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Bounded Arithmetic

Theories Si
2 and T i

2 have very close connections to
the polynomial time hierarchy.

• Σb
1-definable functions of S1

2 are the polynomial time
functions. [B]

• Σb
1-definable functions of T 1

2 are the PLS
(polynomial local search) functions. [BK]

• For i > 1, Si
2 and T i

2 define the PΣ
p
i−1-functions

and PLSΣ
p
i−1 functions.

These theories are defined by using hierarchies of
bounded formulas, Σb

i- and Πb
i-formulas, defined by

counting alternations of bounded quantifiers (Qx ≤ t),
ignoring sharply bounded quantifiers (Qx ≤ |t|). They
capture the complexity classes Σp

i of the polynomial
time hierarchy.

Σb
i-PIND induction axioms. For Si

2:
A(0) ∧ (∀x)(A(b1

2xc) → A(x)) → (∀x)A(x).

Σb
i-IND induction axioms. For T i

2:
A(0) ∧ (∀x)(A(x) → A(x + 1)) → (∀x)A(x).
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Bounded Arithmetic theories can prove many
“simple” polynomial facts and even some stronger
items:

Thm [PWW, MPW]. T 2
2 (α) ` PHP 2x

x (α).
(The “2n to n” pigeonhole principle.)

Thm [PWW]. T 2
2 proves that there exists arbitrarily

large primes.

On the other hand:

Thm [Kraj́ıček]. S2
2(α) 0 PHP 2x

x (α).

Pf idea: Suppose not. There would be a PNP

algorithm for finding a violation of the 2x/x pigeonhole
principle. For each query, if it is possible to obtain
a positive answer, set polynomially many (= (log x)c

many) values of α as a 1-1 function to force the positive
answer. Otherwise, return the negative answer. When
done, there would be only polynomially many values
of α set with α a 1-1 function. This contradicts the
existence of the algorithm.

Let f(x) = (log x)ω(1). Then, S2
2(α) 0 PHP

g(x)
f(x)(α),

for arbitrary function g(x).
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Independence of P vs NP?

There are a couple ways to formalize whether
bounded arithmetic can prove P = NP , or the collapse
of the polynomial hierarchy (PH ↓).
(1). Does S2 prove each bounded formula is expressible
in Σb

i , for some fixed i? Notation: S2 ` (PH ↓)
Thm.
(a) [KPT] If Si

2 ≺Σb
i
T i

2 then PH ↓.
(b) [B,Z] S2 ` (PH ↓) iff S2 ↓.
Notation: S2 ↓ means S2 is finitely axiomatized, or
equivalently, that the hierarchy Si

2 collapses.

Unfortunately we have no idea how to show ¬(S2 ↓).
If we could, this would say something about the logical
difficulty of proving P 6= NP .

(2) Another approach: Show S2 cannot prove super-
polynomial lower bounds on circuit size....
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Thm [Razborov] Fix any polynomial hierarchy
predicate A(x). Assume that a strong pseudo-random
number generator (SPRNG) conjecture holds. Then
S2

2(α) cannot prove any superpolynomial lower bound
on the size of a circuit for A(x).

The predicate α serves to encode a circuit for A(x).
Note S2

2(α) can use IND induction on the size of the
circuit, but not its Gödel number.

Proof idea was to the use conservativity of S2
2(α)

over T 1
2 (α), witnessing in PLS, interpolation, and then

natural proof independence of Razborov-Ruditch which
depends on SPRNG.

Thm [BP] The above holds without assuming SPRNG.

Proof idea: Take a natural exponential size circuit for
A(x), say a CNF circuit. Let α encode a 1-1, onto
violation of the PHP. Using α map exponentially many
subcircuits to a set of barely superpolynomial size.
Result is a superpolynomial size circuit.
[This proof idea first used by Razborov to prove
the independence of superpolynomial circuit size from
resolution.]
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Constant-Depth Frege Proofs

Def’n: A Frege proof system is a schematic
propositional proof system. We use a Tait style
system; literals are xi and xi and connectives are
unbounded fanin ∧ and ∨.

The depth of a formula is the maximum number
of alternations of ∧’s and ∨’s. This defines classes Πd

and Σd of formulas. A depth d proof is a proof in
which all formulas are in Πd ∪ Σd.

Def’n: Let P be a proof system, Γ a set of formulas
and A a formula. Then a P -proof of A from Γ is
defined as usual. A P -refutation of Γ is a P -proof of
a contradiction from Γ.

Def’n: The size of a proof is the number of symbols
occurring in the proof.

We are interested in upper and lower bounds on the size
of proofs, but usually only up to polynomial factors.

