
ON BRAIDED TENSOR CATEGORIES OF TYPE BCD

IMRE TUBA AND HANS WENZL

Abstract. We give a full classi�cation of all braided semisimple tensor categories whose Grothendieck
semiring is the one of Rep

�
O(1)

�
(formally), Rep

�
O(N)

�
, Rep

�
Sp(N)

�
or of one of its associ-

ated fusion categories. If the braiding is not symmetric, they are completely determined by the

eigenvalues of a certain braiding morphism, and we determine precisely which values can occur in
the various cases. If the category allows a symmetric braiding, it is essentially determined by the
dimension of the object corresponding to the vector representation.

1. Introduction

Braided tensor categories have played a prominent role in various areas in recent years, such as

conformal �eld theory, string theory, operator algebras and low-dimensional topology. Important

examples have been constructed in a mathematically rigorous way using the representation theory

of quantum groups, loop groups and Kac-Moody algebras. This naturally leads to the question of

classifying such categories. We solve this question in this paper for braided categories associated

to the representation categories of orthogonal and symplectic groups, and various generalizations

of them.

It has been shown in [23] that any rigid semisimple tensor category whose Grothendieck semiring

is equivalent to the one of Rep
�
SU(N)

�
must necessarily be equivalent to the category Rep(Uq slN ),

with q not a root of unity, up to N possible choices of a twist; here Uq slN is the Drinfeld-Jimbo q-
deformation of the universal enveloping algebra U slN . The present paper proves a similar statement

for a braided tensor category C whose Grothendieck semiring is isomorphic to the one of a full

orthogonal or a symplectic group. It will be convenient to formulate the result in a slightly di�erent

way in this case: Let X be the object in C corresponding to the vector representation of an

orthogonal or symplectic group. It is well-known that its second tensor power decomposes into

the direct sum of three irreducible objects. Hence the braiding morphism cX;X has at most three

di�erent eigenvalues. It is easy to see that one can also de�ne braiding structures for C by replacing
cX;X by its inverse, its negative or its negative inverse. If cX;X has three distinct eigenvalues, C is
completely classi�ed as a monoidal category by these eigenvalues. Another set of eigenvalues belongs

to a category equivalent to C if and only if it can be obtained from the ones of cX;X by changing

the braiding structure as just mentioned before. Moreover, we also show that the eigenvalues have

to be of the form q;�q�1 and r�1, or of the form iq;�iq�1 and ir�1, with q not a root of unity

and with r being � a power of q, where the exponent depends on the particular orthogonal or

symplectic group. Here the two possible forms of the eigenvalues correspond to the two possible

twists (in the language of [23]) for categories of this type. If cX;X has only two distinct eigenvalues,

they are necessarily of the form f�1g or f�ig, and the category is completely determined by this

and the quantity d(X), which, up to a sign, is equal to the categorical dimension of the object

X. In particular, we obtain two distinct families of categories whose Grothendieck semirings are

isomorphic to the one of an odd-dimensional orthogonal group, while there is only one such family
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if the Grothendieck semiring is the one of an even-dimensional orthogonal, a symplectic or a special

unitary group (see Cor 9.5 for a more precise statement).

It is easy to de�ne a Grothendieck semiring which could be considered as the one of a formal

group O(1), and one can de�ne categories with such a Grothendieck semiring. The methods in our

paper apply similarly to classify such categories, and we obtain essentially the same classi�cation

as in the last paragraph. The only di�erence is that now r can not be � a power of q, and q can
not be a root of unity. Finally, our methods also apply to fusion categories whose Grothendieck

semirings are quotients of the ones of an orthogonal or symplectic group. Here q has to be a root

of unity and r is a power of q, where the order of the root of unity and the exponent depend on the

given Grothendieck semiring. We also remark that in our context the braiding condition is strong

enough that we never need to consider the full Grothendieck semiring; it suÆces to know how to

tensor with the vector representation.

The method of proof in this paper is similar to the one in [23]. We �rst give an intrinsic description

of the endomorphisms of tensor powers of an object X corresponding to the vector representation

of an orthogonal or symplectic group in terms of certain representations of braid groups. From this

one can reconstruct the whole category, similarly as it was done in [23]. In this paper, we do this

following an alternate approach due to Alain Brugui�eres. Besides that, the main di�erences to the

paper [23] are that we have to assume a priori that these categories are braided (which may not be

necessary) and that the braid representations as well as the combinatorics involved here are more

complicated than the ones in [23].

Here are the contents of this paper in more detail. We �rst recall basic de�nitions of braided

rigid tensor categories. We then present reconstruction techniques of [23] and from Brugui�eres'

unpublished lecture notes [9]; in particular, Section 4 closely follows these notes. In Section 6,

we derive relations for the braid representations occurring in End
�
X
n

�
. We then study the

corresponding abstract algebras given by these relations, which depend on two parameters. The

main diÆculty then is to show that these algebras map surjectively onto End
�
X
n

�
. Here the

crucial idea is, as in [23], the abstract characterization of the trace functional on End
�
X
n

�
coming

from the dimension function as a so-called Markov trace. This shows that the image has to contain

at least the quotient of this algebra modulo the annihilator ideal of the Markov trace. Rigidity is

then used to prove that the image actually has to be equal to the quotient. This result together

with the reconstruction results in Sections 3 and 4 is then used to prove the classi�cation result in

the last section.

Acknowledgments: Hans Wenzl would like to thank David Kazhdan for useful discussions. Imre

Tuba would like to thank Ken Goodearl for the same. Both authors would like to thank Alain

Brugui�eres for allowing them to use his unpublished notes [9] in this paper and the referee for the

thorough reading and useful remarks which improved the presentation.

2. Definitions and notation

We recall some basic de�nitions and set up notations. For more details, we refer to [27], [13] for

general categorical notions, and to [18], [37] for tensor categories.

De�nition 2.1. A monoidal category C is a category C with a functor 
 : C � C ! C called the
tensor product, a natural isomorphism a between 
 Æ (
� 1C) and 
 Æ (1C �
) called the asso-

ciativity constraint, satisfying the pentagon axiom, a unit object 11 2 C and natural isomorphisms
lX : 11 
 X ! X and rX : X 
 11 ! X called the left and right unit constraints satisfying the
triangle axiom.

The pentagon axiom just states that di�erent ways of rebracketing the tensor product of four

objects will lead to the same results, see e.g. [18] for a precise statement. The triangle axiom just

states that the left and right constraints are compatible with associativity, i.e. that (1X
lY )ÆaX;11;Y
and rX
1Y describe the same morphism from (X
11)
Y to X
Y ; here aX;11;Y is the associativity
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morphism (X 
 11)
 Y ! X 
 (11
 Y ). A monoidal functor is a triple (F; �; �), where F : C ! C0
is a functor, � 2 HomC0

�
F (11); 110

�
is an isomorphism and � is a natural isomorphism

�X;Y : F (X)
0 F (Y )! F (X 
 Y ):
In order to respect the monoidal structure, � and � and required to satisfy certain obvious com-

mutative diagrams. See e.g. [18], Ch. XI.4 for the full de�nition.

A monoidal category C is called strict if a, l, and r are the identity. That is (X 
 Y ) 
 Z =

X 
 (Y 
 Z) and 11 
 X = X 
 11 = X for any X 2 C. A theorem of Mac Lane's asserts that

any monoidal category is equivalent to a strict one (see e.g. [18], p. 288). Since our interest is in

characterizing tensor categories up to equivalence, we may and will assume our categories to be

strict monoidal for the rest of the paper.

A strict monoidal category C is called right rigid if every object X 2 C has a right dual object

X� 2 C and a pair of morphisms iX : 11! X 
X� and dX : X� 
X ! 11 such that the maps

X = 11 
X iX
1X // X 
X� 
X 1X 
dX // X 
 11 = X

X� = X� 
 11
1X 
iX // X� 
X 
X�

dX
1X // 11
X� = X�

are 1X and 1X� .

With this notion of duality, we also have the usual isomorphism between Hom(V;W 
X�) and

Hom(V 
X;W ) for any objects V;W in C. One checks easily that these isomorphisms are given

by the maps a ! (1W 
dX) Æ (a 
 1X) and b ! (b 
 1X�) Æ (1V 
iX) for a 2 Hom(V;W 
 X�)

and b 2 Hom(V 
X;W ). In particular, one obtains as a special case that dimHom(11;X 
X�) =

dimEnd(X) = 1 if X is a simple object. Left rigidity is de�ned similarly as right rigidity with the

left dual �X of X on the opposite side of X.

A tensor category is an abelian category with the additional structure of a monoidal category

such that the tensor product and the direct sum are distributive.

De�nition 2.2. A C -category C is an additive category in which the morphisms between any two
objects form a �nite dimensional C -vector space and composition of morphisms is bilinear relative
to the vector space structure. A tensor category which is also a C -category will be called a C -tensor

category. In this case, we will require that the categorical tensor be C -bilinear.

A strict monoidal category C is called braided if there exists a natural isomorphism cX;Y :

X 
 Y ! Y 
X called the braiding such that:

X 
 Y 
 Z cX;Y
Z
//

cX;Y
1Z ((PPPPPPPPPPPP Y 
 Z 
X

Y 
X 
 Z
1Y 
cX;Z

66nnnnnnnnnnnn

and

X 
 Y 
 Z cX
Y;Z
//

1X 
cY;Z ((PPPPPPPPPPPP Z 
X 
 Y

X 
 Z 
 Y
cX;Z
1Y

66nnnnnnnnnnnn

are commuting diagrams. Naturality means that for any morphisms f : X ! X 0 and g : Y ! Y 0

(g 
 f) Æ cX;Y = cX0;Y 0 Æ (f 
 g):
Let C and C0 be strict braided monoidal categories. A monoidal functor (F; �; �) is called braided

if it respects the braiding axioms in the sense that

F (cX;Y )�X;Y = �Y;X c
0
F (X);F (Y ):
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A braiding is a generalization of the 
ip, which is the natural isomorphism PA;B : A
B ! B
A
on the category of modules over the commutative ring R. Note that the 
ip is involutive, that is

PB;A Æ PA;B = 1A
B. This is not required for a braiding, but the property is generalized in the

notion of the twist, which is a natural isomorphism �V : V ! V in a braided monoidal category C
such that

�X
Y = cY;X Æ cX;Y Æ (�X 
 �Y )
for all X; Y 2 C. � is required to be functorial in the sense that for any morphism f : X ! Y ,
�Y Æ f = f Æ �X . A ribbon category C is a rigid braided monoidal category with a compatible twist,

meaning: �
�X 
 1X�

� Æ iX =
�
1X 
�X�

� Æ iX :
In a ribbon category, right rigidity also implies left rigidity and vice versa. In fact, given the right

duality morphisms i and d,

(2.1) i0X = (1X� 
�X) Æ cX;X� Æ iX and d0X = dX Æ cX;X� Æ (�X 
 1X�)

yield left duality morphisms which make the category left rigid. With this left duality, the left and

right duals of objects and morphisms coincide.

We will also need the morphism

(2.2) ~eX = i0X Æ dX = iX Æ d0X 2 End
�
X 
X�

�
:

These allow us to de�ne the categorical trace of an endomorphism f 2 End(X) as

TrX(f) = d0X Æ (f 
 1X�) Æ iX = dX Æ cX;X� Æ � (�X Æ f)
 1X�

� Æ iX 2 End(11);
which is easily seen to be the same as

TrX(f) = dX Æ (1X� 
f) Æ i0X = dX Æ
�
1X� 
 (�X Æ f)

� Æ cX;X� Æ iX 2 End(11);
using naturality of the braiding and the twist. Just like the usual trace of linear operators,

TrY (fg) = TrX(gf) for any f 2 Hom(X;Y ) and g 2 Hom(Y;X), and TrX
Y (f
g) = TrX(f)TrY (g)
for any f 2 End(X) and g 2 End(Y ) (see [18] or [37] for a proof). If f 2 End(11), then Tr11(f) = f .
The categorical dimension of an object X is dimX = TrX

�
1X

�
. It is clear from the properties of

the trace that dimX � Y = dimX + dimY and dimX 
 Y = (dimX)(dimY ).
The normalized trace trX on End(X) is de�ned by trX(f) = TrX(f)=(dimX). In the following

we will often just write Tr, tr for the trace or normalized trace when it is clear for which object it

is de�ned.

We call a morphism a monomorphism or monic if its kernel is 0 and an epimorphism or epic

if its cokernel is 0. As is customary, we won't get hung up on abusing the language slightly and

calling object A a \subobject" of B if there exists a monomorphism A ! B, and referring to a

monomorphism in the kernel of f as \a kernel."

3. Categorical reconstruction

In the following we will say that a C -category C is semisimple if every endomorphism ring in C
is a semisimple C -algebra. An object Y in C is called simple if End(X) = C . This is a somewhat

weaker de�nition of semisimplicity as is usually common, as can be seen at the following example.

De�nition 3.1. A monoidal algebra A is a semisimple monoidal category whose objects are the
natural numbers with ordinary addition as the tensor product.

