, for p € Mj,,(G), with probability at least 1/2,
wr(PHP(Q) I,) > n/24. Thus, there is a p so that wg(PHP(G) [,) > n/24 and
VF €T, h(F I,) < (n/24 —1). This is a contradiction because by corollary 14,
there is a resolution refutation of PHP(G) [, of width < n/24 — 1. ]

Theorem 22 For each ¢ > 1, there exists € > 0 so that for all n sufficiently large,

if k < \/logn/ loglogn, then every Res(k) refutation of PHP™ has size at least
2m,

Proof:

Apply lemma 17 and choose d so that for sufficiently large n, there exists
a (3/4,n/24)-robust graph G on vertex sets cn and n, with A(G) < dlogn. By
lemma 21, there exists € > 0 so that for k < y/logn/loglogn, Si(PHP(G)) > 2™.

Because PHP(G) can be obtained by setting some of the variables of PHP™" to
0, every Res(k) refutation of PHP" can be converted into a Res(k) refutation of
PHP(G) of the same or lesser size. Therefore, all Res(k) refutations of PHP™

must have size at least 2™°. n

Now we prove the lower bound on the number s, that we used in lemma

21. The constants are not optimized.

Lemma 23 There exists € > 0, so that all n sufficiently large, with

k< \/logn/ loglogn and sq, ..., s defined as in the proof of lemma 21, s, > nc.
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Proof: Unwinding the recursive definition of the s;’s, gives the following equality:

PRy i
1 L1 /1) 1 =7 3
Sk = ﬁ(]oge) E(Z) (dlogn) E(n/?él - 1)

k )
Because k < y/logn/loglogn, we have that %(loge)k%(i)zf'ﬂ]% =

no),

Sp = n—o(l)(l/d IOg n)(k+2)(k+1)/2(n/24_1) — n—o(l)2—(log(dlogn))(k2+3k+2)/2(n/24_1)

Because k < \/ logn/loglogn and d is a constant, for n sufficiently large,
(log(dlogn))(k* + 3k + 2)/2 = (logn)(1 + o(1))/2. Therefore,

sp = n oW (osm)(1e(0)/2(py o4 _ 1)

and thus there exists € > 0 so that for all n sufficiently large, sp > n°. [

IV.C Lower Bounds for Random CNFs

It is well-known that, in some cases, randomly generated sets of clauses
require exponentially large resolution refutations, see [27, 24, 39]. We extend these
results by giving exponential lower bounds for the size of Res(k) refutations of

randomly chosen sets of width 4.2 + 2 clauses.

Definition IV.C.1 Let n, A and w be given. The distribution F™* is defined
by choosing A - n many clauses independently, with repetitions, from the set of all

(Z) 2% clauses of width w.
QOur main result for this section is:

Theorem 24 For any € € [0, %), there exists 6 > 0, so that for n sufficiently large
and for A = n°,
J [Sk(F) < zn‘s} = o(1).

4k242
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The reason that our proof does not give lower bounds for refutations of
random 3-CNFs in Res(k) is that on one hand, we want our random restrictions
to have a good chance of satisfying a fixed k-term (so we can apply the switching
lemma), but on the other hand, the restrictions should have little probability of
falsifying any of the initial clauses (this would make the restricted set of clauses
trivial to refute). Because satisfying a k-term is equivalent to falsifying a k-clause,
we can only work with initial clauses width larger than £.

A set of clauses that, with constant probability, requires high width to
refute after random restriction is called robust. Recall the distribution D, from

definition II1.A.3.

Definition IV.C.2 Let F be a CNF in variables z1,...,x,. We say that F is
(p,r) robust if
PrpEDp [wR(F rp) Z T] Z 1/2‘

It turns out that for sufficiently large w, a random w-CNF is almost surely

robust. We state the result below and prove it in the following subsection.

Lemma 25 There exists a constant c so that for any constants w andt, w > 2t+2,
for every n sufficiently large, and every e € [0,1/2], if we set A = n® then the
following inequality holds:

Prpcgpa [Fis not (”_l/t,cn%)—robust} =o(1)

We now prove the size lower bound. We set bits with probability n=1/2+"

so we can collapse k-DNFs but still have that most 4k% + 2 CNFs are robust. For

each k£ > 1, let v, be the constant of corollary 7.

Lemma 26 Let n, r, w, and k be given. For sufficiently large n, if F' is a

(n~ Y2 r)-robust w-CNF, then Si(F) > ﬁQ(vk(Fl)/k\/ﬁ)-

Proof: Suppose that I' is a Res(k) refutation of F of size at most o=20(r—1/kvn),

—1/2k?

By corollary 7, with p=n and w = (r — 1)/k, we have that for every line F
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of T, Pryep, [A(F 1,) > (r —1)/k] < k27" =1/kvR_ By the union bound we have
that

Pryep, 3F € T h(F [,) > (r —1)/k] < |T|- k- 27— D/kvn

< Lotulr-1)/kvm) | gm0k — L

— 4k 4
Because F'is (p, r)-robust, with probability at least 1/2 over choices of p,

wgr(F [,) > r. Therefore, we may choose p € D, so that wg(F [,) > r and for all
FeTl,h(F|,) <(r—1)/k. This is a contradiction because by corollary 14 there

should be a width r — 1 resolution refutation of F' [,. n

1-2¢

Combining lemmas 25 and 26 with ¢t = 2k%, w = 4k% 4+ 2 and r = cni+2e
shows that a random (4k% + 2)-CNF almost surely requires exponential size to

refute in Res(k).

Corollary 27 There exists a constant ¢ so that for every k, for every n sufficiently

large and € € [0,1/2], if we set A = n€, then the following inequality holds.

1-3
Procema  [Sp(F) < (e FE—D/kVR | — (1)

4k2 42

This gives an exponential lower bound only when {73 > ;. This holds

exactly for € € [0, 7).

Theorem 28 For any € € [0, %), there exists 6 > 0, so that for n sufficiently large
and for A = nf,
Pro s [Sk(F) < 2"‘5} = o(1)

4k242
IV.C.1 Robustness of Random CNFs

In this section we show for appropriate clause densities, a random w-CNF
is almost surely robust.
We begin with a width bound for resolution refutations of random 3-CNF's

given by Ben-Sasson and Wigderson.
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Theorem 29 [39] There exists a constant c, so that for all n, and all e € [0,1/2]

with A = n¢, the following inequality holds.

1-2¢

Pryegna wr(F) < cnm] =o(1)

Lemma 30 There exists a constant ¢ so that for any constants w and t with
w > 2t + 2, for every n sufficiently large and € € [0,1/2], if we set A = n° and
p=n"" then the following inequality holds:

Pr,_,na [wR(F Ip) < cnTFie | = o(1)

FeFy
pE€Dp

Proof: Let w,t,n, e be given as above and set A = n and p = n~ /.

Because the expected size of dom(p) is pn, the Chernoff bounds show that
the size of dom(p) exceeds 2pn = 2n'~% with probability at most e=™'"/*/4 = o(1)

Let C be a fixed clause of width w that contains no opposite literals.
When we choose p € D,, the probability that the domain of p contains at least
w — 2 variables of C' is at most (;’) p“~2. Because w is a constant, this probability
is O (n=(w=2/t). Because w > 2t + 2, this probability is O (n=2). For any fixed
w-CNF F on An many clauses, an application of the the union bound shows that
there is some clause with > w — 2 of its variables in the restriction with probability
O(An-n~2) = o(1). Because this calculation holds for every w-CNF of An many

clauses, we have that

Pr,_na [3C € F, |vars(C) \ dom(p)| < 2] =o(1)

FeFl
pEDp

Let n’ = n — |domp|. Conditioned on the events that dom(p) < 2n!"%
and Vi € [A], |vars(C;) \ dom(p)| > 3, F [, is subsumed by a random 3-CNF
distributed as F3 A, (To see this, consider the distribution on 3-CNF's that chooses
three literals unset by p from each C;). Choose ¢ so that n¢ = (n')¢. By theorem

30 we have

Pr,_na |wg(F [,) <c(n')i#2d | =o(1)

FeFy,
PEDp
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Because n' > n — 2n'~'/*, we may choose ¢ so that

Pr, e |wa(F 1,) < ¢(n)i | = of1)
pEDp

From lemma 30, an averaging argument yields the following phrasing of

lemma 25.

Lemma 31 There exists a constant ¢ so that for any constants w andt, w > 2t+2,
for every n sufficiently large and € € [0,1/2], if we set A = n® and let p = n~/¢,
then the following inequality holds:

1—2¢
Prpeppa [Prpe??p [wR(F lp) < cnm} > 1/2] =0(1)

IV.D Separation Between Res(k) and Res(k + 1)

In this section we show that for each constant k, there is an ¢, > 0 and
a family of unsatisfiable CNFs which have polynomial size Res(k + 1) refutations
but which require size 2" to refute in Res(k). The unsatisfiable clauses are a

variation of the graph ordering tautologies [43, 44].

Definition IV.D.1 Let G be an undirected graph. For each vertex u of G, let
N(u) denote the set of neighbors of u in G. For each ordered pair of vertices
(u,v) € V(G)?, with u # v, let there be a propositional variable X,

The graph ordering principle for G, GOP(G), is the following set of
clauses: (1) The relation X is transitive: for allu,v,w € V(GQ), XyoAXpw = Xuw
(2) The relation X is anti-symmetric: for allu,v € V(G) withu # v, 7 X, ,V—-X, 4
(3) There is no locally X -minimal element: for every u € V(G), V ey Xou-

The k-fold graph ordering principle of G, GOPX(G), is obtained
. XE and

by replacing each variable X, , by a conjunction of k variables, X, W

7"
then using the distributive rule and DeMorgan’s law to express this as a set of

clauses.
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Notice that for a graph G on n vertices with maximum degree d, the
principle GO P(G) consists of O(n?) many clauses each of width at most max{3, d}.
Therefore, for any graph G on n vertices with maximum degree d, the principle
GOP*(G) has size O(n®k?).

It is readily shown that, for any graph G, the principle GOP(G) has
polynomial size resolution refutations. Furthermore, these refutations can be trans-
formed into Res(k + 1) refutations of GOP**1(G), as show in lemma 34. On the
other hand, we will also prove that Res(k) refutations of GOP**(G) require ex-

ponential size for certain graphs:

Theorem 32 Let k be a positive integer. There exist constants ¢ > 0 and ¢, > 0,
and a family of graphs G on n vertices (for n sufficiently large) with mazimum

degree clogn so that Res(k) refutations of GOP*TY(G) require size at least 20*),

IV.D.1 The Upper Bounds

We build Res(k) refutations for GOP*(G) from resolution refutations
of GOP(G). The resolution refutation of GOP(G) is a slight variation of the
resolution refutation of GT,, [43, 44].

Lemma 33 Let G be an n verter graph. There is a resolution refutation of

GOP(G) of size O(n?).

Proof: To construct the resolution refutation of GOP(G), we iteratively derive
the formulas Vieiglé}n] X, for all 7,5 with 1 <[ < j < n. The clauses Viie;?] X, ; are
derived by weakening the hypotheses. We proceed in stages as [ ranges from 1 up
1 X
with the transitivity axioms =.X;,;V-X;; VX, ; to obtain -X; ; VX, \/ie[;;,n] Xij-

to n. At stagel, for j = I, we have \/;;;,, . Xiy. For j # [, we resolve \/; ., ,

This clause is resolved with =X, ; vV —X; and Vieiglé,;z] X;,; to obtain \/_ | Xj;. At
stage n, with j = n, we have derived the empty clause. This refutation clearly has

size O(n?). =
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Lemma 34 For each k, and every G with n vertices and degree at most d > 3,

GOP*(G) has a Res(k) refutation of size O(n3k?).

Proof: Let 7 be the operation that replaces X,, by /\2 1 X X! and — Xy by
Vi:l _‘Xﬁ,u-

Let T be the size O(n?) resolution refutation of GOP(G) given above,
and remove all of its weakening inferences. If we apply the transformation 7 to the
refutation, we obtain a Res(k) refutation of 7(GOP(G)).

From the clauses of GOP*(G) we can derive the k-DNFs of 7(GOP(QG))
by a sequence of O(k?) many AND-introduction inferences per formula. Thus, we

have a Res(k) refutation of GOP*(G) of the claimed size. n

IV.D.2 Random Restrictions

In this subsection we define a distribution on partial assignments so
that --DNFs with high cover number are satisfied with high probability. The
idea is to randomly color the graph with 4k many colors, and then between
vertices u and v of distinct color classes, uniformly choose an assignment to

x! , Xkl X1 X{f’“ which makes both /\lc+1 XZ and /\kJrl XZ Jfalse.

u,vr u,v v,ur )

Definition IV.D.2 Let £k > 1 be given. Let G be a graph. The distribution
Pri1(G) on partial assignments p to the variables of GOP**Y(QG) is given by the
following experiment.

For each (u,v) € V(G)?, let 0" be chosen uniformly among 0,1 assign-
ments to X, ,, ..., XFtt so that for at least one i € [k + 1], o%*(X},,) = 0.
Select a random coloring of V(G) by 4k many colors, ¢, : V(G) — [4k].
The partial assignment p s defined as:

= U o

(u,v)EV(G)2
Cp (u)?éCp(U)
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The auxiliary total assignment o, is defined as:
o, = U a;j’”
(u,w)EV(G)?
If we let B, be the set of edges which are bichromatic under the coloring
¢y, then GOP*™(G) |, is GOP*(G \ B,). Moreover, we have the following

lemma, which the reader can easily check.

Lemma 35 Let G be a graph. Let p € Py1(G) be given. Let B, be the set of edges
of G that are bichromatic under c,. Let G1,...,Gp, be the connected components
of G\ B,.

GOP* (@) 1,= CJ GOP*(G))

j=1

Formulas with high cover number contain many variable-disjoint terms,
but the events of satisfying these terms with p € Pr.1(G) are not necessarily
independent. To obtain independence, we look at the pairs of vertices involved
with the literals of the terms. Remember that in the definition of GOP(G), there

are no variables X, ,,.

Definition IV.D.3 Let X}, be a variable of GOP*!(G). The underlying pair

of X, , is the set {u,v}. The underlying ordered pair of X, , is (u,v). Let T

»U

be a term. The set of vertex pairs of T, Pr, is defined as
Pr ={{u,v} | {u,v} is the underlying pair of a variable in T}
The set of vertices of T, St, is defined as St = Pr.

We use combinatorial sunflowers to obtain independence between the
events of satisfying terms of an -DNF with high cover number. To guarantee

that such a system exists, we apply the Erdos-Rado lemma.

Definition IV.D.4 A (p,1) sunflower is a collection of sets Pi, ..., P,, each of
size < 1, so that there ezists a set C so that P,N P; = C for alli,j € [p], i # j.
The set C' is called the core of the sunflower.
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Theorem 36 (/31], c.f. [67]) Letl be given. Let Z be a family of M distinct sets,

1
each with cardinality < 1. Z contains a (p,l) sunflower where p > (%) L,

Definition IV.D.5 Let Ti,...,T; be terms in the variables of GOP*Y(G). We

say that the terms are sufficiently independent if the following conditions hold:
1. Fori,j € [t], if i # j then St, # St;.
2. The family {St, | 1 < i <t} forms a sunflower with core C.

3. For each i € [t], each {u,v} € P;, {u,v} € C.

Lemma 37 LetTi,...,T; be a sufficiently independent set of terms. The sets Pr;,

1 <1 <t, are disjoint.

Proof: Let 7,7, 1 <i < j <t be given and let C' denote the core of the sunflower.
Suppose that {u,v} € Pr,N Pr,. We then have that {u,v} C Sp, NSz, so {u,v} C
C. Therefore, by the third property of sufficient independence, {u,v} ¢ Pp —

contradiction. =

We begin the task of showing that a DNF with high cover number is
likely to be satisfied by a random restriction. The quality of our bounds is most
affected by the use of the sunflower lemma, and the particular constants we obtain
at other points have limited impact. Therefore, to conserve space and readability,

we will not optimize many of the probabilities involved.

Lemma 38 Let k be given. There exist a constants B > 0 and ¢, > 0 so that for
every k-DNF F in the variables of GOP**Y(G), F contains a sufficiently indepen-
dent set of size at least By (c(F))2 — c.

Proof: F contains a set of s = ¢(F')/k many variable-disjoint terms, T7,...,T;.
It is possible that Sy,, = Sy, for some m # [. However, because all terms have
size at most k, for each i, |S,| < 2k, and a set of < 2k many vertices can be the

underlying set of fewer than ((k + 1)4k2)* many different variable-disjoint terms
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(since a variable X/ , is determined by an ordered pair (u,v) € [St]* and i € [k+1]).
m many variable-disjoint terms
whose underlying sets of vertices are distinct.

Therefore, there is a sub-collection of of

Because the underlying sets of vertices have size at most 2k, we can apply

5 )Zk = (—C(F) )ﬂ man
((k+1)4k2)* (2k)! T\ k((k+1)4Kk2)F (2k)! Y

terms whose sets of underlying vertices form an (s',2k) sunflower. We rename

the sunflower lemma to find s’ = (

these terms 77, ..., Ty.

Let C be the core of the sunflower Sr,,...,Sr,. Notice that [C] < 2k.
Call a variable bad if both of its underlying vertices belong to C'. There are
fewer than 2k? many unordered pairs of vertices contained in C, and each is the
underlying pair of exactly 2(k -+ 1) many variables. Therefore, there are fewer than
2(k+1)-2k* = 4k*(k + 1) many variables whose underlying vertices are both in C.
The terms 717, ..., Ty are variable-disjoint, so each bad variable appears in at most
one term, and when we remove all terms containing a bad variable, we obtailn a
sufficiently independent set of terms of size s' — 4k?(k +1) = (%) *

(2k)((k+1
4k (k +1). n

Before we bound the probability of satisfying a DNF with high cover

number, we make a few observations.

Fact 1 Let T be a term, and let p € Pri1(G) be given. T [,= 1 if and only
if the following two events occur: (i) T [,,= 1 and (ii) For each {u,v} € Pr,
cp(u) 7 ¢p(v).

Lemma 39 Let T be a term of size at most k.

1

PTPEPk+1(G) [T rUp: 1:| 2 3k

Proof: Order the literals of T" as [, ...,l;. For each j, 1 < j <k, if we condition
on the event that each of [y,...,[;_; is satisfied, then the probability of /; being

satisfied is at least 1/3. This is because in the worst case, [, is a literal XZ’;U and
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the other literals are X? ..., X/»", and in this case, the probability that Xy, is

w,wr *

satisfied by o, is at least 1/3. n

Lemma 40 Let G be graph and let k be a positive integer. Let F be a k-DNF

which contains contains t sufficiently independent terms.
1 \!
Proepyi(c) [F 1,# 1] < (1 - W)

Proof: Let Ti,...,T; be the sufficiently independent terms of F. Let C' be the
core of the sunflower Sp,...,Sr,. Fix a coloring of the vertices in the core,
X : C — [4k]. Condition on the event that ¢, [c= X.

We now lower-bound the probability that a given term 7" of the sufficiently
independent set is satisfied. First, we bound the probability that every underlying
edge of T is bichromatic. Note that by property (3) of sufficient independence, for
all {u,v} € Pr, {u,v} € C, so it suffices to bound the probability that the vertices
in S7\C receive distinct colors not in the range of x. Therefore, the probability that
every pair in Py is bichromatic, conditioned on ¢, [¢= ¥, is at least 1/ 22k Because

T contains at most £ literals, the probability that T' [,,= 1 is at least L. These

w

two events are independent, so we have Prep, ., () [T [,=1]¢, lc=Xx] > 5

w
a-|’_‘

Now we show that (when we condition on the event that ¢, [¢c= X) the
events T; [,= 1 are totally independent. Because the terms share no underlying
pairs, the events T; [,, are independent of the satisfaction of other terms. The
events “for each {u,v} € Pr, c,(u) # c,(v)” are independent of the satisfaction
of other terms. This is because once we condition on the event ¢, [¢= X, the
probability that every pair of Pr, is bichromatic under ¢, depends only on the
values that c, takes on Sz, \ C and, for all i # j, S, N Sy, = C.

Combining the results of the previous two paragraphs shows that
Prpepe) [F 1o# 1] ¢p le=x] < (1 - ﬁ)t Because this holds for all colorings
x : C — [4k], we have that Prjep,, () [F 1,7 1] < (1 - ﬁ)t n
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We now have the lemma relating cover number to the probability that a

restriction satisfies a k-DNF.

Lemma 41 For each k there exist positive constants 6, v and d so that for any
k-DNF F':
Prycpy i) [F Tp# 1] < d2- 8

Proof:
By lemma 38 F' contains a sufficiently independent set of at size at least
B (c(F))2 — ¢, By lemma 40:

1

1 )ﬁk(C(F)) 2k —cp,

PrPEPk+1(G) [F r/ﬁé 1] < (1 - 3k92k
Because k is fixed, this concludes the proof with 6 = —3; log (1 — 54 ),

v=1/2k and d = (1 — 5¢) "™

IV.D.3 Width Lower Bound for Resolution

In this subsection we show that for each n, if G is a graph on n vertices
satisfying a certain expansion-like property, then wgr(GOP*1(G)) = Q(n). Com-
bining this with a probabilistic calculation that there exist graphs G so that for
p € Px11(G), with probability at least 1/2, wg(GOP*(G) 1,) = Q(n).

