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COMBINATORICS OF RATIONAL FUNCTIONS AND

POINCARÉ-BIRCHOFF-WITT EXPANSIONS OF THE CANONICAL

U(n–)-VALUED DIFFERENTIAL FORM

R. RIMÁNYI, L. STEVENS, AND A. VARCHENKO

Abstract. We study the canonical U(n–)-valued differential form, whose projections to differ-
ent Kac-Moody algebras are key ingredients of the hypergeometric integral solutions of KZ-type
differential equations and Bethe ansatz constructions. We explicitly determine the coefficients
of the projections in the simple Lie algebras Ar, Br, Cr, Dr in a conveniently chosen Poincaré-
Birchoff-Witt basis.

1. Introduction

For a Kac-Moody algebra g, let V be the tensor product VΛ1 ⊗ . . .⊗VΛn
of highest weight g-

modules. The V -valued hypergeometric solutions of Knizhnik-Zamolodchikov-type differential
equations have the form [SV1], [SV2]:

(1) I(z) =

∫

γ(z)

Φ(t, z) ΩV (t, z) .

Here t = (t1, . . . , tk), z = (z1, . . . , zn), Φ is a scalar multi-valued (master) function, γ(z) is a
suitable cycle in t-space depending on z, and ΩV is a V -valued rational differential k-form.

The same Φ and ΩV have applications to the Bethe Ansatz method. It is known [RV] that the
values of ΩV at the critical points of Φ (with respect to t) give eigenvectors of the Hamiltonians
of the Gaudin model associated with V .

For every V = VΛ1 ⊗ . . . ⊗ VΛn
, the V -valued differential form ΩV is constructed out of a

single U(n–)-valued differential form Ωg, where g = n– ⊕ h⊕ n+ is the Cartan decomposition
of g, and U(n–) denotes the universal enveloping algebra of the Lie algebra n–, see Appendix.
In applications, it is important to have convenient formulas for Ωg, and this is the goal of the
present paper.

In [Mat], Matsuo suggested a formula
∫

Φ(t, z)Ω̃V (t, z) for solutions of the KZ equations for

g = slr+1. His differential form Ω̃V also can be constructed from a U(n–)-valued form Ω̃slr+1 in
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the same way as ΩV from Ωg. It is known that for sl2, the two forms

Ωsl2 =
∞∑

k=0

( ∑

π∈Σk

sgn(π) ·
dtπ(1)

tπ(1)

∧
d(tπ(2) − tπ(1))

tπ(2) − tπ(1)

∧ . . . ∧
d(tπ(k) − tπ(k−1))

tπ(k) − tπ(k−1)

)
⊗ fk,

Ω̃sl2 =

∞∑

k=0

( k∧

i=1

dti
ti

)
⊗ fk

coincide. For r > 1, the form Ωslr+1 is a polynomial in f1, . . . , fr’s with scalar differential

forms as coefficients, while the Matsuo form Ω̃slr+1 is a sum over a Poincaré-Birchoff-Witt basis
of U(n–) with coefficients of the same type. Both forms have some advantages. The form

Ωg is given by the same formula for any g. The formula for Ω̃slr+1 has less terms and less
apparent poles (see above for the apparent poles at ti − tj = 0). The advantage of having an
expression in terms of a PBW basis is most spectacular for representations with 1-dimensional
weight-subspaces.

In this paper, we prove that Ω̃slr+1 = Ωslr+1 and give similar Poincaré-Birchoff-Witt expan-
sions for the differential form Ωg for the simple Lie algebras g of types Br, Cr, Dr.

As a byproduct, we obtain results on the combinatorics of rational functions. Namely, some
non-trivial identities are established among certain rational functions with partial symmetries.
The results are far reaching generalizations of the prototype of these formulas, the “Jacobi-
identity”

1

(x− y)(x− z)
+

1

(y − x)(y − z)
+

1

(z − x)(z − y)
= 0.

In all Ar, Br, Cr, Dr cases, the coefficients of Ωg can be encoded by diagrams relevant to
sub-diagrams of the Dynkin diagram of g. One may expect that the same phenomenon occurs
in a more general Kac-Moody setting, too.

According to the formulas for Φ and ΩV in [SV1], [SV2], the poles of ΩV contain the singu-
larities of Φ. From our PBW expansion formulas it follows that the poles of ΩV coincide with
the singularities of Φ, hence it makes sense to consider the values of ΩV at (e.g.) the critical
points of Φ, as is needed in the Bethe ansatz applications.

It was shown in [MaV] that the Matsuo type hypergeometric solutions of the slr+1 KZ-
equations satisfy the complementary dynamical difference equations. According to our result

Ωslr+1 = Ω̃slr+1 , the hypergeometric solutions (1) also satisfy the dynamical difference equation
for g = slr+1.

In [FV], hypergeometric solutions I(z, λ) =
∫

Φell(t, z)ΩV,ell(t, z, λ) of the KZB equations
were constructed. Here Φell is the elliptic scalar master function of the same t, z and Ω(t, z, λ)
is the elliptic analogue of ΩV , it is a V -valued differential form depending also on λ ∈ h. It
would be useful to find PBW type expansions of ΩV,ell similar to our PBW expansions of ΩV .

Hypergeometric solutions of qKZ, the quantum version of KZ equations, for slr+1-modules
V were described in [TV1], [TV2] as I(z) =

∫
Φq(t, z)Ω

V
q (t, z). There the V -valued differential

form ΩV
q was given in a PBW expansion. Our PBW formulas for the B, C, D series may suggest

integral formulas for solutions of B, C, D type qKZ equations.
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The structure of the cycles γ in (1) for arbitrary g was analyzed in [V1]. The cycles were
presented as linear combinations of multiple loops, and that presentation established a connec-
tion between multi-loops and monomials fik . . . fi1 in Uq(n–), where Uq(n–) is the n–-part of the
quantum group Uq(g). That connection in particular gives an identification of the monodromy
of the KZ equations with the R-matrix representations associated with Uq(g). Our PBW ex-
pansions of Ωg suggest that there might be an interesting PBW type geometric theory of cycles
for each g, in which the cycles are presented by linear combinations of cells corresponding to
elements of the PBW basis in the corresponding Uq(n–).