To get an example of a monoidal algebra, let C be a semisimple monoidal category, and let X be

an object in C. Then the subcategory A whose objects are tensor powers of X (with the obvious

labeling X
n  ! n 2 N ) is a monoidal algebra; here we de�ne X
0 = 11, the trivial object. It

is well-known that if one takes for X the vector representation of a classical Lie group, the only

simple objects in the corresponding monoidal algebra would be 11 and X itself.
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However, it is well-known that the representation category of a classical Lie group is essentially

determined if one understands the decomposition of tensor powers of its vector representation. This

statement will be made precise and proved in this and the following section for general monoidal

semisimple C -tensor categories.

Let C be a monoidal category. In order to get direct sums (i.e. an additive category), we �rst

de�ne a larger category AddC whose objects are �nite sequences of objects from C including the

empty sequence. The morphisms from
�
X1;X2; : : : ;Xn

�
to
�
Y1; Y2; : : : ; Ym

�
are de�ned by

HomAdd C

��
X1;X2; : : : ;Xn

�
;
�
Y1; Y2; : : : ; Ym

��
=
M
i;j

HomC

�
Xi; Yj

�
where � on the right-hand side stands for the ordinary direct sum of vector spaces. If either of the

two sequences is empty, the Hom space will be the 0-vector space. We will compose morphisms,

when possible, by ordinary matrix multiplication. We claim that this is an additive category with

concatenation of sequences as the direct sum operation. The required direct sum system�
X1;X2; : : : ;Xn

� �1 // �X1;X2; : : : ;Xn; Y1; Y2; : : : ; Ym
�

�1
oo

�2
//
�
Y1; Y2; : : : ; Ym

��2oo

is constructed the obvious way from identities in End
�
Xi

�
and End

�
Yj
�
and zeros in the other

components.

We still need to get enough subobjects. This will be accomplished by a process called the

idempotent completion (see [13], p. 61), which goes as follows. Starting with any category C, let
the objects of Idem C be the pairs (X; p) where X 2 Ob(C) and p 2 End(X) with p2 = p, that is p
is an idempotent. The morphisms in IdemC are de�ned as follows

HomIdem C

�
(X; p); (Y; q)

�
=
�
f 2 HomAdd C(X;Y ) j f = qf = fp

	
:

We will say the idempotent p splits if it can be factored as p = ab with a monic and b epic. In this

case, it it easy to see ba = 1 (identity of the source of a) by canceling a on the left and b on the

right from ab = p = p2 = abab. It is an easy exercise to show that idempotents split in IdemC.
Before we prove that these constructions indeed produce an abelian category, we will need a

lemma about the existence of quasi-inverses.

Lemma 3.2. Let C be a semisimple additive C -category and f 2 Hom(X;Y ) for some objects
X;Y . Then there exists g 2 Hom(Y;X) with f = fgf and with P = fg and Q = gf idempotents
in End(Y ) and End(X) respectively. If f is monic, then Q = 1X and P splits as fg. If f is epic,
then P = 1Y and Q splits as gf .

Proof: We can naturally embed Hom(X;Y ) and Hom(Y;X) into End(X � Y ). Hence we can

consider f as an element in End(X � Y ), which is semisimple. Restricting to a simple component,

it suÆces to consider f 0 2 Mn(C ), acting on V = C n . Let V1 = ker(f 0) and W1 such that

V1 �W1 = V . Let W2 = Im(f 0) and V2 such that V2 �W2 = V . Hence f 0jW1
: W1 ! W2 is an

isomorphism. Let g0 : W2 ! W1 be the inverse of f . Extend g
0 to V by letting it act as 0 on V2.

Doing this for each simple component of End(X � Y ), we obtain an element ~g 2 End(X � Y ) such
that f = f~gf . Then g = �1~g�2 2 Hom(Y;X) satis�es fgf = f , where

X
�1 //

X � Y
�1

oo
�2

// Y
�2oo

is a direct sum system in C
That P 2 = P and Q2 = Q is trivial. If f is monic, cancel f on the left from f = fgf to get

1Y = gf , which makes g necessarily epic, hence P splits as fg and similarly for f epic.

Theorem 3.3. Let C be a semisimple C -category. Then AbC = IdemAdd C is a semisimple abelian
category .
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Proof: The fact that Ab C has direct sums (i.e. it is an additive category) follows easily by applying

the construction at the beginning of this section to objects of IdemAddC. This is left to the reader.
To show that Ab C is also abelian, we need to check

1.Every morphism f 2 Hom �
(X; p); (Y; q)

�
must have a kernel and a cokernel. Let us construct

a kernel. Let

I =
�
g 2 End(X; p) j fg = 0

	
:

Clearly, I is a right ideal of End(X; p), hence I = P End(X; p) for some idempotent P 2 End(X; p)
by semisimplicity. We would like to claim that P : (X;P )! (X; p) is a kernel of f . P is monic by

de�nition: if P�1 = P�2 for some �1; �2 2 Hom
�
(Z; r); (X;P )

�
then

�1 = P�1 = P�2 = �2:

That fP = 0 is clear. Now, suppose fg = 0 for some g 2 Hom
�
(Z; r); (X; p)

�
. We will show

g factors through P . By Lemma 3.2, we have h 2 Hom
�
(X; p); (Z; r)

�
such that g = ghg. Now

f(gh) = (fg)h = 0, hence gh 2 I = P End(X; p). Thus

Pg = P (ghg) = (Pgh)g = (gh)g = g:

The dual construction will give a cokernel of f .
2. We need to show that every monomorphism is a kernel and every epimorphism is a cok-

ernel. Let f 2 Hom
�
(X; p); (Y; q)

�
be a monomorphism. Invoke Lemma 3.2 again to �nd g 2

Hom
�
(Y; q); (X; p)

�
such that f = fgf . Let P = 1 � fg 2 End(Y; q). Clearly, Pf = 0. If

h 2 Hom
�
(Z; r); (Y; q)

�
such that Ph = 0, then h = fgh, hence h factors through f . As f is

already monic, f is a kernel of P . The dual argument shows that every epimorphism is a cokernel.

That Ab C is semisimple is clear as its endomorphism rings are subalgebras of the endomorphism

rings in AddC, which are semisimple.

If C is a monoidal category to begin with the tensor functor 
 on C is extended to a tensor

product 
Ab C in the resulting abelian category Ab C in the obvious way as follows: In Add C,
de�ne 
AddC as�

X1 �X2 � � � � �Xn

�
AddC

�
Y1 � Y2 � � � � � Ym

�
=
M
i;j

�
Xi 
C Yj

�
on the objects and analogously on the morphisms. (Where � is the categorical direct sum con-

structed previously.) In Ab C , de�ne 
AbC as

(X; p)
Ab C (Y; q) =
�
X 
Add C Y; p
AddC q

�
on the objects and simply as 
Add C on the morphisms.

We also observe that if D is a full subcategory of a semisimple additive category C, then AddD
is equivalent to the additive subcategory generated by D in C, that is the full subcategory whose

objects are �nite direct sums of objects of D inside C. We will in the following identify AddD with

that subcategory to simplify notation.

Theorem 3.4. Let C = (C;
; a; 11; l; r) be a semisimple abelian C -category and D a full subcategory
(not necessarily abelian) of C that generates C in the sense that every object in C is a subobject of
a direct sum of objects from D. Then there is an equivalence of abelian categories:

AbD �= C:
Proof: We will construct the equivalence F : C ! AbD. Let A 2 Ob(C). For every such object, we

can choose X1; : : : Xn 2 Ob(D) and a monic f : A ! X1 � � � � �Xn in C by the hypothesis. Use

Lemma 3.2 in AddD to �nd g : X1�� � ��Xn ! A such that f = fgf . As fg 2 End �X1�� � ��Xn

�
is an idempotent, we can set F (A) =

�
X1 � � � � �Xn; fg

�
.

Now, let � 2 HomC(A;B). As above, there exist monomorphisms f : A ! X1 � � � � �Xn and

h : B ! Y1 � � � � � Ym in C, and g and k such that f = fgf and h = hkh. Then we already have
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F (A) =
�
X1� � � � �Xn; fg

�
and F (B) =

�
Y1� � � � � Ym; hk

�
. Set F (�) = h�g. That this is indeed

in HomAbD

��
X1 � � � � �Xn; fg

�
;
�
Y1 � � � � � Ym; hk

��
follows from

h�g = hk(h�g) = (h�g)fg:

F as a map HomC(A;B) ! HomAbD

��
X1 � � � � � Xn; fg

�
;
�
Y1 � � � � � Ym; hk

��
in fact has an

obvious inverse G that takes � 2 HomAbD

��
X1 � � � � �Xn; fg

�
;
�
Y1 � � � � � Ym; hk

��
to k�f .

We have just proven that F is full and faithful. It is now enough to show that each object in

AbD is isomorphic to one in the image of F (see [27], p. 93) to conclude that F is an equivalence.

Let
�
Y1 � � � � � Ym; p

�
be an object in AbD. Then p is an idempotent in EndC

�
Y1 � � � � � Ym

�
.

In an abelian category, every morphism has a factorization into an epimorphism followed by a

monomorphism (see [27], p. 199). So in particular, idempotents split. Let p split as ab and

set A = S(a). Then a : A ! Y1 � � � � � Ym is a subobject, and we claim F (A) is isomorphic
to
�
Y1 � � � � � Ym; p

�
. For suppose that in the construction of F above we chose the subobject

f : A ! X1 � � � � �Xn and F (A) =
�
X1 � � � � �Xn; fg

�
. Then it is easy to verify that ag is an

isomorphism in

HomAbD

��
X1 � � � � �Xn; fg

�
;
�
Y1 � � � � � Ym; ab

��
with inverse fb.

Note that we are making a lot of arbitrary choices in constructing this equivalence. This is to be

expected though, as equivalences are usually not unique. Compare this with isomorphism between

groups: one can normally �nd several di�erent isomorphisms between two isomorphic groups.

In fact, a closer look at F reveals that if C is a monoidal category and D is a submonoidal category,

then F extends to a monoidal functor. The proof is long and tedious, but is straightforward and

merely an exercise in applying de�nitions, so we will omit it here. Hence F is an equivalence of

tensor categories and we have

Theorem 3.5. Let C be a semisimple tensor category and D � C a full submonoidal category.
Suppose that D generates C in the sense that every object in C is a subobject of a direct sum of
objects from D. Then there is an equivalence of tensor categories:

AbD �= C:
We will use this result in the following context: Let C be a semisimple tensor category, and let

X be an object in C which generates C in the sense that every simple object of C is a subobject of
some tensor power of X. Let A(C;X) be the monoidal algebra generated by X, as described at the

beginning of this section. Then the monoidal algebra A(C;X) obviously inherits the braiding, and

it is straightforward to show that the equivalence in the last theorem is an equivalence of braided

categories. Hence we obtain

Corollary 3.6. With the just introduced notations we have the equivalence of braided categories
Ab(A(C;X)) �= C.

4. Extending diagonals of braided monoidal algebras

The results of this section have already apeared in [23]. Here we closely follow the presentation

which was subsequently given by Brugui�eres in unpublished lecture notes [9] and which has some

advantages over the original one in our context. We would like to thank Alain Brugui�eres for

allowing us to include this material in our paper.

The precise goal of this section will be stated after De�nition 4.3. In the following C is a

semisimple (not necessarily braided) tensor category, X is an object in C and A = A(C;X) is the

associated monoidal algebra, as in the last section.
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De�nition 4.1. A monoidal algebra A = A(C;X) is of type N if

(a) HomA

�
X
m;X
n

�
= 0 unless m � n mod N .

(b) 11 and X are simple.

(c) HomA

�
11;X
N

�
= HomA

�
X
N ; 11

�
= C .

This, for example, holds for the monoidal algebra arising from the vector representation in the

representation categories of SU(N) and Uq slN , and also for orthogonal and symplectic categories

with N = 2 (see Section 6).

Lemma 4.2. Let A be a monoidal algebra of type N .

(a) There exist nonzero morphisms � : 11! X
N and � : X
N ! 11 such that �� = 111 and �� = �

is an idempotent in End
�
X
N

�
independent of the choices of � and �.

(b) dim
n
f 2 End �X
N

� j f� = f = �f
o
= 1.

(c) For any n 2 N, the map � : End
�
X
n

� ! End
�
X
n+N

�
which takes f to f 
 � is an

isomorphism onto

� =
n
g 2 End �X
n+N

���� 1X
n 
�� g = g
�
1X
n 
�� = g

o
:

Proof: Let � : 11 ! X
N be a nonzero morphism. By Lemma 3.2 there exists a morphism � :

X
N ! 11 such that ��� = �. It follows that �� = 111 = 1 2 C , and � = �� 2 End
�
X
N

�
is an

idempotent. This idempotent is unique as the object 11 appears with multiplicity 1 in X
N .

The second statement is a consequence of the last statement with n = 0. To prove the last

statement observe that �(f) 2 � is clear from the �rst property of �. Let  : �! End
�
X
n

�
be

de�ned by

 (g) =
�
1X
n 
�� g � 1X
n 
��:

Then it is straightforward to check that  is the inverse of �, which �nishes the proof of the

lemma.

