
LIE GROUPS: Homework Solutions

Assignment 2

1. (b) The kernel of the map
Φ : (t, a) ∈ R× SU(n) 7→ eita ∈ U(n)

is equal to {(2kπ/n, e−2kπi/nI), k ∈ Z}.

2. (a) Unfortunately, the problem was set up incorrectly in the book. We have to choose the partition
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The corresponding path C(t) is then given by C(t) = B(2t) for t ≤ 1
2 , and C(t) = A(2t− 1)B for t ≥ 1

2 .

It then follows that C( 1
2 +

tj
2 )C( 1
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2 )−1 = A(tj)A(tj−1)−1, from which the claim is easy to prove.

3. In part (a), you need to point out that the Lie algebra homomorphism from sln to g extends to a
homomorphism of the complexifications as g ⊂Mm(C) for some m ∈ N. This defines a homomorphism
from SL(n,C) into Gl(m,C) as SL(n,C) is simply connected. We get the desired homomorphism by
restricting to SL(n,R).

For (b), let Φ̂ : Ŝl(n,R) → Gl(m,C) be a representation. This induces a Lie algebra map ψ : sln →
Mm(C). By part (a), this map induces a homomorphism Φ : Sl(n,R)→ Gl(m,C). Φ can be constructed

along paths in Sl(n,C), as done in class. For Φ to be well-defined, we have to obtain

(
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)
the identity I ⊂ Gl(m,C) for any closed path from I ⊂ Sl(n,R) to itself, i.e. it has to factor over
π1(Sl(n,R)).

Assignment 2

1. As sent out in my email, there was a misprint. The correct dimension is

(
n+ d− 1
n− 1

)
.

2. Let fi be the partial derivative with respect to the i-th coordinate. If g ∈ SO(3), we have g−1 = gt. So
if w = g−1x, w, x ∈ C3, we have for the j-th coordinate of w

wj =

3∑
i=1

gijxi.

Let fj be the partial derivative of f with respect to its j-th coordinate. Then it follows from the chain
rule that
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Applying this again to ∂(g.f)
∂xi

, we obtain
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It follows that

∆(g.f)(x) =
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gijgil)flj(g
−1x) =
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fjj(g
−1x) = g.∆f(x),
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where we used
∑3
i=1 gijgil = δjl for g ∈ SO(3).

4. (a) We know that we have a surjective map SU(2) → SO(3) which implies an isomorphism of Lie
algebras. Moreover, we have seen that the Lie algebras of SU(2) and Sl(2,R) have isomorphic com-
plexifications. Hence it suffices to show that the kernel of ∆ in Pd(C

3) is an irreducible slC2 module,
where the action on C3 is given via its irreducible 3-dimensional representation.

Step 1: Let H ∈ sl2 be, as usual, the diagonal matrix with diagonal entries ±1. Then exp(iH) acts via
eigenvalues e±2i and 1 in the 3-dimensional representation of SU(2). It follows that

exp(iH).Y d3 = e2diY d3 ,

where Y3(v) = v3 for v ∈ C3. Hence H has an eigenvalue 2d in Pd(C
3). (Warning: Observe that

the action of SU(2) on C3 uses a different basis than the action of SO(3), i.e. the image of exp(iH)
in SO(3) is NOT a diagonal matrix. It follows from one of our previous homeworks that orthogonal
matrices usually can not be diagonalized over R. Hence this does not contradict contradict the fact
that ∆Xd

3 6= 0 for d > 1.).

Step 2: We now prove that this eigenvector of H in Pd(C
3) with eigenvalue 2d must be in the kernel

of ∆. For this, it suffices to prove by induction on d that the eigenvalues of H on Pd(C
3) are given by

±2d,±(2d−2), .... This is trivially true for d = 0 and d = 1. For the induction step d−2 to d, it follows
from Exercise 3 and the induction assumption for Pd−2(C3) that the only possible eigenvalues greater
than 2d− 2 must be in the kernel of ∆. In particular, the eigenvalue 2d must occur in the kernel. But
then the kernel must have at least dimension 2d+ 1, by our classification of irreducible representations
of sl2. But by Exercise 3, the kernel has dimension 2d+ 1, which forces it to be irreducible. Hence we
get the following decomposition of Pd(C

3) into irreducible SO(3)-modules:

Pd(C
3) ∼= V2d ⊕ V2d−4 ⊕ V2d−8 ....

E.g. P4(C3) ∼= V8 ⊕ V4 ⊕ V0, where dim Vm = m+ 1.
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