LIE GROUPS: Homework Solutions

Assignment 2

. (b) The kernel of the map _
®: (t,a) € R x SU(n) — e'a € U(n)

is equal to {(2k7/n,e=2+™/"1), k € Z}.
. (a) Unfortunately, the problem was set up incorrectly in the book. We have to choose the partition
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The corresponding path C(t) is then given by C(t) = B(2t) for t < 1, and C(t) = A(2t —1)B for t > 1.

It then follows that C(3 + %)C(% + ”7’1)_1 = A(t;)A(tj—1)~', from which the claim is easy to prove.

. In part (a), you need to point out that the Lie algebra homomorphism from sl, to g extends to a
homomorphism of the complexifications as g C M,,(C) for some m € N. This defines a homomorphism
from SL(n,C) into GI(m, C) as SL(n,C) is simply connected. We get the desired homomorphism by
restricting to SL(n,R).
For (b), let ® : Si(n,R) — Gl(m, C) be a representation. This induces a Lie algebra map 1 : sl,, —
M,,(C). By part (a), this map induces a homomorphism & : Si(n,R) — Gl(m, C). ® can be constructed
n+d—1
)
the identity I C Gl(m,C) for any closed path from I C Si(n,R) to itself, i.e. it has to factor over
m1(Sl(n,R)).

along paths in Sl(n,C), as done in class. For ® to be well-defined, we have to obtain <
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n+d-—1
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. As sent out in my email, there was a misprint. The correct dimension is (

1

. Let f; be the partial derivative with respect to the i-th coordinate. If g € SO(3), we have g~! = ¢g*. So

if w= g 'z, w,x € C3, we have for the j-th coordinate of w

3
wj = E gijl’i.
=1

Let f; be the partial derivative of f with respect to its j-th coordinate. Then it follows from the chain

rule that
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Applying this again to 8(8“(;' f ) we obtain
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It follows that
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where we used 2?21 gij95 = 05 for g € SO(3).

. (a) We know that we have a surjective map SU(2) — SO(3) which implies an isomorphism of Lie
algebras. Moreover, we have seen that the Lie algebras of SU(2) and SI(2,R) have isomorphic com-
plexifications. Hence it suffices to show that the kernel of A in P;(C?) is an irreducible s1S module,
where the action on C? is given via its irreducible 3-dimensional representation.

Step 1: Let H € sly be, as usual, the diagonal matrix with diagonal entries +1. Then exp(iH) acts via
eigenvalues e¥2" and 1 in the 3-dimensional representation of SU(2). It follows that

exp(iH). Y = 24yg,

where Y3(v) = vz for v € C3. Hence H has an eigenvalue 2d in Py(C?). (Warning: Observe that
the action of SU(2) on C? uses a different basis than the action of SO(3), i.e. the image of exp(iH)
in SO(3) is NOT a diagonal matrix. It follows from one of our previous homeworks that orthogonal

matrices usually can not be diagonalized over R. Hence this does not contradict contradict the fact
that AXY # 0 for d > 1.).

Step 2: We now prove that this eigenvector of H in P;(C?) with eigenvalue 2d must be in the kernel
of A. For this, it suffices to prove by induction on d that the eigenvalues of H on P;(C?) are given by
+2d,4+(2d —2), .... This is trivially true for d = 0 and d = 1. For the induction step d — 2 to d, it follows
from Exercise 3 and the induction assumption for P;_o(C?) that the only possible eigenvalues greater
than 2d — 2 must be in the kernel of A. In particular, the eigenvalue 2d must occur in the kernel. But
then the kernel must have at least dimension 2d 4 1, by our classification of irreducible representations
of sly. But by Exercise 3, the kernel has dimension 2d + 1, which forces it to be irreducible. Hence we
get the following decomposition of P;(C3) into irreducible SO(3)-modules:

Py(C?) = Voy @ Vog_a ® Vaa_sg ...

E.g. Py(C?) = V3@V, @ Vy, where dim V,,, = m + 1.