The proof of the resolution width bound is similar to the one used by
Bonet and Galesi for the GT,, principles [44]. They worked with complete graphs,
but we do not because the principles GOP?(K,) have size in excess of 2". Fortu-
nately, for the proof technique to work, G need not be complete but instead have

the following property:

Definition IV.D.6 Let G be an undirected graph on n-vertices. We say that G
is e-neighborly if between every pair of disjoint sets of vertices, A, B C V(G) with
|Al, |B| > en, there exists an edge joining A and B.
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We now show that resolution refutations of GOP(Q) require large width
when G is a connected, neighborly graph.

Lemma 42 If G is a connected graph of n vertices that is e-neighborly, then every

resolution refutation of GOP(G) contains a clause of width (%) n.

Proof: We begin by defining the “measure” of a clause. A critical truth as-

signment is an assignment to the variables of GOP(G) which forms a total order
on V(G). For each v € V(G), let Cy := V() Xup, and for each I C V(G),
Cr := N,e; Cv- Let C be a clause. The measure of C, ;(C), is the minimum
cardinality of a set I C V(G) so that for every critical truth assignment «, if «
satisfies C; then « satisfies C.

Notice that if a clause AV B is the resolvent of AV z and B V -z then
w(AV B) < u(AV )+ p(AV —z). Because of this, we say that y is subadditive
with respect to resolution. If A C B, then we have that pu(B) < p(A), so p is
decreasing with respect to subsumption.

We now show that p({}) = n. Suppose otherwise, and let I be a subset
of V(G) with |I| < n — 1. Choose one vertex vy € V(G) \ I and let « be a total
order which arises by taking a depth-first search of G starting with v,. Clearly «
satisfies Cr but a does not satisfy {}.

Because every clause of GOP(G) has measure either 0 or 1, the empty
clause has measure n and the measure is both subadditive with respect to resolution
and decreasing with respect to subsumption, there must exist a clause C' so that
2 < pu(C) < 2. Suppose for the sake of contradiction that w(C) < 2=2<,

Let I be a minimal subset of V(G) so that for every critical truth as-
signment «, if « satisfies C; then « satisfies C. Let J = V(G) \ I. Notice that
11,17 > 2.

Let S be the set of vertices mentioned by variables of C. Clearly, |S| <

2w(C) < 2 (2=2) = 23" Therefore, [\ S| > % — 223" = ¢pn. Similarly,

|J\ S| > en. Because G is e-neighborly, we may choose u € I\ S and v € J\ S so
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that {u, v} is an edge of G.

Let o be a critical truth assignment so that « satisfies Cr ) but a does
not satisfy C, and « does not satisfy C'. Let 8 be the critical truth assignment
which arises by moving v to the front of the order given by a. For w € I, w # u,
[ satisfies C), because every predecessor of w in « is a predecessor of w in 3. For
u, [3 satisfies C,, because 3 satisfies X, ,. However, 8 does not satisfy C' because
a does not satisfy C' and no variable mentioning u or v appears in C'. Therefore,

[ satisfies C7 but S does not satisfy C, a contradiction to the choice of I. n

A resolution refutation of GOP¥(G), k > 1, can be transformed into a
resolution refutation of GOP(G) by setting the appropriate variables to 1. Apply-
ing a restriction does not increase the width of a resolution refutation, so we have

the following corollary:

Corollary 43 If G is a connected graph of n vertices that is e-neighborly, then for
all k > 1, wr(GOP*(G)) > (%) n.

IV.D.4 Robust Graphs

Definition IV.D.7 We say that a graph G is r-robust if for p selected at random
by Pr+1(G), with probability at least %, wr(GOP(G) [,) > .

To guarantee that the restricted principle will require high width to refute,
it suffices that the graph obtained by deleting the bichromatic edges should consist
of large, neighborly connected components. Random graphs of degree ©(logn)

have this property with high probability. This is shown in the following subsection.

Lemma 44 There exists a constant ¢, so that for sufficiently large n, there exists

an g -robust graph G on n wvertices with degree at most clogn.

The proof of this lemma is a standard probabilistic argument. The reader
may skip its proof in the following sub-subsection, and move directly to the proof

of the lower bound in the next subsection.
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Demonstration of Robust Graphs

An easy probabilistic argument shows that with very high probability, a
random graph of expected degree ©((1/¢)logn) is almost surely e-neighborly.

Lemma 45 Let n and d be positive integer so that d < n and let p = d/n. Let
G p be the distribution on graphs on n vertices in which every edge is included with

2en(1+1In(1/€))—de?n

independent probability p. With probability < e , a graph selected

according to G, p s not e-neighborly.

Proof: There are fewer than (;)2 < (%)Qm = 2en(14In(1/€)) many pairs of disjoint

sets of en many vertices. Each such pair has a chance of at most (1 — p)€2”2 of

2,2
being unconnected. However, (1 — ]9)62”2 =(1-4"" < e~9¢'" 5o by the union

25n(1+ln(1/e))e—d52n 2671(1-‘1—111(1/6))—(162”.

bound the probability is at most e =e [

We now show that a random graph will probably have each component

large and neighborly if we randomly partition it into vertex-induced subgraphs.

Lemma 46 For all ¢ > 0, and all integers k > 1, there exists a constant c, so
that for sufficiently large n, there exists graph G so that upon the random partition
of G into 4k many vertez-induced subgraphs, with probability at least 1/2, each

component has size at least n/8k and is e-neighborly.

Proof: Let p = CIO%. We will solve for the value of ¢ at the end. Consider the
following experiment: select a graph G according to the distribution G, ,, and then
independently color each vertex with one of 4k colors, then remove all bichromatic
edges to form 4k vertex induced subgraphs, G, ..., G-

Let P be the probability that G has a vertex of degree > 2clogn, or that

n

s> 18 disconnected or is not e-neighborly.

one of the induced subgraphs has size <
We now bound this probability.
Consider the probability that G has a vertex of degree > 2clogn. By

the Chernoff bounds, the probability of any one vertex having degree in excess of
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2p(n — 1) is no more than e P(n=1)/4 = g=cllogn)(n=1)/4n  Therefore, the probability

of there existing a vertex with degree in excess of 2p(n — 1) is no more than
nefc(logn)(nfl)/zln.

The Chernoff bounds also allow us to bound the probability that any of

the G;’s contain too few vertices. The probability that a given color class of the

n _ n

.. . )
partition contains fewer than 5 - 7 = ¢

vertices is bounded by e six.

Once we condition upon all pieces of the partition containing at least g
vertices, we can bound the probability that any induced subgraph is disconnected.
Consider a fixed set of s > & many vertices, and condition upon the event those
vertices receive the same color in the partition. Each edge internal to the set is
included with probability <" — (cs/n)logn ~, (c/8k)logs

n s - S

. By a standard result on
the connectivity of random graphs (c.f. [46]), each color class is disconnected with
probability bounded by O (1/n(¢/8)-1).

Finally, we consider the probability that each of the components G; is e-
neighborly. For a fixed set of s > g vertices, if we condition on the event that set

forms a component after partition, each internal edge is included with probability

clogn - (c/8k)log s
n = s

. By lemma 45, that means that the component is not e-neighborly
with probability at most e2es(1+1n(1/€))~(¢/8k)(log s)e®s — o~ Qnlogn)

Therefore,
P< ne—clogn)(n=1)/4n 4 sro~5t + O (4k/n(c/8k)fl) + ¢ ¥nlogn)

For a sufficiently large constant ¢, dependent only on k£ and e, this is
below i.

Therefore, by an averaging argument on the edge choices, there exists
a graph G of maximum degree < 2clogn so that upon random partition of its
vertices into 4k color classes, its induced subgraphs are each connected, of size

> 2 and e-neighborly with probability > 2. =

We now prove lemma 44.
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Proof: Using lemma 46, choose ¢ so that for sufficiently large n, there exists
graph G so that upon the random partition of G into 4k many vertex-induced
subgraphs, with probability at least 3/4, each component has size at least n/8k
and is (1/6)-neighborly. Therefore we may choose p € P, 1(G) so that for each
i € [4K], wp(GOPMY(Gy)) > (&) (1*3%) = 2 (by lemma 43).

8k 6 96k
Let I" be a resolution refutation of GOP*™(G) |,. By lemma 35,

GOP*(G) |,= U, GOP*1(G;). However, for each i,5 € [4k], i # j, we have
that GOP**1(G;) and GOP**1(G,) are variable disjoint. Therefore, by lemma 2,
for some 7 € [4k], there exists a resolution refutation of GOP*T1(G;) of width is
at most w(I'). However, by the preceding paragraph, each GOP**1(G;) requires

width ggr to refute in resolution. Therefore w(I') > g-. n

IV.D.5 The Lower Bound

Theorem 47 Let k be given. There exist constants ¢ > 0 and e > 0, and o family

of graphs G on n vertices (for n sufficiently large) with mazimum degree clogn so

that Res(k) refutations of GOP*'(Q) require size at least 20(*).

Proof: Let k£ be given. Apply lemma 44 and choose ¢ so that for sufficiently large

n_

n, there exists a ¢

robust graph G on n vertices with degree at most clogn.
By lemma 41, there are positive constants d, § and v so that for every k-DNF F
Proep, (@) [F 1,7 1] < d2-%)" By corollary 5, with s = (s — 1)/, for every
k-DNF F

Proep, 1) [R(F 1,) > (n/96k —1)/k] < dk2_25k((n/96k—1)/k)7k J4k
Because d, 7 and ¢ depend only on k, there exists € so that
]. €

Suppose for the sake of contradiction that I' is a Res(k) refutation of
GOPX*Y(@) of size less than 2" By the union bound, with probability at least
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1/2, every line F of I" has h(F [,) < (n/96k —1)/k. On the other hand, because G
is (n/96k)-robust, wr(GOP**Y(G) [,) > n/96k with probability at least 3/4. So
we may choose p € Pry1(G) so that wr(GOP*(G) 1,) > n/96k, and for all lines
F of T, h(F |,) < (n/96k —1)/k. By corollary 14, GOP*™(G) I, has a resolution

refutation of width at most n/96k — 1. Contradiction. [

IV.E Improved Separation Between Res(k) and Res(k + 1)

The separation between Res(k + 1) and Res(k) given by theorem 47 uses
sets of clauses whose maximum width is ©(logn). In this section we present an
improvement which separates Res(k) and Res(k + 1) using constant width clauses.
The width of the clauses does, however, depend doubly-exponentially on the con-

stant k.

Definition IV.E.1 Let Xy,..., Xy be propositional variables. The formula
Odd(X1, ..., Xy) is the k-DNF expressing that the number of satisfied variables of
Xi,..., Xy is odd. The formula Even(X, ..., Xy) is the k-DNF expressing that
the number of satisfied variables of X1, ..., X} is even.

The k-parity graph ordering principle of G, GOP%(G), is ob-
tained by replacing each literal X, , by Odd(X&,v, e ,X{f,v), replacing each literal
~Xup by Bven(X, ,,..., XE,), and then using the distributive rule and DeMorgan’s

law to express this set of k-DNFs as a set of clauses.

Notice that for a graph G' on n vertices with maximum degree d > 3, the
principle GOP®*(G) consists of O(k%"'n?) many clauses each of width at most
d2k-1.

For any graph G, the polynomial-size refutations of GOP(G) can be
transformed into Res(k + 1) refutations of GOP®*+1(G). On the other hand,

Res(k) refutations of GOP®*+1)(G) require exponential size for certain graphs:

Theorem 48 Let k be given. There exist constants d > 0 and ¢, > 0, and a
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family of graphs G on n vertices (for n sufficiently large) with mazimum degree d

so that Res(k) refutations of GOP®*+)(Q) require size at least 20(+™).

IV.E.1 The Upper Bounds

We build Res(k) refutations for GOP®*(G) from resolution refutations of
GOP(G).

Definition IV.E.2 Let k be a positive integer and let X1, ..., X, be propositional
variables. Let X|,...,X¥ XJ,..., Xk be new variables. Let o be the mapping
given by o(X;) = Even(X}, ..., XF) and o(=X;) = Odd(X}, ..., XF). For a clause
C=V,l leto(C)=\,o(l;).

Lemma 49 Let k be a constant. There exists a constant ¢ (dependent only on k)
so that for all clauses AV X; and BV —X; be clauses in the variables X1, ..., X,,
there is a derivation of o(A) V o(B) from {o(A)V o(X;),0(B) V o(—=X;)} of size
<e.

Proof: By the completeness of Res(k), there is a Res(k) refutation of the pair of
k-DNFs {Even(Xq,..., X}),0dd(X1, ..., Xk)}. Let ¢ be the minimum size of such
a refutation. Because o(X;) = Odd(X},..., XF) and o(=X;) = Even(X}, ..., X}),
there is a derivation of o(A) V o(B) from {¢6(A) V 0(X;),0(B) V o(—=X;)} of size

<e. [ ]

Lemma 50 For each k, there exists a constant c so that for every G with n vertices

and degree at most d > 3, GOP®(G) has a Res(k) refutation of size O(cn® +
k92 3.

Proof: With the repeated application of AND-introduction inferences, c(GOP(G))
can be derived from GOP®(G) in O(k*®" 'n®) many inferences. By lemma 33,

GOP(G) has a refutation of size O(n?) so by lemma 49, c(GOP(G)) has a Res(k)
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refutation of size O(cn?®). Therefore, GOP®*(G) has a refutation of size O(cn® +

fa2 ' p3), .

IV.E.2 Random Restrictions

Definition IV.E.3 Let k > 1 be given. Let G be a graph. The distribution
Pry1(G) on partial assignments p to the variables of GOP®*+)(G) is given by the
following experiment:

For each (u,v) € V(G)?, choose i € {1,...,k + 1} uniformly and in-
dependently. For each j € {1,...,k}, j # i, set X, to 0 or 1, uniformly and
independently.

Lemma 51 Letk be given, and let F' be a k-DNF in the variables of GOP®*+1(G).

There exist constants § > 0, dependent only on k, so that Pryep, () [F ,7# 1] <
2—6-c(F)

Proof: We will say that two terms 7" and 7" are underlying-variable-disjoint
if whenever X , € T and X!, , € T" we have that (u,v) # (u',v'). Because F is a
k-DNF, it contains at least ¢(F')/k(k+ 1) many underlying-variable-disjoint terms.
Each of these terms is satisfied with independent probability at least 1/4* (consider
setting each variable of a term in turn, the probability that a variable is set to 0
or 1is always > 1/(k+1— (k — 1)) = 1/2). Therefore, Prjep, ,(a) [F [,# 1] <
(1 — 1/4F)eF)/k(k+1), -

When we apply a random restriction from Py (G) to GOP®*+)(@G),
we do not necessarily obtain an instance of GOP(G). It possible that some of
the edge variables will become inverted. However, inverting the variables does not

affect the width required for a resolution refutation.

Corollary 52 If G is a connected graph that is e-neighborly, then for all k > 1,
for all p € Pyy1(G), GOP*+D(Q) |, requires width ke
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IV.E.3 The Lower Bound

Theorem 53 Let k be given. There exist constants d > 0 and ¢, > 0, and a
family of graphs G on n wvertices (for n sufficiently large) with mazimum degree ¢

s0 that Res(k) refutations of GOP®*+V(Q) require size at least 20+,

Proof: Let k be given. Set p = 15In6/n. Consider a random graph selected
according to Gy, ,; by lemma 45, G is almost certainly %—neighborly and by the
Chernoff bounds, it has maximum degree < 2pn = 261n6. Let G be a graph that
is both %—neighborly and has maximum degree < 26 In 6.

By lemma 51, we have that for every k-DNF F Prpep, . (o) [F' [,7# 1] <
279<F) Now apply corollary 5 with s = (n/12—1)/k, d = 1. For every k-DNF F:

Prep, 1) [R(F 1,) > (n/12 — 1)/k] < k272" (n/12-D/k)/4*

Because k is fixed and ¢ depends only on k, there exists ¢, so that
Proep [R(F 1,) > (n/12 — 1)/k] < 27%".

Suppose for the sake of contradiction that I' is a Res(k) refutation of
GOP®*+)(@G) of size less than 2", By the union bound, with probability > 0,
every line F' of T has h(F [,) < (n/12 —1)/k. By corollary 14, GOP**(GQ) |,
has a resolution refutation of width at most n/12 — 1. On the other hand, be-
cause G is g-neighborly, wg(GOP(G)) > (%)n = n/12, and therefore
wr(GOPE*+D (@) 1,) > wgr(GOP(G)) > n/12 — 1. Contradiction.
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Chapter V

Simulation of Nullstellensatz

Refutations

In this chapter, we show that constant-depth Frege systems with counting
axioms modulo m polynomially simulate Nullstellensatz refutations modulo m.
This allows us to transform Nullstellensatz refutations into constant-depth Frege
with counting axioms proofs with a small increase in size, and to infer size lower
bounds for Nullstellensatz refutations from size lower bounds for constant-depth
Frege with counting axioms proofs. In particular, this method establishes the first
superpolynomial size separation between Nullstellensatz and polynomial calculus
refutations.

It is not immediately clear how to compare constant-depth Frege systems
with Nullstellensatz refutations because Frege systems prove propositional formu-
las in connectives such as A\, \/ and —, and the Nullstellensatz system shows that
systems of polynomials have no common roots. Moreover, constant-depth Frege
systems use only constant-depth formulas and such formulas cannot express sums.
We propose a definition of reducibility from propositional formulas to systems of
polynomials: a formula F' reduces to a system of polynomials over Z,, if we can
use F' to define an m-partition (a partition in which every class consists of ex-

actly m elements) on the satisfied monomials of the polynomials. The simulation

69
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shows that if a formula has a small reduction to a set of polynomials with a small
Nullstellensatz refutation, then the formula has a small constant-depth Frege with
counting axioms refutation. This notion of reduction seems natural in that for
previously studied translations of formulas into systems of polynomials, a formula
reduces to its translation.

The simulation of Nullstellensatz refutations modulo m by constant-depth
Frege systems with counting axioms modulo m works by defining two different
m-partitions on the satisfied monomials in the expansion of the Nullstellensatz
refutation. One covers the satisfied monomials perfectly, and the other leaves out
exactly one satisfied monomial. In section V.B, we show that Frege systems with
counting axioms can prove in constant depth and polynomial size that such a
partition cannot exist. Section V.C formalizes our definition of reducibility from
propositional formulas to systems of polynomials and proves the main simulation
theorem. In section V.D we show that, for several methods of translating propo-
sitional formulas into systems of polynomials, a formula efficiently reduces to its
translation.

We explore some applications of the simulation in section V.E. First, we
obtain small constant-depth Frege with counting axioms refutations for unsolvable
systems of linear equations in which each equation contains a small number of vari-
ables. This class of tautologies includes the Tseitin tautologies and the “r formu-
las” for Nisan-Wigderson pseudorandom generators built from the parity function
[1, 2]. The Tseitin tautologies on a constant degree expander can be expressed as
an unsatisfiable set of constant-width clauses, and are known to require exponen-
tial size to refute in constant-depth Frege systems [9]. Therefore, as a corollary, we
obtain an exponential separation of constant-depth Frege systems with counting

axioms and constant-depth Frege systems with respect to constant-width CNFs.
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V.A Definitions, Notation and Conventions

Definition V.A.1 For a monomial t = [[,.; ", its multilinearization, t, is
defined as t = [[,c;xi. Let f =3, cit be a polynomial. The multilinearization
of f, f, is defined as f = Yo at. We say that a polynomial f is multilinear if

f=1r

Definition V.A.2 Letn > 0 be given, and let x1,...,z, be variables. Let I C [n]

be given. The monomial Xy is defined to be [[,.; ;.

Notice that a multilinear polynomial f in the variables zi,...,x, can be

written as ZIC[n] arTy.

V.B Contradictory Partitions of Satisfied Variables

To simulate Nullstellensatz refutations in constant-depth Frege systems
with counting axioms, we construct two partitions on the satisfied monomials of the
refutation: one which covers the satisfied monomials exactly, and another which
covers the satisfied monomials with m — 1 new points. This is impossible, and in
this section, we show that constant-depth Frege systems with counting axioms can

prove that this is impossible with polynomial size proofs.

Definition V.B.1 Let positive integers n and k be giwven. Let uy,...,u, be a
set of Boolean variables. For each e € [n]™, let y. be a variable, and for each
e € [n+ k™, let z, be a variable. CP™X (i, ¥, Z) is the negation of the conjunction

of the following formulas:

“every variable covered by the first partition is satisfied”
for each e € [n|™, ye = N;c, s

“every satisfied variable is covered by the first partition”
for each i € [n], u; = \/ 5, Ye

“no two overlapping edges are used by the first partition”
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for each e, f € [n]" withe L f, =y, V —y;

“every variable covered by the second partition is satisfied”
for each e € [n+ k|™, ze — N see ui

“every satisfied variable is covered_by the second partition”
for each i € [n], u; = /5, 2

“every extra point is covered by the second partition”
foreach i, n+1<i<n+k, .,z

“no two overlapping edges are used by the second partition”

for each e, f € [n+ k|™ withe L f, =z, V —zp

Lemma 54 Fiz m and k so that m s not divisible by k. For all n, the tautology
Can’k has a constant depth, size O(n™) proof in constant-depth Frege with counting

modulo m azioms.