It would also be interesting to compare our PBW formulas with Cherednik’s formulas for
solutions of the trigonometric KZ equations [Ch].

The authors thank D. Cohen for helpful discussions.

2. Symmetrizers, signs and other conventions

2.1. Symmetrizers. For a nonnegative integer r and k = (k1, . . . , kr) ∈ N
r = {0, 1, 2, . . .}r,

we will often consider various ‘objects’ x(t
(i)
j ) (functions, differential forms, flags), depending

on the r sets of variables

(2) t
(1)
1 , t

(1)
2 , . . . , t

(1)
k1
, t

(2)
1 , t

(2)
2 , . . . , t

(2)
k2
, . . . t

(r)
1 , t

(r)
2 , . . . , t

(r)
kr
.

Let Gk be the product
∏

i Σki
of symmetric groups. We define the action of π ∈ Gk on x

by permuting the t
(i)
j ’s with the same upper indices. Then we define the symmetrizer and

antisymmetrizer operators

Symk x(t
(i)
j ) =

∑

π∈Gk

π · x, ASymk x(t
(i)
j ) =

∑

π∈Gk

sgn(π) π · x.

Let |k| =
∑

i ki. For a function (‘multi-index’) J = {1, . . . , |k|} → {1, . . . , r} with #J−1(i) =
ki, let c : {1, . . . , |k|} → N be the unique map whose restriction to J−1(i) is the increasing
function onto {1, . . . , ki}. Then J defines an identification of (t1, . . . , t|k|) with the variables in
(2) by identifying

(3) tu with t
(J(u))
c(u) .

Thus, if x depends on t1, . . . , t|k| and J is given, we can consider x depending on the variables
in (2). For example, we can (anti)symmetrize x:

SymJ
k x(tu) = Symk x(t

(i)
j ), ASymJ

k x(tu) = ASymk x(t
(i)
j ).

2.2. The sign of a multi-index; volume forms. Let J0 be the unique increasing function
{1, . . . , |k|} → {1, . . . , r} with #J−1

0 (i) = ki, and let J be any function {1, . . . , |k|} → {1, . . . , r}
with #J−1(i) = ki. Then the identifications defined in (3) for J and J0 together define a
permutation of 1, . . . , |k|. The sign of this permutation will be denoted by sgn(J). E.g. sgn(1 7→
1, 2 7→ 1, 3 7→ 2) = 1, sgn(1 7→ 1, 2 7→ 2, 3 7→ 1) = −1.

Define the ‘standard volume form’ dVk by dt
(1)
1 ∧. . .∧dt

(1)
k1
∧dt

(2)
1 ∧. . .∧dt

(2)
k2
∧. . .∧dt

(r)
1 ∧. . .∧dt

(r)
kr

.
Observe that if we use the identification (3), then dt1 ∧ dt2 ∧ . . .∧ dt|k| is equal to sgn(J) · dVk.
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2.3. The star multiplication. For k ∈ N
r, let Fk be the vector space of rational functions

in the variables in (2) which are symmetric under the action of Gk. We define a multiplication
(c.f. [V2, 6.4.2]) ∗ : Fk ⊗F l → Fk+l by

(f ∗ g)(t
(1)
1 , . . . , t

(1)
k1+l1

, . . . , t
(r)
1 , . . . , t

(r)
kr+lr

) =

1∏
i ki!li!

Symk+l

(
f(t

(1)
1 , . . . , t

(1)
k1
, . . . , t

(r)
1 , . . . , t

(r)
kr

) · g(t
(1)
k1+1, . . . , t

(1)
k1+l1

, . . . , t
(r)
kr+1, . . . , t

(r)
kr+lr

)
)
.

For example, if we write t for t(1) and s for t(2), then

1

t1t2
∗

1

t1(s− t1)
=

1

t1t2
·

1

t3(s− t3)
+

1

t1t3
·

1

t2(s− t2)
+

1

t2t3
·

1

t1(s− t1)
.

This multiplication makes ⊕k Fk an associative and commutative algebra.

3. Arrangements. The Orlik-Solomon algebra and its dual. Discriminantal

arrangements and their symmetries

Let C be a hyperplane arrangement in C
n. In this section we recall two algebraic descrip-

tions of the cohomology of the complement U = Cn − ∪H∈CH , as well as properties of the
discriminantal arrangement which will be needed later. The general reference is [SV2].

3.1. The Orlik-Solomon algebra. For H ∈ C, let ωH be the logarithmic differential form
dfH/fH , where fH = 0 is a defining equation of H . Let A = A(C) be the graded C-algebra
with unit element generated by all ωH ’s, H ∈ C. The elements of A are closed forms on U ,
hence they determine cohomology classes. According to Arnold and Brieskorn, the induced
map A → H∗(U ; C) is an isomorphism. The degree p part of A will be denoted by Ap.

3.2. Flags. Non-empty intersections of hyperplanes in C are called edges. A p-flag of C is a
chain of edges

F = [Cn = L0 ⊃ L1 ⊃ L2 ⊃ . . . ⊃ Lp−1 ⊃ Lp],

where codim Li = i. Consider the complex vector space generated by all p-flags of C modulo
the relations

∑

L

[L0 ⊃ . . . ⊃ Li−1 ⊃ L ⊃ Li+1 ⊃ . . . ⊃ Lp] = 0, (0 < i < p),

where the summation runs over all codim i edges L that contain Li+1 and are contained in
Li−1. This vector space is denoted by F lp = F lp(C), and let F l be the direct sum ⊕pF l

p.