Open: Do all tautologies have polynomial size proofs?
If so, then NP is closed under complementation.
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Connections to Bounded Arithmetic

Def’n: [Kraj́ıček] A Σ-depth d formula is a Boolean
formula of depth d + 1 where the bottommost gates
have (only) logarithmic fanin.

Def’n: Let α be a new predicate symbol. Let A(x) be
a Σb

d(α)-formula. Then, [[A]] is a family of polynomial-
size Σ-depth d formulas, expressing the condition
∀xA(x). Free variables pk in the formulas represent
the truth values of the predicate α(k). Quantifiers are
changed into unbounded ∨’s and ∧’s.

Thm: [following Paris-Wilkie] If T i
2(α) ` ∀xA(x)

where A ∈ Σb
i , then [[A]] has quasi-polynomial size

Σ-depth i Frege proofs.

Proof idea: Put all formulas into a normal form with
sharply bounded quantifiers applied only to open ∆0

formulas. By cut elimination there is a free-cut free
proof. Then transform quantifiers into unbounded
fanin boolean connectives.
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Thm: [Kraj́ıček’94]. There are sets of depth d
formulas which have polynomial size Σ-depth d + 1
Frege refutations, but require (near) exponential size
Σ-depth d Frege refutations.

Open problem: Is there a better separation of
(Σ-)depth d and (Σ-)depth d + 1 Frege proofs?
Are there sets of clauses (Π2-formulas) which have
polynomial size, depth d + 1 Frege refutations,
but require superpolynomial size, depth d Frege
refutations? Or Πi-formulas, for i ≤ d? (Also open for
Σ-depth.)

Uniform version of open problem: For i ≤ j < k, is
T k

2 (α) conservative over T j
2 (α) with respect to Σb

i(α)-
formulas?
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The good news is that there are superpolynomial
lower bounds for constant-depth Frege proofs. The
first such exponential lower bound was for the pigeon-
hole principle:

Def’n: Fix n > 0. The negation of the PHP tautology
is expressed by the following set of clauses:

{pi,j : 0 ≤ j < n}, 0 ≤ i ≤ i

{pi,j, pm,j}, 0 ≤ i < m ≤ n, 0 ≤ j < n.

Note that PHP is a set of depth 1 formulas.

Thm: [PBI-KPW’91,93,95]. Depth d refutations of

the PHP clauses require size Ω(2nc1/d

).

The proof was quite intricate, incorporating an
extension of the Hastad switching lemma.

Thm: [B’86] PHP has polynomial size proofs in
unrestricted depth propositional systems.
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An st-Connectivity Principle

Let G be a directed graph. Let vertex s ∈ G have
out-degree 1 and in-degree zero, and vertex t ∈ G have
in-degree 1 and out-degree 0. Let every other vertex
have in-degree 1 and out-degree 1.

Thm: There is a directed path from s to t.

To avoid the use of the “second-order” concept of a
path, we reformulate as follows:

Graph SINK principle: The following is inconsistent:
G is a directed graph in which
I one vertex s has outdegree 1 and indegree 0, and
I every other vertex has both out-degree and in-degree
equal to one.
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Planar bichromatic connectivity principle

Def’n: A grid graph has vertices (i, j) for 1 ≤ i ≤ d
and 1 ≤ j ≤ n. Its edges only join vertices which
are horizontally or vertically adjacent. Edges can be
colored red or green.

Thm: The following conditions are impossible
(inconsistent): No vertex has both green and red edges
incident. The bottom left and top right vertices each
have one red edge incident. The top left and bottom
right vertices each have one green edge incident. All
other vertices have degree zero or two.

The above is called the STCONN principle.
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Bounded Depth Circuits for
Bounded Width st-Connectivity

Def’n: The depth of a Boolean circuit (or, formula) is
the number of alternations of AND’s and OR’s in the
circuit. To measure depth, all negations are pushed
to the literals, and AND’s and OR’s have unbounded
fanin. A pure disjunction or conjunction of literals has
depth equal to one.

Πd and Σd are the circuit classes of depth d with
topmost connective an AND (resp, an OR).

Thm: [Barrington, Lu, Miltersen, Skyjm ’98] Given
directed graph G of width d and given two vertices s
and t, determining if there is a path from s to t is
Πd-complete.

Natural Conjecture [Segerlind]. For c < d < e,
the width d st-connectivity principles might require
large proofs in Πc-Frege proof systems, but have short
(polynomial size) proofs in Πe-Frege proof systems.