Proof: Fix m, n and k. The proof of CP™* is by contradiction. We define a

set U of size mn + k and formulas ¢, for each e € [U]™ so that we can derive

]m
—Count, ) |Z, < @] 1n size O(n rom the hypothesis — ",
Count? é.] in size O(n™) f he hypothesis ~CP™*
Let U be the set consisting of the following points: p,;, 7 € [m], i € [n]

(the 7’th copy of the row of variables) and py,;, n +1 < ¢ < k (the extra points.)

“when u; is unset, we group together its copies”
for each @ € [n], dyp, ;. ppiy = Wi
“in the first m — 1 rows, use the partition given by the y.’s”
for each r € [m — 1], each i1,...,im € [1], P(p, ;. \prin} = Ylitrim}
“in the last row, use the the partition given by the z.’s”
for each 41,...,im € [N+ K], Qlponiimmin} = Zlirymim}
other edges are not used

for all other e € [U]™, ¢. =0

Now we sketch the derivation of (=County,) [z, < ¢] from —~CP*. It

is easily verified that the derivation has constant depth and size O((mn + k)™) =
O(n™).
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“Every point of U is covered by the partition.”
Let p,; € U with i € [n], » € [m — 1] be given. From —-CP™* derive

u; = V semm yp. Because \ jepm yy is a sub-disjunction of \/cem ¢, we may
FED) f3

i €3Pp,;

derive u; — \/cewrm ¢e with a weakening inference. Because Olprirpmi} = Ui,
eaprﬂ' ’ ’

we may derive —u; — Veeea[U]m ¢.. Combining these two formulas yields \/eeea[u]m Ge-

The case for pp,;, i € [n] isz)rgimilar. o
For a point pp,;, n+1 <7 <n+k, from —CP:L,;’“ derive er[?;-i]g]m zr . A

weakening inference applied to this derives veapm,,- Oe.

“No overlapping edges are used.”

Let e;,es € [U]™ be given so that e; | es, and neither ¢, nor ¢, is

identically 0.

j€ef}

for some r € [m] and f € [n]™ so that i € f. From ~CP* derive y; — u;. From

If ¢e, = —u; and @e, = yy, then ey is {p,; | r € [m]} and e, is {p;;

this, derive =—wu; V ~yr = =g, V @, .

If ¢e, = yy, and ¢, = yy,, theney is{p,,; | i € f1} and ez is {py,; | P € fo}
with 7, =7 and f; L fo. From ~CP™* derive -y, V =y, = e, V e,
The only other cases are when ¢., = —u; and ¢, = zy or ¢,, = 25, and

¢e, = Zf,, and these are handled similarly.

V.C The Simulation

Because we work over Z,,, a polynomial vanishes on a given assignment if
and only if there is an m-partition on its satisfied monomials (recall that we treat
a monomial with coefficient a as having a distinct copies.) The definability of this
partition is the connection between refuting a propositional formula and refuting

a system of polynomials.
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V.C.1 Reducing Formulas to Systems of Equations

The method we use to reduce a formula to a system of polynomials is
to define a partition on the satisfied monomials of the polynomials with small,
constant-depth formulas and prove that these formulas define a partition using the
formula as a hypothesis.

Because of the central role played by the sets of monomials appearing in
each polynomial, we take a moment to define this notion precisely. First of all,
because we are concerned only with 0/1 assignments, a polynomial vanishes if and
only if its multilinearization vanishes. For this reason, we restrict our attention to
multilinear polynomials. We treat a term ax; as a distinct copies of the monomial
xy. For this reason, when we talk about the “set of monomials” of a polynomial,
we do not mean the set of monomials that appear in the polynomial, but a set
which includes a copies of each monomial with coefficient a. We will generally
identify az; with a objects my r, ..., mq . Think of m.; as the c'th copy of the
monomial x;. There should be little confusion of the dual use of the symbol “m”
because when the symbol appears without a subscript it denotes the modulus, and

when it appear with a subscript it denotes a monomial.

Definition V.C.1 Let f = Zlg[n] arry be a multilinear polynomial over Z,,. The

set of monomials of f is the following set:
My ={mey | I C[n], c€lar}

Definition V.C.2 Let zq,...,x, be Boolean variables. Let f be a multilinear
polynomial in the variables xy,...,z,. For each E € [M;]|™, let O be a formula
in . We say that the §’s form an m-partition the satisfied monomials of

f if the following formula holds:

/\ HE — /\ /\SEk A /\ _“QEV_‘QF

Be[M;™ me 1 €E kel B,FE[Ms]™
E1lF
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N /\ (/\ J?k) — \/ GE
me EMy kel Ee[M g™
ESmg 1
Definition V.C.3 Let x1,...,x, be Boolean variables. Let T'(Z) be a propositional
formula. Let F = {fi,..., fx} be a system of polynomials over Z,, with a Null-
stellensatz refutation py,...,px, T1,-..,Tn. If, for each i € [k], there are formulas
Bi(Z), E € [M;]™, so that there is a size T, depth d Frege derivation from I'(Z)

that, for each i, the B*’s form an m-partition on the satisfied monomials of f;, then

we say that I' reduces to F in depth d and size T.

V.C.2 The Simulation

Theorem 55 Let m > 1 be an integer. Let x1,...,x, be Boolean variables. Let
['(Z) be a propositional formula, and let F be a system of polynomials over Zy, so
that T reduces to F in depth d and size T. If there is a Nullstellensatz refutation
of F with size S, then there is a depth O(d) Frege with counting axioms modulo m
refutation of T(T) with size O(S*™T).

Proof: Let pi,...,pg, 71,...,7, be a size S Nullstellensatz refutation of F'. Let
By(Z), for i € [k], E € [Mf]™, be formulas so that from I there is a size T', depth
d proof that for each 7 the 8%(%)’s form an m-partition on the satisfied monomials
of fi.

We obtain contradictory partitions of the the monomials that appear in
the expansion of Zle p; f; in which polynomials are multiplied and multilinearized,
but no terms are collected. In other words, the set is the collection, over i € [k,

of all pairs of monomials from p; and f;.

k
V = U{(mc’l,md’J,'l:) ‘ Me,g € Mﬁi? Mg, g € Mfz}

i=1
Notice that |[V| = O(S?).
For each v € V, v = (me,1,Maq,7,%), let vy = Aerus Tk Think of these as

the monomials. We will give formulas 6, that define a partition on the satisfied
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monomials with m — 1 many extra points, and ng, that define a partition on the
satisfied monomials with no extra points. We will give a O(|V|"+T) = O(S*"+T)

derivation from I of the following:

_‘CPLX"mA [Uy < Yo, YE < O8, 2B < NE|

On the other hand, by lemma 54, CPL‘{"mfl has constant depth Frege
proofs of size O(|V[™), so CPIVI™=1 [y, « .. yg < 0, 25 + ng] has a constant
depth Frege proof of size O(|V|"T). Therefore, I has a depth O(d) Frege refutation
of size O(S?™T).

The Partition with m — 1 Extra Points

Notice that we have the following equation:

k k n
N omfi=) pifi+ Y rila?—x) =1
i=1 i=1 j=1

So when we collect terms after expanding Zle p; f; and multilinearizing, the co-
efficient of every nonconstant term is 0 modulo m, and the constant term is 1
modulo m.

For each S C [n], let Vs = {(m¢,r,ma,7)) € V | IUJ = S}. Think of
these as the occurrences of zg in the multilinearized expansion.

For each S C [n], S # 0, there is an m-partition on Vg, call it Ps.
Likewise, there is an m-partition on Vj U [m — 1], call it Py.

Define the formulas 6 as follows: for each E € ([V]U[m —1])", if E €
Ps for some S C [n] then 0p = A\, g Tk, otherwise 0 = 0.

Constant-depth Frege can prove that this is a m-partition of the satisfied
monomials of Zleg?ﬁ with m — 1 extra points. The proof has size O(|V|™) and
depth O(1). It is trivial from the definition of f that the edges cover only satisfied
monomials. That every satisfied monomial A, g is covered is also trivial: the
edge from Py is used if and only if the term x5 is satisfied. Finally, it easily shown

that the formulas for two overlapping edges are never both satisfied: only edges
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from Pg are used (regardless of the values of the z’s), so for any pair of overlapping
edges, F/ | F', one of the two formulas 0z or 6 is identically 0.

The Partition with No Extra Points

The idea is that an m-partition on the satisfied monomials on f; can be
used to build an m-partition on the satisfied monomials of ¢f;, for any monomial
t.

For each E € [V]™, define ng as follows: if E = {(mc,1,ma, 5,,7) | | € [m]}
for some i € [k], m.; € My, then ng = A, c; 2k A Bima, s liclm)}, otherwise, ng = 0.

There is a size O(S + |V|™), depth O(d) Frege derivation from T' that
the ng’s form an m-partition on the satisfied monomials of Zfﬂ?ﬁ We briefly
sketch how to construct the proof. Begin by deriving from I', for each 7, that the

i ’s form an m-partition on the satisfied monomials of f;.

“Every satisfied monomial is covered.” Let (m.r, mqs,7) € V be given.
If Aperus @e holds, then so do Aoy zx and A,.;zx. Because the 5”s form an
m-partition on the satisfied monomials of f;, we may derive \/ re[my,]" Bi. From
this derive \/,. e[my,]" Aier @r A By A weakening inference applied to this yields
Ve e-

“Every monomial covered is satisfied.” Let v = (mr,mgs,7) € V be
given so that v € E and ng holds. For this to happen, E = {(m.r,mq,,4,,%) | | €
[m]}. By definition,, ng = A,c; zx A Bimd,,mle[m]}’ and therefore A, ;z; holds.
Because the *’s form an m-partition on the satisfied monomials of f;, we have
that A, zx holds. Therefore A, zx holds.

“No two conflicting edges E and F' can have ng and ng simultaneously
satisfied.” If E | F', and neither fg nor O is identically 0, then they share the same
p; component. That is, there exists 4, m.; € My, so that E = {(mr, Mg, 4,,%) | | €
m]}, and F = {(mc,r, ma, 1,,t) | | € [m]}. Because E L F, we have {my, j, | | €
[m]} L {ma,., | | € [m]}. Because the 3”s form an m-partition on the satisfied
monomials of f;, we can derive ﬁﬁimdhhﬂe[m]} v ﬁﬁimdg,Jf,IIG[M]}' We weaken this

formula to obtain ﬁﬂfmd,,m efmpy Y "B, 1V Vier ok, and from that derive

I’J’l‘le[m
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= (Aver 8 A By ictomy) V = (Aver @ A By icimy) = 16V e

V.D Translations of Formulas into Polynomials

V.D.1 Direct Translation of Clauses

For sets of narrow clauses, a common way to translate the clauses into
polynomials is to map = to 1 — z, -z to x and replace “OR” by multiplication.
This is most commonly used for constant-width CNFs, and in this case, we show

that clauses efficiently reduce to their translations.

Definition V.D.1 [44] For a a clause C in variables Z, the direct translation
of C, tr(C), is defined recursively as follows: (i) tr(0) = 1 (i) tr(AV z) =
tr(A)(1 —z) (i) tr(AV —x) =tr(A)z

For a CNF F, the direct translation of F, tr(F), is the set {tr(C) |
C e F}.

It is easily verified by induction that an for any clause C, a Boolean
assignment satisfies C if and only if it is a root of tr(C).

Whenever C is satisfied, there exists an m-partition on the satisfied mono-
mials of ¢r(C'). Moreover, if C' contains at most w variables, then the m-partition
can be defined by depth two formulas of size O(2"), and by the completeness of
constant-depth Frege systems, there is a constant depth derivation from C' of size
20() that these formulas define an m-partition on the satisfied monomials of ¢r(C).

Therefore, C reduces to tr(C) in constant depth and size O(2").

Lemma 56 If F' is an unsatisfiable CNF of m clauses of width w, then F is
reducible to tr(F) in size m2°) and depth O(1).
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V.D.2 Translations That Use Extension Variables

More involved translations of formulas into sets of polynomials use exten-
sion variables that represent sub-formulas. The simplest way of doing this would
be to reduce an unbounded fan-in formula I' to a bounded fan-in formula, and
then introduce one new variable y, per gate g, with the polynomial that says y,
is computed correctly from its inputs. It is easy to give a reduction from I' to
this translation, of depth depth(I") and size poly(|T'|). (We can define y, by the
subformula rooted at g and every polynomial would have constant size, so defining
the partition is trivial.) However, this translation reveals little for our purposes
because there is usually no small degree Nullstellensatz refutation of the resulting
system of polynomials, even for trivial I'. For example, say that we translated the
formula z1, =(((((z1 V22) V- --Vz,) this way. The resulting system of polynomials
is weaker than the induction principles (see the end of this section) which require
Q(logn) degree NS refutations [61].

We give an alternative translation of formulas into sets of polynomials
so that the formula is unsatisfiable if the set of polynomials has no common root.
A formula f reduces to the set of polynomials with depth O(depth(f)) and size
O(|f|)- Moreover, for many previously studied unsatisfiable CNFs (such as the
negated counting principles), this translation is the same as the previously studied

translations (up to constant-degree Nullstellensatz derivations).

Definition V.D.2 Let f be a formula in the variables x4, ..., x, and the connec-
tives {\/, =}. For each pair of subformulas g1 and g, of f, we write g1 — ga if ¢1
s an input to go. Canonically order the subformulas of f, and write g1 < g2 if g1
precedes gy in this ordering. For each subformula g of f, let there be a variable y,
- the value of g. For each pair of subformulas of f, g1 and go, so that the top con-
nective of g2 is \/ and g — go, let there be a variable 24, 4,- “g1 is the first satisfied
input of g,”. The polynomial translation of f, POLY (f), is the following set

of polynomials:
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For each variable x;:
“The value of subformula x; is equal to x;”
Yo, — T4
For each subformula g whose top connective is \/:
“f g1 < g2, g1 — g, g2 — g, and gy is satisfied
then go s not the first satisfied input of g”
Yg12g2,9
“f g1 1s the first satisfied input of g,
then g, is satisfied”
291,9Y91 ~ Zg1,9
“g 1s satisfied if and only if the some input to g
1s the first satisfied input of g”
Yg — Zgl—)g Z91,9
For each subformula g whose top connective is —:
Let g, the unique input of g,
“f g1 1s satisfied if and only if g is not satisfied”
Yoo +Yg — 1
The formula f 1s satisfied:
yr— 1

One can show by induction that if f is satisfiable then POLY(f) has a
common root. By the contrapositive, if POLY(f) has no common roots, then f is

unsatisfiable.

Lemma 57 Let f be a Boolean formula in the variables x1,...,x,. If f is satis-

fiable, then POLY(f) has a common 0/1 root.

Proof: Let o be a 0/1 assignment to x1,...,z,. For any propositional formula g,
let «(g) denote the value of g under the assignment .

Suppose that a(f) = 1. We extend « to the variables of POLY(f) as
follows: For each subformula g of f, let a(y,) = a(g). When ¢ = \/g; and
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a(g) = 1, let 4o be the first input to g so that a(g;) = 1. Set a(z, ) =1 and for
i # 1o, set a(zy,) =0. When g =\/¢; and a(g) =0, a(z,4) = 0 for all 4.

We now show by induction that « is a root of POLY(f). Clearly, for
each variable z;, a is a root of y,, — x;. Consider a subformula —g. Because
a(y-g) = a(—g) and a(y,) = a(g) = 1 —a(—g), ais a root of y_4+y,—1. Consider
a subformula g = \/, g;. If a(g) = 0, then for all i, a(zy,4) = 0, a(y,) = 0 and
a(yy) = 0. In this case, a is clearly a Toot to 2y, gy — 249> Yg:2g;,9 A0 Yg—D ; Zg; 4-
In the case when a(g) = 1, there exists iy so that a(zy, ,) =1 and for all j # iy,
a(zg;,4) = 0. Moreover, a(y, ) = 1, a(y,) = 1 and for all j < i, a(y,) = 0.
Therefore, o is a r00t t0 Yy, 2y, 4 for all i < j, 2y, g, — 24,4 for all i, and y,—> ", 2y, 4.

Finally, « is a root of y; — 1 because a(f) = 1 by assumption. n

The argument of lemma 57 can be carried in Frege systems with depth

O(depth(f)) and size O(|f|).

Theorem 58 If f is a formula in the variables x1,...,x, and the connectives
{V,—}, then f is reducible to POLY(f) in depth O(depth(f)) and size polynomial
in | fl.

Proof: We proceed in two stages. First, we give a set of formulas, EXT(f), that
is in the variables z;, y, and z4 4, and is analogous to the translation of f into
polynomials. We show that this translation has a constant depth, polynomial size
reduction to POLY(f) and then show that f has a depth O(depth(f)) reduction
to EXT(f) of size polynomial in |f|.

Let EXT(f) be the following set of formulas:

For each variable z;:
Yz; < Ty
For each subformula g whose top connective is \/:
“if g1 < go, g1 — g, g2 — g, and g is satisfied ,

then g, is not the first satisfied input of ¢”
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TWYg1 V T2,
“if g1 is the first satisfied input of g,
then g, is satisfied”
Z91,9 = Ygu
“g is satisfied if and only if some input to ¢
is the first satisfied input of g
Yg < Vo9 21,9
For each subformula g whose top connective is —:
Let g; the unique input of g,
“if g, is satisfied then g is not satisfied”
Ygq1 < TYg

The formula f is satisfied:

Ys

There is a straightforward constant-depth, polynomial-size reduction of
EXT(f) to POLY(f). For each polynomial of POLY(f), there is a formula of
EXT(f) that reduces to the polynomial; the formula associated with each poly-
nomial is given in table V.1. For the constant-size polynomials of POLY(f), the
corresponding formula of EXT(f) implies that there is an m-partition on the sat-
isfied variables of the polynomial. Because the polynomial involves a constant
number of variables, the partition may be defined and proved correct in constant

size, depth two.

Table V.1: Polynomials and their Associated Formulas

polynomial | associated formula
ymi — T yz‘i = X
Yg1%92,9 a1 Y T2g5g
“91,9Y91 — Zg1.9 Zg1,9 — Yo
Yo + Yg — 1 Y < Yy
yr—1 Ys

The only polynomials of POLY(f) that involve a non-constant number
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of variables are those of the form y, — ) and from the hypotheses of

919 “91,9°
EXT(f) it can be shown that y, is satisfied if only if exactly one of the z,, ,'s is
satisfied. Because there are (m — 1) copies of each z,, , in such a polynomial, we
can group y, with these copies of z,, , whenever z,, , is satisfied.

To reduce f to EXT(f), it is easy to check to that there is a polynomial
size, depth O(depth(f)) derivation of the following substitution instance of EXT(f)
from the hypothesis f. (The substitution instances of each formula are given in

table V.2.)
EXT(f)yg < 95 21,9 < (1 A /\ )

92<91
g2—g

Table V.2: Formulas and their Substitution Instances

formula substitution instance comment
W1 V TZga g g1V (g2 A /\993<93 —g3) g1 < g2
33—
Z91,9 7 Ygu (g1 A /\9922373 —g2) = g1
Yg < VaiogZgg | 9 € V91—>g(91 A /\g:ggl —g2) | 9= V1901
Ygq1 7 Yg g1 <> g =01
Yy /

Example: We illustrate our translation with a the clauses of the negated
counting principles. The translation of this set of clauses turns out to be same (up
to constant degree Nullstellensatz derivations) as the polynomial formulation of
the counting principles previously studied.

Let V be a set of cardinality indivisible by m. The clauses are F, =
Vesp Ze for v € Vand Gey = —a. V -y for e, f € [V]™ with e L f. The standard
translation of these systems has the polynomials ) |

e L f.

es0 e, for v € V, and z.xy, for

The polynomials introduced by the translation of Gy are: y,, —Ze, Yu, —

.Tf, y—we +ywe - 17 y—hivf +y$f - 1’ y—a‘ez—\wf,Ge,fJ z—we,G’e,fy—!we _Zﬂwe,Ge,)H Z—wf,Ge,fy—';Uf -
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2z ,Gerps YGoy — #mzeGey — #-w5,Gey M Yg, , — 1. 1t is easy to check that thee
is a constant degree derivation of z.x; from these polynomials (in particular, a
non-optimal but constant-degree derivation is given by the completeness of the
Nullstellensatz system).

The polynomials introduced by the translation of F;, are: y,, —¢, 2y, ,r,Ys
(fore,f > vand e < f), 2y, FYs. — Zys,.,p, (for e > ), yp, — > .5, 2,..r, and
yr,—1. With a degree two Nullstellensatz derivation we may derive Zeav Ze,FyTe—1.

Multiplying this by Y . z., and reducing using the previously derived polynomials

esv

z.xy and the axioms z? — z, yields >, Ze.;,Ze — D o5, Le- Subtracting this from

esv

Y ey Ze,FyTe — 1 yields Y- o, .

A Note on Translations of Formulas to Polynomials Using Extension

Variables

Definition V.D.3 The induction principle of length M, IND(M), is the
following system of polynomials: y1, Yrs1Yr — Yr1 (for r < M) and ypr — 1.

Theorem 59 [61, 60/ The IND(M) system has Nullstellensatz refutations of de-
gree O(log M) over any field. Moreover, over any field the system requires degree
Q(log M) Nullstellensatz refutations.