3.3. Iterated residues. According to [SV2, Th. 2.4], A and F l are dual graded vector spaces.
The value of a differential form on a flag is given by an iterated residue operation

Res : F l ⊗A → C,

defined as follows. Let F = [Li] be a p-flag and ω ∈ A a p-form on U . Then

ResF ω = ResLp

(
ResLp−1

(
. . .ResL2(ResL1(ω)) . . .

))
∈ C.
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3.4. The discriminantal arrangement and its symmetries. The discriminantal arrange-
ment Cn in Cn is defined as the collection of hyperplanes

ti = 0 (i = 1, . . . , n) and ti − tj = 0 (1 ≤ i < j ≤ n).

Let us fix r non-negative integers (weights) k = (k1, . . . , kr) with
∑
ki = |k| and consider

C|k| with coordinates

(t
(1)
1 , . . . , t

(1)
k1
, t

(2)
1 , . . . , t

(2)
k2
, . . . . . . . . . , t

(r)
1 , . . . , t

(r)
kr

).

The group Gk =
∏

Σki
then acts on C|k| (by permuting the coordinates with the same upper

indices) which then induces an action of Gk on A(C |k|) and F l(C|k|).
The skew-invariant subspaces (i.e. the collection of x’s for which π ·x = sgn(π)x ∀π ∈ Gk) of

A|k|(C |k|) and F l|k|(C|k|) will be denoted by AGk and F lGk , respectively. The duality stated in
3.3 is consistent with the group-action in the sense that AGk and F lGk are dual vector spaces.

3.5. Flags of the discriminantal arrangement. Let Ur be the free associative algebra gen-
erated by r symbols f̃1, f̃2, . . . , f̃r. It is multigraded by N

r; the (k1, . . . , kr)-degree part will
be denoted by Ur[k] = Ur[k1, . . . , kr]. For any non-zero homogeneous element in Ur[k], we
define its content to be k. It is proved in [SV2, Th. 5.9] that Ur[k] is isomorphic to F lGk

under the following map. For J : {1, . . . , |k|} → {1, . . . , r} with #J−1(i) = ki, the monomial

f̃J = f̃J(|k|)f̃J(|k|−1) . . . f̃J(2)f̃J(1) ∈ Ur[k1, . . . , kr] corresponds to sgn(J)∏
i ki!

ASymJ
k (F ) ∈ F lGk , where

F is the |k|-flag

[C|k| ⊃ (t1 = 0) ⊃ (t1 = t2 = 0) ⊃ . . . ⊃ (t1 = . . . = t|k|−1 = 0) ⊃ (t1 = . . . = t|k| = 0)]

with its variables tu identified with t
(i)
j ’s as defined by (3).

Example 3.1. For r = 2, k = (1, 1), we have the correspondence

f̃2f̃1 ↔ [C2 ⊃ (t
(1)
1 = 0) ⊃ (t

(1)
1 = t

(2)
1 = 0)], f̃1f̃2 ↔ −[C2 ⊃ (t

(2)
1 = 0) ⊃ (t

(2)
1 = t

(1)
1 = 0)].

For r = 2, k = (2, 1), we have the correspondence

f̃ 2
1 f̃2 ↔

1

2

(
[C3 ⊃ (t

(2)
1 = 0) ⊃ (t

(2)
1 = t

(1)
1 = 0) ⊃ (t

(2)
1 = t

(1)
1 = t

(1)
2 = 0)]−

[C3 ⊃ (t
(2)
1 = 0) ⊃ (t

(2)
1 = t

(1)
2 = 0) ⊃ (t

(2)
1 = t

(1)
2 = t

(1)
1 = 0)]

)
.

4. The canonical differential form

Using the identifications of Section 3, the tensor product

AGk ⊗Ur[k1, . . . , kr]

is the tensor product of a vector space with its dual space. Therefore the canonical element,∑
i b

∗
i ⊗ bi for any basis {bi} of Ur[k] and the dual basis {b∗i } of AGk , is well defined—it does not

depend on the choice of the basis of Ur[k]. We will call this element the canonical differential
form of weight k and denote it by Ωk. Tracing back the identifications of Section 3, we get the
explicit form.
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Theorem 4.1. [SV2] Let t0 = 0. The canonical differential form is

Ωk =
∑

J

sgn(J) · ASymJ
k

( |k|∧

u=1

dlog(tu − tu−1)
)
⊗ f̃J

=
∑

J

SymJ
k

( |k|∏

u=1

1

tu − tu−1

)
dVk ⊗ f̃J ∈ AGk ⊗Ur[k],

where the summation runs over all J : {1, . . . , |k|} → {1, . . . , r} with #J−1(i) = ki. (Recall

that the variables tu are identified with t
(j)
i ’s using (3).)

Example 4.2. Let r = 2, k = (2, 1), and write t for t(1) and s for t(2). Then

Ω(2,1) =
( 1

t1(t2 − t1)(s− t2)
+

1

t2(t1 − t2)(s− t1)

)
dt1 ∧ dt2 ∧ ds ⊗ f̃2f̃

2
1 +(4)

( 1

t1(s− t1)(t2 − s)
+

1

t2(s− t2)(t1 − s)

)
dt1 ∧ dt2 ∧ ds ⊗ f̃1f̃2f̃1+

( 1

s(t1 − s)(t2 − t1)
+

1

s(t2 − s)(t1 − t2)

)
dt1 ∧ dt2 ∧ ds ⊗ f̃ 2

1 f̃2.