Unfortunately, this turns out to be false.
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Constant Depth Proof Reducibilities

Def’n: Let F be a Frege system. Let S and T be
infinite families of tautologies. Let F +S be F plus all
instances of the S-tautologies. Then T 4cdF S means
that the tautologies T have constant-depth polynomial
size proofs in the system F + S.

S ≡cdF T means S 4cdF T and T 4cdF S.

We shall prove:

Thm: [B]

PHP ≡cdF HEX ≡cdF SINK ≡cdF 2SINK

4cdF DSTCONN ≡cdF 2DSTCONN

4cdF STCONN

and

SINK 4cdF Mod2 ≡cdF USINK 4cdF STCONN.

Where DSTCONN is a directed version of STCONN,
and USINK is an undirected version of SINK.
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Note that STCONN is the strongest set of
tautologies. We also show

Thm: STCONN has polynomial size Frege proofs.

The same proof will show:

Thm: STCONN has polynomial size TC0-Frege
proofs.

where TC0-Frege means Frege plus counting gates,
restricted to constant depth.

These upper bounds on proof size thus apply to all the
tautologies.

Furthermore,

Thm: The STCONN principles of bounded width d
have polynomial size resolution refutations.

Lower Bounds: Since PHP requires exponential size
constant depth Frege proofs [K-P-W,P-B-I], so does
every other tautology listed.
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Formulation of STCONN

Recall STCONN is a combinatorial principle on
a d × n grid graph. Vertex in i-th row and j-
column is denoted (i, j). We express the negation
of STCONN as a set of clauses. The variables in the
STCONN tautology are g{α,β} and r{α,β}, where α,
β are adjacent grid vertices, and indicate the presence
of a green (resp., red) edge between α and β. There
are clauses that state

1. The subgraph of green edges has one edge incident
on (1, 1), one edge incident on (d, n), and every
vertex has green degree either zero or two.

2. The corresponding clauses about the subgraph of
red edges.

3. No vertex belongs to both a red and green edge.

This makes O(d · n) clauses, each of size ≤ 4.

Converting the clauses expressing the negation
of STCONN into a Boolean formula, STCONN is
expressed as Σ2 formula of size O(d · n).
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Proof of STCONN in polynomial-size Frege

We give an intuitive proof, then argue that it can
formalized with polynomial size Frege proofs.

The proof is a proof by contradiction. Assume we
have a graph which satisfies the STCONN clauses;
of course, it is a union of a green graph and a red
graph. We take vertical crosssections of the graph,
and obtain a “crossing sequence” which is a word over
the alphabet {g, r} that records the sequence of green
and red edges that pass over the crosssectional split.

(d, 1)

(1, 1)

r

g

j0 j′0

g
r
g

g

The crossing sequences for the two vertical lines
above are “grrr” and “gggrgg”.
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The crossing sequences words are viewed as words
in a group G.

The group G is generated by two generators “g”
and “r”. It is finitely presented by

G = 〈g, r; g2 = ε, r2 = ε〉.

where ε is the empty word (the identity).

The intuitive idea of the proof of the STCONN
is that the crossing sequences of any two adjacent
columns in the grid graph represent the same element
of G. But then, the first column has crossing sequence
equal to “gr” in G and the last column has crossing
sequence equal to “rg” in G. But, rg 6= gr in G, which
is a contradiction (which establishes the STCONN
principle.

It remains to see how to formalize the intuitive
proof in a Frege proof.
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The first simplification is to consider more general
vertical paths for crossing sequences (so it is not
necessary to consider a whole column at once). For
this, we choose crossing sequences for paths that are
vertical except for single leftward jog.

πi,j

d

i + 2

i + 1

i

11
j−1 j j+1 n

The “vertical” πi,j crosses d potential horizontal edges
in the graph and at most one potential vertical edge in
the graph.
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Each path πi,j differs from its successor πi,j+1 in only
two of the edges it crosses.

πi,j &πi+1,j

d

i + 2

i + 1

i

11
j−1 j j+1 n

The crossing sequence is defined over the alphabet
{g, r, e}, where e means “no edge”. Two adjacent
crossing sequences can differ in that a substring is
“ge” replaced by “eg”, or “gg” is replaced by “ee”, or
vice versa, or the same with r’s in the roles of g’s.
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Thus, it is easy to see that if one crossing sequence is
equal, in G, to “gr”, then so is the next. The catch
however, is to formalize the property of being equal to
“gr” with polynomial size formulas.

Indeed, more general word problems on groups,
even the word problem on the free group with
two generators, are not known to be definable with
polynomial size formulas.