De�nition 4.3. The diagonal D = �A of a monoidal algebra A is the monoidal algebra with

HomD

�
X
m;X
n

�
= 0 if m 6= n

and

EndD
�
X
n

�
= EndA

�
X
n

�
:

We will now investigate to what extent the structure of a monoidal algebra of type N can be

recovered from its diagonal. So let D be a braided diagonal monoidal algebra with braiding c,
which is the diagonal of a (not necessarily braided) monoidal algebra A of type N . We attach a

complex number �(A) to A as follows:

(4.1) �(A) = lX
�
� 
 1X

�
c1;N

�
1X 
�

�
r�1X 2 End(X) = C :

In fact, since A is a strict category lX = rX = 1X . So we are free to suppress them. We will simply

denote �(A) by � whenever the context is clear. Observe that �, just like � depends only on A
and not on the particular choice of � and �.
We will now prove some simple results for the braided diagonals of monoidal algebras A =

A(C;X) of type N . To keep the notation from becoming overwhelming, we will use the simpli�ed

notation

cm;n = cX
m;X
n

for the braiding.

Lemma 4.4. Let A be a monoidal algebra of type N . Suppose its diagonal D has a braiding c.
Then we have

(a)
�
� 
 1X

�
c1;N = �

�
1X 
�

�
and c1;N

�
1X 
�

�
= �

�
�
 1X

�
.
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(b)
�
1X 
�

�
cN;1 = �

�
� 
 1X

�
and cN;1

�
�
 1X

�
= �

�
1X 
�

�
.

(c) cN;N
�
�
�

�
=
�
�
�

�
cN;N = �
�.

Proof: We will prove the �rst statement and leave the rest to the reader.�
� 
 1X

�
c1;N =

�
� 
 1X

� �
�
 1X

� �
� 
 1X

�
c1;N

=
�
� 
 1X

�
c1;N

�
1X 
�

� �
1X 
�

�
= �

�
1X 
�

�
:

where the �rst equality holds because �� = 1, the second because �� = � 2 End
�
X
N

�
which is

in D and c is functorial on D, and the third is by the de�nition of �. The second part of the �rst

statement goes similarly.

Let A and A0 be two monoidal algebras of type N with braided diagonals. We say that A and A0
are extensions of the diagonal D = �A if there is an equivalence 	 between D and the diagonal D0
of A0 as braided categories such that 	(X
n) = (X 0)
n for all n 2 N. We say that the extensions

A and A0 of D are diagonally equivalent if 	 can be extended to an equivalence � : A ! A0 of
monoidal algebras.

We are going to show that �(A) is an invariant under diagonal equivalence.

Proposition 4.5.

(a) Let A and A0 be monoidal algebras of type N and � : A ! A0 a diagonal equivalence. Then
�(A) = �(A0).

(b) (�(A))N = 1.

Proof: Since � is a monoidal functor A ! A0, it comes equipped with the isomorphism � : �(11)!
110 and the natural isomorphism

�i;j : �(X

i)
0 �(X
j)! �(X
i+j)

compatible with the action of � on morphisms (see e.g. [18], Ch. XI.4). This means, in particular,

that we have for any morphisms f : X
i ! X
r and g : X
j ! X
s

�(f 
 g) = ��1r;s Æ
�
�(f)
0 �(g)� Æ �i;j

and compatibility with the braiding means that

c0i;j = ��1j;i Æ �(ci;j) Æ �i;j:
Moreover, compatibility with the left and right unit constraints translates into the identities

�(lX) Æ �0;1 = l0X0 Æ (� 
 1X0) and �(rX) Æ �1;0 = r0X0 Æ (1X0 
�):
But monoidal algebras are strict monoidal categories, so the unit constraints are identities. Using

the bilinearity of the tensor product and the naturality of the unit constraints we obtain

�0;1 = � 
 1X0 = 111
 � 1X0 = � 1X0 and �1;0 = 1X0 
 � = � 1X0 
 111 = � 1X0 ;

and thus �0;1 = �1;0. Now observe

�(�A)�(�A) = �(�A�A) = �(111) = 111 :

Hence we can and will choose �A0 = �(�A) and �A0 = �(�A). As we pointed out, �(A0) is

independent of the particular choice of �A0 and �A0 . Using this and the identities above, we obtain

�(A0) =
�
�A0 
0 1X0

�
c01;N

�
1X0 
0�A0

�
=

�
��10;1 Æ �(�A 
 1X) Æ �N;1

��
��1N;1 �(c1;N )�1;N

��
��11;N Æ �(1X 
�A) Æ �1;0

�
= ��10;1�

�
(�A 
 1X) c1;N (1X 
�A)

�
�1;0 = ��10;1 �

�
�(A)��1;0

= ��10;1�(A)�1;0 = �(A);
where �

�
�(A)� = �(A) because EndA(X) = EndA0(X) = C and �(1X) = 1X0 .
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To prove the second statement, observe that cn;N (1X
n 
 �) = �n(� 
 1X
n); this follows from

Lemma 4.4(a) by induction on n, using cn;N = (c1;N 
 1X
n�1)(1X 
 cn�1;N ). Hence we obtain,

using Lemma 4.4(c),

�
� = cN;N (1X
n 
 �)�(� 
 �)
= �N (�
 1X
n)�(� 
 �)
= �N (�
 �)(� 
 �) = �N (�
�):

Proposition 4.6. Let A and A0 be monoidal algebras of type N which are extensions of a given
diagonal algebra D. If �(A) = �(A0), then A and A0 are diagonally equivalent.

Proof: Choose �A, �A0 , �A, and �A0 which satisfy the conditions of the morphisms � and � in Lemma

4.2 for A and A0. We will construct an equivalence � : A ! A0 of monoidal algebras extending the
equivalence 	 between their diagonals. De�ne � jD= 1D, � (�A) = �A0 and � (�A) = �A0 . This will
ensure uniqueness of a functor �.

If m � n mod N , let p; �; � 2 N such that p = m+ �N = n+ �N . The idea is to pad f with

�'s on the right and �'s on the left so that the result is in End
�
X
p

�
. Let

(4.2) fp =
�
1X
n 
�
�� f � 1X
m 
�
�� 2 End �X
p

�
:

Note that fp is a morphism in �A. Multiplying the last equation by
�
1X
n 
�
�� from the left

and by
�
1X
m 
�
�� from the right, we obtain

(4.3) f =
�
1X
n 
�
�� fp � 1X
m 
�
��:

As fp is a morphism in �(A), we can de�ne

(4.4) �(f) =
�
1X
n 
�
�A0

�
	(fp)

�
1X
m 
�
�A0

�
:

It is easy to check that �(f) does not depend on the choice of p. We still need to make sure

that � is well-behaved with respect to the tensor product. Let f 2 HomA

�
X
m;X
n

�
and �,

�, p such that p = m + �N = n + �N . Let g 2 HomA

�
X
m0

;X
n0
�
and �0, �0, p0 such that

p0 = m+ �0N = n+ �0N . Then

�(f)
 �(g) =

=
��

1X
n 
�
�A0
�
	(fp)

�
1X
m 
�
�A0

��
 �� 1X
n0 
�
�
0

A0

�
	(gp0)

�
1
X
m0 
�
�0A0

��
=

�
1X
n 
�
�A0 
 1X
n0 
�
�

0

A0

�
	
�
fp 
 gp0

� �
1X
m 
�
�A0 
 1X
m0 
�
�0A0

�
:

Now use Lemma 4.4 to move all the �'s and �'s to the right in this last expression (remember to

do so in fp
 gp0), and observe that all the �'s and ��1's magically cancel. It is now clear that the

expression we obtain is equal to �(f 
 g). We can construct ��1 : A0 ! A in the analogous way,

which shows that � is indeed an equivalence of monoidal algebras.

It follows from the last two propositions that there are at most N monoidal algebras of type N
with the same diagonal. Before proving their existence, we need to determine the compatibility of

their braidings.

Proposition 4.7. Let c be a braiding on D. Then c extends to a braiding on A if and only if
� = 1.

Proof: =) : This is clear by functoriality.

(=: As c is a braiding on D, it already satis�es most of the braiding axioms on A as well, except

possibly functoriality. So all we have to prove is functoriality.

10



Now, let f 2 HomA

�
X
m;X
n

�
. We will show c1;n

�
1X 
f

�
=
�
f 
 1X

�
c1;m. If m 6� n

mod N , then f = 0 and the statement is obvious. Let f 2 HomA

�
X
m;X
n

�
and �, �, p as usual

p = m+ �N = n+ �N . Let fp be as in Eq 4.2.

It follows from Lemma 4.4 (with � = 1), the de�nition of cn;m and from n+ �N = p = m+�N
that

c1;n
�
1X
n+1 
�
�� = �

1X
n 
�
� 
 1X
�
c1;p:

c1;p
�
1X
m+1 
�
�� = �

1X
m 
�
� 
 1X
�
c1;m:

Using this and Eq 4.3 we obtain

c1;n
�
1X 
f

�
=

= c1;n
�
1X
n+1 
�
�� � 1X 
fp� � 1X
m+1 
�
��

=
�
1X
n 
�
� 
 1X

�
c1;p

�
1X 
fp

��
1X
m+1 
�
��

=
�
1X
n 
�
� 
 1X

��
fp 
 1X

�
c1;p

�
1X
m+1 
�
��

=
�
f 
 1X

�
c1;m:

For g 2 HomA

�
X
m0

;X
n0
�
, a similar computation proves cn0;1

�
g 
 1X

�
=
�
1X 
g

�
cm0;1. Now

we use induction to conclude

cn0;n(g 
 f) =
= cn0;n

�
1X
n0 
f

� �
g 
 1X
m

�
=

=
�
f 
 1X
n0

�
cn0;m

�
g 
 1X
m

�
=

�
f 
 1X
n0

� �
1X
m 
g� cm0;m = (f 
 g) cm0 ;m:

We can now prove the main result of this section. It �rst appeared in [23], with the presentation

in this section following the notes [9] by Brugui�eres.

Theorem 4.8. Let D be the diagonal of a braided monoidal algebra of type N . Then there exist
exactly N monoidal algebras A such that D = �(A) up to diagonal equivalence, one for each
possible value of �(A).
Proof: In view of our previous results, it suÆces to construct a monoidal algebra A of type N
such that �(A) = � for each given N -th root of unity �. Choose � such that �N = 1=�. Let

c0m;n = �mncm;n. It is easy to see that this is still a braiding on D. Denote the objects of A by X
n

as before. Let

HomA

�
X
m;X
n

�
= 0 if m 6� n mod N;

otherwise let p = m+ �N = n+ �N (�; � 2 N) and de�ne

An
m(p) =

n
f 2 EndD

�
X
p

� j � 1X
n 
�
��f = f = f
�
1X
m 
�
��o

Let An
m = An

m(p) with p = max(m;n). By the 3rd property of �, we know that the map � : f 7!
f 
 � is an injection EndD (X
p) ! EndD

�
X
p+N

�
. Observe that the restriction of � to An

m(p)

has exactly An
m(p + N) for its image in EndD

�
X
p+N

�
. Hence tensoring repeatedly on the right

by � gives us a chain of isomorphisms

An
m = An

m(p)
�= An

m(p+N) �= An
m(p+ 2N) �= : : : :

Let �P : An
m ! An

m(P ) be the induced isomorphism, with P � p mod N . Set

HomA

�
X
m;X
n

�
= An

m
�= An

m(p)
�= An

m(p+N) �= : : : :
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In the following we will use these isomorphisms to de�ne composition and tensor products for

morphisms in A. Let g 2 HomA

�
X
k;X
m

�
and f 2 HomA (X
m;X
n) with k � m � n

mod N . Choose some P � max(k;m; n) with

P = k + �N = m+ �N = n+ 
N �; �; 
 2 N:
Then we de�ne f Æ g by

f Æ g = ��1P (�P (f) Æ �P (g))
where the three �P 's are three di�erent maps and are to be understood in the appropriate context.

It is easy to see that this de�nition is independent of the choice of P . As the actual composing of
maps always happens inside some EndD

�
X
P

�
, associativity of this composition law is inherited

from D.
We need to de�ne a tensor product on this category. Let f 2 HomA

�
X
m;X
n

�
and g 2

HomA

�
X
m0

;X
n0
�
. Find p and p0 such that f 2 An

m(p) and g 2 An0

m0(p0) and

p = m+ �N = n+ �N and p0 = m0 + �0N = n0 + �0N:

Then �
1X
n 
c0�1n0;�N 
 1X
�0N

� �
f 
D g

� �
1X
m 
c0m0;�N 
 1X
�0N

�
is in An+n0

m+m0
(p + p0). Applying ��1p+p0 to it gives us the desired morphism f 
A g 2 An+n0

m+m0
. That

this is strictly associative follows from the strictness of the tensor product in D and the braiding

axioms.