Similar rational functions will often appear in this paper. It will be convenient to encode
them with diagrams as follows: Ω(2,1) =

Sym
(
∗ •
t1

•
t2

•
s )
dVk ⊗ f̃2f̃

2
1 + Sym

(
∗ •
t1

•
s

•
t2

)
dVk ⊗ f̃1f̃2f̃1 + Sym

(
∗ •
s

•
t1

•
t2
)
dVk ⊗ f̃ 2

1 f̃2.

5. Properties of the differential forms

In this section we present the two key properties needed in Section 6.

5.1. The residue of the canonical differential form. For k = (k1, . . . , kr), we denote
(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr) by k − 1i.

Lemma 5.1. Let k ∈ N
r and i ∈ [1, . . . , r]. Then the maps

R : AGk → AGk−1i , ω 7→ Res
t
(i)
ki

=0
ω ,

and

ψ : Ur[k − 1i] → Ur[k] , x 7→ (−1)k1+...+ki−1xf̃i ,

are dual.

Proof. Let ω ∈ AGk and f̃J ∈ Ur[k − 1i]. We need to check that the residue with respect

to the flag corresponding to f̃J of Res
t
(i)
ki

=0
ω is equal to (−1)k1+...+ki−1 times the residue with

respect to the flag corresponding to f̃J f̃i of ω. This follows from the definitions (and the sign
conventions). �

Theorem 5.2.

Res
t
(i)
ki

=0
Ωk = (−1)k1+k2+...+ki−1 · Ωk−1i

· (1 ⊗ f̃i).
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Proof. Let {bu} be a basis of Ur[k − 1i], hence Ωk−1i
=

∑
b∗u ⊗ bu. Since the map ψ in Lemma

5.1 is an embedding, the images ψ(bu) can be extended to a basis {ψ(bu), cv} of Ur[k]. Then
Ωk =

∑
ψ(bu)

∗⊗ψ(bu)+
∑
c∗v ⊗ cv. We have (R⊗1)Ωk =

∑
R(ψ(bu)

∗)⊗ψ(bu)+
∑
R(c∗v)⊗ cv,

which, according to Lemma 5.1, is
∑
b∗u ⊗ ψ(bu) = (1 ⊗ ψ)Ωk−1i

, as required. �

Example 5.3. For r = 2, we write t for t(1) and s for t(2). Then Ress=0 Ω(1,1) =

Ress=0

(dt
t
∧
d(s− t)

s− t
⊗ f̃2f̃1 −

ds

s
∧
d(t− s)

t− s
⊗ f̃1f̃2

)
= 0 ⊗ f̃2f̃1 −

dt

t
⊗ f̃1f̃2 = −Ω(1,0)f̃2.

5.2. The multiplication of differential forms. Recall that Ur is equipped with a standard
Hopf algebra structure. The co-multiplication ∆ : Ur → Ur ⊗ Ur is defined for degree one
elements x as ∆(x) = 1 ⊗ x+ x⊗ 1; e.g. ∆(f̃1) = 1 ⊗ f̃1 + f̃1 ⊗ 1. Then ∆(f̃1f̃2) = 1 ⊗ f̃1f̃2 +

f̃1 ⊗ f̃2 + f̃2 ⊗ f̃1 + f̃1f̃2 ⊗ 1.
The dual ∆∗ of ∆ is therefore a multiplication on the dual space U∗

r =
∑

k A
Gk . Our goal is

to express explicitly this multiplication of differential forms.

Theorem 5.4. For k, l ∈ N
r, let ωdVk ∈ AGk and ηdVl ∈ AGl be differential forms. Then

(5) ∆∗(ωdVk ⊗ ηdVl) = (ω ∗ η) dVk+l,

(see Section 2.3).

Proof. We will need the following concept. Call a triple (S1, S2, J) a shuffle of J1 : {1, . . . , |k|} →
{1, . . . , r} and J2 : {1, . . . , |l|} → {1, . . . , r} if

• S1, S2 are subsets of {1, . . . , |k + l|}, #S1 = |k|, #S2 = |l|,
• {1, . . . , |k + l|} is the disjoint union of S1 and S2,
• J is a map from {1, . . . , |k + l|} to {1, . . . , r},
• for the increasing bijections s1 : S1 → {1, . . . , |k|} and s2 : S2 → {1, . . . , |l|} we have

J(i) =

{
J1 ◦ s1(i) i ∈ S1

J2 ◦ s2(i) i ∈ S2.

The collection of f̃J ’s form a basis of Ur. Let the dual basis be {f̃ ∗
J}. We only need to check

(5) for this dual basis. Hence, let ωdVk = f̃ ∗
J1

, ηdVl = f̃ ∗
J2

with f̃J1 ∈ Ur[k], f̃J2 ∈ Ur[l].

The definition of ∆ implies that ∆∗(f̃ ∗
J1

⊗ f̃ ∗
J2

) is
∑
f̃ ∗

J , where the summation runs over all

shuffles of J1 and J2; e.g. ∆∗(f̃ ∗
1 ⊗ f̃ ∗

2 ) = (f̃1f̃2)
∗ + (f̃2f̃1)

∗, ∆∗(f̃ ∗
1 ⊗ f̃ ∗

1 ) = 2(f̃ 2
1 )∗.

On the other hand, the right-hand-side in (5) is also
∑
f̃ ∗

J , with the summation running over
the shuffles of J1 and J2. This can be seen by an iterated application of the identity

1

A(y − x)B(z − x)C
=

1

A(y − x)B(z − y)C
+

1

A(z − x)C(y − z)B
,

which can be illustrated by the diagram

A •�
�

@@

•

•

B

C

x

y

z

= A •�
�@@
•

•

B

Cx

y

z
+ A •

��@@
•

•
B

C

x y

z

,

c.f. [MuV, Lemma 4.4]. �
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6. The canonical differential form for the simple Lie algebras A,B,C,D

The following projections of the canonical differential form are used in integral solutions of
the KZ equations and in the Bethe ansatz construction. Let g be a simple Lie algebra of rank
r, with Cartan decomposition g = n– ⊕ h⊕ n+. The universal enveloping algebra U(n–) of n–

is generated by r elements f1, . . . , fr (the standard Chevalley generators) subject to the Serre
relations; i.e. there is the quotient epimorphism q : Ur → U(n–). We say that a non-zero
element x ∈ U(n–) has content k ∈ N

r if x ∈ q(Ur[k]).