Let w = α1α2 · · ·αn, where each αi ∈ {g, r}.
W.l.o.g. n is even.
Grouping pairs of symbols, write w in the form

w = β1 · · ·βm, m = n/2.

with each βi = α2i−1α2i. Note that

gr ≡ (gr)1 gg ≡ (gr)0

rg ≡ (gr)−1 rr ≡ (gr)0.

Then, let ci ∈ {−1, 0, 1} be such that βi ≡ (gr)ci.
Then w ≡ gr iff

∑
i ci = 1.
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To simplify the above construction, let

di =




1 if i is odd and αi = g
or if i is even and αi = r.

−1 otherwise.

Clearly d2i−1 + d2i = 2ci, so w ≡ gr iff
∑

i di = 2.

Since summation is expressible with polynomial size
formulas, and since Frege systems can prove basic facts
about summation, polynomial size Frege systems are
strong enough to simple local facts about words over
the alphabet {g, r}.

Counting can also be used to remove the e’s from
the crossing sequences.

The rest of the proof of STCONN with polynomial
size Frege proofs is standard and straightforward. 2
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Theorem: 2SINK 4cdF SINK.

2SINK is like SINK: formulated with directed grid
graph. One vertex has out-degree one, in-degree zero.
The rest have in-degree equal to out-degree. Unlike
SINK, in- and out-degrees may equal 2.

Proof of Theorem:

⇒

⇒
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SINK 4cdF DSTCONN 4cdF STCONN

DSTCONN is the directed version of STCONN.
To reduce DSTCONN to STCONN “erase the
arrowheads” and change edges to undirected.

Proof of SINK 4cdF DSTCONN:

Source

Source

Red

instance of

SINK

Sink

Sink

Green

instance of

reversed
SINK

Green

instance of

SINK

Red

instance of

reversed
SINK

The instances of SINK are located so that the source
nodes are at the positions indicated.
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Theorem: PHP 4cdF 2SINK

Proof: (PHP is the 1-1, onto pigeonhole principle.)

(1, 1)

R3

R2

R1

R0

D4

D3

D2

D1

D0

?

On the left half, pair Ri with Dn−i. On right half,
pair Di with Rf(i), where f : [n + 1] → [n] violates
the pigeonhole principle.
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The Game of HEX

Two players alternate coloring the hexagons. One
player colors hexagons red, the other blue. The winner
is the first to establish a path of his color that joins
the same colored opposite sides of the board.

Combinatorial facts:
I There can be only one winner (there cannot be both
a red path and a blue path joining the opposite red
(resp., blue) sides of the board.
I Every play of the game has a winner.

(This is the HEX tautology.)
I The first player has a winning strategy.
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The HEX Tautology - Formalized

The HEX tautology expresses the fact that once the
board is completely filled in, one of the players must
have won the game. For each game board hexagon h,
there are variables Rh, Bh, Mh, and Ch (“red”, “blue”,
“magenta”, “cyan”). The intuitive idea is that red
hexagon connect to the upper border, blue to the left
border, magenta to the bottom, cyan to the right.
(Based on a construction of Urquhart.)

Thm: The following is inconsistent:
I Each hexagon has one color (or: a color).
I Every border hexagon has the right color.
I No red and magenta hexagons are adjacent.
I No blue and cyan hexagons are adjacent.
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Thm: HEX 4cdF SINK.

The proof of Gale about Hex games always having
a winner can be adapted to prove the theorem.

The proof is by contradiction. Suppose there is a
violation of the HEX tautology. Wherever, a red and a
blue hexagon are adjacent, place a directed edge with
red on its left side. These edges create a violation of
the SINK principle. 2
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Thm: SINK 4cdF HEX.

Suppose there is a contradiction to SINK:

Turn the path in the SINK graph into four parallel
paths colored, from left to right, Red, Blue, Magenta,
Cyan; then remove the directedness. The resulting
graph is topologically equivalent to a violation of the
HEX tautology:
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Some Open Problems

1. Is the word problem for the free group with two
generators in Alogtime? Does it have polynomial
size formulas?

2. Separate depth d Frege systems and depth d + 1
Frege systems using formulas of depth < d.

3. Solve the analogous problem about the
conservativity of T d+1

2 (α) over T d
2 (α).

4. Investigate connections between the fact that
various tautologies have short Frege proofs, and
the decision classes of Papadimitriou [’90,’94] and
Beame-Cook-Edmonds-Impagliazzo-Pitassi [’98].
Gale [’79] also discusses connections between
these problems and Brower fixed point theorem
(equivalent to every Hex game having a winner.)
Also, Gale shows Jordan curve theorem is equivalent
to every Hex game having a single winner.
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