For A to be a monoidal algebra, it also needs to be a semisimple category, but that is obvious

as the endomorphism rings of A all come from D, which is already a monoidal algebra, hence

semisimple. As

HomA

�
11;X
N

� �= AN
0 (N) =

n
f 2 EndD

�
X
N

� j �f = f = f�
o
= C

and similarly for HomA

�
X
N ; 11

�
, A satis�es all of the conditions for being a monoidal algebra

of type N . For � and � in A, choose � considered as an element in AN
0 (N) and as an element in

A0
N (N) respectively. Then �(A) = �� = �2 = � by the 1st property of �. We can now verify

�(A) =
�
� 
A 1X

�
c1;N

�
1X 
A�

�
=
�

�|{z}
2A0

N


A 1X
�
c1;N

�
1X 
A �|{z}

2AN0

�

= c0
�1
1;N

�
�
D 1X

�
c1;N

�
1X 
D�

�
= ��N c�11;N c1;N

�
1X 
D�| {z }

2A1
N+1

(N+1)

� Æ � 1X 
D�| {z }
2AN+1

1 (N+1)

�
= � 1X|{z}

A1
1

2 EndA(X):

As EndA(X) = EndD(X) = C , this is just the number �. We have just proven the existence of a

monoidal algebra A with diagonal D and �(A) = �, and with �(A) = �.

As we observed in Proposition 4.7, the braiding c on D extends to a braiding on A if and only if

�(A) = 1. If � 6= 1 we use the braiding c0 instead of c as in the previous proof, which does change

� to 1. So the braiding c0 can be extended to a braiding on A also in that case. It follows that all

possible N extensions A of D can be given the structure of a braided category. We have shown

Corollary 4.9. A �xed braiding of D extends to a braiding of only one of the N possible monoidal
algebras of which it can be the diagonal. However, for a given other monoidal algebra A we can
always �nd a braiding of D which does extend to a braiding of A.
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5. Rigid Categories

We collect and (re)prove a number of basic results about rigidity in braided categories which are

probably well-known to experts. This will be done in the context of ribbon tensor categories, so

we need not worry about left- or right-rigidity.

Lemma 5.1. Let C be a rigid semisimple ribbon tensor category. Then any simple object has
nonzero dimension. In particular, the bilinear form ha; bi = tr(a Æ b) on End(Z) is nondegenerate
for any object Z in C.
Proof: Let X be a simple object in C, with dual object Y . Let iX : 11! X
Y and dX : Y 
X ! 11

be the corresponding rigidity morphisms. As X is simple, the object 11 appears with multiplicity

one in X 
 Y . Let � be the unique projection onto it. If dimX = 0, then (iX Æ d0X)2 = 0. Hence

the morphism iX Æ d0X is a nilpotent multiple of �, and therefore it must be equal to 0. But this

would contradict the rigidity axiom as follows:

0 =
�
1X 
dX

� Æ �(iX Æ d0X)
 1X
� Æ � 1X 
i0X� =

=
�
(1X 
dX) Æ (iX 
 1X)

� Æ � ( d0X 
 1X) Æ (1X 
i0X)
�
= 1X Æ 1X = 1X ;

a contradiction (here the second equality follows from the rigidity axiom and from [18], Prop.

XIV.3.5).

It will also be convenient to de�ne partial trace operations, which are also known under the

names contractions or conditional expectations. Let X and V be objects in C. We de�ne the map

"V from End(V 
X) onto End(V ) by

(5.1) "V (b) =
1

dimX
(1V 
d0X) Æ (b
 1Y ) Æ (1V 
iX):

We have the following results:

Lemma 5.2. Let b 2 End(V 
X) and let p = 1=(dimX)~e be the projection onto 11 � X
Y . Then
(a) tr

V
X
(b) = tr

V

�
"V (b)

�
; in particular, if V is simple then "V (b) = trV
X (b)1.

(b) (1V 
 p) Æ (b
 1Y ) Æ (1V 
 p) = "V (b)
 p.
Proof: These statements are easy consequences from the de�nitions (see also e.g. [31], Prop. 1.4).

We shall need the results of the last lemma in the following setting. Let m 2 End �X
2
�
. Then

we de�ne the morphism mi 2 End (X
k) by

mi = 1i�1 
m
 1k�1�i;

where 1r is the identity morphism of X
r. Then we have the following (see also e.g. [31], Prop.

1.4)

Corollary 5.3.

(a) (Markov property) If a 2 End �X
n
�
, then tr

�
(a
 1) Æmn

�
= tr(a) tr(m).

(b) Assume that X is a self-dual object (see below) and that X
2 �= �dj=1X�j , and assume that

we can write 1X =
P

j p�j as a sum of commuting projections p�j 2 End
�
X
2

�
such that

Im(p�j )
�= X�j . Then p2(p�j 
 1)p2 =

dimX�j

(dimX)2
p2.
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5.1. Self-dual objects . Let C be a semisimple ribbon tensor category, and let X be an object

in C which is isomorphic to its dual. Hence we have i = iX : 11 ! X
2 and d = dX : X
2 ! 11

satisfying the rigidity axioms. De�ne i0 and d0 somewhere. In the following we will denote the

braiding morphism cX;X 2 End
�
X
2

�
just by c, and i Æ d0 by ~e. The morphisms i1 and i2 are

de�ned by

i1 = i
 11 : X �= X 
 11! X
3 and i2 = 11 
 i : 11 
X ! X
3;

with d1 and d2 being morphisms from X
3 to X de�ned similarly.

Lemma 5.4. Let X be a simple self-dual object with dimension dimX and let ~r 2 F be the scalar

such that �X = ~r1X . Then there exists � 2 f�1g such that c Æ i = �~r�1i, tr(~e) = 1=(dimX)

( Remove double reference to tr(~e). , tr(c) = ~r=(dimX) and tr(~e) = 1=(dimX) for the normalized

categorical trace tr for End
�
X
2

�
.

Proof: By de�nition, dimX = d0 Æ i = Tr(d0 Æ i) = Tr(i Æ d0) = Tr(~e), which implies the statement

for tr(~e). As �11 = 111, it follows that

i = �X
X Æ i = c Æ c Æ (�X 
 �X) Æ i = ~r2 c Æ c Æ i:
As c Æ i is a multiple of i, the �rst claim follows. This also implies that i0 = �i and d0 = �d. Using
the braiding axioms, we obtain the identity c1 Æ c2 Æ i1 = i2; after multiplying by d

0
1 from the right,

we obtain the equality c1 Æc2 Æ(i1 Æd01) = �(i2 Æd02)Æ(i1 Æd01) in End
�
X
3

�
. Using the trace property

and the Markov property, we obtain tr
�
c1 Æ c2 Æ (i1 Æ d01)

�
= �~r�1 tr(c)=(dimX), which has to be

equal to �
�
tr(i Æ d0)�2 = �=(dimX)2. The claim follows from this.

The following lemma corrects the statement of Lemma 3.2 in [35]; the proof there would have

been suÆcient for the purposes in that paper and also for this paper.

Lemma 5.5. The algebra generated by End
�
X
2

� 
 1 and by ~e2 acts irreducibly on the space

Hom
�
X;X
3

�
, via concatenation.

Proof: We use the notations as in Corollary 5.3,(b), with p�;1 = p� 
 1. Observe that

(p�;1 Æ ~e2 Æ p�;1) Æ (p�;1 Æ ~e2 Æ p
;1) = Æ�;� (dimX) tr(p�)(p�;1 Æ ~e2 Æ p
;1):
Hence the set fp�i;1 Æ ~e2 Æ p�j ;1; i; j = 1; 2; ::: dg spans a full d � d matrix algebra. It obviously

does not act trivially on Hom
�
X;X
3

�
. As dimHom

�
X;X
3

�
= dimEnd

�
X
2

�
= d, the claim

follows.

6. Categories of orthogonal or symplectic type

6.1. Combinatorial data. We �x some notations for the representation category of a full orthog-

onal group O(N) or a symplectic group Sp(N). For these groups the de�ning or vector repre-

sentations have dimension N (in the orthogonal case) and dimension 2N (in the symplectic case)

respectively.

It is well-known that the isomorphism classes of simple representations of O(N) are labeled by

Young diagrams with at most N boxes in the �rst two columns; simple representations of Sp(N)

are labeled by Young diagrams with at most N rows. We call such Young diagrams permissible

(for the respective group).

It is easy to describe the decomposition of the tensor product of a simple representation with

the vector representation. Let X� be a simple object in C corresponding to the Young diagram �,
and let X = X[1] be the object corresponding to the vector representation (which is labeled by the

Young diagram with one box). Then X�
X is the direct sum of simple representations labeled by

all permissible Young diagrams � which are obtained from � by removing or adding a box from/to

14



�. While tensoring with the vector representation would not per se describe the Grothendieck

semiring, it is all that we need for our purposes together with the braiding (see Prop. 8.6).

In the following, we denote by [1n] and by [n] the Young diagrams with all its n boxes in its

�rst column and in its �rst row respectively. The simple object X[1n] corresponds to the full

antisymmetrization of the n-th tensor power X
n of the vector representation of the orthogonal

group. In the representation category of symplectic groups it would correspond to the unique

simple subrepresentation in the n-th antisymmetrization of the vector representation which has not
already appeared in the smaller tensor powers. We obtain as a special case of the tensor product

rule described above

(6.1) X[1m] 
X �= X[1m+1] �X[2;1m�1] �X[1m�1]; 1 � m < N ;

if m = N , the right hand side above would be isomorphic to X[1N�1] in the orthogonal case, and to

X[2;1N�1] �X[1N�1] in the symplectic case.

6.2. Fusion categories. There also exist braided tensor categories whose Grothendieck semirings

are quotients of the ones described in the last subsection. In these cases, we can describe the

labeling set for its simple objects by also applying analogous restrictions to the rows of Young

diagrams as we had before for columns. We have the following three cases, for �xed N;M 2 N:
(a) orthogonal fusion category: the simple objects are labeled by Young diagrams with � N boxes

in its �rst two columns and with �M boxes in its �rst two rows,

(b) ortho-symplectic fusion category: the simple objects are labeled by Young diagrams with � N
boxes in its �rst two columns and with �M boxes in its �rst row (i.e. with �M columns),

(c) symplectic fusion category: the simple objects are labeled by Young diagrams with at most

N boxes in the �rst column and with at most M boxes in the �rst row.

Tensoring with the object labeled by the Young diagram with one box (the analog of the `vector

representation' in this context) is as before, with now only those objects allowed at the right hand

side which satisfy the conditions for the labeling set of simple objects in the corresponding fusion

category. In particular, this simple tensor product rule allows to compute the multiplicity of an

object X� in X
n = X
n
[1]

by induction.

6.3. De�nition and examples. In the rest of the paper, we have the following assumptions: All

categories are supposed to be rigid, strictly monoidal, semisimple, braided C -categories. We say

that such a category, say C, is of orthogonal or symplectic type if its Grothendieck semiring is the

one of a representation category of O(N) (including O(1)) or Sp(N), or of one of the associated

fusion categories, as described in the last two subsections. Here are examples for such categories:

a) By de�nition, the representation categories Rep
�
O(N)

�
and Rep

�
(Sp(N)

�
are tensor cate-

gories of orthogonal resp. symplectic type, which have symmetric braiding.

b) It is well-known that the representation category of the Drinfeld-Jimbo quantum group Uqg as-
sociated to the semisimple Lie algebra g is semisimple and that Rep(Uqg) has the same Grothendieck

semiring as Rep(g), if q is not a root of unity. As Rep(spN ) is equivalent to Rep
�
Sp(N)

�
,

Rep(UqspN ) is a braided tensor category of symplectic type. It is also possible to construct braided
tensor categories of orthogonal type as a semidirect product of a subcategory of Rep(UqsoN ) with
Rep(Z=2).
c) If q is a root of unity, H.H. Andersen de�ned the category of tilting modules of Uqg. This

category contains as a quotient a semisimple category with only �nitely many equivalence classes

of simple objects. These are examples of fusion categories. One can construct the fusion categories

of the last section from these quotient categories in complete analogy to the construction sketched

in (b).

d) The existence of fusion categories was suggested by physicists in conformal �eld theory. In

particular, this implied the existence of a highly nontrivial tensor product for representations of
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aÆne Kac-Moody algebras resp. loop groups. A mathematically rigorous de�nition was given by

Kazhdan and Lusztig in the Kac-Moody case (see [20], [21],[22]) and by Wassermann in [40] for loop

groups. The equivalence between these categories and the ones de�ned by Andersen was shown by

Finkelberg [12].

e) It is also possible to construct orthogonal and symplectic categories by topological methods

as quotients of the tangle category (see [36]). This approach is closest to the set-up in this paper.

It will be described in more detail in Section 9.2. A similar approach also works for Lie type A (see

[7]).

6.4. Low tensor powers. As 11 is a subobject of X
2, any simple subobject of X
(n�2) is also

isomorphic to a simple subobject of X
n. Hence we can write X
n as a direct sum X(n�2) �Xn,

where X(n�2) is a direct sum of simple objects each of which is isomorphic to a subobject of

X
(n�2) and Xn is a direct sum of simple objects which are not isomorphic to any subobject of

X
(n�2). By functoriality ( Is functoriality really needed? ) and semisimplicity of C, we get from
this the decomposition

(6.2) End
�
X
n

� �= End
�
X(n�2)

�� End
�
Xn

�
:

Lemma 6.1. The set ~B = f1; c; ~eg � End
�
X
2

�
is linearly independent. In particular, c acts

via di�erent scalars on X[2] and on X[12].