Definition 6.1. The canonical differential form Ωg

k of a simple Lie algebra g is defined as the
image of Ωk under the map

id⊗ q : AGk ⊗Ur[k] → AGk ⊗U(n–)[k].

The Lie algebra n– is a direct sum of 1-dimensional weight spaces nβ labelled by the positive
roots β : n– = ⊕βnβ. Let Fβ ∈ nβ be a generator. If we choose these generators and an ordering
of the positive roots: β1. . . . , βm, then according to the Poincaré-Birchoff-Witt theorem, a C-
basis of the algebra U(n–) is given by the collection of elements F p1

β1
F p2

β2
. . . F pm

βm
, where m =

dim n– and p = (p1, . . . , pm) ∈ N
m.

Example 6.2. For sl3, the Lie algebra of all 3× 3 traceless matrices, the positive roots α1, α2,
α1 + α2 correspond to the matrix entries at the positions (2, 1), (3, 2), and (3, 1), and in turn,
to the basis Fα1 = f1, Fα2 = f2, Fα1+α2 = [f2, f1] of n–. A PBW basis of U(n–) is f p1

1 [f2, f1]
p2f p3

2

with p = (p1, p2, p3) ∈ N
3.

After fixing an order β1 < β2 < . . . < βm of the positive roots of g, the canonical differential
form of g can be written in the form of

(6) Ωg

k =
∑

p

ωp dVk ⊗ F p1

β1
F p2

β2
. . . F pm

βm
.

Here the summation is over p such that the content of F p1

β1
F p2

β2
. . . F pm

βm
is k; ωpdVk is a differential

form in AGk , and ωp is a rational function.

Theorem 6.3. (Product formula.) For l = 1, . . . , m, let the content of Fβl
be k(l). Then there

exist rational functions ηβl
in the variables (t

(i)
j )

j=1,...,k
(l)
i

, symmetric under Gk(l), such that

ωp =
1∏
l pl!

·

p1︷ ︸︸ ︷
ηβ1 ∗ . . . ∗ ηβ1 ∗

p2︷ ︸︸ ︷
ηβ2 ∗ . . . ∗ ηβ2 ∗ . . . ∗

pr︷ ︸︸ ︷
ηβr

∗ . . . ∗ ηβr

Proof. Denote F p = F p1

β1
. . . F pm

βm
. The coproduct ∆ can be expressed in the PBW basis as:

∆(F p) =
∑

p′+p′′=p

m∏

i=1

pi!

p′i!p
′′
i !

· F p′ ⊗ F p′′ .

Then for the dual multiplication we have

∆∗(ωp′dVk ⊗ ωp′′dVl) = ∆∗(F p′∗ ⊗ F p′′∗) =
∏

i

(p′i + p′′i )!

p′i!p
′′
i !

· F p′+p′′∗.
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Using Theorem 5.4, we obtain

ωp′ ∗ ωp′′ =
∏

i

(p′i + p′′i )!

p′i!p
′′
i !

· ωp′+p′′,

from which the result follows (put ηβl
= ω1l

). �

Example 6.4. For g = sl3 and the ordering α1 < α1 + α2 < α2, we have ωα1 = 1/t1,
ωα1+α2 = 1/(t1(s1 − t1)) and ωα2 = 1/s1. (Again, we write t for t(1) and s for t(2).) Then the
differential form corresponding to f 2

1 [f2, f1] is

ω(2,1,0)dt1 ∧ dt2 ∧ dt3 ∧ ds =
1

2!1!0!
·

1

t1
∗

1

t1
∗

1

t1(s1 − t1)
=

=
1

2
Sym(3,1)

( 1

t1t2t3(s− t3)

)
dV(3,1) =

3s2 − 2s(t1 + t2 + t3) + (t1t2 + t1t3 + t2t3)

t1t2t3(s− t1)(s− t2)(s− t3)
dV(3,1).

This means that Ωg

k is determined once we know its ‘atoms’, i.e. the ηβ’s for the positive
roots β. In the remainder of this section, we will compute them for the infinite series A, B, C,
D of simple Lie algebras. For each of these we will recall (1) the positive roots, (2) the simple
roots, and (3) the expression of the positive roots in terms of the simple roots. Then we choose
(4) an ordering of the positive roots (in all cases it will be a normal ordering) and fix (5) the
elements Fβ’s (choice of a constant). Then we describe the elements ηβ’s with the choices (4),
(5).

Let ǫi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Cr (1 occurs at the ith position from the left). For a multi-
index J = (J(1), J(2), . . . , J(n)), let [fJ ] = [fJ(1)[fJ(2)[. . . , [fJ(n−1), fJ(n)] . . .]]].

6.1. The simple Lie algebra Ar−1.

(1) The positive roots are ǫi − ǫj for 1 ≤ i < j ≤ r.
(2) The simple roots are αi = ǫi − ǫi+1 for 1 ≤ i < r.

(3) ǫi − ǫj =
∑j−1

u=i αu.
(4) Let ǫi − ǫj < ǫi′ − ǫj′ if either i+ j < i′ + j′ or i+ j = i′ + j′ and i < i′;
(5) For a positive root β = ǫi − ǫj , let Fβ = [f(j−1,j−2,...,i)].

Theorem 6.5. For β = ǫi − ǫj = αi + αi+1 + . . .+ αj−1, we have

ηβ =
1

t
(i)
1 (t

(i+1)
1 − t

(i)
1 ) · . . . · (t

(j−1)
1 − t

(j−2)
1 )

.