The “standard” translation of z,, =(((((zn VZn—_1)V---Vz1)))) into poly-
nomials using extension variables introduces new variables z1, ..., z,_1, with poly-
nomials z, — 1, 1 — (1 —2,)(1 = Zpn_1) —2n_1, 1 = (1 — 2n_1) (1 — Zp_2) — 2n_2, - - -,
1 —(1—2)(1 —x1) — 21, and z;. (The indices have been reversed from those of
subsection V.D.1 to ease the reduction.)

We may define this set of polynomials from IND(n) using the following

definitions: z; :=y; for 7, 1 <17 <n, and z; := vy;, for : < n — 1. The polynomials

z1 =y and x, — 1 = y, — 1 are belong to IND(n), and for each 7, 1 <r <n —2,

1_(1_27"4—1)(1_377")_'27‘ = 1_(1_yr+1)(1_yr)_yr

=10 +Y%¥ =Y —Y+1) =Y = —Urs1Yr — Yrs1)
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Similarly, 1 — (1 —z,)(1 —zp 1) — 2n-1 = —(YnYn-1 — Yn)-
Because there is a constant degree reduction from IND(n) to the standard
translation of z,, =(((((zn V Zn—1) V ...21)))) into polynomials, this translation

requires super-constant degree to refute in the Nullstellensatz system.

V.E An Application to Unsatisfiable Systems of Constant-
Width Linear Equations

Many tautologies studied in propositional proof complexity, such as Tseitin’s
tautologies [9] and the 7 formulas of Nisan-Wigderson generators built from parity
functions, can be expressed as inconsistent systems of linear equations over a field
Z, in which each equation involves only a small number of variables. We show
that in such situations, constant-depth Frege with counting axioms modulo ¢ can
prove these principles with polynomial size proofs.

Fix a prime number g. Let A be an m x n matrix over Zg, let z1,...,z,
be variables and let b € Zy' be so that AT = b has no solutions. Let w be the
maximum number of non-zero entries in any row of A.

For each i € [m], let A; be the i’th row of A, and let p; be the polynomial
A;Z — b;. Let C; the CNF that is satisfied if and only p;(Z) = 0. Notice that C;
has size at most 2*. The explicit encoding of AX = b is the CNF AL, Ci.

The methods of subsection V.D.1 show that A", C; is reducible to the
system of polynomials {pi,...,pn} via a constant depth reduction of size m2°®).
Moreover, the system of polynomials {py, ..., pn} has a degree one Nullstellensatz
refutation given by Gaussian elimination. Moreover, degree one refutations are of

size O(mn). Thus we have the following theorem:

Theorem 60 Fiz a prime number q. Let A be an m X n matriz, let x1,...,2,
be variables and let b € Ly be so that AT = b has no solutions. Let w be the
mazximum number of non-zero entries in any row of A.

There is a constant depth Frege with counting axioms modulo q refutation
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of the explicit encoding of AX = b of size polynomial in m,n and 2%.

The Tseitin graph tautologies on an expander graph are known to require
exponential size constant-depth Frege proofs [9]. Because these principles can be
represented as an unsatisfiable system of linear equations, they have polynomial

size constant-depth Frege with counting axioms proofs.

Corollary 61 There exists a family of unsatisfiable sets of constant width clauses
that require exponential size constant-depth Frege refutations, but have polynomial

size constant-depth Frege with counting axioms refutations.
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Chapter VI

Separation of Counting (Gates and

Counting Axioms

In this chapter, we demonstrate a family of unsatisfiable sets of clauses
that have polynomial size refutations in constant-depth Frege systems with count-
ing gates, but do not have polynomial size refutations in constant-depth Frege
systems with counting axioms. The lower bound is proved by a combination of
switching lemma and degree arguments. The analogous circuit result is proving
a separation between circuits with modular gates and sums of AC? circuits. One
can prove this circuit separation using a combination of random restrictions and
degree arguments: Consider the OR of n modular sums, each on disjoint sets of
n variables. Look at any sum of AC? functions that supposedly computes this
function. A random restriction to the variables will, with high probability, reduce
the above circuit to a sum of small decision trees, and hence, to a low degree poly-
nomial. However, the function will with high probability still have one variable
unset, from each block of n, and so will still have degree n, that of the OR. Thus,
the circuit cannot compute the function.

The sets of clauses for which we obtain the separation are analogous to
the OR of sums in the preceding example. We replace the OR by a tautology that

is easy for the polynomial calculus but hard for Nullstellensatz, the linear induction

87
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principles: S1,S, = S;41,1 < r < M —1,-5). Linear induction tautologies are
known to have constant degree, polynomial size proofs in the polynomial calculus
and to require logarithmic degree to proof in Nullstellensatz [61, 60].

Of course, constant-depth Frege systems have linear size proofs of the
linear induction tautologies, so we must obfuscate the S,’s so that they are not
definable by constant-depth formulas. Consider the case of sums modulo two. We
replace each S, by the parity of disjoint sets of N variables, {z,,; | 1 < i < N}.
Sy is true if and only if an even number of the z,;’s are satisfied. We wish to use
the fact that it is difficult with AC? formulas to compute S, from z,;. A delicate
point is to express the constraints S, — S,;1 without making S, definable as a
constant-depth formula; the standard use of intermediate variables allows such
a definition. Instead, we think of S, — S,.; as the following equation modulo
two: > . xy; = S = SiSiy1 = Y, Zj Zri%Trt1,;- This can be expressed using
auxiliary variables representing a perfect matching on the satisfied monomials of
Zi,j Ty i%ri1,; and Yy i Trje We call these sets of clauses the “induction on sums
principles”.

In the polynomial calculus (and hence in constant-depth Frege systems
with counting gates) we can define each S, from z, ;, prove the implications using
the matchings, and then apply the proof for the induction principles to the S, ’s.

The overall structure of the lower bound proof is analogous to our circuit
bound sketch, and very similar to that of other lower bounds for constant-depth
Frege with counting axioms (c.f. [59]). First, given an alleged polynomial-size con-
stant depth Frege proof with counting axioms, we construct a interpretation of the
subformulas of the proof so that each formula is associated with a small depth deci-
sion tree. This is constructed using the iterated application of a switching lemma.
Next, the short decision trees of the interpretation are used to create a low-degree
Nullstellensatz refutation of the algebraic translation of our tautology. Finally, we
prove a degree lower bound for the algebraic system by giving a constant degree

reduction of the linear induction tautologies to our tautologies and appealing to
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the known degree lower bounds for Nullstellensatz refutations of linear induction
(61, 60].

The technical novelty and difficulty of this separation is in the switching
lemma. In the process of collapsing formulas to short decision trees, the proofs
of [50, 51, 59] apply random 0/1 partial assignments to the variables that reduce
the tautologies to smaller tautologies of the same family. For the induction on
sums principles, no 0/1 partial assignment that does not set every variable in each
row can collapse a DNF into a short decision tree with high probability. For this
reason, we simplify the tautologies by not only setting many variables to 0s and

1s, but also substituting one variable for another.

VI..1 Outline of the Chapter

In section VI.A, we define the sets of clauses (the induction on sums
principles) that provide the separation. Section VI.B shows that these principles
have small polynomial calculus refutations.

The principle tasks of this chapter are the proof of the switching lemma
and its use to construct a shallow interpretation for the formulas in the proof.
Section VI.C introduces a modification of the induction on sums principles that
is needed for the proof of the switching lemma. Sections VI.D and VIL.E describe
the basics of restrictions and decision trees. Because our switching lemma applies
random substitutions, not just random 0/1 restrictions, we need to define a method
for applying such substitutions to decision trees. We call this process simplification,
and we show how to simplify decision trees in section VI.F.

The switching lemma, theorem 79, is proved in section VI.G. Finally, the
switching lemma is used to construct a shallow interpretation of the formulas in
the proof (called a “k-evaluation”) in section VI.H.

Section VI.I uses the k-evaluation to construct a low-degree Nullstellen-
satz refutation of the algebraic induction on sums principles. Section VI.J uses a

reduction from the linear induction principles to prove a degree lower bound for
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the algebraic induction on sums principles.

Section VI.LK puts everything together to prove the lower bound. Finally,
in section VI.L, we apply the simulation of chapter V to obtain quasi-polynomial
size refutations of the induction on sums principles modulo m using constant-depth
Frege systems with counting axioms modulo m.

Convention: Throughout this chapter m denotes a fixed integer modu-

lus with m > 2.

VI.A The Induction on Sums Principles

Suppose that we have M rows of N Boolean variables. There is no as-
signment to these variables so that the modular sum of the first row is 0, the sum
of the final row is 1, and for each non-final row r, if the sum of row r is zero, then
the sum of row r + 1 is also zero. This is the idea behind the unsatisfiable sets of
clauses we call the induction on sums principles.

Let M and N be positive integers. Let Ry,..., Ry be disjoint sets of
N elements, for each i € Ufil R; we have a Boolean variable X;. The variables
{Xi | i € R,} are identified as the “the 7’th row of Boolean variables”. Because
constant depth circuits require exponential size to compute modular sums, it takes
some care to represent the principles as an unsatisfiable set of clauses. It is helpful

to view the constraints as a system of M + 1 many quadratic equations modulo m.

Equation 0: Yier, Xi=0
Equation r, for 1 < r < M: (ZieRr Xi)(zjeRr-}—l X;) — ZjeRTH X;=0
Equation M: Yiery, Xi—1=0

To give a set of propositional clauses which are satisfied only when these
equations are satisfied, we add extension variables and constraints expressing “in
each equation, the number of satisfied monomials satisfied is 0 modulo m.” For

shorthand, we define multi-sets U, corresponding to the monomials in equation

ro Up={{i} |ie R} forre{l,....M—1}, U, = {{i,j} |i € R, je
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R} U(m—1)x{{j}|J € Rry1}, and Uy = {{i} | i € Ry} U (m — 1) x {0}.
(The notation (m —1) x S denotes the multi-set with m — 1 copies of each element
from S.)

For each equation, we add a set of “partitioning variables”, Y, for e €
[U;]™. The induction on sums principles state that for each equation, these vari-
ables define a two-partition on the satisfied monomials.

Because the particular index sets play no role except for their sizes, we

refer to all such principles as the M by N induction on sums principle.

Definition VI.A.1 Let M and N be positive integers, and let Ry,..., Ry and
Uy, ..., Uy, be given as in the preceding paragraphs. The M by N induction on
sums principle, IS(M, N), is the following set of clauses:

For eachr, 0 <r < M,

for each I € U,, Vier " XiV V5 Ye
for each I € U,, e € [U]J™, i €1, -Y, VX,
for each e, f € U™, e L f, Y, vV Yy

We will also need to treat this set of a clauses as a set of polynomials.

Let AIS,,(M,N) denote the following set of polynomials:

For eachr, 0 <r < M,

for each I € U,, [Lc: Xi (ZeBIYe — 1)
foreach I € U,, e € [U]J™, i €1, Yo(X; — 1)
for each e, f € U™, e L f, Y.Y;

VI.B An Upper Bound for the Polynomial Calculus

Theorem 62 The AIS,, (M, N) system of polynomials has a degree 3, size O(M N3)

polynomial calculus refutation.
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Proof: The polynomial calculus refutation proceeds as follows. First, we use the
axioms to derive polynomials stating that the number of monomials satisfied in
each equation is zero modulo m. Then we iteratively derive ) ;. X; for each row
r. After ), p X; is derived, we subtract the initial polynomial » ;. X; —1
from it to derive 1.

For each r and each I € U,, e € [U,|™ withe 3 I, let qro = Y. [[;o; Xi—Ye.
When |I| =1, g7 = X;Y. — Y. belongs to AIS,,(M, N), and when I = {i,j}, there
is a degree 3 derivation of ¢; . from AIS,,(M,N):

XZ(X]Y;—Y;)'FXZY;—Y; = XZX]Y;_Y; = dIe

For each 7 and each I € U,, let py = )_,5; Yo — [[,c; Xs. These polyno-
mials have degree < 3 derivations from AIS,,(M, N) and the g7 ’s:

(Hz’el Xi) (ZeaI Ye - 1) =D es1lle = Dot (Ye [Ticr Xi — qLe) — [Lier Xi
= ZeBI Ye — Hz'EI Xi=pr
For each equation r, 0 < r < M, when we negate the sum of all mono-
mials, we discover that the sum of the satisfied monomials is zero modulo m. The
final identity » ;. D5, Ye = 0 is true because each variable Y, appears exactly

m times in the sum.

- ZIEUT pr = ZIEUT (Hiel Xi— ZeBI Ye)
= ZIeUT Hie[ Xi— ZIEUT ZeBI Y
= ZIEUT Hie[ Xi

We now iteratively derive ZieRT X, foreach r,1 <r < M. Because Uy =

Hit i€ R}, X rep, [Lier Xi = Dicr, Xi- To derive ZjeRrH X from ) p X,

for < M, we combine the initial polynomial », ,; [[;c; Xi with >, X; as

follows:
- ZIEUr HiEI Xi+ (ZjeRH-l X]-) (ZiERr Xi)
- ZiERr ZjeRr+1 Xin - (m - 1) ZjeRH_l Xj + ZiERT ZjeRr+1 Xin
= ZjERr.H X]
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Finally, notice that Y, ;. [licr Xi = Doicr,, Xi — 1. We subtract this
from ) ;. X; to obtain 1.

Corollary 63 The set of clauses 1S,,(M, N) has a polynomial size constant-depth

Frege with counting gates modulo m refutation.

VI.C Modified Induction on Sums Principles

To prove the size lower bounds for constant-depth Frege with counting
axioms proofs of the induction on sums principles, we will not work directly with
the induction on sums principles but with a variant more amenable to our proof
method. There are two difficulties that make the induction on sums principles
unwieldy. First, a restriction of the IS,,(M, N) principle usually does not yield
an instance of some other IS,,(M’, N’). This kind of closure simplifies matters
when working with decision trees. The second, and more substantial, difficulty is
encountered in the proof of the switching lemma.

The modification restricts the partition variables, Y,, so that each e can
contain at most one monomial. This is done by adding a set of “extra-points”
whose size is divisible by m, and placing an m-partition on the satisfied monomials
and the extra points with the restriction that each edge used contains at most one
monomial. Such a partition would imply that the equation is 0 modulo m because
each satisfied monomial be grouped with m — 1 of extra points, and the total

number of extra points is 0 modulo m.

Definition VI.C.1 Fiz a positive integer M. Let Ry,..., Ry be disjoint sets of
size N. Let Uy = {{i} | i € Ry}, forr € {1,...,M — 1}, let U, = {{i,j} |
i € Ry, j € ReprbU(m —1) x{{j} | 7 € Reya}, and let Uy = {{i} | i €
Ry} U (m —1) x {0}. For each r, and let V, be a set of distinct points so that
\V.| = m|U,|. For eachr, let E, ={e € [U,UV,]™||lenU,| <1}.
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For each @ € Uivil R,, there is a propositional variable X;, and for each
e € Ui\/[:o FE,, there is a propositional variable Y.
The M by N modified induction on sums principle, MIS,,(M, N),

18:

For eachr, 0 <r < M,

for each I € U,, Vier " Xi V V5 Ye
for each e with I € e and i € I, Y., VX;

for each p € V,, \/eap Y,

for eache L f, —Y, VY,

To ease our constructions of decision trees and k-evaluations, we gener-
alize the definition so that a restriction of MIS,, is also an instance of MIS,, on
a different index set. When a variable X; is set to false, it is removed from its
row, however, when a variable X; is set to true, it must later be covered with
a matching variable Y,. For this reason, the modified principles include rows of
satisfied variables that must be matched. Furthermore, when a matching variable
Y, is satisfied, we remove one satisfied monomial and m — 1 extra points from
consideration. Therefore, setting a variable Y, maintains the invariant that the
number of extra points is congruent modulo m to the number of satisfied mono-
mials that have been matched. The modified principles need a substantial amount
of bookkeeping to describe their index sets. The family of index sets describing an

instance of a modified induction on sums principle is called a universe.

Definition VI.C.2 Fiz a positive integer M. Let Rq,..., Ry, S1,...Su be dis-
joint sets. Let R = Uivil R,, and let S = U,]»V; Sr. Let My ={{i} |i€ Ry US1},
forre{1,..., M—1}, let M, ={{i,j} |i € R.US,, j € R 1US,;1}U(m—1) x
{{7}|j € Rrs1USr 11}, and let My = {{i} |i € Ry USu}U (m—1) x {0}. For
eachr, let U, be a subset of M, so that (I € M, \U,) = I C S (i.e., the monomials

not in U, have been satisfied). For each r, and let V, be a set of distinct points so
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that |V,| = (M \U,|. The tuple (Ry,..., Ry, Sty S0, Uoy -, Unty Vou o o, Vir)

18 called o universe.

It is helpful to think of the monomials I € M, \ U, as the satisfied

monomials that have been covered by some matching variable Y, with I € e.

Definition VI.C.3 Let U = (Ry,..., Ry, S1, .-, S, Uoy - ooy Unty, Voo oo, V) be
a universe. For each 1 € R, let there be a propositional variable X;, and for each
e € Ufio E,., let there be a propositional variable Y,. The modified induction

on sums principle for U, MIS,, (i), is the following set of clauses:

For eachr, 0 <r < M,

for each I € U,, Vierng " XiV V5 Ye
foreache, I €eenU,, i€ INR, Y,V Xj;

for each p € V,, \/eap Y,

for each e L f, -Y, VY,

Let AMIS,,,(U) denote the following set of polynomials

For eachr, 0 <r <M,

For each I € U,, [Ticinr Xi (oo Ye— 1)
foreache, I cenU,, 1€ INR, Yo.(1-X;)

Forp eV, DespYe—1

For each e L f, Y .Y

The MIS,,,(M, N) principles are an instance of the MIS,, (i) principles

with an appropriate choice of universe; such a universe is called an (M, N) universe.

Definition VI.C.4 Let U = (Rl,...,RM,Sl,...,SM,U(),...,UM,%,...,VM) be
a universe. We say that U is an (M, N) universe if for eachr, 1 <r < M, S, = (),
Up = {{i} | i € R}, |Vo| = m|Uy|, forr € {1,...,.M — 1}, let U, = {{3,j} | i €
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R, j€ R} U(m—1)x{{j}[j€ R}, Vi|] =m|U|, Unw = {{i} | i €
Ry }U (m—1) x {0}, and |Vis| = m|Uys|. Because the sets Si, ..., Sy are empty,
we will often write (M, N) universes as (Ry,..., Ry, Uoy .., Upt, Vo, oo, Var).

Definition VI.C.5 Let M and N be positive integers. AISy,(M,N) denotes any
system of polynomials AIS,,(U) where U is an (M, N) universe.

Definition VI.C.6 Let U = (R, ..., Rar, Sy s Sors Uy -y Unis Vor oo, Var) be
a universe. The length of U, L(U), is M and the width of U, w(U), is defined

as follows:

w(U) =min ({[R.| [1<r < M}U{[V;/m| [0 <r < M})

VI.C.1 Reducing IS,, to MIS,,

We prove size lower bounds for refutations of the MIS,,, (M, N) principles,

and these lower bounds imply size lower bounds refutations for IS,,(M, N) as well.

Theorem 64 There exists a substitution X so that for each clause
H € IS,(M,(m + 1)N + m(m — 1)), either X(H) = 1, ¥(H) = X V =X, or
Y(H) € MIS,,(M,N).

Proof: The idea is straightforward; in each row we will set mN +m(m — 1) of the
variables to 1 and treat the newly created satisfied monomials as the extra points.
Of course, this substitution results in a few too many extra points and there is the
issue of what to do with monomials that have one variable set and the other unset.
These issues are easily worked out.

Let Q1,...,Qum be index sets of size (m + 1)N + m(m — 1) and let
To,---,Trm be the sets of monomials for IS,,(M, (m + 1)N + m(m — 1)). Parti-
tion each @), into two sets, R, and S, with |R,| = N and [S,| = mN + m(m — 1).
Foreach r, 1<r <M —1,i€ R, let H); ={{i,j} € T, | j € Sr41}. Let P;; be
an m-partition of H,;. For each j € R.yy, let H?; = {{i,j} € T, | i € S, }, and let
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P2, be an m-partition of H?,. Forr, 0 <r < M,let U, ={I € T, | I C |, R, },
and let V, ={I €T, | I C |, S} Set E, ={eec[U,UV]|™]||enU,| < 1}.
Let U be the universe (Ry, ..., Ry, 0,...,0,Us, ..., Un, Vi, ..., Var); this is not an
(M, N) universe, but it is close and we will deal with it at the end.

Let X be the following substitution:

.
Y. ifee[U,UV,]™and [enU,| <1
1 ifies, X; ifeePl,
%(Xs) = (Ye) = S ’
X; ifie R, X; ifeeP?
0  otherwise

\

Consider an axiom of the form \/,., ~X; VvV ,, Y, with I € T,.

eI

Consider the case when I C S. In this case, I € V,. For each ¢ € I,
Y(X;) = 1 and for each e 3 I, X(Y,) = Y. if e € E, and X(Y,) = 0 otherwise.
Therefore, X(V,c; ~Xi V V.51 Ye) = \/eee;}, Y.

Consider the case when I C R. In this case, I € U,. For each i € I,
¥(X;) = X; and for each e 5 I, 3(Y,) = Y, if e € E,, and otherwise X(Y.) = 0.
Therefore, £(V,;c; 7 Xi V V.5 Ye) = Ve 7 X V VeeeaE}r Ye.

