1. (a) Let $X=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. Show that $\exp (t X)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$.
(b) Show that any $g \in S O(2)$ can be written as $\exp (t X)$ for some $t \in \mathbf{R}$. This implies that the map exp from the Lie algebra $\mathbf{~ s o}_{2}$ to the Lie group $S O(2)$ is surjective.
(c) Show that $O(2)$ has the same Lie algebra as $S O(2)$. (Hint: consider the map $t \in \mathbf{R} \mapsto \operatorname{det}(\exp (t X))$ for any X in the Lie algebra of $O(2)$.
(d) Find a Lie group H and two homomorphisms $\Phi_{i}: O(2) \rightarrow H, i=1,2$ which have the same Lie algebra map but are not the same.
2. (Orthogonal diagonalization) It can be easily seen that the eigenvalues of $\exp (t X)$ in the previous problem are equal to $e^{ \pm i t}$. So in general we can not diagonalize orthogonal matrices over the real numbers. We will show here that we can still conjugate any orthogonal matrix to a matrix with a diagonal block with eigenvalues ± 1 and 2×2 diagonal blocks as in Problem 1 .
(a) Let λ be an eigenvalue of the orthogonal matrix $g \in O(n)$. Show that $|\lambda|=1$.
(b) Let v be an eigenvector of g with eigenvalue $\lambda \notin \mathbf{R}$. Then we can write $v=v_{1}+i v_{2}$, with $v_{1}, v_{2} \in \mathbf{R}^{n}$. Show that

$$
(v, v)=0 \quad \text { and } \quad\left(v_{1}, v_{1}\right)=\left(v_{2}, v_{2}\right)
$$

(c) Assume $\lambda=e^{i t}, \lambda \notin \mathbf{R}$. Show that the action of g on the span of v_{1} and v_{2} is given by the matrix $\exp (t X)$ as in the first problem.
(d) Show that there exists an orthonormal basis $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ of \mathbf{R}^{n} consisting of eigenvectors of g with eigenvalues ± 1 or of pairs of vectors v_{1} and v_{2} as in (c) belonging to the eigenvalues $e^{ \pm i t}$.
3. Show that $S O(n)$ is contractible for all $n \in \mathbf{N}$. (Hint : Use the last problem to show that for given $g \in S O(n)$ there exists an orthogonal matrix u such that $g=u d u^{-1}$, where d only consists of 2×2 diagonal blocks as in Problem 1 or diagonal entries equal to ± 1).
4. Show that the Lie algebra of $U(n)$ is given by all matrices X such that $X^{*}=-X$. What is the Lie algebra of $S U(n)$? What are the dimensions of these Lie algebras?
5. Do Problem 10 and 12 on page 60 of the course book.

