1. (Optional) Let $\mathcal{P}_{d}\left(\mathbf{C}^{n}\right)$ be the space of all homogeneous polynomials of degree d in n variables. Show that it has dimension $\binom{n+d-1}{d-1}$. Hint: Show that

$$
\mathcal{P}_{d}\left(\mathbf{C}^{n}\right)=\mathcal{P}_{d}\left(\mathbf{C}^{n-1}\right) \oplus z_{n} \mathcal{P}_{d-1}\left(\mathbf{C}^{n}\right)
$$

and use induction on n and d.
2. (Optional) Let $\Delta=\Delta_{3}$ be the Laplacian in three variables, i.e.

$$
\Delta f=\frac{\partial^{2} f}{\partial z_{1}^{2}}+\frac{\partial^{2} f}{\partial z_{2}^{2}}+\frac{\partial^{2} f}{\partial z_{3}^{2}}
$$

Show that Δ commutes with the $S O(3)$ action on $\mathcal{P}_{d}\left(\mathbf{C}^{3}\right)$, i.e. show that

$$
\Delta(g . f)=g \cdot(\Delta f) \quad \text { for all } g \in S O(3)
$$

Observe that for $g \in S O(3)$ we have $g^{-1}=g^{t}$, where g^{t} is the transposed matrix.
3. (a) Show that $\Delta: \mathcal{P}_{d+2}\left(\mathbf{C}^{3}\right) \rightarrow \mathcal{P}_{d}\left(\mathbf{C}^{3}\right)$ is surjective for all $d \in \mathbf{N}$. Hint: You may show that $z_{1}^{e_{1}} z_{2}^{e_{2}} z_{3}^{e_{3}}$, $e_{1}+e_{2}+e_{3}=d$, is in the image of Δ by induction on alphabetical order of $\left(e_{1}, e_{2}, e_{3}\right)$.
(b) Prove that we have an isomorphism as $S O(3)$ modules

$$
\mathcal{P}_{d+2}\left(\mathbf{C}^{3}\right) \cong \operatorname{ker} \Delta \oplus \mathcal{P}_{d}\left(\mathbf{C}^{3}\right)
$$

You may use that for any $S O(3)$ subrepresentation $W \subset V$ there exists an $S O(3)$ representation $W^{\prime} \subset V$ such that $V \cong W \oplus W^{\prime}$ as $S O(3)$ representations.
4. (a) Prove that ker Δ as in the last problem is an irreducible $S O(3)$ representation. (Hint: Prove that it is an irreducible $s l_{2}$ representation, with the action of $s l_{2}$ on \mathbf{C}^{3} given by its unique irrreducible 3-dimensional representation).
(b) Determine the decomposition of $\mathcal{P}_{d}\left(\mathbf{C}^{3}\right)$ into a direct sum of irreducible $S O(3)$ representations.