Proof: Assume that ~B is not linearly independent. Then we can assume c = �1+�~e, with �; � 2 F ,
as otherwise the noninvertible ~e would be proportional to 1. But then all the ci's just act as scalars

in End (Xn). Let now f resp. ~f be the projections onto the simple subobjects X[12] resp X[2] of

X
2. Then we get, using n = 4 and the braiding with c(2) = cX
2;X
2 = c2c1c3c2

f 
 ~f = f1c(2) ~f1c
�1
(2)

2 End �X(n�2)

�
;

where the last inclusion follows from the fact that f1 ~f1 = 0 and that c(2) only acts as scalar in

End(Xn), i.e. conjugation by it induces the trivial automorphism in End(Xn).

As End
�
X[12] 
X[2]

� �= f1 ~f3 End
�
X
4

�
f1 ~f3 � End

�
X(2)

�
, we obtain that X[12] 
X[2] decom-

poses into a direct sum of simple modules which already appear in X
2 (i.e. they are isomorphic to

11;X[12] or X[2]); this contradicts the tensor product rules for orthogonal and symplectic groups.

Lemma 6.2. The space Hom
�
X;X
3

�
has the basis B = fi2; c1 Æ i2; ~e1 Æ i2 = i01g.

Proof: This is a special case of Frobenius reciprocity: the map a 2 End �X
2
� 7! (a
1)Æ i2 has the

inverse map b 2 Hom �
X;X
3

� 7! (12 
 d) Æ (b
 1). The claim now follows from Lemma 6.1.

6.5. Matrix representations. We de�ne the quantity d(X) by d(X) = dÆ i. Recall from the last

section that d(X) = � dim(X) (see Lemma 5.4).

Lemma 6.3. There are scalars r; q and a fourth root of unity 
 such that

(a) the element t = 
c has the eigenvalues q, �q�1 and r�1 for the submodules X[2], X[12] and 11

of X
2 respectively,
(b) if q 6= q�1, then

(6.3) d(X) =
r � r�1
q � q�1 + 1 =

q�1(r + q)(q � r�1)
q � q�1 :

(c) tr(t) = r=d(X).
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Proof: It will be useful to compute matrix representations of the elements ci and ~ei, i = 1; 2, acting
on Hom(X;X
3) via concatenation. We will use the basis fi2; c1 Æ i2; i1g. We claim that if the

eigenvalues of c are �1; �2 and �3, then we obtain the matrix representations

(6.4) c1 7!
0
@0 ��1�2 0

1 �1 + �2 0

0 �3(�
�1
1 + ��12 ) �3

1
A and c2 7!

0
@�3 0 �1�2(�1 + �2)

0 0 ��1�2
0 1 �1 + �2

1
A :

To see this observe that we have the obvious relations cj Æ ij = �3ij for j = 1; 2, and, from the

braiding axiom, c2 Æ (c1 Æ i2) = i1. This determines two of the three columns of cj , j = 1; 2. Of the
remaining column, two entries are computed using the fact that the matrix must have determinant

�1�2�3 and trace �1+�2+�3. The remaining entries can be computed checking the braid relation

c1 Æ c2 Æ c1 = c2 Æ c1 Æ c2. Moreover, using the braiding relation, we get c1 Æ c2 Æ i1 = i2, while the
corresponding matrices, applied to i1 would give (�1�2)

2i2. Hence we also have (�1�2)
2 = 1, and

we can assume �1 = 
�1q, �2 = �
�1q�1 and �3 = 
�1r�1 for certain complex numbers r and q
and for 
 a fourth root of unity.

Similarly, by using obvious braiding relations and the results of Lemma 5.4, with ~r = ���13 and

� 2 f�1g, we obtain
These matrices follow from simple computations. No need for braiding axioms and ~r = ���13 .

(6.5) ~e1 7!
0
@0 0 0

0 0 0

� ��3 dimX

1
A and ~e2 7!

0
@dimX ���13 �

0 0 0

0 0 0

1
A :

Comparing the (3; 2)-matrix entries in the equality ~e1c1 = �3 ~e1 , we obtain�
�3(�

�1
1 + ��12 )

��
dimX

�
= �

�
�23 + �1�2 � �3(�1 + �2)

�
:

If �1 + �2 6= 0, this gives the formula for the dimension and for d(X) as stated, after substituting

r and q into the eigenvalues as above. It follows from this and Lemma 5.4, with ~r = ���13 that

tr(t) = tr(
c) = r=d(X), as stated.

If �1 = ��2, we deduce from the last equation that �23 = ��1�2 = �1 = �22 = �21. This implies
that two of the three eigenvalues of c are identical and that the eigenvalues of t are contained in

the set f�1g.
Lemma 6.4. Let t be as in Lemma 6.3. If t has less than three distinct eigenvalues, then necessarily
its eigenvalues are �1.
Proof: We can rule out �1 = �2 by Lemma 6.1. Assume now that �1 = �3 or �2 = �3, which would

imply r = �q or r = q�1 for the eigenvalues of t. If �1 + �2 6= 0, we obtain dimX = 0 from the

computations of the previous lemma, which would contradict rigidity. If �1 + �2 = 0, the claim

follows from the last paragraph of the proof of the last lemma.

6.6. Relations. We can now summarize the results of this section as follows: Let e = i Æ d = �~e.

Proposition 6.5.

(a) Assume that c has three distinct eigenvalues, and let t = 
c be as in Lemma 6.3. Then we
can de�ne the element e 2 End

�
X
2

�
also by t� t�1 = (q � q�1)(1 � e). We then have the

relations
(R1) tiei = r�1ei, for i = 1; 2; ::: n� 1, and

(R2) eit
�1
i�1ei = r�1ei, for i =; 2; ::: n� 1.
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(b) If c has fewer than three eigenvalues, then the representation of the braid group Bn given by
the morphisms ti factors through the symmetric group Sn. Moreover, the elements ti and ei,
i = 1; 2 ::: n� 1 generate a quotient of Brauer's centralizer algebra.

(c) We also have tr(t) = r=d(X) and tr(e) = 1=d(X) and tr
�
(a 
 1)�n�1

�
= tr(a) tr(�) for

� 2 ft; eg in both cases; here tr is the normalized trace on End
�
X


�
and a 2 End �X
n�1

�
.

Proof: By de�nition, e is a multiple of the eigenprojection of t for the eigenvalue r�1. It can be seen
e.g. from the explicit matrix representations, see 6.5, that this multiple is d(X). The alternative

formula for e can now be checked easily, as well as (R1). Part (c) follows from Lemma 6.3 resp

Lemma 5.4 for the values of tr(t) and tr(e), and from Corollary 5.3 for the Markov property. Using

the relation between t�1 and e in part (a) of the statement, one also computes tr(t�1) = r�1=d(X).

By functoriality, it suÆces to check Relation (R2) for i = 2. This follows from Lemma 5.2(b)

and (a), and from the values of tr(t�1) which have already been computed. The proof for part (b)

will be given in Section 7.4.

7. q-Deformation of Brauer's centralizer algebra

After having determined properties of braiding morphisms for braided tensor categories of or-

thogonal or symplectic types, we now go the opposite way. We use the relations obtained in the

last section to de�ne abstract algebras which turn out to be Brauer's centralizer algebras (see [8])

and a q-deformation of it which was discovered in connection with Kau�man's link invariant (see

[6] and [30]; here we follow the presentation in [43], p 399/400).

7.1. Hecke algebras. We �rst need a simpler class of algebras. The Iwahori-Hecke algebraHn(q
2)

of type An�1 is the algebra de�ned over the �eld F by generators ~Ti, i = 1; 2; ::: n � 1, which

satisfy the braid relations and the quadratic relation ~T 2
i = (q� q�1) ~Ti+1; here q is a �xed element

in F . We have the following well-known theorem:

Theorem 7.1. If q2 is not a root of unity of order � n, then Hn(q
2) is isomorphic to the group

algebra FSn of the symmetric group Sn.

One of the consequences of the last theorem is that the irreducible representations of Hn(q
2)

are labeled by Young diagrams with n boxes if Hn(q
2) is semisimple. In that case, let ~P[1n] be

the central idempotent corresponding to the one-dimensional representation ~T 7! �q�1. Let A
 1

denote the element in Hn+1 obtained from the element A 2 Hn under the natural embedding of

Hn into Hn+1. It is well-known that we have

(7.1) ~P[1n] 
 1 = ~P[1n+1] +
~P[2;1n�1] ;

where ~P[2;1n�1] is an idempotent in the simple component of Hn+1 labeled by the Young diagram

[2; 1n�1] .

It would be better to de�ne [n]q here rather than only in subsection q-Dimensions later.

Lemma 7.2. We have the following identities in Hn, for m = 1; 2; ::: n� 1:

(a) ~P[1m+1] =
1

[m+1]q

�
qm ~P[1m] � [m]q ~P[1m]

~Tm ~P[1m]

�
(b) ~P[1m]

~Tm ~P[2;1m�1]
~Tm ~P[1m] =

[m�1]q[m+1]q
[m]2q

�
~P[1m] � ~P[1m+1]

�
=

[m�1]q
[m]q

~P[1m]

�
~Tm + q�11

�
~P[1m].

Proof: These identities follow as special cases from properties of path idempotents connected to

Hoefsmit's orthogonal representations of Hecke algebras (see e.g. [41], Cor 2.3). They can also be

proved by induction on m as follows:
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We can write ~Ti = (q+ q�1) ~Ei� q�11, where ~Ei is the eigenprojection for the eigenvalue q of ~Ti.

Then one shows by induction on m, using ~P[1m]
~Em�1 = 0 and ~Ei

~Ei�1
~Ei = ~Ei�1

~Ei
~Ei�1� [1]q

[2]2q
( ~Ei�

~Ei�1) that

~P[1m]
~Em

~P[1m]
~Em =

[m+1]q
[m]q[2]q

~P[1m]
~Em

and

~P[1m+1] =
~P[1m] � [m]q[2]q

[m+1]q
~P[1m]

~Em
~P[1m]:

Claim (a) follows from the second equation. Claim (b) follows by substituting ~P[2;1m�1] = ~P[1m+1]�
~P[1m], and then applying (a) for ~P[1m+1].

7.2. De�nitions. The algebra Dn(r; q), depending on two parameters r and q, is given by gener-

ators T1; T2 ::: Tn�1, which satisfy the braid relations and

(R1) EiTi = r�1Ei,

(R2) EiT
�1
i�1Ei = r�1Ei;

where Ei is de�ned by the equation

(D) (q � q�1)(1 �Ei) = Ti � T�1i :

Remarks : It is easy to read o� from the de�ning relations the following facts:

(a) Let In be the ideal of Dn generated by En�1 . Then Dn=In �= Hn(q
2), with the isomorphism

given by Ti 7! ~Ti.
(b) In �= Dn�1 
Dn�2

Dn�1 as a Dn�1 � Dn�1 bimodule, where the isomorphism is given by

D1 
D2 7! D1En�1D2 for D1;D2 2 Dn�1.
(c) If Dn is semisimple, Dn �= In �Hn.

(d) The Ti's satisfy the cubic equation (Ti � r�1)(Ti + q�1)(Ti � q) = 0.

7.3. Structure of q-Brauer algebras. The following Theorem determines the structure of Dn(r; q)
if it is semisimple (see [6], Theorem 3.7 and [43], Theorem 3.5 and Cor 5.6):

Theorem 7.3.

(a) The algebra Dn(r; q) is semisimple for generic values of r and q (see Theorem 7.4 for more
speci�c information). In this case, it has dimension 1�3�5 ::: (2n�1) and its simple components
are labeled by the Young diagrams with n, n� 2, n� 4, ..., 1 resp. 0 boxes.

(b) The decomposition of a simple Dn;� module Vn;� into simple Dn�1 modules is given by

(7.2) Vn;� �=
M
�

Vn�1;�;

where the summation goes over all Young diagrams � which can be obtained by either taking
away or, if � has less than n boxes, by adding a box to �. The labeling of simple components
is uniquely determined by this restriction rule and the convention that the eigenprojection of
T1 corresponding to its eigenvalue q is labeled by the Young diagram [2].

(c) For diagrams � with n boxes, Vn;� becomes an Hn(q
2) module via the homomorphism of

Remark (a) in Section 7.2.

(d) Dn+1 = span
�
A�B j A;B 2 Dn; � 2 f1; Tn; Eng

	
.

We leave it to the reader to check, using the inductive rule in Theorem 7.3, (b) (see also [6], Fig.

8) that D1(r; q) �= F , D2(r; q) �= F 3 and, with Mk(F ) denoting the algebra of all k � k matrices,

D3(r; q) �=M3(F )� F �M2(F )� F:
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It is an easy exercise to show (using relations (1)-(10) in [43], p. 400) that the 3-dimensional simple

component contains a minimal left ideal spanned by fE2; T1E2; E1E2g, and that the matrices which
describe the action of the elements Ti and Ei, i = 1; 2 with respect to this basis coincide with the

ones in Eq 6.4 and 6.5.

7.4. Brauer algebras. Brauer de�ned abstract �nite dimensional algebras BDn = BDn(x) (see
[8]) depending on a parameter x. These abstract algebras are easiest described by graphs. We will

not give this description here (see [8]).