If I = {i,j} with ¢ € R, and j € S,;1, then X(X;) = X; and there is
exactly one e € [T,]™ so that X(Y,) = X;, for all other e, ¥(Y,) = 0. Therefore,
Therefore, X(\/,.; 7 Xi V V5, Ye) = 7X; V X;. The case for I = {7,5} with i € S,
and j € S, is handled similarly.

For each axiom -Y,V—Y; with e, f € [U,]™, e L f, a similar case analysis
shows that X(—Y, V —Y;) =1 or ¥(=Y, V ~Y}) € MIS,,, (U).

The only issue remaining is that ¢ is not an (M, N) universe. Notice that
\Us| = N, |Vo| = mN +m(m —1), |[Uy| = N+m—1, |[Vy| =mN +m(m — 1),
and for 1 <r <M —1,|U,] = (m—1)N + N? and |V,| = (m — 1)(mN +m(m —
1)) + (mN + m(m — 1))?. For r < M, we group together some of the points of V;
by setting some Y.’s to 1 and obtain V! C V, with |V/| = m|U,|.
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Corollary 65 If there is a size s, depth d refutation of IS, (M, (m+1)N+m(m—
1)) then there is a size s, depth d refutation of MIS(M, N).

VI.D Restrictions and Partial Assignments

We say that two literals are inconsistent if their conjunction implies the

negation of some clause of MIS,, ().

Definition VI.D.1 Let U be a universe. The following pairs of literals in Vars(U)
are inconsistent: —X; and Y., when 1 € I and I € e, X; and =X;, Y. and Yy,
whene L f, and Y, and —Y,. For a set of literals S, if there exist l1,ly € S so that

l1 and ly are inconsistent, then S is said to be inconsistent.

Definition VI.D.2 Let U be a universe. Let S be a consistent set of literals from
Vars(U). For a formula F, the restriction of F' by S, F |s, is defined in the usual
way, replacing a literal 1 by 1 if | € S and replacing | by 0 if some l' € S is
inconsistent with l. Compound expressions are simplified when explicitly satisfied

or falsified.

Definition VI.D.3 Let U be a universe. Let B be a set of literals in Vars(U).
We say that B is closed if for every Y, € B, we have that for every I € enU,,
1€1, X; €B.

Here is an easy lemma we give without proof.
Lemma 66 Let U be a universe, and let S, T,V be subsets of Vars(U).
1. (SIr) lv=S lauv)
2. If S and T are consistent and S is closed then SUT = S U (T [g).

The motivation for the more complicated formulation of MIS,,, with the
universes is that we want the restriction of an MIS,,, principle to be another instance
of an MIS,, principle. In actuality, we only need this hold for restrictions that do

not negate an edge variable.
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Definition VI.D.4 Let U = (Ry,...,Rar, Sty Sar, Uos oo, Unt, Vs - -, Var) be

M
r=0’

a universe. Let 1 € Uivil R, be given, and lete € | J so that if there is I € eNU,

for some r, then I C S, US,;1.

1. The restriction of U by X;, U [x,, is defined as follows: for 1 <r < M,
i ¢ R, let Rl = R,, and S| = S, for the r so that i € R,, let R, = R, \ {i}
and S, = S, U {i}.

U [Xi: (Rlln""RIM:SID""SIMaUO""’UM’%""’VM)

2. The restriction of U by —X;, U [-x,, is defined as follows: for1 <r < M,
i ¢ R, let Rl = R,, and S. = S, for the r so that i € R,, let R. = R, \ {i}
and S, = S,. Forr,0<r < M,letU =U\{I €U, |i€l}.

Z/{ in: (Rlla"'7RIMaSIJ'"7SM7UIO7"'7U,M:%7"'aVM)

3. Therestriction of U by Yo, U |y, is defined as follows: Forr, 0 <r < M,
so that e ¢ E,, let U = U, and V] = V,, for the r so that e € E,, let
VI=V,\eandlet U =U, \e.

U rYe: (Rl,...,RM,Sl,...,SM,UI(),...,U,M,V,(),...,V,M)

Let m be a consistent, closed set of literals containing only positive in-
stances of Y, variables. The restriction of U by 7, U [, is defined by iteratively
restricting by X; € m, - X; € m, and finally by Y, € .

Lemma 67 Let U be a universe, and let m be a consistent, closed set of literals

containing only positive instances of Y, variables. MIS,,(U) [,= MIS,,(U I).

Lemma 68 Let U be a universe, and let m be a consistent, closed set of literals
containing only positive instances of Y variables. (U ;) = I(U) and w(U [,) >
w(U) — ||,
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VI.E Decision Trees

The decision trees used for constructing our k-evaluation do not represent
Boolean functions in the sense of definition III.A.1. A trees does not represent its
function over all assignments to the variables, rather, only over assignments that
are locally consistent with respect to the MIS,, (i) principles.

At each internal node of a decision tree, a query is made either of an
underlying variable X;, asking whether the variable is true, or to a monomial in
U,, asking “Is this monomial satisfied, and if so, what partition edge covers this
monomial? Or, is the monomial not satisfied?”, or to an extra point in V., asking
“What partition edge covers the extra point?” The arcs leaving an internal node
are labeled with answers to these queries. Moreover, the answers possible at a
node are exactly those answers consistent with the answers labeling the branch to
that node.

Notation: When X is a propositional variable, let X! denote X and let
X1 denote - X.

Definition VI.E.1 Let U = (Ry,..., Ry, S1,---, S0, Vo, .-+, Vr) be a universe.
The queries of U, Q(U), are value queries, Value(I), for each I € UTNiOVr,
extra point matching queries, Match(p), for eachr € {0, ... M} andp € V,,
monomial matching queries, Match(I), for each r € {0, ... M} and I € U,.

Associated with each query is a set of answers. An answer is a closed set
of literals telling what happens to a point or monomial. Answers appear as labels

for branches in decision trees.

Definition VI.LE.2 Let U = (Ry,..., Ry, S1,---, S0, Vo, - -+, Vr) be a universe.
Let R = Uf«\il R,. Let Q a be query of U. The answer to Q in U, ANS*(Q), is
defined as follows:

1. Forie ¥, R,, ANS* (Value({i})) = {{Xi}, {—~Xi}}
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2. ForIeU,0<r<M,

ANSY(Mateh(I)) = {{X{'|ie INR}|ee {-1,1}/"F Jj ¢ =1}

U{Y.}Uu{Xy |k€eINR}|e€E, [€e}

3. ForpeV, 0<r<M,

ANSY(Match(p)) = {{YV.JU{Xi|k€INR, Icenl,}|ecE, pce}

Definition VI.E.3 Let U = (Ry,..., Ry, S1,---,Sm, Vo, ---, V) be a universe.
BLits(U) is the set containing ezactly the following literals: X;, for each i €
Urﬂil R,., =X;, for each i € Uivil R., and Y,, for each 0 <r < M, e € E,.

Lemma 69 Let U be a universe and let Q) be a query. If ™ is a consistent, closed
subset of BLits(U) so that || < w(U) then there exists L € ANSY(Q) so that L

18 consistent with .

Lemma 70 Let U be a universe and Q) be a query. If w is consistent, closed subset

of BLits(U) then ANSYI"(Q) = {A .| A € ANS¥(Q), A [.# 0}.

Definition VI.E.4 Let U be a universe. Fiz a set of values, V. A decision tree
(over U) is a rooted tree T that satisfies the following recursive definition: T can
be a single node, labeled with a value from V. If T has height > 0, then the root is
labeled with a query Q € Q(U). For each L € ANS*(Q), there is an arc labeled
L, underneath which is a decision tree over U [r. The height of a decision tree is

its height as a tree.

Definition VI.E.5 Let U be a universe and let k be a positive integer. T (U, k) is
the set of decision trees in U of height < k.
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Definition VI.E.6 Let T be a decision tree. For each path p in T from the root
to a leaf, let B, be the partial assignment obtained by taking the union of the edge
labels along p.

Because the distinct answers for any query are mutually inconsistent, the

mapping p — B, is injective.
Definition VI.E.7 Let T be a decision tree. Br(T) is defined as

Br(T) ={B, | pis a path in T from the root to a leaf }
For eachv € 'V,
Bry(T) ={B, | pis apathin T from the root to a leaf with label v }

In particular, if 7" is a single node labeled with v, then Br,(7) = {1},
and for all w € V' \ {v}, Br,(T) = 0.

We will often view Br(7) as a set of terms, with each branch corre-
sponding to the conjunction of the literals it contains. Using this interpretation,
V/ Br,(T) is the disjunction of all branches that lead to a leaf labeled v, and for a
collection of trees T;, i € I, \/,.; Br,(T;) denotes the disjunction of branches that

lead to a leaf labeled v in some tree 7.

Definition VI.E.8 Let F' be a DNF in Vars(U). Let T be a decision tree over U.
We say that T strongly represents F if each leaf of T is labeled with a 0 or 1,
for each o € Bri(T), there exists a term C of F so that C [,= 1, and for each
o € Bry(T), for every term C of F, C [,= 0.

Lemma 71 Let T be a decision tree over U of height h. Let w be a closed partial
assignment. If 2H(T) + |w| < w(U), then there is a branch in T consistent with

.

Proof: The proof is by induction on the height of 7. The statement is trivial

for trees consisting of a single node. Assume that the lemma holds for all trees of
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height h. Let T be a tree of height A + 1 over i and let 7 be a partial assignment
so that 2h + 2 + 7| < w(U). Let @ be the query on the root of T, and for
each L € AN Su(Q), let 77, be the subtree immediately underneath the root,
underneath the arc labeled L. Because |7| < w(U), we may apply lemma 69 and
choose L € AN SM(Q) which is consistent with 7. 77, is a decision tree over U [,
and has height at most h. Moreover, 2h + ||7|| < w(Ud) — 2 < w(U [L), so by
the induction hypothesis, we can find 8 € Br(7},) consistent with 7. L U f is the
desired branch of 7. n

Definition VI.E.9 Let U be a universe. For each v € Vars(U), the query as-
sociated with v, Qy, is defined as follows: If v = X; then @, = Value(i). If
v =1Y,, then Q, = Match(p), where p is the lexicographically first element of e.

VI.F Simplifications

The switching lemma requires us to not only apply a random restriction,
but also to make substitutions of literals for variables. The process of applying
such transformations to decision trees is called simplification. We use simplifica-
tions similarly to the way restrictions are used in other proofs of lower bounds for
constant-depth Whereas it is clear how to define a 0/1 restriction of a decision tree
and this definition guarantees several nice properties, doing so with substitutions
requires more care.

Given a mapping on literals, we will extend it in the natural way to a

mapping on formulas and a mapping on sets of literals.

Definition VI.F.1 Let U and V be universes. A simplification is a mapping
which maps Lits(U) to Lits(V) U {0,1} and QU) U {null} to Q(V) U {null} with

the following properties:
1. If ly,ls € Lits(U) are inconsistent, then %(l1) and X(ly) are inconsistent.

2. For all queries Q € QU), if X(Q) # null, then S(ANSY(Q)) = ANSY(2(Q))
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8. For each v € Vars(U), if X(Qy) # null, then X(Qy) = Qx(v)-

4. For every hypothesis H € MIS,,(U), £,(H) =1, ,(H) = wV —w (for some
variable w), or ¥,(H) € MIS,,(V).

5. X(null) = null

Property (1) allows us to strengthen property (2). Because distinct an-
swers to a query are inconsistent, at most one answer to () can simplify to an

answer of ¥(Q).

Lemma 72 Let Y be a simplification fromU to 'V, and let Q) be a query of U so that
¥(Q) # null. For each B € ANSY(2,(Q)), there is exactly one A € ANS*(Q)
so that ¥,(A) = B.

Lemma 73 Let Y be a simplification fromU to V), and let A be a closed, consistent

set of literals from BLits(U). X is also a simplification from U [4 to V [5(a).

Lemma 74 Let Xy be a simplification from U to V, and let X9 be a simplification
fromV to W. Then ¥4 0 X4 is a simplification from U to W.

Definition VI.F.2 Let X be a simplification from U to V. Let T be a decision tree
over U. The simplification of T by X, X(T), is defined recursively as follows:

If T is a single node, then X(T) =T.
If T has multiple nodes, then 3(T) is the tree constructed as follows:
Let Q be the label on the root of T, and for each A € ANS*(Q),
let T'y denote the subtree of T immediately underneath the root,
underneath the edge labeled A
If there exists A € ANS*(Q) so that ©(A) =1
then X(T') = X(Ta)
Otherwise,

the root of ¥(T') is labeled with ¥(Q))
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For each A € S(ANS*(Q))
place an arc labeled ¥(A) underneath the root
and underneath this arc, place a copy of 3(T4)

Lemma 75 Let U and V be universes, and let ¥ be a simplification from U to ).
Let T be a decision tree over U. If T is a decision tree of height h over U then
X(T) is a decision tree of height < h over V.

Proof: We prove this by induction on A. If h = 0, then 7" is a single node labeled
with a value, and ¥(7T') is that same node. This is a decision tree over V.

Assume that the lemma holds for all trees of height < h. Let T be a
decision tree of height A + 1 over Y. Let Q be the query on the root of 7. There
are two cases: the case that there exists A € ANSY(Q) so that ¥(A) = 1, and the
case that for all A € ANSY(Q), ©(A) # 1.

Consider the case when there exists A € ANSY(Q) so that ¥(A) = 1.
Let A be the unique such element of ANSY(Q). By definition, (7)) = X(T4). By
definition, T4 is a decision tree over U [4 and by lemma 73, ¥ is a simplification
from U [4 to V [y)= V. Therefore, by the induction hypothesis, ¥(Ty) is a
decision tree over V.

In the case when for all A € ANSY(Q), ©(A) # 1, we have that %(Q) #
null. By definition, the label on the root of X(7) is X(®), and for each A €
ANSC(U) so that X(A) # 0, there is an arc labeled ¥(A) leading to ¥(T,). For
each such A, because ¥ is a simplification from U [4 to V [g(a), by the induction,
Y(T4) is a decision tree over V [x4). Because S(ANSY(Q)) = ANSY (2(Q)), we

have that 3(T') is a decision tree over V. n

Lemma 76 Let X be a simplification from U to V. Let T be a decision tree over

U with leaf labels from some set V', X(Br,(T)) = Br,(X(T)).
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Proof: The proof is by induction on the height of 7. If T is a single node,
then the lemma trivially holds. Suppose that the lemma holds for all trees of
height < h. Let T be a decision tree of height h + 1 over U. Let () be the
query on the root of 7. By the induction hypothesis and lemma 73, for each
A € ANSq, E(Bry(T4)) = Br,(X(T4)). There are two cases: that that there
exists A € ANSY(Q) so that £(A) = 1, and the case that for all A € ANSY(Q),
Y(A) # 1.

Consider the case when there exists 4 € ANSY(Q), so that %(A4) = 1.
In this case, X(T') = X(T4). Because distinct answers to a query are inconsistent,
for every A’ € ANSY(Q) I, if A’ # A, then ¥(A) = 0. Therefore, ¥(Br,(T)) =
5(Br,(T4)) and thus Br,(S(T)) = Br, (S(T4)) = S(Br, (T4)) = S(Br,(T)).

Now consider the case when for all A € ANSY(Q), X(A) # 1.

S(Br,(T)) = {Z(AUB)|Ae ANSY(Q), £(4) #0, B € Br,(Ta)}
= {Z(A)UB'[ A€ ANS(Q), (4) #0,B" € X(Br,(T4))}
= {S(A)UB'| A€ ANSU(Q), S(A) # 0, B' € Bry(S(Ta))}
= Br,(X(7))

Corollary 77 Let Y be a simplification from U to V. Let T be a decision tree in
U with leaf labels from {0,1}. Let T denote the tree obtained by inverting the leaf
labels of T.

1. If Br(T) = Bry(T) then Br(X(T)) = Bro(X(T)).
2. If Br(T) = Bri(T) then Br(X(T)) = Bri(3(T)).
3. S(T) = (S(T))°

4. B(V Bri(T)) = Br(3(T))
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Lemma 78 Let T be a decision tree which strongly represents a DNF F. Then
Y(T) strongly represents S(F).

Proof: It is easily checked that if ¥X(F') = 0 is constant, then X(7') is a single node
labeled with 0 and if ¥(F) = 1 then X(7T') is a single node labeled with 1.

By lemma 76, for any leaf label value v, and for each o € Br,(3(T)),
there exists 7 € Br,(T') so that ¥(7) is non-constant and X(7) = o.

Let 0 € Bry(T) be given. Choose 7 € Bry(T) so that ¥(7) = o and
choose a term C of F so that C C 7. We have X(C) C X(7) = o as needed.

Let 0 € Bry(T) be given. Choose 7 € Bry(T) so that X(7) = 0. Let
C be a term of F. Because T strongly represents F', C' [,= 0. Because ¥ is a
simplification, ¥(C') 5= 0, and therefore X(C) [,= 0. n

VI.G The Switching Lemma

Theorem 79 Let r,c be positive constants. There exist constants € > 0 and h so
that for all M, and all N sufficiently large, for every (M, N) universe U and every
collection R of at most N¢ many r-DNF's, there exists an (M, N¢) universe U’ and
simplification & : U — U" so that for every F € R, X(F) is strongly represented
by a decision tree of height at most h.

The standard tool for proving lower bounds for constant-depth circuits
and constant-depth Frege systems is to apply random restrictions to the formulas
which collapse them into short decision trees. This approach does not suffice to
prove size lower bounds for refutations the MIS,, principles. We require a process
which we call “random simplification” that first applies a random restriction and
then substitutes some literals for other variables.

In subsection VI.G.1 we show why random restrictions alone do not suffice

to prove lower bounds for our tautologies. The random simplifications are described
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in subsection VI.G.2. The crucial result of this section is that the simplification
process is indeed a simplification as described in section VI.F, lemma 82.
Subsection VI.G.3 contains the proof of our switching lemma, in the guise

of theorem 83. We combine theorem 82 and theorem 83 to prove theorem 79.

VI.G.1 The Inadequacy of Restrictions Alone

Restrictions alone do not seem sufficient to collapse DNF's to short deci-
sion trees with respect to the MIS,, (i) principles. This is because for a monomial
X, X; withi € R, j € R,44, it is possible that X; is set to 1 and Xj is left unset.
Because the monomial may in the future be set to 0 or 1, depending on how X
is set, we can neither match with some extra points nor say that it is unmatched.
If the random restriction sets a reasonable numbers one and leaves a reasonable
number of variables unset in each row, this event happens with significant proba-
bility.

We now give an example of a DNF that cannot be represented by a short
decision tree after the application of any 0/1 restriction that does not set every
variable in each row. Fix i € R, and consider a disjunction \/ J€Rp 11 Y,, for a fixed
1 € R.. In the event that X; is left unset, none of the match;;{gifariables in the
disjunction are set to 1. A matching query must be made for each {i,j} with X;
not set to zero, so any decision tree to representing the restriction of this DNF

requires height proportional to the number of j € R, so that X, is not set to

zero. This is too large for our purposes.

VI.G.2 Presimplifications

To avoid the difficulties described in the preceding section, we apply a
random restriction and then substitute one variable for another. In particular, for
monomials {7, j} with X; set to 1 and X set to *, we reserve a particular e € E,
with {i,7} € e and substitute X, for the variable Y, and 0 for every other Y;

with {4, j} € f. Notice that this reduces the troublesome disjunction of subsection
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VI.G.1 to the single variable X; which is strongly represented by a decision tree of
height 1.

Definition VI.G.1 LetU be an (M, N) universe, and let p be a partial assignment
to Vars(U). Letr € {1,...,M — 1}, i € R,,j € R.41 be given. We say that the
monomial {i,7} is a half-star of p if p(X;) = 1 and p(X;) = *, or, p(X;) = *
and p(X;) = 1.

For each half-star I = {4, j}, some e > I is reserved to cover {3, j} should
X, and X; both be set to 1. The monomial can be covered by no other edge. Of
course, if the monomial X; later becomes a 0, then something must be done with
the extra points in the reserved edge. Notice that the monomial {i,;} becomes
0 only when Xj is set to 0. In this case, all the other half-stars dependent on j,
{#', 7}, become 0 and the extra points of the edges for these half-stars become free
as well. We place a predetermined partition on all of these extra-points and use it

when Xj is set to 0: for f belonging to this partition, =X is substituted for Y.

Definition VI.G.2 Let U be an (M, N) universe. Let L < N be given so that

K = 2L s an integer divisible by m. An L-presimplification for U is a

consistent, closed partial assignment p satisfying the following properties:
1. In each row, p sets K ones: Vr € {1,..., M}, [{i € R, | X; € p}| = K.
2. In each row, p sets K zeroes: ¥r € {1,...,M}, {i € R, | =X, € p}| = K.

3. In equations 1 through M — 1, 2mKN — mK? + m(m — 1)K many extra
points are covered: ¥Vr € {1,.... M =1}, {pe V, | e [V,]",p€e, Y. €
p} =2mKN — mK?+m(m —1)K.

