Assignment 2

1. (b) The kernel of the map

$$
\Phi:(t, a) \in \mathbf{R} \times S U(n) \mapsto e^{i t} a \in U(n)
$$

is equal to $\left\{\left(2 k \pi / n, e^{-2 k \pi i / n} I\right), k \in \mathbf{Z}\right\}$.
2. (a) Unfortunately, the problem was set up incorrectly in the book. We have to choose the partition

$$
\frac{s_{0}}{2}, \frac{s_{1}}{2}, \ldots, \frac{s_{M}}{2}=\frac{1}{2}, \frac{1}{2}+\frac{t_{1}}{2}, \ldots, \frac{1}{2}+\frac{t_{m}}{2}=1
$$

The corresponding path $C(t)$ is then given by $C(t)=B(2 t)$ for $t \leq \frac{1}{2}$, and $C(t)=A(2 t-1) B$ for $t \geq \frac{1}{2}$. It then follows that $C\left(\frac{1}{2}+\frac{t_{j}}{2}\right) C\left(\frac{1}{2}+\frac{t_{j-1}}{2}\right)^{-1}=A\left(t_{j}\right) A\left(t_{j-1}\right)^{-1}$, from which the claim is easy to prove.
3. In part (a), you need to point out that the Lie algebra homomorphism from $\mathbf{s l}_{n}$ to \mathbf{g} extends to a homomorphism of the complexifications as $\mathbf{g} \subset M_{m}(\mathbf{C})$ for some $m \in \mathbf{N}$. This defines a homomorphism from $S L(n, \mathbf{C})$ into $G l(m, \mathbf{C})$ as $S L(n, \mathbf{C})$ is simply connected. We get the desired homomorphism by restricting to $S L(n, \mathbf{R})$.
For (b), let $\hat{\Phi}: \hat{S} l(n, \mathbf{R}) \rightarrow G l(m, \mathbf{C})$ be a representation. This induces a Lie algebra map $\psi: \mathbf{s l}_{n} \rightarrow$ $M_{m}(\mathbf{C})$. By part (a), this map induces a homomorphism $\Phi: S l(n, \mathbf{R}) \rightarrow G l(m, \mathbf{C}) . \Phi$ can be constructed along paths in $S l(n, \mathbf{C})$, as done in class. For Φ to be well-defined, we have to obtain $\binom{n+d-1}{d-1}$ the identity $I \subset G l(m, \mathbf{C})$ for any closed path from $I \subset S l(n, \mathbf{R})$ to itself, i.e. it has to factor over $\pi_{1}(S l(n, \mathbf{R}))$.

Assignment 2

1. As sent out in my email, there was a misprint. The correct dimension is $\binom{n+d-1}{n-1}$.
2. Let f_{i} be the partial derivative with respect to the i-th coordinate. If $g \in S O(3)$, we have $g^{-1}=g^{t}$. So if $w=g^{-1} x, w, x \in \mathbf{C}^{3}$, we have for the j-th coordinate of w

$$
w_{j}=\sum_{i=1}^{3} g_{i j} x_{i} .
$$

Let f_{j} be the partial derivative of f with respect to its j-th coordinate. Then it follows from the chain rule that

$$
\frac{\partial(g \cdot f)}{\partial x_{i}}(x)=\sum_{j=1}^{3} f_{j}\left(g^{-1} x\right) g_{i j}
$$

Applying this again to $\frac{\partial(g . f)}{\partial x_{i}}$, we obtain

$$
\left.\frac{\partial^{2}(g \cdot f)}{\partial x_{i}^{2}}\right)=\sum_{j, l=1}^{3} f_{l j}\left(g^{-1} x\right) g_{i j} g_{i l} .
$$

It follows that

$$
\Delta(g . f)(x)=\sum_{j, l=1}^{3}\left(\sum_{i=1}^{3} g_{i j} g_{i l}\right) f_{l j}\left(g^{-1} x\right)=\sum_{j=1}^{3} f_{j j}\left(g^{-1} x\right)=g \cdot \Delta f(x)
$$

where we used $\sum_{i=1}^{3} g_{i j} g_{i l}=\delta_{j l}$ for $g \in S O(3)$.
4. (a) We know that we have a surjective map $S U(2) \rightarrow S O(3)$ which implies an isomorphism of Lie algebras. Moreover, we have seen that the Lie algebras of $S U(2)$ and $S l(2, \mathbf{R})$ have isomorphic complexifications. Hence it suffices to show that the kernel of Δ in $P_{d}\left(\mathbf{C}^{3}\right)$ is an irreducible $\mathbf{s l}_{2}^{\mathbf{C}}$ module, where the action on \mathbf{C}^{3} is given via its irreducible 3-dimensional representation.

Step 1: Let $H \in \mathbf{s l}_{2}$ be, as usual, the diagonal matrix with diagonal entries ± 1. Then $\exp (i H)$ acts via eigenvalues $e^{ \pm 2 i}$ and 1 in the 3-dimensional representation of $S U(2)$. It follows that

$$
\exp (i H) \cdot Y_{3}^{d}=e^{2 d i} Y_{3}^{d}
$$

where $Y_{3}(v)=v_{3}$ for $v \in \mathbf{C}^{3}$. Hence H has an eigenvalue $2 d$ in $P_{d}\left(\mathbf{C}^{3}\right)$. (Warning: Observe that the action of $S U(2)$ on \mathbf{C}^{3} uses a different basis than the action of $S O(3)$, i.e. the image of $\exp (i H)$ in $S O(3)$ is NOT a diagonal matrix. It follows from one of our previous homeworks that orthogonal matrices usually can not be diagonalized over \mathbf{R}. Hence this does not contradict contradict the fact that $\Delta X_{3}^{d} \neq 0$ for $d>1$.).
Step 2: We now prove that this eigenvector of H in $P_{d}\left(\mathbf{C}^{3}\right)$ with eigenvalue $2 d$ must be in the kernel of Δ. For this, it suffices to prove by induction on d that the eigenvalues of H on $P_{d}\left(\mathbf{C}^{3}\right)$ are given by $\pm 2 d, \pm(2 d-2), \ldots$. This is trivially true for $d=0$ and $d=1$. For the induction step $d-2$ to d, it follows from Exercise 3 and the induction assumption for $P_{d-2}\left(\mathbf{C}^{3}\right)$ that the only possible eigenvalues greater than $2 d-2$ must be in the kernel of Δ. In particular, the eigenvalue $2 d$ must occur in the kernel. But then the kernel must have at least dimension $2 d+1$, by our classification of irreducible representations of $\mathbf{s l}_{2}$. But by Exercise 3, the kernel has dimension $2 d+1$, which forces it to be irreducible. Hence we get the following decomposition of $P_{d}\left(\mathbf{C}^{3}\right)$ into irreducible $S O(3)$-modules:

$$
P_{d}\left(\mathbf{C}^{3}\right) \cong V_{2 d} \oplus V_{2 d-4} \oplus V_{2 d-8} \cdots
$$

E.g. $P_{4}\left(\mathbf{C}^{3}\right) \cong V_{8} \oplus V_{4} \oplus V_{0}$, where $\operatorname{dim} V_{m}=m+1$.