The following description will suÆce for our purposes: The algebras BDn can be de�ned via

generators T 0i and E
0
i, i = 1; 2; ::: n�1. For x = N > n, we obtain a faithful surjective representation

of BDn(N) onto EndO(N)

�
V 
n

�
which maps T 0i to the permutation of the i-th and (i+1)-st factor,

and it maps E0i to the element ~ei de�ned for this category as in Section 5.1; here V is the N -

dimensional vector representation of O(N). Similarly, one obtains a surjective map BDn(�2N)

onto EndSp(N)

�
V 
n

�
.

The commutation relations between the elements T 0i and E
0
i are exactly the same ones as for the

elements Ti and Ei in Dn. In particular, the elements T 0i , E
0
i commute with T

0
j and E

0
j whenever

ji � jj � 2. In fact, the relations for x = N follow from the ones in Dn(qN�1; q) in the limit for

q ! 1. (see e.g. [6], Section 5 or [43], p 401 for details).

Conclusion of the proof of Prop.6.5: Evaluating the matrices in the proof of Lemma 6.3 for r = q =
1, we obtain matrices for ti; ei, i = 1; 2 which only depend on d(X). In particular t2i = 1 for i = 1; 2.
Moreover, if d(X) = N , these matrices have to satisfy the same relations as the corresponding

elements in Rep
�
O(N)

�
. By functoriality, the elements ti; ei; ti+1; ei+1 satisfy the same relations

as the elements t1; e1; t2; e2, and generators whose indices di�er by at least 2 commute. Hence the

elements ti; ei generate an algebra isomorphic to a quotient of Brauer's centralizer algebra.

7.5. q-Dimensions. We also need a general formula for q-dimensions of orthogonal and symplectic
groups. Let [n]q = (qn � q�n)=(q � q�1) and [y + n]q = (rqn � r�1q�n)=(q � q�1). Then we de�ne

for each Young diagram � the rational function

(7.3) Q�(r; q) =
Y

(j;j)2�

(r � q�2�j+2j�1)(r�1 + q�2�
0

j+2j�1)

1� q�2h(j;j)
Y

(i;j)2�

i6=j

[y + d(i; j)]q

[h(i; j)]q
;

here (i; j) denotes the box in the i-th row and j-th column of �, �i (�
0
j) is the number of boxes

in the i-th row (j-th column) of �. Moreover, the quantity d(i; j) and the hook length h(i; j) are
de�ned by

(7.4) d(i; j) =

(
�i + �j � i� j + 1 if i � j,
��0i � �0j + i+ j � 1 if i > j.

and

(7.5) h(i; j) = �i � i+ �0j � j + 1

We will need these functions primarily for the special case of a Young diagram [1m] whose only

column contains exactly m boxes. In this case, we obtain

(7.6) Q[1m](r; q) =
(r � q�1)(r�1 + q1�2m)

1� q�2m
m�1Y
j=1

rq1�j � r�1qj�1
qj � q�j :
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One checks similarly that for the Young diagram [2; 1m�2] with two boxes in the �rst row and one

box in the next m� 2 rows one obtain

(7.7) Q[2;1m�2] (r; q) =
(r � q�3)(r�1 + q3�2m)

1� q�2m
[y+1]q[y+2�m]q

[1]q[m�2]q

m�3Y
j=1

rq1�j � r�1qj�1
qj � q�j :

The rational functions Q�(r; q) have obvious analogs Q̂�(y) for the Brauer algebras. They are

essentially de�ned by replacing q-numbers in the de�nition of Q� by ordinary numbers. More

precisely, we have

(7.8) Q̂�(y) =
Y

(i;j)2�

y + d(i; j)

h(i; j)
;

7.6. Markov traces and semisimplicity. The algebras Dn(r; q) carry an important trace func-

tional which we will describe in two di�erent ways. The existence of the trace was originally

derived from the existence of Kau�man's link invariant (see [6],[30]). The equivalent description in

the semisimple case follows from [43], Theorem 3.6 and Theorem 5.5. A more algebraic existence

proof can be given using the theory of quantum groups (see e.g. [43] and [31], Lemma 3.1).

Theorem 7.4.

(a1) There exists a trace functional trD on Dn(r; q) which is uniquely determined inductively by
trD(1) = 1, trD(Ti) = r=d(X), trD(Ei) = 1=d(X) and by trD(A�B) = trD(AB) trD(�), where
A;B 2 Dn�1 and � 2 fTn�1; En�1; 1g; here d(X) = (r � r�1)=(q � q�1) + 1 is de�ned as in
Lemma 6.3,(b).

(a2) If Dn is semisimple, the functional trD in (a) is completely determined by trD(p) = Q�=d(X)n,
where p is a minimal idempotent in Dn;�.

(b) Conversely, if q2 is not a primitive l-th root of unity for 1 < l � n, and if Q�(r; q) 6= 0 for all
Young diagrams � with less than n boxes, then the algebra Dn(r; q) is semisimple.

(c) If r = qN�1, Q�(q
N�1; q) is equal to the q-dimension of the highest weight module V� of O(N).

If r = �q2N�1, (�1)j�jQ�(�q2N+1; q) is equal to the q-dimension of the highest weight module
V� of Sp(N), where j�j is the number of boxes of �. The q-dimension of V� is de�ned to be
the character of the element q2�, acting on V�, where � is half the sum of the positive weights
of the corresponding semisimple Lie algebra.

(d) One can similarly de�ne the Markov trace for the Brauer algebras BDn(d(X)), where now the

functions Q�(r; q) are replaced by the polynomials Q̂�(d(X)) (with r = q = 1).

7.7. Quotients of Dn(r; q). It will be important to compute the quotient of Dn(r; q) modulo the
annihilator ideal An of trD , i.e. An = fA 2 Dn; trD (AB) = 0 for all B 2 Dng. In the following

we assume q2 to be a primitive l-th root of unity (with l =1 covering the case q2 = 1 or q not a
root of unity).

(a1) If r = qN�1 or if r = �qN�1 for N odd, with q2 not a root of unity, then Dn=An �=
EndO(N)

�
V 
n

�
, where V is the vector representation of the orthogonal group O(N). If

r = �q2N+1 with q2 not a root if unity, then Dn=An �= EndSp(N)

�
V 
n

�
, where V is the

vector representation of the symplectic group Sp(N).

(a2) If r is equal to � a negative power of q and q2 is not a root of unity, then again Dn=An is

isomorphic to EndG
�
V 
n

�
, with V the vector representation of an orthogonal or symplectic

group G. The group can be determined from (a1) after replacing r by �r�1. The results

listed in (a1) and (a2) are proved in [43], Corollary 5.6.

(b) If q2 is a primitive l-th root of unity, we can �nd positive integers n;m < l such that r = �qn
and r = �q�m (where the signs may or may not match). Then we can �nd restrictions for

the number of boxes in the �rst (two) row(s) as well as in the �rst (two) column(s), as it was
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described in parts (a1) and (a2). Then again Dn=An is isomorphic to End
�
X
n

�
, where now

X is the `vector representation' of the corresponding fusion category, as described in Section

6.2. See [43], Theorem 6.4 for a somewhat more explicit description and a proof.

7.8. Reparametrization. It is easy to see that for the category C generated by X, we have

several di�erent braiding structures. Indeed, it is easy to check that replacing c = cX;X by �c, c�1
or �c�1 again gives a braiding structure. Moreover, we have made a choice by labeling the object

corresponding to the eigenvalue q by the Young diagram [2], and not by [12]. These observations

are re
ected on the level of the algebras Dn(r; q) as follows:
(a) There exist algebra isomorphisms Dn(r; q) �= Dn(�r;�q) �= Dn(�r�1;�q�1) �=�= Dn(r�1; q�1) given by

Ti 7! �Ti(�r;�q) 7! �T�1i (�r�1;�q�1) 7! T�1i (r�1; q�1);

where Ti(r
0; q0), i = 1; 2; ::: n� 1 are the generators of the algebra Dn(r0; q0). These isomor-

phisms preserve the labeling of the simple components by Young diagrams.

(b) There exists an isomorphism between Dn(r; q) andDn(r;�q�1) by mapping Ti(r; q) to Ti(r;�q�1).
This isomorphism maps the simple component Dn;�(r; q) to Dn;�0(r;�q�1), where �0 is the
Young diagram obtained from the Young diagram � by interchanging rows with columns.

By composing this isomorphism with the isomorphisms under (a), we obtain additional iso-

morphisms which change the parametrization, e.g. Dn(r; q) �= Dn(�r�1; q) is obtained by

mapping Ti(r; q) to �T�1i (�r�1; q).
(c) The isomorphisms in (a) and (b) preserve the Markov traces (i.e. the pull-back of the Markov

trace under one of these isomorphisms gives the Markov trace of the original algebra).

(d) By uniqueness of the Markov trace, the isomorphisms in (a) and (b) lead to identities for

the functions Q�(r; q) as follows: Q�(r; q) = Q�(�r;�q) = Q�(r
�1; q�1) = Q�0(r;�q�1) =

Q�0(�r�1; q) etc.
The statements above are easily proved (see also e.g [43] Prop. 3.2(c)). It is also immediate

that the isomorphisms above are examples of functorial isomorphisms which are de�ned as follows:

Let �Dn(r; q) and �Dn(r0; q0) be quotients of Dn(r; q) and Dn(r0; q0) respectively. We say that an

isomorphism � : �Dn(r; q) ! �Dn(r0; q0) is functorial if it maps


Ti(r; q)

�
to


T 0i ( r

0; q0 )
�
for each i

with 1 � i < n; here hai is the subalgebra generated by an element a of an algebra A.
The following Lemma will result in another proof that the representation category of O(2) does

not allow any deformations. We will denote by �Dn(r; q) the quotient of Dn(r; q) with respect to the

annihilator ideal of trD .

Lemma 7.5. The algebras �Dn(q; q) and �Dn(q0; q0) are functorially isomorphic for any q; q0 2 C and
any n 2 N.
Proof: One checks easily that Q[n](q; q) = 2 for n > 0, that Q[0](q; q) = 1 = Q[12](q; q),and that

Q�(q; q) = 0 for all other Young diagrams. One deduces from this that �Dn(q; q) �= �Dn(q0; q0) as
abstract algebras (see [43], Cor 5.6(b3)). In particular, �D3(q; q) is isomorphic to the direct sum

of a full 3 � 3 matrix algebra and a copy of C . Let p
(�)
i be the eigenprojection of the element ti

corresponding to the object X�, with � 2 f[0]; [12]; [2]g. Using the basis p(�)1 Æ i2 for Hom(X;X
3),

one computes the following matrices

(7.9) p
([0])
2 7! 1

4

0
@1 1 2

1 1 2

1 1 2

1
A ; p

([12])
2 7! 1

4

0
@ 1 1 �2

1 1 �2
�1 �1 2

1
A , and p

([12])
2 7! 1

2

0
@ 1 �1 0

�1 1 0

0 0 0

1
A ;
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this can be done fairly easily by using the dual basis

�
1

tr
�
p
(�)

1

� d2 Æ p(�)1

�
with � 2 f[0]; [12]; [2]g and

the values for Q�(q; q). The crucial observation now is that these matrices do not depend on q, and

hence also the commutation relations between the various p
(�)
1 and p

(�)
2 , modulo the annihilator

ideal of tr . Hence we obtain �Dn(q; q) as the quotient of an algebra whose de�ning relations are

independent of q with respect to the annihilator ideal of a trace functional which does not depend

on q as well.

7.9. Inductive formulas for idempotents. We will have to study the algebra Dn(r; q) for values
of r and q for which it is not semisimple. This requires more explicit expressions for certain central

idempotents. These formulas are special cases for inductive formulas of path idempotents, which

have been studied in [32]. However, as we need somewhat more precise information, including the

nonsemisimple case, we give a more or less self-contained derivation of the necessary results here.

Let A 2 Dm. We shall denote by A 
 1 (or sometimes just by A, for brevity) the image of A
under the usual embedding of Dm into Dm+1 which identi�es the generators of Dm with the �rst

m � 1 generators of Dm+1. Let P[1m] denote the central idempotent belonging to Dm;[1m] in the

semisimple case. Using the restriction rule (2.1), we can write

(7.10) P[1m] 
 1 = P[1m+1] + P[2;1m�1] + P
(m+1)

[1m�1]
;

where P[2;1m�1] is an idempotent in Dm+1;[2;1m�1] and P
(m+1)

[1m�1]
is an idempotent in the simple com-

ponent Dm+1;[1m�1]. By [32], (2.15), we have

(7.11) P
(m+1)

[1m�1]
=
Q[1m�1]

Q[1m]

P[1m]EmP[1m]:

Lemma 7.6. The idempotents P[1k] are well-de�ned if [m]q 6= 0 and r + q1�2m 6= 0 for m =

1; 2; ::: k.