4. In equations 0 and M, (m + 1)K extra points are covered: ¥r € {0, M},
{peV,|3ecVi]’,pce, Y. €p}| =K.

5. In equations 0 through M — 1, every satisfied monomial is matched.

Vre{0,....M -1}, VI €U, (Viel, X;ep)=3e>1I, Y.€p
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6. In equation M, all satisfied monomials but m — 1 are matched. |{I € Uy, |

desI, Yoept =K

7. Potential matches are reserved for the half-stars:
For eachr e {1,...,M—1},i € R,,j € Ry11 so that p(X;) =1 and p(X;) =
%, there is eb) € B, with {i,j} € €7 so that
o Vf, {i,jy € f. [#€7, p(Yy) =0
o p(Yii) = x
For each v € {1,...,.M — 1}, j € Rpy1 so that p(X;) = *, let S =

U ier, ef;j. Let Eg be a fixed m-partition on the points of Sg.

p(X;)=1
o Ifec & then p(Ye) = .

o Ve, ifeNSI#0 and e & I then p(Ye) = 0.

Foreachr € {1,...,M—1},i € R,,j € Ry11 so that p(X;) = * and p(X;) =
1, there is f7 € V. so that

o Ve, {i,j} €e, e# [, rho(Y,) = 0.
o p(Yyis) =

For eachr € {1,...,M =1}, i € R, so that p(X;) = %, let T; = Jjer, ., fi7.
p(X;)=1

Let .7-"; be a fixed m-partition on the points of T,j.

o If f€F), then p(Yy) = .

o Vf, if fOT;#0 and f & F, then p(Yy) = 0.
8. If | 1s a literal inconsistent with a variable v and v € p then =l € p.

9. No other literals belong to p.

Lemma 80 Let U be an (M, N) universe, and let w be a consistent, closed set of

literals with |m| < N. There exists a (N — |r|)-simplification p so that ™ C p.



111

Definition VI.G.3 Let U be an (M, N) universe, and let p be an
L-presimplification for U. An e-extension of p is an (L — 2e)-presimplification k

so that p C k.

We call this an e-extension rather than a 2e-extension because it adds e ones in

each row and e zeroes in each row.

Definition VI.G.4 Let M and N be positive integers.

Let U = (Ry,..., Ry, Upy ..., Un, Voo..., V) be an (M, N) universe.
For each r, 1 <r < M, we define ¥,(R,) := {i € R, | p(X;) = *}. For each r,
0<r< M, we define

S,U,) = {IeU, |Viel, p(X)) =}
S,(Vi) == {peV,|VieR,VjE€R1,pEe, p& [P, Ve p, p(Ye) # 1}
SU) = (Bp(Ra),- - Bp(Bar), p(Uo)s - -+, Bp(Unm), o (Vo) - - - 2 (Vi)

Lemma 81 LetU = (Ry,..., Ry, Ugy ..., Up, Vo, ..., Var) be an (M, N) universe
and let p be an L-presimplification for U. ¥,(U) is an (M, L) universe.

Definition VI.G.5 Let U be an (M, N) universe, and let p be a presimplification
for U. For each query @ € Q(U), we define the simplification of Q by p,
3,(Q), as follows:

If Q = Value(i) then
if ¥,(X;) = X then £,(Q) = Value(s)
otherwise ¥,(Q) = null
if Q@ = Match({i}) then
if £,(X;) = X; then X,(Q) = Match(i)
otherwise ¥,(Q) = null
If Q@ = Match({i, j}), then
if £,(Xi) = X and £,(X;) = X, then 3,(Q) = Match({i,j})
if ,(Xi) =1 and £,(X;) = X then X,(Q) = Value(j)
otherwise, ¥,(Q) = null
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If Q = Match(p), then
if p € € then ¥,(Q) = Value(j)
if p € fi7 then $,(Q) = Value(i)
if p € ,(V;) for some r, then ¥,(Q) = Match(p)
otherwise £,(Q) = null

Lemma 82 Let U be an (M, N) universe and let p be a presimplification for U.
X, is a simplification from U to 3,(U).

Proof: We show that the three criteria of the definition of simplification are met:

1. If l;,ly € Vars(U) are inconsistent, then either (i) X,({;) = 0 or X,(l2) =0,

or (ii) X,(l;) and ¥,(ly) are inconsistent.

This is non-trivial only when ¥,(l1) # 1 or 3,(l2) # lo. Without loss of
generality, there are two cases to consider, Iy = My, with 3,(M;,) = X;

and [, =Y, with 3,({;) = - X,.

Consider the case when [; = Y, and 3,(Y,) = X, with ¢ € I € e. This
happens when e is the edge reserved for the monomial {3, j} with p(X;) = *
and p(X;) = 1. There are three possibilities for what Iy can be: =X;, =X,
and Yy with f L e. If [, = =X, then ¥,(l2) = -X;. If [, = —X, then
Y,(l) =0. If I, =Yy with f L e, then either ¥,(l2) = 0 or £,(ls) = - X,.

Consider the case when /; = Y, and ¥,(Y.) = —X;. This happens when
ee &l oree F, and e > {i,j} with p(X;) = 1. The possibilities for what
ly can be are =X, =X;, and Yy with f L e. If [, = =X, then ¥,(ls) = - X;.
If I, = =X, then ¥,(l3) = 0. If [, = Y; with e L f then either ¥,(Y;) = X;
or ¥,(Yy) =0.

2. For all queries Q € Q(U), if £,(Q) # null, then
B(ANSH(Q)) = ANSZH(2,(Q))

Consider a query of the form @ = Match({7,j}). The other queries are

handled with similar case analyses and we omit them to save space.
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Recall that

ANS (Match({i,j})) = {{-Xi, ~X;}, {-X;, Xj}, {Xi, ~X;}}
U{{Y., Xi, X} [e> I}

Consider the case when X¥,(X;) = X; and £,(X;) = X;. In this case
Y,(Q) = Match({z,j}). Clearly, for each e € [E,(U,)UZ,(V;)|™, with {3, j} €
e, L,({Ye, Xi, X;}) = {Ye, Xi, X;}, and for each e ¢ [X,(U,) U 3,(V,)]™,
{i,j} € e, £,(Ye, X;, X;}) = 0. Also, for A = {—=X;,-X,}, {-X;, X;}, or
{X;,=X,}, we trivially have that ¥,(A) = A. Therefore, L(ANSY(Q)) =
AN (5,(Q)).

Consider the case when 3,(X;) =1 and ¥,(X;) = *. In this case

S, ({-Xs X1 = 0, S, ({+X5, X;}) = 0, and ,({X;, ~X;}) = {~X;}. For
each e 5 I, ¥,(Y.) = 0 if e is not the edge reserved for {7, j} and £,(Y,) = X;

if it is. Therefore,

SANSH(Q)) = {{Xh (X} = ANS™U(Value(j))

. For each v € Vars(Yf), if ¥,(Q,) # null, then 3,(Q,) = Qs )

This is trivial whenever 3,(v) = v. The only other cases are when X,(Y,) =
X; and ¥,(Yy) = —X;. In the former case, ¥,(Match([)) = Value(i) = Qx;
and in the latter case 3,(Match(p)) = Value(i) = Qx;.

. For every hypothesis H € MIS,, (i), ¥,(H) =1, ¥,(H) = wV —~w (for some
variable w), or ¥,(H) € MIS,,(2,(U)).

The proof is a case analysis for each type of clause in MIS,, (/). To save
space, we give the proof only for axioms of the form \/eap Y,, for some p € V.,

0 <r < M. The other axioms are handled similarly.
In the case that there exists e 3 Iso that 3¥,(Y.) =1, ¥,(A) = 1.

In the case when p is belongs to an edge e reserved for some half-star, {3, j}

with ¥,(X;) = X, and 3,(X;) = 1, we have that 3,(Y.) = Xj. Also, there is
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exactly one edge f 3 p with X,(Y;) = —Xj; for all other g 3 p, ¥,(Y,) = 0.
Therefore, £,(V .5, = X; V Xj.

esp
The remaining case is when p € 3,(V;). In this case, for e € [E,(U,) U
S, V1™, e US,(U)] < 1, 5,(%,) = Yo, For e € [S,(U)) U S, (V)] with
eN(V\X,(V;)) # 0, we have that ¥,(Y,) = 0. Similarly, e contains a half-star
or a satisfied monomial, then X,(Y,) = 0. Therefore, ¥,(V 5, Ye) = V5, Ye-

VI.G.3 An Independent Set Style Switching Lemma

Definition VI.G.6 LetU be an (M, N) universe, and let p a presimplification for
U. The minimum height of a decision tree strongly representing ¥,(F) is denoted

as h,(F).

Theorem 83 Let r,c be positive constants. There exist constants € > 0 and h so
that for all M, and all N sufficiently large, for every (M, N) universe U, for a

randomly chosen N€-presimplification for U, p,
Pr,fhy(F) > h] < N°°

Lemma 84 Let U be an (M, N) universe. Let L < N be given, and let K =
5(N —L). Let F be an r-DNF in Vars(U), and let p be an L-presimplification for

U. If p is selected uniformly among L-presimplifications, then

4 2 LCT s
Pr[h,(F) > 4m?r's?)] < ( T )

K

Proof:(of theorem 83 from lemma 84) Simply set ¢ = 1/2¢r and s = 4¢. For N
large enough so that N — N¢ > (4/5)N and (10r*)* < N¢,

4r25(N)<Cr s < 8r2sN1/2)°
1(N—Nc<) — N—N¢
10r2s)° _
bory

Pr,|h,(F) > 4m*r*s?)] < (LQ;(LCT)S

< (107‘25)5
— N1/2

IN
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The proof of theorem 84 is the direct combination of theorems 88 and 93,

which are proved in subsubsection VI.G.3 and VI.G.3, respectively.

Definition VI.G.7 We define the skeleton of a literal as follows: z = X;
—T)_(:Z- = -X;, fore e [V.]™, Y, =Y, and fore> I, I € U,, i:{Xi |ieI}. The
skeleton of a set of literals is defined as follows:

-

les

Definition VI.G.8 Let U be an (M, N) universe, and let p be a presimplification
for U. Let B be a consistent, closed set of literals from BLits(¥,(U)). We define
B?, the pullback of B along p as follows: B? = {l | X,(l) =1 or ¥,(l) € B}

Definition VI.G.9 Let U = (Ry,..., Ry, S1,---,Su, Uoy - -, Unt, Vo, -, Vir) e
a universe. Let B be a set of literals in Vars(U). We say that B matches its
ones if for everyr € {0, ... M}, and every I € U,, if {X; | i € [} C B then
there exists Y. € B with I € e.

Definition VI.G.10 Let U be an (M, N) universe. Let F be a DNF in the literals
BLits(U). Let p be a presimplification for U. Let Ty, ..., T, be terms from F. We
say that Ty, ..., Ty are p-consistent if there exists k, so that pUT, U...UTs C k.
Let B be a consistent, closed partial assignment in the variables BLits(X,(U)) that
matches its ones. We say that T1,...,T; are B-independent if for all 1 <1 <
j<s, T,NT; C B?. We say that that T, ..., T, form o B-independent-set for
F with respect to p if T',...,T; are B-independent, T}, ..., T, are p-consistent
and ¥,(F) [p is non-constant. We will say that T1, ..., T, form an independent
set for F with respect to p is there exists a B so that T1,...,Ts is a B-
independent-set for F' with respect to p. We say that that T, ..., T, is a maximal
B-independent-set for F with respect to p if for every term T' in F that is
not one of T, ..., Ty, the set T, Ty, ..., T, is not a B-independent-set for F' with

respect to p.
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Definition VI.G.11 Let U be an (M, N) universe, and let p be an
L-presimplification for U. Let F' be a DNF in BLits(U). We say that p is s-bad
for F if there is an independent set for F with respect to p of size s. Let k be
an e-extension of p. We say that k is an s-encoding for p with respect to
F if there exists an independent set for F' with respect to p, Ti,...,Ts, so that k
satisfies Ty U ... U T.

Lemma 85 If p is not s-bad for F, then for any consistent, closed set of literals
B that matches its ones so that ¥,(F) [p is non-constant, there exists a mazrimal

B-independent set of size at most s.

Proof: A single, non-constant, term is trivially B-independent, and by repeatedly
adding terms, we can construct a maximal B-independent set for F' with respect

to p. ]

Needed Facts About Simplifications and Restrictions

Lemma 86 If F [pg» is constant then ¥,(F) [g is constant and F [go= X,(F) [p.

Proof: Suppose that F' [go=1. Foreach l € F,l € B* so ¥,(I) =1 or 3,(I) € B.
Therefore, ¥,(F) [p= 1. Suppose that F' [go= 0. Choose [ € F and [, € B’
that are inconsistent. By definition, 3,(l2) = 1 or £,(l;) € B. Because ¥, maps

inconsistent literals to inconsistent literals, ¥,(F) [p= 0. n

Lemma 87 Let U be a universe, let p be a restriction, and let V = X,(U). Let

B be a consistent, closed partial assignment to Vars(V) and let Ty, Ty be terms

N

in Vars(U) so that S,(T}) # 0 and £,(Ty) # 0. If T, N T, ¢ B, then £,(T}) N
,(Ty) € B.

Proof: Choose | € ﬁ N fQ \ B, By definition of ¥,, ¥,(I) is not a matching
literal My, so £,(1) € X (Tl) ap> (TQ) Moreover, because | ¢ B?, ¥,(l) ¢ B and
Y,(1) # 1. Finally, £,(1) # 0 because £,(71) # 0 and B is closed. ]
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With High Probability, a Random Presimplification is Not Bad

Theorem 88 Let M, N, L, r and s be positive integers, so that 2rs < L < N.
Set K = £ (N — L). For any (M, N) universe, U, for any r-DNF F in the literals
BLits(U), with p a uniformly drawn L-presimplification for U,

Pr,[p is s-bad for F] < <@>5

Theorem 88 is proved through a sequence of three lemmas. It shown that
it is very unlikely that any adversary can recover much of an L-presimplification
from a randomly chosen extension, lemma 89, then it is shown that if a presim-
plification is bad for F' then an extension probably encodes the independent set,
lemma 90, and an encoding for a bad presimplification can be exploited to guess
a substantial part of the extension, lemma 91. Therefore, the probability of the

original extension being bad is small. We first prove the three lemmas and then

we combine them to prove theorem 88.

Lemma 89 Let U be an (M, N) universe, and let L and e be integers so that
e<L<N. Set K = % If p is a uniformly drawn L-presimplification for U.
and k s a uniformly drawn e-extension of p, then for any adversary A that returns

a set of s literals:

Proof: Notice that the distribution on pairs (p, x) so that p is a random L-
presimplification and x is a random e-extension of p is the same distribution on
pairs (p, k) where & is a randomly chosen (L — e)-presimplification and p is a ran-
domly selected sub-presimplification of k. This is simply because both choose uni-
formly among such pairs, which in turn holds because the number of e-extensions
of an L-presimplification depends only on L and the number of L-presimplifications
which are extended by a given (L — e)-presimplification depends only on L and e.

Fix an (L — e)-presimplification x and let S = A(k). Without loss of

generality, there are no literals of the form M; , in S because the adversary knows
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that such literals do not belong to k. We now show that a randomly selected p C k
is disjoint from S with less than the stated probability. By the principle of deferred
decisions, this proves the lemma.

Foreachr, 1 <r < M,leta, =|{i € R, | X; € S}, b, = |{i € R, |
-X; € S},and for r, 0 <r < M, let ¢, = |[{e € [V;]™ | Y. € S}|.

In row r, we choose K ones. The probability that positions set are not

specified by S is

(™) (K +e—a,)Kle! ( e ) < (2)"

K+4+e—a+1 K

E T K+olKl(e—a) =

K

K

Similarly, we must choose K zeroes in row r, and the probability that
this is done without meeting S is at most (%)br. For the extra points in equation
0, an assignment that does meet S chooses K/2 pairs from (K +e€)/2 — ¢, and for
the extra points in equation M, it chooses K /2 pairs from (K + €)/2 — cpr. The
probabilities of these events are at most (e¢/K)® and (e/K), respectively. In
equation r, 1 <r < M — 1, we choose 3(2KN + K? 4+ K) pairs e € [V;]? from px
that are disjoint from S. Let P denote the number of vertices of V. covered by an
edge Y, € p with e € [V;|™, and let P’ denote the number of vertices of V. covered
by an edge Y, € p with e € [V,]™. Note that P = 2mKN — mK? + m(m — 1)K
and P' = 2m(K +e)N — m(K + €)* + m(m — 1)(K + e), and therefore P' — P =
2meN — 2meK — me* +m(m — 1)e.

The probability of this happening is:
(P’;cr) ~ (P+(P';P)—c,) (P’ B P)c,

! - /__ S
(z) (%) P

_(2meN —2meK — me? + m(m — 1)e\“
< 2mKN —mK? +m(m — 1)K )
< ( 2meN — meK + m(m — 1)e )CT _ (i)(}r
~— \2mKN —mK?+m(m—1)K

K
Therefore, the probability that a randomly selected presimplification will

have its skeleton disjoint from S is at most (e/K)¢ = (e/K)?.



119

Lemma 90 There exists a positive constant C' so that for any positive integers M
and N, any (M, N) universe U, all e and L so that 2rs < e < L < N, and all

L-presimplifications for U, p, and when k is a uniformly selected e-extension of p:

Pr, [k is an s-encoding for p wrt F' | p is s-bad for F| > 7w

Proof: Let p be an L-presimplification for &/ so that there is a family of terms
from F', T, ..., T, that form an s independent set for F' with respect to p. Notice
that x satisfies T3 U ... U Ty if and only if & satisfies X,(T7 U ... UT). Let xo =
Y,(ThU...UTy).

Foreach r, 1 <r < M, let a, = |[{i | i € R,, X; € Ko}|- For each

<

b

1<r<M,letb.={i|i€ R, - X; € Ko}|. Foreach r, 0 <r < M, let ¢, =
Hp | 3e € [V,]™, Y. € ko}|. Foreach r, 0 <r < M, let d, = [{I | Y.k, I € €}|.
Probability of getting the ones correct, in row r: (ﬁ:g:)/(jg) = (L —
a.)le!(L—e)!/(e—a,)(L—e)!L! > 1/L%. Probability of getting the zeroes correct
(conditioned upon getting the ones correct), in row 7: (L:;Tbr)/(Le_e) >1/(L—e)b.
To bound the probability of getting the partition edges that are contained
within V. correct, we note that there are mL? + m(m — 1)L many points in V,

for 1 <r < M —1, (mLand mL 4+ m for equations 0 and M, respectively), and

(mL2—|—m(m71)L

. ) many edges. Therefore, the chance of the extension including the

¢, specified edges is clearly > oy

Similarly, the probability of getting the edges containing the satisfied
monomials is clearly > 1/L0(mdr),

Leta=Y" a,b=3" b,c=3" ¢ andd= 3" d, . Therefore,

the probability of x satisfying kg is at least:

A

O(a+b+c+d)
ISR IR
r=1 r=1 r=0

Because a + b+ ¢+ d < 3rs, for L sufficiently large, this probability is at

least 1/L¢* for some constant C. ]
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Definition VI.G.12 Let U be a universe, let F' be an r-DNF in BLits(U) and let
s be an integer. Let Ags(k) be the following algorithm:

Let k1 =&
Fori=11%o0s:
Find the lexicographically first term of F which is satisfied by k;, call it T;.
If there is no such term, abort with output “error”.
Randomly choose [; € i
Kir1 < ki-1 \ {l}
if l =X, then kip1 <~ ki \{Ye|j €1, I €€}
Output {l,...,1s}

Lemma 91 Let U be an (M, N) universe, let F' be an r-DNF in BLits(U), and
let s, e and L be integers with e < L < N. Let p be an L-presimplification for U.

and let k be an e-extension of p.
- . . 1\°
Pr(Aps(k) CR\ p |k is an s-encoding of p| > (2—)
,

Proof: Fix p and k so that F' contains an independent set of size s with respect to
p, and & satisfies every term of this independent set. Let B C BLits()) be the core
of the independent set. For each ¢, 0 <t < s, let E; denote the event that for all
i, 1 <1<t l; € k\B’. We will show that for each t < s, Prl;;1 € K\ B? | E] >
1/2r.

Let t < s be given and assume that event E; holds, that is, for all s,
1 <i<tl; €k\ B’ Notice that each {l;} U{Y. | [; € }76} can meet at most
one term of the independent set because for terms T, 7" of the independent set,
TNT C B” and l; ¢ BP. Therefore, there is some term of the independent set
which is satisfied by k¢y;.

Let T;y1 be the term found at the ¢ + 1’th iteration of Ap(x), with
Tit1 [k = 1. Because X,(F) [p is non-constant, F' [p, is nonconstant, therefore

there is a literal of 7}, not set by B*. However, T, [,,= 1 and thus there exists
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[ € Ty11\ B?. Because B? matches its ones, there exists [ € i\;\B”. Because T},
is a term of size at most 7, T:L/l has size at most 2r. Therefore, l;,; € T:L/l \ B?

with probability at least 1/2r. m

Now we can show that a random L-presimplification is unlikely to be

s-bad for F.

