Using the $\varepsilon-\delta$ definition of the derivative
(1) Let $f(x)=2(x-1)^{2}+\frac{1}{2}$.
(a) How small does $|\Delta x|$ need to be to guarantee that $\frac{\Delta f}{\Delta x}(1, \Delta x)$ is within 0.5 of 0 ?
(b) How small does $|\Delta x|$ need to be to guarantee that $\frac{\Delta f}{\Delta x}(1, \Delta x)$ is within 0.1 of 0 ?
(c) Given $\varepsilon>0$, how small does $|\Delta x|$ need to be to guarantee that $\frac{\Delta f}{\Delta x}(1, \Delta x)$ is within ε of 0 ?
(d) Use the $\varepsilon-\delta$ definition of the derivative to show that $\frac{d f}{d x}(1)=0$.
(e) Use the $\varepsilon-\delta$ definition of the derivative to show that for any $x_{0} \in \mathbb{R}$, $\frac{d f}{d x}\left(x_{0}\right)=4\left(x_{0}-1\right)$.