Proof: The claim follows as soon as one has shown the following inductive formula:

(7.12) P[1m+1] =
1

[m+1]q

�
qmP[1m] � [m]q P[1m]TmP[1m] � [m]q

1+rq1�2m P[1m]EmP[1m]

�
:

Observe that the algebra Dm+1 is spanned by elements of the form A�B, with A;B 2 Dm and � 2
f1; Tm; Emg (see Theorem 7.3,(d) or, e.g. [43], Prop. 3.2). As P[1m]A is a scalar multiple of P[1m]

for any A 2 Dm, the subalgebra P[1m] Dm+1 P[1m] is spanned by the three elements P[1m]�P[1m],

with � 2 f1; Tm; Emg. It follows from Lemma 7.2 and from Dn=In �= Hn that we can write

P[1m+1] =
1

[m+1]q

�
qmP[1m] � [m]q P[1m]TmP[1m] � �P[1m]EmP[1m]

�
for some suitable scalar �. To compute the scalar, we evaluate each side of the equation above

under trD. Using the Markov property, we obtain

Q[1m+1]

d(X)m+1
= 1

[m+1]q

�
qmQ[1m]

d(X)m
� [m]qrQ[1m]

d(X)m+1 � � Q[1m]

d(X)m+1

�
:

Using the explicit formula for Q[1m] (see Eq 7.6), one can easily solve for �.

Lemma 7.7. Assume that r = qm�1, with m > 0 and that q2 is a primitive l-th root of unity,
l > m+ 1 or l =1. Then P[1m+1] is well-de�ned and P[1m+1] 
 1 is a central minimal idempotent
in Dm+2 modulo the ideal J generated by P[2;1m�1].

23



Proof: It is easy to check that the expressions for P[1k] in Lemma 7.6 are well-de�ned for our choice

of parameters if k � m+1; this also implies that P[2;1m�1] is well-de�ned. As P[2;1m�1] is a linear com-

bination of P[1m]�P[1m], with � 2 f1; Tm; Emg, it follows from the relations that Em+1P[2;1m�1]Em+1

is a scalar multiple of Em+1P[1m]. The scalar can be computed to be equal to Q[2;1m�1]=Q[1m] by

using the Markov property of trD . Using this, one easily shows that P[1m+1]Em+1P[1m+1] 2 J . As
Dm+2=Im+2

�= Hm+2, it follows from Lemma 7.2 and from Dn=In �= Hn that

(7.13)

P[1m+1]Tm+1P[2;1m�1]Tm+1P[1m+1] =
[m]q

[m+1]q
P[1m+1](Tm+1 + q�1)P[1m+1] + 
P[1m+1]Em+1P[1m+1];

where 
 is some scalar. This implies that also P[1m+1](Tm+1 + q
�1)P[1m+1] is in J . This shows that

P[1m+1] 
 1 � P[1m+2] mod J , if the latter is well-de�ned.
If q2 is a primitive (m + 2)-nd root of unity, we choose as spanning set for the subalgebra

P[1m+1]Dm+2P[1m+1] the elements P[1m+1], P[1m+1](Tm+1+ q�1 )P[1m+1] and P[1m+1]Em+1P[1m+1] and

show as before that the last two elements are in J .
Lemma 7.8. Let q2 be a primitive l-th root of unity and assume Q[1k](r; q) 6= 0 for 1 � k � l.

Then there exists a nilpotent element Nl 2 Dl(r; q) such that trD(Nl) 6= 0.

Proof: We see from Lemma 7.6 that the elements P[1k] are well-de�ned for k < l, and that also

Nl = [l]qP[1l] is well-de�ned. It follows that N
2
l = [l]qNl = 0 for our choice of q. Moreover, we have

trD(Nl) = [l]q
Q[1l]

d(X)l
:

It is easy to see from Eq 7.6 that Q[1l] has a pole of order 1 for our choice of q, which cancels

with the zero of [l]q in the formula above. Hence trD(Nl) 6= 0 also for q2 a primitive l-th root of

unity.

Corollary 7.9. The algebra Dl=Al is not semisimple if q2 is a primitive l-th root of unity and
Q[l](r; q) 6= 0 or Q[1l] 6= 0.

Proof: If Q[1l](r; q) 6= 0, we can �nd an element Nl 2 Dl(r; q) which has nonzero trace (hence also

nonzero in the quotient mod Al) but it is nilpotent. This is not possible in a semisimple algebra.

The case with Q[l](r; q) goes similarly, using one of the isomorphisms in Section 7.8.

The quotient Dn=An is semisimple for all n 2 N if and only if Q[l](r; q) = 0 and Q[1l](r; q) = 0;

this condition is vacuous for l = 1. The `only if' part follows from Corollary 7.9. The `if' part

follows from below where we list all the other cases for the parameters r and q.

8. Identifying End
�
X
n

�
We have seen in the last two sections that there exists a homomorphism � from the algebra

Dn(r; q) or BDn(d(X)) into End
�
X
n

�
given by Ti 7! ti and Ei 7! ei. The purpose of this section

is to show that this map is surjective.

8.1. Preliminaries. We say that two idempotents e and f in an algebraM are (von Neumann)

equivalent, e � f , if there exist elements u and v inM such that e = uv and f = vu. An idempotent
e 2 M is called minimal if there exists for any a 2 M a scalar 
(a) such that eae = 
(a)e. The

multiplicity multM(e) of an idempotent e 2M is the maximum numberm of idempotents ei 2M
such that eiej = 0 for i 6= j and ei � ej .
Recall that in a semisimple category we can associate to a subobject X of an object Y (i.e. a

monomorphism from X into Y ) an idempotent pX in End(Y ) (see e.g. Lemma 3.2). We then

de�ne the multiplicity of the subobject X in Y to be equal to the multiplicity of pX in End(Y ).
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Lemma 8.1. Let C be a semisimple category, let Y 2 Ob (C) and let e; f 2 End(Y ) be two
idempotents.

(a) The idempotents e and f are equivalent i� Im(e) and Im(f) are isomorphic subobjects of Y .
(b) Let X be a subobject of Im(e). Then the multiplicity of X in Y is � multEnd(Y )(e).

Proof: Follows straightforward from the de�nitions.

8.2. Let now C be a (fusion) category of orthogonal or symplectic type, and let N be the maximum

of numbers k for which we have a simple object in C labeled by a Young diagram of the form [1k].

Lemma 8.2. Let 1 � m < N and assume that P[1m] and P[1m+1] exist in Dm+1(r; q). Let p[1k] =

�
�
P[1k]

�
for k = 1; 2; :::; m+ 1.

(a) If Im
�
p[1m]

�
= X[1m], then X[1m+1] is a subobject of Im

�
p[1m+1]

�
.

(b) If moreover �
�
P[2;1m�1]

� 6= 0, then Im
�
p[1m+1]

�
= X[1m+1].

Proof: If m = 1, the statements are true by de�nition. Assume now m > 1. By induction

assumption, X[1m] is a subobject of �
�
P[1m]

�
; hence X[1m+1] is a subobject of �

�
P[1m] 
 1

�
. As

X[1m+1] has multiplicity 1 in X

(m+1), the claim in (a) follows from Eq 7.10 and Lemma 8.1 . (b).

For part (b), observe that (p[1m] 
 1)End
�
X
m+1

�
(p[1m] 
 1) has dimension 3 by Eq 6.1. On

the other hand, trD (P
(m+1)

[1m�1]
) = dimX[1m�1]=(dimX)m+1 6= 0. Using this, our assumption on

�
�
P[2;1m�1]

�
and part (a) , it follows that the three idempotents on the right hand side of Eq 7.10

have nonzero image under �. Hence the claim follows from Eq 6.1.

8.3. Restrictions for parameters. Let C and N be as in the previous subsection. Recall that

we can choose a fourth root of unity 
 such that the eigenvalues of 
c are q, �q�1 and r�1 for

suitable values q and r.

Lemma 8.3. Assume that q2 is a primitive l-th root of unity, l 2 N [ f1g and let m 2 N be such
that Q[1m+1](r; q) = 0 and Q[1k](r; q) 6= 0 for 1 � k � m. Then m < l and m � N .

Proof: Assume l � m. By Lemma 7.8, there exists a nilpotent element Nl 2 Dl with trD(Nl) 6= 0.

Then also �(Nl) is nilpotent and tr
�
�(Nl)

�
= trD(Nl) 6= 0, a contradiction to End

�
X
l

�
being

semisimple.

Now assume that m > N . Then it follows from Lemma 7.6 that P[1N+1], P[2;1N�1] and P
(N+1)

[1N�1]

are well-de�ned. By our assumptions, they also have nonzero trace. From this we could conclude

that �
�
(P[1N ] 
 1)(DN+1)(P[1N ] 
 1)

�
would have dimension � 3. This contradicts the fact that

dim End
�
X[1N ] 
X

�
= 1 in the orthogonal case and dim End

�
X[1N ] 
X

�
= 2 in the symplectic

case (see the remark below Eq 6.1).

Lemma 8.4.

(a) If C has the Grothendieck semiring of an orthogonal group O(N) or of one of its associated

fusion categories, then r = qN�1 or, if N is odd, r = �qN�1.
(b) If C has the Grothendieck semiring of a symplectic group Sp(N) or of one of its associated

fusion categories, then r = �q2N+1.

Proof: Let m be as in Lemma 8.3. Assume m < N . If �
�
P[2;1m�1]

� 6= 0, then Im�
�
P[1m+1]

�
=

X[1m+1] by Lemma 8.2 and dimX[1m+1] = Q[1m+1](r; q) = 0, which contradicts rigidity, Lemma

5.1.

If �
�
P[2;1m�1]

�
= 0, then X[2;1m�1] has to be a subobject of W = Im

�
�(P[1m+1])

�
by Eq 7.10

(Im
�
�(P

(m+1)

[1m�1]
)
�
is isomorphic to X[1m�1]); in particular, W �= X[1m+1] �X[2;1m�1] is not a simple
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object. Moreover,
�
P[2;1m�1] 
 1

� � ker� and �
�
P[1m+1] 
 1

�
is a central and minimal idempotent

in �(Dm+2) by Lemma 7.7. By the braiding axioms, we can identify cW;X with an element in

�
�
P[1m+1] 
 1

�Dm+2

�
P[1m+1] 
 1

� �= C . Hence cW;X is a scalar multiple of 1W
X . As

cW;X
n =
�
1X
n�1 
 cW;X

� Æ �cW
X
n�1 
 1X
�
;

it follows that cW;X
n is a multiple of the identity for all n 2 N. As W is a subobject of X
m+1,

we also get that cW;W is a multiple of 1W
W . But then conjugation by cW;W would not permute

the factors of p[1m+1] 
 p[2;1m�1] � End(W ) 
 End(W ), with p[1m+1], p[2;1m�1] the projections onto

the submodules of W , contradicting the braiding property. This, together with Lemma 8.3 forces

m = N .

Using the formulas 7.6, one checks that m = N implies r = qN�1, r = �qN�1 if N is odd, or

r = �q2N+1. In case (a) we can rule out r = �q2N+1, as in this case also Q[2;1N�1]

��q2N+1; q
� 6= 0.

In case (b), we can rule out the other cases for r by observing that this would imply dimX[2;1N�1] =

Q[2;1N�1]

�� q2N+1; q
�
= 0, which would contradict rigidity.

8.4. We can now prove the main result of this section

Theorem 8.5. Let C be a tensor category of orthogonal or symplectic type. Then the map � :

Dn(r; q) ! End
�
X
n

�
induced by Ti 7! ti and Ei 7! ei is a well-de�ned, surjective algebra homo-

morphism, with the kernel being the annihilator ideal An of the trace trD .

Proof: We have seen in the proof of Lemma 8.4 that a restriction on the number of antisymmetriza-

tions forces r to be equal to � a positive power of q. Similarly, it follows from the results in Section

7.8 that a restriction on the number of symmetrizations forces r to be equal to � a negative power

of q. In particular, if we have restrictions of both the numbers of symmetrizations and antisym-

metrizations, the two resulting equalities force q to be a root of unity. It now follows from Section

7.7 that the quotient of Dn(r; q) modulo the annihilator ideal of the categorical trace coincides with
End

�
X
n

�
.

As an application of this theorem, we can now show that the description of orthogonal and sym-

plectic categories in Section 6.2 was suÆcient.

Proposition 8.6. The Grothendieck semiring of a category of orthogonal or symplectic type is
already uniquely determined by the labeling set of its simple objects and the tensor product rules
involving the vector representation, see Sections 6.1 and 6.2.

Proof: Observe that in all our paper we have only used the tensor product rules involving the vector
representation to prove the last theorem. By that theorem, any simple object X� corresponds to

an idempotent p� in a quotient �Dn(r; q) of Dn(r; q) for some n 2 N. With the simple object X�

corresponding to an idempotent p� 2 �Dm(r; q), the multiplicity of X� in X� 
X� is now equal to

the multiplicity of the idempotent p� 
 p� in the simple component of �Dn+m(r; q) labeled by �.
It only remains to show that the multiplicity of this idempotent does not depend on the values of

the parameters r and q for the various cases (see Sections 6.1, 6.2 and 7.7). A proof probably most

suited to our setting goes as follows: A set of minimal idempotents for the algebra �Dn was de�ned in
[32], Cor. 2.5 (see also Section 7.9). Strictly speaking, this was only done there for the generic case

when Dn is semisimple, but the proof goes through exactly the same way for �Dn. More precisely,

inductive expressions were given in terms of the generators with coeÆcients being rational functions

in r and q whose singularities are contained in the set of zeros of the dimension functions Q�(r; q) for
our given category. Moreover, explicit matrix representations were determined for the generators of

the algebra �Dn(r; q) whose matrix entries again are rational functions with singularities as before,

see [25], Theorem 6.15.