Proof: (of theorem 88) Let M, N, r,s, L be given with L > 2rs. Let p be a ran-
domly selected L-presimplification and let x be a randomly selected 2rs-extension

of p. Lemmas 90 and 91 tell us that

Pr, . [k is an s-encoding of F wrt p | p is s-bad for F] > 1o

Pr, . [AFs(k) C &\ p | £ is an s-encoding of F wrt p] > (&)’

Combining these two inequalities gives us

Pr, . [Aps(k) C&\p|pis s-bad for F| > (217)5 ﬁ

By lemma 89, we have that

—~
| [\l

5

@
N—r
@

\%

Pr, . [DECODE(x) C & \ p]
> Pr,,.[DECODE(k) C %\ p| pis s-bad for F]Pr,[p is s-bad for F]|
(L—ICT)S (%)s Pr,[p is s-bad for F|

v

Therefore,

4725 LCT\ ¢
< T ) > Pr, [p is s-bad for F

Building Decision Trees Using Maximal Independent Sets

The construction works by making a small set of queries for each variable
that appears in the independent set. Maximality guarantees that each term outside
of the independent set is either falsified or shortened by the answers to these

queries. First, we define the queries associated with each literal.
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Definition VI.G.13 The query for X; is Value(i). The query for —X; is
Value(i). The queries for Y., are Match(p), for each p € eN'V,, and Match(I),
for each I € eNU,.

Lemma 92 Let V be a universe, let B be a consistent, closed subset of BLits(U)
that matches its ones and let ly,ly € BLits(V) be inconsistent literals, both of

which are consistent with B. There is a query Q of 11, so that for every answer

A€ AN'SY(Q), either A falsifies Iy or A satisfies some l' € Iy \ B.
The proof of lemma 92 is a straightforward case analysis on [; and ls.

Theorem 93 Let U be an (M, N) universe, let F' be an r-DNF in the literals
BLits(U), and let p be a presimplification for U that is not s-bad for F. Then
Y,(F) has decision tree of height at most 4m?rs?. Moreover, this decision tree

strongly represents F'.

Proof: For a presimplification p which is not s-bad for F', and a closed partial
assignment to Vars(U) which matches its ones, B, we build a decision tree strongly
representing 3,(F) [p recursively as follows. The decision tree for X,(F'), Ts,r),s,

is constructed as follows:

If for some term C of F', ¥,(C) [p= 1, then T%,p) p is a leaf labeled with 1.
If for all terms C' of F, ¥,(C) [p=0, then Ts r) p is a leaf labeled with 0.
Otherwise
Choose (1, ..., to be a maximal B-independent set for F' w.r.t. p
Let Ty be the decision tree which, makes the queries for U§:1 X,(Ci) I8,
and underneath each branch, makes a matching query for every monomial
satisfied by that branch.
Ts,(r),B 1s the tree obtained by taking a copy of Ty, and underneath each
branch B’ € Br(1y), placing a copy of T, (r),pus

This construction can proceed for at most 2r iterations. We will show

that for each term C of F' that does not belong to the maximal independent set,
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N

either ¥,(C) is falsified or the size of £,(C) decreases by one after the query phase.
Because B matches its ones, whenever E/,)ZE) g is constant, X,(C) [ is constant.
Therefore, because terms have skeletons of size at most 2r, there are at most 2r
iterations.

Let C be a term of F' so that ¥,(C) [p is non-constant and C' does not
belong to the maximal B-independent set. In the case that there is a term C; in the

e~ ~——

maximal independent set so that CNC; ¢ B*. By lemma 87, X,(C)NE,(C;) € B.

P e g

Choose [ € £,(C)NE,(C;)\ B. When the [ is queried, X,(C) is falsified or the size
of X/J;E_C/’) decreases. Consider the case when there is no extension of p that satisfies
C1U...UCUC. Because each term has size at most r, and (s + 1) << L, there
is some C; which is inconsistent with C'. Because ¥, maps inconsistent literals to
inconsistent literals, ¥,(C) and X,(C;) are inconsistent. Choose /; € ¥,(C;) and
l € ¥,(C) so that [; and [, are inconsistent. Because X,(C) [g and X,(C;) |5
are both non-constant, /; and ly are both consistent with, but unset by, B. By
lemma 92, there is I’ € ly \ B so that for each answer to the queries for [, either I’
is satisfied or [, is falsified. Therefore, 3,(C') becomes falsified or the size of m
decreases.

Each independent set has size at most s because p is not s-bad for F', and
because F'is an r-DNF, each independent set contains at most rs literals. There-
fore, each iteration makes at most mrs many queries. Excluding the matching
queries made at the end of each phases, at most 2mr?s queries are made. Because

the non-matching phases can create at most (2mr?s)? many satisfied monomials,

the matching phases make at most 4m?r*s? queries. [

Proof:(of lemma 92) If I, = X, then the only possibility is that I; = =X; and the
claim clearly holds.

If I, = =X, then either [y = X; or [y =Y, with i € I, I € e. The former
case is trivial, and in the latter case, the answers to the query Match(I) will set

Xi to 0 or 1.
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If Iy = Y, then either [y = =X;, withi € I, I €e,or l; =Y}, withe L f.
In the former case, there is a half-star {i,j} € e; let I = {i,j}. Because both X;
and —X; are consistent with B, neither is set by B, and the query Value(i) will
either falsify [, or satisfy the literal X; € l;\B . Finally, consider the case of [, =Y,
and [, = Yy with e L f. If there exists I € eN f NU,, then because B matches its
ones, we must have that there exists i« € I, X; is unset by B. The query Match(I)
will set X;. If eN f C V., then choose p € eN f. The query Match(p) will satisfy
or falsify 5, and in either case, Iy = {l,} = {V,}.

VI.H k-Evaluations

A k-evaluation of a proof is a mapping associating a height < k decision

tree to each subformula of the refutation.

Definition VI.H.1 Let U and V be universes. Let I' be a set of formulas in
Vars(U) which is closed under subformulas. A k-evaluation for T' in V is a

mapping T from T to T (V, k), A Ta, with the following properties:

BT(T()) = B’I"()(To)

for each clause H € MIS,,(U), Br(Ty) = Bri(Tg)

for A=-B, T4 = (Tp)"

for A=\/\Y, B, T4 strongly represents \/\*, \/; Br1(Tg,)

Definition VI.H.2 Let T be a k-evaluation for I' in V. For A € T, we say that
A T-evaluates to 1 if every leaf of T4 is labeled with 1, and that A T-evaluates
to 0 if every leaf of T4 is labeled with 0.

Therefore we say, for every k-evaluation T, the constant 0 T-evaluates to

0, and each H € MIS,, () T-evaluates to 1.
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In subsection VI.H.1 we construct a k-evaluation from a small proof, using
the switching lemma proved in section VI.G. In subsection VI.H.2, we prove some

proof theoretical properties of k-evaluations that will be needed in section VI.I.

VI.H.1 Building a k-Evaluation

Theorem 94 Let c be a positive integer. There exist constants k and € so that for
N sufficiently large, for any (M, N) universe U if there exists a refutation R of
GIS(U) of size N¢, then there is a k-evaluation for R inV where V is an (M, N€)

universe.

Iterated application of the switching lemma can be used to create a k-
evaluation of a refutation, in substantially smaller universe. The method of this
construction is similar to that in [59].

We begin by constructing a k-evaluation for the formulas of depth < 1
that appear in the proof, and then we repeatedly apply the switching lemma to

obtain a k-evaluation for the entire proof.

Definition VI.H.3 The tree for 0, Ty, is a single node labeled 0. The tree for

1, T4, is a single node labeled 1.

Definition VI.H.4 Let U be a universe. For variablesv € Vars(U) we define the
tree for v over U, T%, as follows: The root is labeled with Q,, and underneath
each arc L, the leaf is labeled with 1 if and only if v € L, otherwise the leaf is

labeled with 0.

Definition VI.H.5 Let U,V and W be universes, let ' be a subformula-closed set
of formulas in Vars(U) and let T be a k-evaluation of T in V. For a simplification
Y V=W, we define the simplification of T by X, 3(T), to be the mapping
from T to T (k,W) defined by (3(T)) , = X(Ta).

Lemma 95 Let U, V and W be universes, let I' be a subformula-closed set of
formulas in Vars(U) let T be a k-evaluation of T in'V, and let ¥ be a simplification
from'V to W. 3(T) is a k-evaluation of T in W.
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Proof:By lemma 75, 3(T) maps I' to decision trees of height < k over W.
Because T is a k-evaluation, Br(Ty) = Bry(T) and therefore, by corollary 77,
Br(3(Ty)) = Bro(X(Ty)). For each H € MIS,, (i), Br(Ty) = Br1(Ty) and thus
by corollary 77, Br(X(Ty)) = Bri(3(Ty)). If A = =B, then by corollary 77,
(X(T))_p = Z(T-5) = 2((Tp)°) = (X(Ts))". If A =V B;, then T4 strongly
represents \/, Bri(Tp,). By lemma 78 and corollary 77, 3(Ty4) strongly represents
%(V;Bri(Ts,)) = V; Bri(%(Ts,))- =

Lemma 96 Let U, V be universes and let 2 be a simplification from U to V. For

every v € VarsU), X(T}') = Ty,

Proof: It easy to check that when Y(v) is a constant, X(TY) is a single node labeled
with X(v). Consider the case when 3(v) is non-constant. The root of X(TY) is
labeled by £(Q,) = Qx@). By lemma 72, S(ANSY(Q,)) = ANSY(2(Q,)), so
the labels on the arcs are correct. In the tree in T, under the edge labeled L
there is a one if and only if v € L, and there is a zero underneath L if and only
if L is inconsistent with v. Because ¥ maps inconsistent literals to inconsistent
literals, if L leads to 0 then either (L) = 0 or X(v) ¢ X(L). Therefore, there is
a zero underneath the edge labeled (L) (in 7Y ,) only if (v) € L. Therefore,

=(v)
(T =T,

E(v). ||

Definition VI.H.6 Let R be a set of formulas and let d be a positive integer. The
set of formulas in R of depth < d is denoted by Ry.

Lemma 97 Let ¢ be a positive integer. There exist constants k and € so that for
N sufficiently large, for any (M, N) universe U if there exists a refutation R of
GIS(U) of size N¢, then there is a k-evaluation for R inV where V is an (M, N€)

universe.

Proof: Let c,d be given. Let M, N be “sufficiently large” (defined later). Let U
be a universe with w(i) = N, and let R be a refutation of GIS(f) .
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For each v € Vars (/) T° maps v and —w to T¥ and (T¥)‘, respectively.
T also maps 0 to Ty and 1 to 7. Clearly T is a 1-evaluation of R in U.

Notice that for any A € Ry \ Ry, if A =\ B; then \/,;Br, (Tg,) is a
DNF of width at most 5. Apply theorem 79 with 5k and c to obtain € and k. Let
N be large enough to meet the conditions of the switching lemma, moreover, large
enough that 2k + 2 < N°€. Because there are at most N¢ formulas in Ry, there
exists a simplification ¥ of ¢ into some (M, N€) universe V.

We define the mapping T from R; into 7 (k, V) as follows: for A € Ry, let
Ta be & (T9), for =B € R1\ Ry, let T_p = (X(T%))¢, and for A =\ B; € R\ Ry,
let T4 be the lexicographically first decision tree of height < k strongly representing
£V, B (T5,))

The condition Br(Ty) = Bry(Ty) is met because Ty = L(T) and Br(T)) =
Bry(T§). For A = =B, T4 = (Tg)". If A =/ B, by construction T, strongly
represents X(\/, Bry (']I‘%j)), which by lemma 78 , equals \/; Bry (E (']I‘%j)) =
V ;Bri (']I'Bj).

We now show that for all H € MIS,,(U), H T-evaluates to 1. Let
H € MIS,,(U) be given. Recall that H is a clause, \/,l;, and because ¥ is a
simplification, ¥(H) is either 1, X; V =X; or an element of MIS,, (V).

If ¥(H) = 1, then for some [;, ¥(I;) = 1 s0 X(T}) = S(T}) = 1. Let 3 €
Br(Ty) be given. Because Ty strongly represents \/; ¥(Bri(T})), if 5 leads to a 0
then S is inconsistent with the empty assignment. Therefore, Br(Tg) = Bry(Tg).

If ¥(H) = wV—w, then we may choose literals [y, [; of H so that X(I;) = w
and X(l;) = ~w. Let 8 € Br(Ty) be given. If 3 leads to a 0, then because Ty
strongly represents \/, Bri(X(T})), 8 must be inconsistent with all branches in
Br,%(T) U BriX(T}/) = BriT,') UBnX(T4,) = Br(T;"). However, because
|8]] + 2k < N€, by lemma 71, this impossible and therefore, Br(Tg) = Br(Tg).

Consider the case when X(H) € MIS,,(V). Let 7 € Br(Ty) be given, and
suppose for the sake of contradiction that m € Bry(Ty). Because Ty is a height

k-decision tree, 7 is closed and ||7|| < 2k < w(V) — 2, there exists a consistent,
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closed extension o of 7 so that o satisfies [ and ||o|| < 2k + 2. Choose a literal [;
of H so that 3(l;) = I. Note that T), = T/. Because ||o|| < 2k +2 < w(V) — 2,
we may choose S € Bry(7}) that is consistent with 0. However, Ty strongly
represents \/;, Br(X(T},)), 7 must be inconsistent with 3, contradiction. Therefore,

7 € Bri(Ty) and H T-evaluates to 1. n

Lemma 98 Let c,d, k, e be positive integers. There exist constants k' and € so
that for N sufficiently large, for any (M, N) universe U if there exists a refutation
R of GIS(U) of size N¢ and a k-evaluation of Rq over an (M, N€¢) universe V, then

. . . ! .
there exists a k'-evaluation T for Ray1 over V' where V' is an (M, N<¢) universe.

Proof: Let ¢, d, k, e be given with d > 1. Let M, N be “sufficiently large” (defined
later). Let U be an (M, N) universe, let R be a refutation of GIS(U/), and let a
k-evaluation of R, over an (M, N€) universe V.

Notice that for any A € Ryy1 \ Ry, if A =\/ B, then \/ By (']I‘Bj) is a
DNF of width at most 5k in the variables BLits(V).

Let N be large enough so that N meets the hypotheses of the switching
lemma 79 (with ¢ and DNF width 5k) and choose €, k' as guaranteed. Because
there are at most N¢ formulas in R4y, there exists a simplification ¥ from U to
some (M, N“¢) universe V'

We define the mapping T' from R4, into T (k', V" as follows: for A € Ry,
let Ty be X (Ty), for =B € Ryi1 \ Ra, let T 5 = (X(Tp))", and for A =\/B; €
Rar1 \ Ri, let T'y be lexicographically first decision tree of height < &' strongly
representing E(\/j Bry(Ts;))

We now show that T' is a k' evaluation for R4, over V;,;. Lemma
95 shows that T’ is a k’-evaluation for R4. Consider A € Ryi1 \ Rq. If A =
~B, then T4 = (T%)". If A = \/B;, by construction T4 strongly represents
£(V, By (ng )), which by lemma 78, equals \/, Br; (2 (ng)) =/, Br, (Tdle).
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Combining lemmas 97 and 98 gives us theorem 94.

VI.H.2 k-Evaluations and Refutations

Lemma 99 Let T be a k-evaluation for I' in V. If 4k < w(V) then every instance

of an axiom AV —A in T T-evaluates to 1.

Proof: Let AV —A be some axiom instance in ['. Suppose, for the sake of con-
tradiction that there is some 7 € Bro(T4y-4). Because T4y-4 strongly represents
Bri(T4) V Bri(T-4) = Bry(Ta) V Bro(T4) = Br(T4), 7 is inconsistent with every
branch of T4. On the other hand, because 2Ht(T4) + 7| < 4k < w(V), by lemma

71, there exists o € Br(T,4) consistent with 7; contradiction. m

Theorem 100 Let R be a refutation of GIS(U) in the system F,. Let T be a
k-evaluation of R in V where k be a positive integer so that 4k < w(V). There

exists an instance of a counting axiom in R that does not T-evaluate to 1.

Proof: Suppose for the sake of contradiction that every instance of a counting
axiom T-evaluates to 1. We will show by induction that every line of the refutation
must T-evaluate to 1, which contradicts the fact that the final line of the refutation
(the constant 0) must T-evaluate to 0.

For the base cases, every clause from MIS,, (/) T-evaluates to 1 by defi-
nition, and by lemma 99, every instance of an axiom schema, A V = A T-evaluates
to 1.

For the induction step, consider an inference in R.

Ai(Bi/p1, -y Bm/Pm),-- -, ABi/py; - - -, B /Pm)
Ao(Bi/p1, - - s Bm/pPm)
and assume that for all i € [I], A;(B1/p1,-.-, Bm/Pm), T-evaluates to 1.

Note that [ < 2 because all the rules in our Frege system have fan-in two.

Let Ty = {Go, - .., G} be the set of distinct subformulas of
Ao(P1y---yPm)s -5 A(pP1, - ., Pm). Furthermore, let G; = A; for i < [, and for each
0<i<t,let F; =G;[B1/p1,--.,Bm/Pm)- Note that Fy = Ay [B1/p1,--., Bm/Pm)-
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Let my € Br(TF,) be given. Because 4k < w(U), we can repeatedly apply
lemma 71 to find m; € Br(Tg,) consistent with U;;%) mj. Let m = J;_o ;-

Clearly, for all G;, \/ Bry(Tg,) | is the constant 0 or 1. Define V' : 'y —
{0,1} by V(F;) = Bri(T4) [. By the definition of k-evaluations, V' is a consistent
truth assignment to I', and by assumption, V(4;) = ... = V(A4,,) = 1. Because
the rules of inference are sound, V(Ay,) = 1. Therefore, Ta, [r,= Ta, [-= 1.
Because mp was an arbitrary branch of Ty, the tree has every branch labeled with

1.

VI.I Nullstellensatz Refutation from k-Evaluation

Theorem 101 Let U and V be universes, let R be a refutation of MIS,,(U), and
let T be a k-evaluation of R in V. If 8k + 2 < w(V) then there is a degree < 3mk
Nullstellensatz refutation of AMIS,, (W), where W is an (M, N — 2k) universe.

The proof of theorem 101 follows from a sequence of lemmas in which
we first use the k-evaluation to construct a family of highly symmetric decision
trees called a generic system, and then we use the generic system to construct a

Nullstellensatz refutation of AMIS,, (V).

Definition VI.I.1 A generic system of height h over U is a collection of K
decision trees in U, {T; | i € [K]}, with leaf labels that are m-subsets of [K] so
that:

1. FEach tree has height at most h.
2. FEach branch in T; has a leaf label e with i € e.
3. For alle € [K|™, and alli,j € e, Br.(T;) = Br.(T3).

Observation: Let T;, i € [K], be a generic system. For each partial assignment

B, |{i € [K] | B € Br(T;)}| is divisible by m.
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In subsection VI.I.1, we use a k-evaluation to construct a generic system,
lemma 106. In subsection VI.I.2, we a generic system to construct a Nullstellensatz
refutation, lemma 109. Finally, in subsection VI.I.3 we combine these results to

prove theorem 101.

VI.I.1 From k-Evaluation to Generic System

Lemma 102 Let U andV be universes, let R be a refutation of MIS,,(U), and let
T be a k-evaluation of R of V. If 4k + 2 < w(V) then there exists an instance of
a counting axiom A in R, and k-evaluation T' so that A T -evaluates to 0, where

T is a k-evaluation over an (M, N — 2k) universe W.

Proof: By lemma 100, we may choose an instance of a counting axiom A € R
so that A does not T-evaluate to 1. Choose m € Brg(7T4). Apply lemma 80 and
choose a 2k-simplification p so that 7 C p. Let W = 3,(V), and let T' = X,(T).

Lemma 103 Let T be a k-evaluation over ¥ where Y is a simplification from U to
W and 4k < w(W). If A =/, F; T-evaluates to 0, then for each i, F; T-evaluates
to 0.

Proof: Suppose for the sake of contradiction that there exists 8 € Bri(Tp,).
Because 2Ht(T4) + ||| < 4k < w(W), by lemma 71 we may choose 7 € Br(T4)
consistent with 3. Because T4 strongly represents \/,Bri(Tr,), 7 € Bri(Ta),

contradiction to the assumption that A T evaluates to 0. [

Lemma 104 Let U and W be universes, let R be a refutation of MIS,,(U), and
let T be a k-evaluation of R in W with w(W) > 6k. If A=\ g~ (Vs o) V
Veis o (mFeV —Fy) is an instance of a counting aziom in R that T-evaluates to
0, then for each i € [K| and m € Bri(Ty 5,) there is exactly one e > i so that there

exists o € Bri(Tg,) with ™ 2 0.
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Proof: For each e € [K]™, let T, = T,, and for each i € [K], let T; = Ty __ F,.
By lemma 103, each \/
1.

es; Fe T-evaluates to 1, and each —F, V —F; T-evaluates to

We show that if e, f € [K]|™ with e L f then there are no mutually
consistent branches in Bri(7,) and Bri(7T}). Suppose that o; € Bry(7,) and
oy € Bri(T}) were consistent. Because 2Ht(T-r,y-r,) + |[o1 U 02|| < 6k < w(W),
by lemma 71, there must exist 7 € Br ('JIL Fevﬁpj) consistent with o; U oo. Because
—F, VvV —F; T-evaluates to 1, 7 € Bry (’]I‘ﬂFeVﬁFf). Because ']LFeVﬁFf strongly rep-
resents Bri(T-g,) UBri(T-F, ), 7 is extends some 8 € Bro(Tg, ) UBro(TF, ). This is
impossible because ¢, € Br(7¢) and o2 € Bri(T}) and o1 U 0, is consistent with
T.