The result can be visualized by the following string-diagram (the labels of the vertices in the
diagram indicate the superscripts of the corresponding t’s).

ηαi+...+αj
= ∗ •

i
•
i+1

. . . •
j−1
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6.2. The simple Lie algebra Br.

(1) The positive roots are ǫi (1 ≤ i ≤ r) and ǫi − ǫj , ǫi + ǫj (1 ≤ i < j ≤ r).
(2) The simple roots are αi = ǫi − ǫi+1 for i = 1, . . . , r − 1 and αr = ǫr (the ‘short’ root).
(3)

ǫi =
r∑

u=i

αu (1 ≤ i ≤ r), ǫi − ǫj =

j−1∑

u=i

αu, ǫi + ǫj =

j−1∑

u=i

αu + 2
r∑

u=j

αu (1 ≤ i < j ≤ r).

(4) Let β be one of ǫi, ǫi − ǫj , or ǫi + ǫj , and let β ′ be one of ǫi′ , ǫi′ − ǫj′ , or ǫi′ + ǫj′ Then
we put β < β ′ if i > i′, and if i = i′ then ǫi + ǫj < ǫi + ǫj′ < ǫi < ǫi − ǫj′ < ǫi − ǫj for
i < j < j′.

(5) Fαi+...+αj−1
= [f(j−1,j−2,...,i)] and Fǫi+ǫj

= [[f(i,i+1,...,r)], [f(r,r−1,...,j)]].

The vector (

u0︷ ︸︸ ︷
0, . . . , 0,

u1︷ ︸︸ ︷
1, . . . , 1 . . . ) will be abbreviated by (0u01u1 . . .).

Theorem 6.6. We have

ηαi+...+αj−1
=

1

t
(j−1)
1 (t

(j−2)
1 − t

(j−1)
1 ) · . . . · (t

(i)
1 − t

(i+1)
1 )

(for both roots ǫi and ǫi − ǫj),

ηǫi+ǫj
=

1

2
Sym(0i−11j−i2r−j+1)

( t
(r−1)
1 − t

(r−1)
2

t
(j)
1 (t

(r)
1 − t

(r−1)
1 )(t

(r)
2 − t

(r−1)
1 )(t

(r−1)
2 − t

(r)
1 )(t

(r−1)
2 − t

(r)
2 )

·
1

∏r−1
k=j+1(t

(k)
1 − t

(k−1)
1 )

∏r−2
k=i(t

(k)
2 − t

(k+1)
2 )

)
.

The structure of these functions is better understood via the following pictures.

ηαi+...+αj−1
= ∗ •

j−1
•
j−2

. . . •
i

η∑
i≤k<j αk+2

∑
j≤k≤r αk

= 1
2
Sym ∗ •

j
•
j+1

. . . •
r−1

��

@@

•
r

•
r

@@

��
•
r−1

•
r−2

. . . •
i

In the second picture, the double edge means that the corresponding difference is in the nu-
merator.

6.3. The simple Lie algebra Cr.

(1) The positive roots are ǫi − ǫj , ǫi + ǫj for 1 ≤ i < j ≤ r and 2ǫi for 1 ≤ i ≤ r.
(2) The simple roots are αi = ǫi − ǫi+1 (1 ≤ i < r) and αr = 2ǫr (the ‘long’ root).
(3)

ǫi − ǫj =

j−1∑

u=i

αu, ǫi + ǫj =

j−1∑

u=i

αu + 2

r−1∑

u=j

αu + αr, 2ǫi = 2

r−1∑

u=i

αu + αr.

(4) Let β be one of ǫi − ǫj , ǫi + ǫj , or 2ǫi, and let β ′ be one of ǫi′ − ǫj′, ǫi′ + ǫj′, or 2ǫi′ . Then
we put β < β ′ if i > i′; or if i = i′ then ǫi + ǫj < ǫi + ǫj′ < 2ǫi < ǫi − ǫj′ < ǫi − ǫj for
i < j < j′.
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(5) Fǫi−ǫj
= [f(i,i+1,...,j−1)], Fǫi+ǫj

= [fi,i+1,...,r−1,r,r−1,...,j], F2ǫi
= [[f(i,i+1,...,r−1)], [f(i,i+1,...,r)]].

Theorem 6.7. We have

ηǫi−ǫj
=

1

t
(j−1)
1

∏j−2
u=i(t

(u)
1 − t

(u+1)
1 )

,

ηǫi+ǫj
= Sym(0i−11j−i2r−j1)

( 1

t
(j−1)
1

∏r

u=j+1(t
(u)
1 − t

(u−1)
1 )

∏r−1
u=i(t

(u)
2 − t

(u+1)
2 )

)
,

η2ǫi
= Sym(0i−12r−i1)

( 1

t
(r)
1 (t

(r−1)
1 − t

(r)
1 )(t

(r−1)
2 − t

(r)
1 )

∏r−2
u=i(t

(u)
1 − t

(u+1)
1 )

∏r−2
u=i(t

(u)
2 − t

(u+1)
2 )

)
.

The result can be visualized by the following diagrams (labels mean upper indices).

ηǫi−ǫj
=∗ •

j−1
•

j−2
. . . •

i

ηǫi+ǫj
= Sym ∗ •

j
•
j+1

. . . •
r−1

•
r

•
r−1

•
r−2

. . . •
i

η2ǫi
= Sym ∗ •�

�

@@
r

•
r−1

•
r−1

•
r−2

•
r−2

. . .

. . .