If �Dn(r; q) �= �Dn(r0; q0) for all n and we are not in the case of a fusion category, we can �nd a path

(r(t); q(t)), 0 � t � 1 from (r; q) to (r0; q0) for which �Dn(r; q) �= �Dn(r(t); q(t)) for 0 � t � 1, avoiding
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any possible pole for the matrix representing the idempotent p� 
 p�. By continuity, the rank of

this idempotent hence must be constant in each irreducible representation of �Dn if we vary the

parameters r and q along our chosen path. For showing the claim in the case of fusion categories,

we can �nd a Galois isomorphism which maps (r; q) to (r0; q0) (after possibly using some of the

reparametrizations mentioned in Section 7.8). This again leaves the rank invariant.

Remarks: The argument in the last proposition works as well in other cases where the braiding

elements of a generating object X of a braided category generate End
�
X
n

�
for all n 2 N. In

particular, it can be used for Lie type A and the associated fusion rings (see [23]).

9. Classification of categories of orthogonal or symplectic types

Let C be a tensor category of orthogonal or symplectic type, and let r and q be the parameters
deduced from the eigenvalues of the braiding morphism cX;X , see Lemma 6.3. We will show that

these parameters will essentially uniquely determine C, up to a few special cases.

9.1. Special Cases. Let us �rst rule out a few cases for which the following general discussion

will not apply: Observe that these include all the possible values of the parameters r and q for

which Q[2;1] (r; q) = 0 (see Eq 7.7).

(a) It is not possible that q is a root of unity and r is not a root of unity. In this case we would

obtain a nilpotent element a in End
�
X
n

�
for some n 2 N with nonzero categorical trace,

which would contradict semisimplicity of End
�
X
n

�
(see Lemma 7.8 and its corollary).

(b) It is not possible that r = q�1 or r = �q; this would imply d(X) = 0, contradicting rigidity

of C.
(c) It is not possible that r = �1 and q 6= �1. In this case Q[12](1; q) = 0 = Q[2](1; q), which

would contradict rigidity

(d) If r = q or r = �q�1 (the O(2)-case), we obtain a unique description of End
�
X
n

�
indepen-

dent of any parameters r and q (see Lemma 7.5). Hence the diagonal D in the O(2) case does
not depend on q, and there exist exactly two monoidal algebras in this case by Theorem 4.9.

(e) If r = q�3 or r = �q3 (the Sp(1)-case), Q[12] resp Q[2] is equal to 0. Hence in this case we

can only obtain a rigid category for which the braiding morphism for the object X has only

two distinct eigenvalues. Such categories have been classi�ed in [23] and, for this special case,

already before in [14].

9.2. Existence. We have already seen examples of orthogonal or symplectic tensor categories in

Section 6.3. The most natural construction in our context uses the tangle category (see [16], [48]

[18], [37]). For more details about this construction see [36] and, for the classical case, [10].

An (n;m)-tangle is a collection of (n + m)=2 ribbons and an arbitrary number of annuli in

R2 � [0; 1]; moreover, n ends of the ribbons will be in the intervals [i � �; i + �] � f0g � f0g,
i = 1; 2; : : : ; n, and m ends of the ribbons will be in the intervals [j � �; j + �] � f0g � f1g,
j = 1; 2; : : : ;m. The concatenation t1 Æ t2 of an (m; k)-tangle t1 with an (n; k)-tangle t2 is given

by putting t1 on top of t2 and rescaling the z-coordinate.
We want to use tangles to construct monoidal algebras. In order to get �nite dimensional

morphism spaces, we need some relations between various tangles. These are the Kau�man skein

relations (see [19], or also e.g. [43]). To do so consider the following (0,2) and (2,0) tangles

� �
Figure 1
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Here one should think of the ribbon obtained by thickening the lines parallel to the drawing

plane. Then � Æ � is a (2,2) tangle. Further (2,2) tangles are given by 1 (two parallel vertical

ribbons) and ��1 (two crossing ribbons, where the �1 exponent corresponds to the two possible

ways of crossing them). We have two possible ways of de�ning quotients, via the Kau�man skein

relations:

(9.1) � � ��1 = (q � q�1)(1� � Æ �) and � Æ � = r�1�

or

(9.2) � + ��1 =
p�1(q � q�1)(1 + � Æ �) and � Æ � = p�1r�1�:

One can show that the C -span of (0,0) tangles modulo these relations is isomorphic to C . Using

this and the morphisms � and � similar as the morphisms i and d0 in Section 2, one de�nes a

trace tr on the set of (n; n)-tangles (see e.g. chapters 2 and 3 in [36]). A C -linear combination

a of (n;m)-tangles is called negligible if tr (ab) = 0 for any (m;n)-tangle b. Let �T (n;m)� be the

quotient of the C -span of all (n;m)-tangles modulo the negligible linear combinations of (n;m)

tangles with respect to the trace de�ned by relations 9.1 (for +) or 9.2 (for �). Then it can be

checked that, for chosen sign, the collection ( �T (n;m)�)n;m2N is a monoidal algebra of type 2 with
�T (n; n)� �= Dn(r; q)=An, whenever the latter is semisimple for all n 2 N. From these monoidal

algebras, one can construct semisimple categories using the results of Section 3. This has already

been shown before in [36], Theorem 8.6. So we have

Proposition 9.1. There exist categories of orthogonal or symplectic types as quotient categories of
the tangle category modulo relations 9.1 or 9.2 for all values r; q for which �T (n; n)� �= Dn(r; q)=An
is semisimple for all n 2 N. These cases are all listed in Section 7.7.

If q = �1 (resp q = �i in case of relation 9.2), one only obtains interesting categories if also

r = �1 (resp r = �i); otherwise d(X) would not be well-de�ned. Moreover, one needs to add to

these relations the additional relation � Æ � = d(X), with d(X) 2 C . In this case, it is often more

convenient to consider the resulting structure as a category of graphs (see the work of Brauer [8]

and Deligne [10]. Then one obtains monoidal algebras and tensor categories as in the previous

proposition (see [10]). Moreover, using the polynomials 7.8, one obtains (see [42], Cor 3.3 and Cor.

3.5)

Proposition 9.2. There exist orthogonal and symplectic categories obtained as quotient categories
of the tangle (or graph) category if q 2 f�1g or q 2 f�ig, with the additional relation � Æ � = d(X).
The resulting category C has the Grothendieck semiring of Rep

�
O(1)

�
if d(X) is not an integer.

If d(X) is an integer, C has the Grothendieck semiring of Rep
�
O(N)

�
if d(X) = N or, if N is odd,

d(X) = 2�N and it has the Grothendieck semiring of Sp(N) if d(X) = �2N .

9.3. Uniqueness. Let C, ~C be categories of orthogonal or symplectic type with isomorphic Grothendieck
semirings, and let r; q resp ~r; ~q be the corresponding parameters as determined in Lemma 6.3. We

can rule out the special cases considered in Section 9.1; in particular we can assume that Q[2;1]

is not zero for these parameters. Let X and ~X be objects corresponding to the (analogue of the)

vector representation in C and ~C respectively. Also, recall that as X generates C, its braiding

structure is uniquely determined by cX;X .

Theorem 9.3. Let the notation be as above, and assume that q 62 f�1g. Then ~C is equivalent to
C as monoidal categories if and only if the eigenvalues of c ~X; ~X can be obtained from the ones of

cX;X by changing the braiding and/or the labeling as described in parts (a) and (b) in Section 7.8.

If q = �1, then categories C and ~C constructed as in Prop. 9.2 are equivalent if and only if

d(X) = d( ~X) for the additional parameters d(X) and d( ~X), and cX;X and c ~X; ~X have the same

eigenvalues.

28



Proof: Let p(�) be the eigenprojection of t for X� is a subobject of X
2. It is a well-known result

for Hecke algebras of type A, that the nonzero eigenvalue of p
(�)
1 p

(�)
2 p

(�)
1 in the summand labeled

by [2; 1] is equal to (q + q�1)�2 (see e.g. [41], p. 361). Hence if ~C is equivalent to C, we obtain
(q+ q�1)�2 = (~q+ ~q�1)�2, which entails ~q 2 f�q�1g. Hence, after changing the braiding structure
in ~C by replacing cX;X by its negative and/or inverse, if necessary, we can assume ~q = q. It also

follows that the quantities d(X)2 and Q[12] must be the same for C and ~C. Hence we obtain

(9.3)
~r � ~r�1

q � q�1 + 1 = �
�
r � r�1
q � q�1 + 1

�
:

If we have a plus sign on the right hand side, it follows that ~r 2 fr;�r�1g, as claimed. To exclude
the minus sign, one uses Q[12](r; q) = Q[12](~r; q) (see Eq. 7.7) as follows: After substituting the

factor (~r � ~r�1)=(q � q�1), using Eq 9.3, one obtains a second equation in which the only powers

of ~r are ~r and ~r�1. Solving this linear system in unknowns ~r and ~r�1, it would follow that ~r is a
rational function of r and q. However, this is not possible for the solution of the quadratic equation
9.3 (in ~r); it is easy to �nd integer values for r and q for which ~r is not rational. This �nishes the
proof of one direction.

On the other hand, assume we have orthogonal or symplectic categories C and ~C with isomorphic
Grothendieck semirings, with the parameters (r; q) and (~r; ~q) related as in the statement. Hence,

after suitable relabeling and change of braiding structure, if necessary, we can assume that the

braiding elements cX;X and c ~X; ~X have the same eigenvalues, for the same components. By Theorem

8.5, this means that both End
�
X
n

�
and End

�
~X
n

�
are isomorphic to �Dn(r; q) = Dn(r; q)=An

for all n 2 N. Moreover, under this isomorphism, the tensor operations in C and ~C correspond to

the usual embeddings of �Dn(r; q) 
 �Dm(r; q) into �Dn+m(r; q). Hence we obtain an equivalence of

the diagonal monoidal algebra generated by X and ~X. By Theorem 4.8 and its corollary, this

equivalence extends to the monoidal algebras generated by X and ~X . But then also C �= ~C by

Theorem 3.5. This completes the proof of the theorem if q 6= �1.
As the quantity d(X) is independent of the choice of � and �, equivalent categories of symplectic or

orthogonal type must have the same value for d(X). On the other hand, if q = �1 for two categories
C and ~C of orthogonal or symplectic type for which also d(X) = d( ~X), their diagonal monoidal

algebras are given by the Brauer algebras with parameter d(X) = d( ~X), hence are isomorphic. As

before, their two possible extensions can be told apart by the eigenvalues of the braiding morphism

cX;X , by Corollary 4.9.

9.4. Main Theorem. Let C be a tensor category of orthogonal or symplectic type, and let X be

the object corresponding to the vector representation.

Theorem 9.4.

(a) The category C is completely determined, up to the symmetries mentioned in Theorem 9.3, by
the eigenvalues of the braiding morphism cX;X , which can be assumed to be of the form q;�q�1
and r�1 or of the form iq;�iq�1 and ir�1, and if q 2 f�1;�ig, by the quantity d(X) = � Æ �.

(b) The category C is a fusion category if and only if q is a root of unity and r = �qn for some
n 2 Z (see Section 6.2); it is of O(N) or Sp(N) type if and only if r = �qn with n as in
Section 6.1 and q not a root of unity or if q = �1 and d(X) is an integer, and it is of type
O(1) if and only if r is not � a power of q and q is not a root of unity. Moreover, such
categories exist for all possible values of r and q, subject to these conditions, which have not
already been excluded in Section 9.1.
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Proof: Part (a) follows from Theorem 9.3. Part (b) now follows from Theorem 8.5 and the results

listed in Section 7.7; the existence part follows from Propositions 9.1 and 9.2.

Let E be a fundamental domain for the Z=2�Z=2 action on C nf0g given by q ! q�1 and q ! �q.
Corollary 9.5. Braided tensor categories whose Grothendieck semirings are isomorphic to the one
of Rep

�
Sp(N)

�
are in 1-1 correspondence with pairs (q; �) where q is a complex number in E not

equal to a root of unity except �1 and � 2 f�1g. The same holds if Sp(N) is replaced by O(N)

with N even. For odd N , we have two families of braided tensor categories each of which is labelled
by pairs (q; �) as above, which correspond to the cases with r = qN�1 and r = q1�N .

Proof: By Theorem 8.5 it suÆces to determine all pairs of parameters (r; q) for which Dn(r; q)=An �=
End

�
X
n

�
for all n 2 N. Using the symmetries in Section 7.8 and the results in [43], Theorem

6.4 (see Section 7.7), one shows �rst that we can assume the parameters (r; q) to be of the form

(qm; q), with q 2 E . Again using [43], Theorem 6.4 (and [42], Cor. 3.5 for q = 1), one can read o�

which exponent belongs to which group.

Remark : The categories whose Grothendieck semirings are isomorphic to the ones of a symplectic
or an even-dimensional orthogonal group as well as one of the two families in the odd-dimensional

orthogonal case are closely related to the corresponding Drinfeld-Jimbo quantum groups. The

second family of categories in the odd-dimensional case seems to be di�erent. For instance, it is

not possible to obtain positive dimensions for all objects, for any choice of parameters, even after

changing the quantity � (see Lemma 5.4) for the dimension function.
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