Now we show that for each i € [K] and m € Br(7;) there is exactly one
e O i so that there exists 0 € Bry(T,) with 7 D 0. Let ¢ € [K]| and 7 € Br(T;)

be given. Because Br(7;) = Bri(7;), and T; strongly represents | J -, Br;(7.), there

ed1
exists e 5 i and o € Bry(T,) so that 7 O 0. By the preceding paragraph, there
cannot be another f 3 ¢ with ¢’ € Bry(T}) so that # O ¢’ because that o and o
would be consistent. Therefore, for each 7 € Br(T;), there exists exactly one e 3 i

so that there exists o € Bry(7,) with 7 D o. ]

Lemma 105 LetU and W be universes, let R be a refutation of MIS,,(U), and let
T be a k-evaluation of R in W with w(W) > 6k + 2. If there exists an instance of

a counting axiom in R that T-evaluates to 0, then there exists is a generic system

{G; | i € [K]} of height at most mk over W.

Proof: Suppose that A is an instance of a counting axiom in R so that A T-
evaluates to 0. Say that A = \/; (Vs Fe) V Veis— (5Fe V =Fy). For each
e € [K]™, let T, = Tg,, and for each i € [K], let T; = Ty__ -

For each ¢ € [K], let S; be the tree obtained by relabeling each leaf | of
T; with the unique e 3 7 so that there is a o € Br;(7}) consistent with the branch
to that leaf.
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We now show that for i, j € [K] and each 8, € Br(S;), B € Br(S;),
if 81 and [, are consistent then their leaf labels are the same. Suppose that
B1 € Br(S;), B2 € Br(S;) and B, U B, is consistent. Let e; be the leaf label for 3,
and let e5 be the leaf label for S5 and suppose for the sake of contradiction that
e1 # eo. Apply lemma 104 and choose oy € Bri(T,,) with o1 C 31, 09 € Bri(T,,)
with o9 C (5. Because (5 U (5 is consistent, o; U g9 are consistent. Choose
7 € Br(T-(-r,, v-r,,)) that is consistent with 8; U 5. Because —(=F,, V —F,) T-
evaluates to 0, 7 € Bry(T-r, v-r,, ). By definition, 7 satisfies some § € Bry(T-p, )U
Br;(T-F,,). However, such a ¢ is inconsistent with oy U 0, and therefore 7 is
inconsistent with o; U g9; contradiction.

For each i € [K], let G; be the tree obtained as follows: Start with the tree
S;, and underneath each branch o that leads to a leaf labeled e = {i,41,...,m_1},
replace the leaf with a copy of S;; [,. Underneath each branch of this tree, replace
a restricted copy of 73, and so forth. Notice that every leaf of (G; that is underneath
this leaf of S; will lead to a leaf labeled e.

Clearly, the G;’s are decision trees of height < mk, and each leaf of G; is
labeled with some edge e 3 7. Finally, we have that for all e = {i1,...,i5}, all any
15,1 € €,

Br.(G;;) = {o;U Ulel[;’]m] (01 loj.0ioa) | 01 € Bre(Sy), 1 <1< m}
= {UZ,01] 01 €Br(S;), 1 <l<m}
= {ox U Ulel[;lé,lgn] (01 logoir) | 01 € Bre(S;,), 1 <1< m}

= Bre(Gik)

Lemma 106 Let U and V be universes, let R be a refutation of MIS,,(U), and let
T be a k-evaluation of R of V. If 8k + 2 < w(V) then there exists an (M, N — 2k)

universe W and a generic system of height at most mk in W.

Proof: By lemma 102, we may choose an (M, N — 2k) universe W with and a

k-evaluation T" of R in W so that there exists some instance of a counting axiom
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A in R so that A T'-evaluates to 0. By lemma 105, this guarantees the existence

of a generic system of height at most mk in W.

VI.I.2 From Generic System to Nullstellensatz Refutation

Definition VI.I.2 Let S be a subset of BLits(W). The monomial of S, pg, is
defined as follows.

ps= [[ 0-X) ][] % [] v

-X;ES X;€eS YeeS

Let T be a decision tree. The polynomial of T, pr, is the sum of the
monomials of its branches.
pbr = Z Pr
re Br(T)
Lemma 107 Let Q € Q(U) be given. From AMIS,,(W) there is a Nullstellensatz

deriwation of ZAGANSW(Q) pa =1 of degree at most 3.

Proof: The proof is done by case analysis on the query (). When @) = Value(i),
AN SY (Value(i)) = {{X;}, {~X;}}. Trivially, ¥ ,c yysw(g Pa = Xi+1-X; = 1.

When @ = Match(p), with p € V,, ANSY(p) = {{V.JU{Xs | k €
INR, I €eenU.}|e€E,, pée€e}. Notice that for each I € U,, e 3 I, there is a
family of degree < 1 polynomials ¢/, ¢ € AMIS,,(W), so that Yo =Y, [];c;np Xi =
quAMISm(W) cy?q. Therefore, (using the fact that for all e, [eNU,| <1 to reduce

the second expression to 1),

ZAE.ANSW(Q) PA+ Zeap > icent, quAMISm(W) Cé’eq - (Zeap Ye - 1)
= ZAE.ANSW(Q) Ye HieIﬁR Xi+ ZeBp ZIEeﬂUT (Ye - Y. HieIﬂR Xi) - ZeBp Yo—-1
=1

When @ = Match(I), with I € U,, ANS" (Match(I)) = {{X§ | i €
INR}|ee {-1,1}/"E JjeInR,e,=—-1}U{{Y}U{X, | k€ INR}|ee€
E., I €¢}
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Let A= {{X{|i€INR}|ee{-1,1}/"B Jje INR,e;, =—1} and
A ={{Y.}U{Xy |k € INR}|e€ E,, IE€e}ltiseasily shown by induction on
TN R| that Y, 4 pa = 1= [licinr Xi- Moreover, 4 Pa — [[icrnr Xi is one
of the hypotheses of AMIS,,(W). ; this immediately implies that there is a degree
< 3 derivation of 1 from ), 4y-sw (o) P4 and AMIS,,(W).

HieIﬂR X; (EeBI Ye — 1) = Zeal HieIﬂR XiYe — Hie[ Xi = ZAeAl ba — HieI Xi

Lemma 108 Let W be a universe, and let T be a decision tree in W. There exists

a family of polynomials, c,, for ¢ € AMIS,,, (W), each of degree < 3Ht(T) so that

Pr =142 AMIS,.ov) Cad-

Proof: We prove this by induction on the height of 7. The base case is when
h = 0 and T has a single node. By definition, pr = 1. For the induction step,
assume that the lemma works for all decision trees of height h. Let 1" be a decision
tree of height h + 1 vertices. Choose v to be a an internal vertex in 7" of depth h.
Let T, denote the decision tree obtained by deleting the children of v. Let m, be
the branch of T" leading to v. Let () be the query of node v.

Let Ao = {A € ANS(Q) | A [r,= 0} and A; = {A € ANS(Q) | A [1,#
0}. By lemma 70, AN'S"I™ (Q) = A;.

Pr=pr,—Pr,+ Y.  PaPr, =Dr, +Pn, (Z pa— 1)

ACAN SWImv (Q) AeA,;
By lemma 107, we may choose a family of polynomials r,, for ¢ €

AMIS,,, (W), each of degree < 3 so that

d opa—1=Y pat+t D, 1y

AcA, Ae Ay «cAMIS,. o w)

Therefore,

pr = pr, t Pr, ZPA+ Z Tqq

Ae Ao e AMIS,.owv)
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Because each A € A is inconsistent with m,, there is some ¢ € AMIS,,, (W)
a degree deg(pr,pa) — 2 monomial s4, so that p; ps = Sa4q. Therefore,

pr=pr,+ Y ((Z sA,q>+rq>q

e AMIS,, (W) AcAo
For each polynomial s, ,, deg(ra,) < deg(prpa) —2 < 3h+3-2=

3h+1 < 3(h+1). By the induction hypothesis, there exists family of degree < 3h
polynomials ¢,, ¢ € AMIS,,,(W), so that pr, = 1+ ) t,q. Therefore,

pr=1+ Y. ta+ > ((ZSA,q>+rq)q

ac AMIS,, (W) € AMIS,,(w) AcAo

=1+ Y ((ZSA,q)+rq+tq>q

«c AMIS,, W) AcAo
For ¢ € AMIS, (W), let ¢g = 32 c AMIS,. o) (X aca, 540) +7q+1q)-
Each such ¢, is clearly of degree < 3(h + 1). ]

Lemma 109 Let W be a universe, K be an odd integer. If there exists a generic
system {T; | i € [K|} height < h over W then AMIS,,(W) has a Nullstellensatz
refutation of degree < 3h.

Proof: For each ¢ € [K], an application of lemma 108 shows that there is a
family of polynomials ¢, for ¢ € AMIS,,, (W), each of degree less than 3h, so that
pr =143 AMIS,. o) cq. Therefore, summing over i € [K] yields D ik PTi =
ZiE[K](l + quAMISm(W) Cfﬂ) =1+ Zz‘e[K] quAMISm(W) CZQ- Because the T;'s
form a generic system, every branch and therefore every monomial, appears an even
number of times. Therefore, Zfilpﬂ = 0 and hence 1+Zie[K] quAMISm(W) cflq.

VI.I.3 The Proof of Theorem 101

Proof:(of theorem 101) By lemma 106, there is an (M, N — 2k) universe W and

a generic system of height at most mk in W. By lemma 109, this guarantees the
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existence of a degree < 3mk Nullstellensatz refutation of AMIS,,(W). ]

VI.J A Degree Lower Bound for Nullstellensatz Refuta-
tions of AMIS,,

Theorem 110 Let M be an integer, and let W be a universe of length M and
width > 1. All Nullstellensatz refutations of AMIS,,(W) have degree Q(log M) .

The proof is a reduction to the linear induction principles of length M,

which are known to require degree Q(log M) Nullstellensatz refutations.

Definition VI.J.1 Let M be a positive integer. The linear induction principle
of length M, IND(M), is a system of polynomials in the variablest, ..., ty with
coefficients from Zqy. It contains exactly the polynomials t1, tyr — 1 and, for each

< M, titizi — tiya

Theorem 111 [61, 60] The IND(M) system has Nullstellensatz refutations of de-
gree O(log M) over any field. Moreover, over any field the system requires degree
Q(log M) Nullstellensatz refutations.

The following definition is almost verbatim from [73], although we are
concerned with Nullstellensatz derivations whereas they were interested in poly-

nomial calculus derivations.

Definition VI.J.2 Let P(Z) and Q(Y) be two sets of polynomials over a field F.
We say that P is (dy,d2)-reducible to Q if: (1) for every y;, there is a degree
dy definition of y; in terms of ©. That is, for every i, there exists a degree dy
polynomial r; where y; will be viewed as being defined by r;(Z); (2) there exists a
degree dy Nullstellensatz derivation of the polynomials Q(7(Z)) from the polynomi-
als P(Z); (3) there exists a degree dy Nullstellensatz derivation of the polynomials
2

T

(Z) = ri(Z) from the polynomials of P(Z).
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Lemma 112 Suppose that P(Z) is (di,ds)-reducible to Q(y). Then if there is
a degree ds3 Nullstellensatz refutation of Q(y) then there is a degree dids + dy
Nullstellensatz refutation of P(z).

We omit the proof of the following lemma; the reduction is simply an

application an (/N — 1)-simplification.

Lemma 113 Let W be an (M, N) universe with N > 1. AMIS,,(M,1) is (1,1)-
reducible to AMIS,, (W)

Lemma 114 IND(M) is (1,1)-reducible to AIS(M,1).

Proof: Observe that when U/ is an (M, 1) universe, we may rename the underlying
indices so that R, = {r}.

Notice that |Us| =1 and |Vy| = m, and for r, 1 < r < M, |U,| = m and
|V,| =m? . Foreach r, 1 <r < M, let £ C E, be an m-partition on U, UV,, and
let 7, C E, be an m-partition on V,. Let ey = V4.

We will use the following definitions for the variables of IS,,(M,1). Let
Y., =1—t, foreachr, 1 <r < M, X, :=t,, for equationr, 1 <r < M —1,
foree &, Y, := 1,44, for f € F,, Yy :=1—1,44, for all other e, Y, := 0, and for
equation M, for e € Ep, Yo :=tpy, for f € Fopp, Yy =1 -1ty

Recall that AMIS,,, (M, 1) is the following system of polynomials.

For each r, 0 <r < M,

For each I € U,, HieIﬂR X; (Zeafye - 1)
foreache, I cenU,, i€ INRK, Ye(1 - X;)

Forp e V,, DespYe—1

For each e L f, Y.Y;

The polynomials for equation 0:
X1 (X Ye—1) = t1(0-1) = —t
Yi(1-Xy) = 0(1 —t) =0
D esp Ye — 1 = (1-t)-1 = -4
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The polynomials for equation r, with 1 <7 < M — 1 (we omit equations

that are identically 0 because a factor Y, is identically 0):

Xr1 (Zea{r+1} Ye - 1) =t (b — 1) = gt

Xr Xrt1 (Zea{r,rﬂ} Y. — 1) =t (b — 1) = & (2 —trn1)
Ye(l— Xr41) = tri(l—t1) = = —tr)
Yo(l-X,) = tra(l-t) = —(tratr — tr11)
Doenp Ye—1 = trputl—t41 =0

YeY; = t(l—t1) = —(8 —t)

The polynomials for equation M (we omit equations that are identically

0 because a factor Y, is identically 0):

(Xeso Ye — 1) = (tm—1) = ty—1
Xor (Zea{M}Ye—1> = ty(ty—1) = 2 —ty
Ye(1— Xu) = tu(l—tm) = —(t} —tm)
.., Ye—1 = ty+l—ty—1 = 0

Y.Y; = tu(l—1tm) = —(th — tm)

We now combine these elements to prove theorem 110.

Proof:(of theorem 110) Let d be the minimum degree of a Nullstellensatz refutation
of AMIS,,(W). By lemmas 113 and 112, there is a degree d + 1 Nullstellensatz
refutation of AMIS,,(M,1). By lemmas 114 and 112, there is a degree d + 2
refutation of IND(M). By theorem 111, we must have that d = Q(log M). ]

VI.LK Putting It All Together

Theorem 115 Let ¢,d be positive constants. For sufficiently large values of N,

there is no depth d refutation of MIS,,(N,N) of size < N°.
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Proof: Let c¢,d be given and suppose that for every N and (N, N) universe U
there is a refutation of IS(U) of size < N¢. Apply theorem 94 to get constants k
and € so that for sufficiently large NV there is an a k-evaluation T for R over an
(N, N¢) universe V

Take N large enough that N¢ > 8k+2, and apply theorem 101, so we have
a degree 3mk Nullstellensatz refutation of AIS,,(W) for an (N, N¢ — 2k) universe
W. By theorem 110, AIS,,(W) requires degree Q(log N) to refute; contradiction.

VI.K.1 Induction on Sums Principles

Using our reduction and simulation technique, we show that the induction
on sums principles have quasipolynomial size constant-depth Frege with counting
axioms refutations. The same reduction shows that there can be no small Null-
stellensatz refutations of the induction on sums formulation as polynomials. This
gives a superpolynomial size separation between Nullstellensatz and polynomial

calculus refutations.

Lemma 116 Fiz a constant modulus m. For each M, N, IS, (M, N) reduces to
AIS, (M, N) in depth O(1) and size polynomial in M and N.

Proof: To define an m-partition on the satisfied monomials of ., Y. [[,c; Xi —
[L;c; Xi, we use the formula Y, A A,.; X; for the edge which groups [[,.; X;Y. and
with the m — 1 copies of [[,.; Xi. From the hypotheses \/,.; ~X; V V5, Ye and
Y, VY (forall e L f), there is a proof that these formulas define an m-partition
on the satisfied monomials of [T..; X; (3,5, Ye — 1).

To define an m-partition on the satisfied monomials of an equation Y, X; —
Y., we simply group the monomials if and only if Y, is satisfied. The hypothesis
=Y, V X; shows that this is a m-partition of the satisfied monomials.

For the polynomials Y.Y}, the hypothesis =Y, V =Y} ensures that the

monomial is never satisfied, so the empty partition is an m-partition of satisfied
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monomials of this polynomial. |

The Lower Bound

In the course of proving a size lower bound for constant-depth Frege
with counting axioms refutations of IS,,(M, N), it is shown that there are no low
degree Nullstellensatz refutations for AIS,,(M, N). It had been conceivable that
there are Nullstellensatz refutations for this system of high-degree but small size.
Our simulation shows that this is not the case. By the reduction of lemma 116
and the simulation of theorem 55, if there were a polynomial size Nullstellensatz
refutation of AIS,,(M, N), then there would be a polynomial size, constant-depth

Frege refutation of IS, (M, N). However, no such refutations exist.

Theorem 117 [68] Let m be a fized modulus. Let c,d be positive constants. For
sufficiently large values of M and N, there is no depth d Frege with counting axioms
modulo m refutation of I1S,(M, N) of size less than N¢.

Corollary 118 Fiz a modulus m. Let ¢ be a positive constant. For sufficiently
large values of M and N, there is no Nullstellensatz refutation of AIS,,(M,N) of

size less than NF€.

On the other hand, the polynomial calculus modulo m has constant de-

gree, polynomial size refutations of AIS,,(M, N):

Theorem 119 [68] Let M, N be given, AIS,,(M,N) system of polynomials has

degree 3, size O(MN?) polynomial calculus modulo m refutation.

Corollary 120 The Nullstellensatz refutation system modulo m does not polyno-

mially simulate the polynomial calculus modulo m.

VI.LL An Upper Bound for the IS,,(M, N) Principles

In this section, we show that constant-depth Frege systems with counting

axioms have quasi-polynomial size refutations of the IS,,(M, N) principles. This
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is a constant-degree reduction to the induction principles, which have logarith-
mic degree Nullstellensatz refutations [61, 60] over any field, combined with an

application of

Theorem 121 Fiz a constant, prime modulus m. There ezists a ¢ (dependent on
m) so that for all M, N, so the system AIS,,(M,N) has a Nullstellensatz modulo

m refutation of degree at most clog M.

The system AIS,, (M, N) uses O(M N?*™) many variables, therefore there
are fewer than (M N)*™“'°¢™ monomials of degree at most ¢log M. For this reason,
each polynomial of the Nullstellensatz refutation has size at most (M N)*™'%&M

Therefore, the size of the refutation is quasipolynomial in the size of AIS,,(M, N).

Lemma 122 Fiz a constant, prime modulus m. There ezists a constant C (de-
pendent on m) so that for all M N, the system AIS,,(M, N) has a Nullstellensatz

modulo m refutation of size at most (MN)¢'*#™M

Combining this refutation with the reduction of lemma 116 and the sim-

ulation of theorem 55, there are quasi-polynomial size constant-depth Frege refu-

tations of IS,, (M, N).

Lemma 123 Fix a constant, prime modulus m. There exists a constant C' so that
for all M and N, IS,,(M, N) has a constant-depth Frege refutation of size at most
(MN)Clog M

Lemma 124 From the principle AIS,,(M, N) there are degree O(1) Nullstellensatz
derivations of IND|y, < Z;'VeR, X;l.

Proof: First, we show that for each r from 0 to M there is a degree five Nullstel-
lensatz derivation of ), ., Xr.

Foreach randeach I € Uy, e € [U,]" withe 3 I, let g7 = Y. [ [;,c; Xi—Ye.
When || =1, g1 = X;Y, — Y, belongs to AIS,,,(M, N), and when I = {3, j}, there
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is a degree Nullstellensatz 3 derivation of ¢; . from AIS,, (M, N):
Xi(X;Ye-Y)+ XY, =Y, = X;X;Y.-Y, = qp.

For each r and each I € U,, let p; = > .;Ye — [[;c; Xi- These poly-
nomials have degree < 3 Nullstellensatz derivations from AIS,,(M, N) and the

Yqe
gdl,e S:

(TLier X)) (CesrYe—1) = Xesrare = Xosr (Yellicr Xi —are) — [Lier Xi
= DesrYe— L Xi=p1
For each equation r, 0 < r < M, when we negate the sum of all
the p;’s, we obtain the desired polynomial ) ; ;; [[;c; Xi- The final identity
> 1cv, 2esr Ye = 0 s true because each variable Y, appears exactly m times in the

surInm.

- ZIEUT pr = ZIEUT Zeal (HiEI Xi— Zeal Y;z)
= Yrev, ier Xi = Xorev, 2oesr Ye
= ZIGUT HiEI Xi
Finally, we check that these are the hypotheses of IND(M) with } ;X
substituted for y,.

Do X1 = Dien, Xi = iy > ick, X;]
Yorevy X1 = Yiep, Xit(m—1) = (ym —1) [yr + > icr, Xi]

ZIEUT X = ZieRr,jeRrH XiXJ' + (m - 1) ZjeRﬁq Xj
= (Yr41Yr — Yr+1) [?Jr — Zz’eRr Xz':|

Combining this reduction with the O(log M) upper bounds of the IND(M)
system of polynomials gives us upper bounds for the AIS,,(M, N) principles.

Corollary 125 When m is a fized prime, there is a degree O(log M) Nullstellen-
satz modulo m refutation of AIS,(M,N).
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