•
i

•
i

6.4. The simple Lie algebra Dr.

(1) The positive roots are ǫj − ǫi and ǫj + ǫi for 1 ≤ i < j ≤ r.
(2) The simple roots are α1 = ǫ1 + ǫ2 and αi = ǫi − ǫi−1 (1 < i ≤ r).
(3)

ǫj−ǫi =

j∑

u=i+1

αu, ǫi+ǫj = α1+α2+2
i∑

u=3

αu+

j∑

u=i+1

αu (1 < i < j ≤ r), ǫ1+ǫj = α1+

j∑

u=3

αu.

(4) Let β be one of ǫj − ǫi or ǫj + ǫi, and let β ′ be one of ǫj′ − ǫi′ or ǫj′ + ǫi′ . Then we put
β < β ′ if j < j′; or if j = j′ then ǫj + ǫi < ǫj + ǫi′ < ǫj − ǫi′ < ǫj − ǫi for i′ < i < j.

(5) Fǫj−ǫi
= [f(j,j−1,...,i+1)], Fǫ1+ǫj

= [f(j,j−1,...,3,1)], Fǫi+ǫj
= [f(j,j−1,...,2,1,3,4,...,i−1,i)].

Theorem 6.8. We have

ηǫj−ǫi
=

1

t
(i+1)
1

∏j

u=i+2(t
(u)
1 − t

(u−1)
1 )

,

ηǫj+ǫ1 =
1

t
(1)
1

∏j

u=3(t
(u)
1 − t

(u−1)
1 )

.

For 1 < i < j, ηǫj+ǫi
= Sym(122i−21j−i0r−j)

t
(3)
1 − t

(3)
2

t
(i)
2 (t

(1)
1 − t

(3)
2 )(t

(2)
1 − t

(3)
2 )(t

(3)
1 − t

(1)
1 )(t

(3)
1 − t

(2)
1 )

∏i+1
u=3(t

(u)
2 − t

(u+1)
2 )

∏j

u=4(t
(u)
1 − t

(u−1)
1 )

.
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The result can be visualized by the following diagrams (labels mean upper indices).

ηǫj−ǫi
=∗ •

i+1
•
i+2

. . . •
j

ηǫj+ǫ1 =∗ •
1

•
3

. . . •
j

ηǫj+ǫi
= Symk ∗ •

i
•
i−1

. . . •
3 ��

@@

•
1

•
2

@@

��
•
3

•
4

. . . •
j

6.5. The proofs of the theorems 6.5-6.8. Let g be one of the simple Lie algebras Ar, Br,
Cr, Dr, and let β be one of its positive roots. In one of the Theorems 6.5–6.8 (the one referring
to g), we state a formula for ηβ; let us denote the function on the right-hand-side of that formula
by ηβ. In this section we will prove that ηβ = ηβ, by proving Theorems 6.10 and 6.12 below.

Lemma 6.9. Under the correspondence between Ur[k] and F lGk of Section 3.5, we have

[f̃i, f̃j ] ↔ ±[C2 ⊃ (t
(i)
1 = t

(j)
1 ) ⊃ 0]

[f̃i, [f̃i, f̃j ]] ↔ ±ASym(2,1)

(
[C3 ⊃ (t

(i)
1 = t

(j)
1 ) ⊃ (t

(i)
1 = t

(i)
2 = t

(j)
1 ) ⊃ 0]

)

[f̃i, [f̃i, [f̃i, f̃j]]] ↔

±ASym(3,1)

(
[C4 ⊃ (t

(i)
1 = t

(j)
1 ) ⊃ (t

(i)
1 = t

(j)
1 = t

(i)
2 ) ⊃ (t

(i)
1 = t

(j)
1 = t

(i)
2 = t

(i)
3 ) ⊃ 0]

)
.

Proof. For i < j we have

f̃if̃j − f̃j f̃i ↔ −[C2 ⊃ (t
(j)
1 = 0) ⊃ 0] − [C2 ⊃ (t

(i)
1 = 0) ⊃ 0] = [C2 ⊃ (t

(j)
1 = t

(i)
1 ) ⊃ 0],

which proves the first statement. The others follow from similar calculations. �

Let the content of Fβ be k.

Theorem 6.10. Let F ∈ F lGk be a linear combination of flags corresponding to an element∑
cJ f̃J in Ur[k] of content k. If

∑
j cJ f̃j belongs to the ideal generated by the Serre relations,

then ResF ηβdVk = 0.

Proof. We show the proof for g of type A. In this case there are two kinds of Serre relations:
[fi, fj ] = 0 if (αi, αj) = 0, and [fi, [fi, fj ]] = 0 if (αi, αj) = −1. We will consider the linear

combination of flags corresponding to multiples of [f̃i, f̃j] and [f̃i, [f̃i, f̃j ]]. By Lemma 6.9, any

multiple of [f̃i, f̃j ] corresponds to a linear combination F of flags, with each term of the form
±[C|k| ⊃ . . . ⊃ Lu+2 ⊃ Lu+1 ⊃ Lu ⊃ . . . ⊃ 0] with

[Lu+2/Lu ⊃ Lu+1/Lu ⊃ Lu/Lu] ≃ [C2 ⊃ (t(i)v1
= t(j)v2

) ⊃ 0].

The rational function ηβ does not have a factor of type t(i) − t(j) in the denominator for
(αi, αj) = 0. Thus ResF ηβdVk = 0.

By Lemma 6.9, any multiple of [f̃i[f̃i, f̃j ]] corresponds to a linear combination F of flags, with
each term of the form ±[C|k| ⊃ . . . ⊃ Lu+3 ⊃ Lu+2 ⊃ Lu+1 ⊃ Lu ⊃ . . . ⊃ 0] with

[Lu+3/Lu, Lu+2/Lu ⊃ Lu+1/Lu ⊃ Lu/Lu] ≃ [C3 ⊃ (t(i)v1
− t(j)v2

) ⊃ (t(i)v1
= t(i)v3

= t(j)v2
) ⊃ 0].
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Since all ki are 0 or 1 for the positive root β, this type of flags cannot occur in F lGk .
The proof for the types B,C,D are analogous. �

Remark 6.11. By Theorem 6.10, the differential forms Ωg (and ΩV , see the Introduction and
Section 7 below) do not have poles at the t(i) = t(j) type hyperplanes if the corresponding
simple roots are orthogonal. Hence the poles of Ωg coincide with the singularities of the master
function, see the Introduction.

