LIE GROUPS: Notes and Exercises

- 1. Let $\{v_i\}$ be a collection of weight vectors such that ω_i is the weight of v_i with $\omega_i \neq \omega_j$ for $i \neq j$. Show that $\{v_i\}$ is linearly independent. *Hint*: Assume we have a linear combination $\sum_{i=1}^r \alpha_i v_i = 0$ with some $\alpha_i \neq 0$. After re-indexing and changing r, if necessary, we can assume all $\alpha_i \neq 0$ for $1 \leq i \leq r$. Obviously r = 1 is not possible. Show that if r > 1, we could find a new nontrivial linear combination $\sum \beta_i v_i = 0$ with fewer nonzero β_i , by using the same idea as in the proof of the Lemma discussed in 2 (but at least one nonzero β_i).
- 2. Remark : We had shown in class that if the \mathbf{sl}_3 module V has a basis of weight vectors, then so has any submodule $W \subset V$. The way we had set up the proof, we had already implicitly assumed that weight vectors belonging to different weights are linearly independent, as stated in 1.
- 3. Show that **g** solvable is equivalent to (X, [Y, Z]) = 0 for all $X, Y, Z \in \mathbf{g}$, where $(X, Y) = Tr(ad_X ad_Y)$ is the Killing form on **g**. *Hint*: Use Cartan's criterium (Lemma 2 in the lecture) saying that (X, Y) = 0 for all $X, Y \in \mathbf{g}$ implies **g** solvable. Also observe that $[\mathbf{g}, \mathbf{g}]$ solvable implies **g** solvable (why?).
- 4. Let $A \in \text{End}(V)$ be diagonalizable with eigenvalues λ_i such that $\lambda_i \neq \lambda_j$ for $i \neq j$. Let

$$Q_i(x) = \prod_{j \neq i} \frac{x - \lambda_j}{\lambda_i - \lambda_j}$$

Verify that $P_i = Q_i(A)$ is the projection onto the eigenspace for λ_i . Hint : Calculate $P_i(A)v$ for an eigenvector with eigenvalue λ_k .

5. (a) Let $\alpha \in \mathbf{R}^n$ and let $\beta = w(\alpha)$ for some $w \in Gl(n, \mathbf{R})$. Show that $s_\beta = w s_\alpha w^{-1}$, where

$$s_{\gamma}(v) = \frac{2(v,\gamma)}{(\gamma,\gamma)}\gamma$$

for $\gamma, v \in \mathbf{R}^n$ and (,) the usual dot product for \mathbf{R}^n .

(b) Let β be a positive root. Show that there exists a positive root β' and a simple root α such that $\beta = \beta' + \alpha$. *Hint*: It was shown in class that for $\beta > 0$ there exists a simple root α such that $(\beta, \alpha) > 0$. (c) Let β be a positive root. Show that there exists a *simple* root α and $w \in W$ such that $\beta = w(\alpha)$. *Hint*: Proceed by induction on the length $\ell(\beta)$, using part (b).

(d) Show that for any root β there exists $w \in W$ and a simple root α such that $\beta = w(\alpha)$.

(d) Recall that W was generated by the reflections s_{α} , α a root. Show that W is already generated by the simple reflections $s_i = s_{\alpha_i}$, where $\Delta = \{\alpha_i\}$.

6. Let ε_i , $1 \le i \le 8$ be a basis for \mathbb{R}^8 . Let $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$, $1 \le i < 8$.

(a) Find $\alpha_8 \in \mathbf{R}^8$ such that the set of vectors $\Delta = \{\alpha_i, 1 \leq i \leq 8\}$ generates the Coxeter graph E_8 (this is the graph A_7 with an additional vertex connected with α_5 by a single edge).

(b) Calculate the orbit Φ of Δ under the group W generated by the reflections s_i defined by

$$s_i(\mathbf{x}) = \mathbf{x} - (\mathbf{x}, \alpha_i)\alpha_i, \quad \mathbf{x} \in \mathbf{R}^8.$$

 $(Answer: \Phi = \{\pm \varepsilon_i \pm \varepsilon_j, i \neq j\} \cup \{\alpha = \sum_{i=1}^8 \pm \frac{1}{2}\varepsilon_i\}$, where we have an odd number of minus signs for the summands). Problem 5 can be useful for showing that we do indeed get all the indicated vectors in the orbit.

(c) Determine positive and negative roots with respect to Δ .

(d) Calculate the dimension of the Lie algebra corresponding to the graph E_8 (Don't forget the Cartan subalgebra!).