Now let F p = F p1

β1
. . . F pm

βm
be another element of content k in the Poincare-Birchoff-Witt basis,

different from Fβ . Let us choose preimages of Fβ and F p under the projection Ur[k] → U(n–),
and let F lagβ and F lagp ∈ F lGk be the corresponding linear combinations of flags.

Theorem 6.12.

• The residue of the differential form ηβdVk with respect to F lagp is 0.
• The residue of the differential form ηβdVk with respect to F lagβ is 1.

Lemma 6.13. For i = 1, . . . , r, j = 1, . . . , ki, we have

Res
t
(i)
j =0

ηβ dVk = Res
t
(i)
j =0

ηβ dVk .

Proof. It is enough to consider j = ki. Then the left hand side can be calculated from Theo-
rem 5.2, and the right hand side is given explicitly. For example, for type A we obtain

Res
t
(i)
1 =0

ηβdVk = Res
t
(i)
1 =0

ηβdVk =

{
ηβ−αi

dVk−1i
if β − αi > β, and it is a positive root

0 otherwise.

For the other types similar expressions are valid. �

Proof of Theorem 6.12. The second statement follows from the explicit forms for ηβ .

Let Ω
g

k be the form obtained from Ωg

k by replacing the term ηβ ⊗ Fβ by ηβ ⊗ Fβ. Then

ResF lagp Ω
g

k = ResF lagp Ωg

k because of Lemma 6.13. This latter is 1⊗F p because (Ur[k])
∗ = AGk .

Therefore we have ResF lagp ηβ = 0, which is what we wanted to prove. �

7. Appendix: Representation-valued canonical differential form

For the convenience of the reader, we give formulas from [SV1], [SV2] for the V -valued
differential form ΩV which appears in the hypergeometric solutions to the KZ equations and
the Bethe ansatz method.

Consider the formula for the canonical differential form from Theorem 4.1, without putting
t0 = 0. Instead, put t0 = z and denote this form by Ωk(z), e.g. Ω(1,1)(z) = dt

t−z
∧ ds

s−t
. The

projection to g of this form will be denoted by Ωg

k(z).
The proofs in Section 6 can be modified to get PBW expansions of Ωg

k(z). The only change
in the PBW-coefficient results is that the * of the diagrams has to be decorated by z (instead
of 0). E.g. for k = (2), instead of ASym(2)(dt1/t1 ∧ d(t2 − t1)/(t2 − t1)) = 1/(t1t2)dt1 ∧ dt2 we
have ASym(2)(dt1/(t1 − z) ∧ d(t2 − t1)/(t2 − t1)) = 1/((t1 − z)(t2 − z))dt1 ∧ dt2. For a simple
Lie algebra g, let VΛ be a highest weight g-module with highest weight Λ ∈ h∗ and generating
vector vΛ. Recall that the map U(n–) → VΛ, x → x · vΛ is surjective.
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Definition 7.1. Let k(1), k(2), . . . , k(n) ∈ N
r, k =

∑
k(i). We extend the star multiplication

from Section 2.3 as follows:

∗ : (AG
k(1) ⊗VΛ1) ⊗ (AG

k(2) ⊗VΛ2) ⊗ . . .⊗ (AG
k(n) ⊗VΛn

) → AGk ⊗(VΛ1 ⊗ VΛ2 ⊗ . . .⊗ VΛn
)

by

(Ω1 ⊗ v1) ∗ (Ω2 ⊗ v2) ∗ . . . ∗ (Ωn ⊗ vn) = (ω1 ∗ . . . ∗ ωn)dVk ⊗ (v1 ⊗ v2 ⊗ . . .⊗ vn),

where Ωi = ωidVk(i).

Let V = VΛ1 ⊗ · · · ⊗ VΛn
. We define the V -valued differential form of degree k (c.f. [MuV,

(4)]) by

ΩV
k =

⊕

k(1)+...+k(n)=k

Ωg

k(1)(z1)vΛ1 ∗ . . . ∗ Ωg

k(n)(zn)vΛn
.

Example 7.2. For n = 2, r = 1 (i.e. g = sl2), we have

ΩV
(2) = Ωg

(2)(z1)vΛ1 ∗ Ωg

(0)(z2)vΛ2 + Ωg

(1)(z1)vΛ1 ∗ Ωg

(1)(z2)vΛ2 + Ωg

(0)(z1)vΛ1 ∗ Ωg

(2)(z2)vΛ2 =

ASym(2)

( dt1
t1 − z1

∧
d(t2 − t1)

t2 − t1

)
⊗ f 2vΛ1 ⊗ vΛ1+

ASym(2)

( dt1
t1 − z1

∧
dt2

t2 − z2

)
⊗ fvΛ1 ⊗ fvΛ2+

ASym(2)

( dt1
t1 − z2

∧
d(t2 − t1)

t2 − t1

)
⊗ vΛ1 ⊗ f 2vΛ2 .

This can be visualized by a diagram

ΩV
(2) = ∗

z1

∗
z2

��

@@

•
1

•
1

(f 2vΛ1 ⊗ vΛ2) + ASym
( ∗

z1

•
1

∗
z2

•
1

)
(fvΛ1 ⊗ fvΛ2) + ∗

z2

∗
z1

��

@@

•
1

•
1

(vΛ1 ⊗ f 2vΛ2),

where we also used the PBW expansions from Section 6.1.
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