
COXETER CONSTRUCTION FOR HECKE ALGEBRASHANS WENZLAbstra
t. We give a generalization of Coxeter's 
onstru
tion of representations of re
e
tiongroups to braid groups.It is well-known that one 
an asso
iate to every graph X a braid group B(X) as follows:the generators �i are labeled by the verti
es i of the graph. The relations are given by�i�j�i ::: = �j�i�j ::: , where we have exa
tly m(i; j) fa
tors on ea
h side of the equation, andwhere m(i; j) is equal to 2+ the number of edges 
onne
ting i with j. While it is in generalhard to de
ide whether generators and relations produ
e a nontrivial obje
t, this is easy herethanks to Coxeter's geometri
 representation. Ea
h �i is represented by a re
e
tion, and oneobtains a nontrivial representation of the braid group as a re
e
tion group, i.e. where thegenerators also satisfy the relation �2i = 1.The purpose of this note is to show that this 
onstru
tion 
an be easily generalized toa representation without the re
e
tion property. We �nd 
ontinuous deformations of there
e
tion planes, depending on one or several parameters, whi
h preserve the braid relations,but no longer the re
e
tion property. Now the images Ti of the generators �i satisfy the He
kerelation (Ti�qi)(Ti+1) = 0, with qi being a parameter. This representation 
an be de�ned inanalogy of the Coxeter representation via a bilinear form, or also via a sesquilinear form; herethe involution is given by �qi = q�1i . Doing this 
onstru
tion over the 
omplex numbers, wealso determine for whi
h values of qi these representations 
an be unitarized, using a simpleGram-S
hmid pro
edure.For Coxeter graphs An, n 2 N, this Gram-S
hmidt pro
edure leads to indu
tive formulasfor a 
ertain 
entral idempotent of the 
orresponding He
ke algebras. These formulas alreadyappeared in previous work [W1℄. They found subsequently several appli
ations in von Neu-mann algebras, mathemati
al physi
s and in topology. Unfortunately, one 
an not �nd su
hsimple formulas for other graphs, i.e. the formula would essentially only hold for the givenCoxeter representation. As another appli
ation, we give a fairly simple proof that a He
kealgebra has a natural basis labeled by the elements of the 
orresponding re
e
tion group.The perhaps most interesting 
onsequen
e of this work is the o

urren
e of formal 
hara
terswhose multipli
ation stru
ture 
oeÆ
ients are q-version of the usual Clebs
h-Gordan rules.We also obtain q-versions of 
os(�=m) whi
h so far are somewhat mysterious at least to thisauthor. It would be quite interesting if a more 
on
eptual explanation of these phenomena
ould be found.�Supported in part by NSF grants. 1



2 HANS WENZL1. Coxeter 
onstru
tionIt is not the intention of this note to explore the utmost generality of this 
onstru
tion. Wewill assume K to be a �eld, with variables qi. We shall freely adjoin algebrai
 fun
tions inthe variables qi over this �eld whenever ne
essary.1.1. He
ke algebras. Let X be a �nite graph, with verti
es labelled by the set S. Let, forthe verti
es labeled by i and j, the numberm(i; j) be equal to 2+ the number of edges betweenthe verti
es labelled by i and j. We �x a variable qi for ea
h vertex i with the 
ondition qi = qjif m(i; j) is odd. The He
ke algebra H = H(X; (qi)) over K is given by generators Ti; i 2 Sand relations(B) TiTjTi ::: = TjTiTj ::: , with m(i; j) fa
tors on ea
h side,(H) T 2i = (qi � 1)Ti � qi.1.2. Let q1; q2; � be variables, and let �1 be a fun
tion in these variables su
h that �1(q1; q2; �) =�1(q2; q1; �). We de�ne formal `
hara
ters' �n = �n(q1; q2; �), n 2 Z re
ursively by �n = 0 forn � 0, �0 = 1 and(1.1) �n�1 = (�n+1 + q1�n�1 if n is odd,�n+1 + q2�n�1 if n is even.So all fun
tions �n are uniquely determined by �1. We also de�ne the fun
tions �̂n by�̂n(q1; q2; �) = �n(q2; q1; �). We have �̂1 = �1 by de�nition. It is easy to 
he
k that thefun
tions f�n; n 2 Ng span the algebra generated by �1, and that the operation ^ de�nes anendomorphism of this algebra.Example : If q1 = q2 = q, it is easy to 
he
k that the fun
tions�n(q; q; �) = 2qn=2 sin(n�)= sin(�)satisfy the 
onditions above.Lemma 1.1. �̂n = �n for n odd, and �̂n + q2�̂n�2 = �n + q1�n�2 for n even. Moreover, wealso have(1.2) �n�2 = (�n+2 + q2�̂n�1�1 if n is odd,�n+2 + q2�n�1�1 if n is even.Proof: The statements are proved by indu
tion on n, with everything trivially true forn � 1. Observe that �21�n = �n+2 + (q1 + q2)�n + q1q2�n�2: (�)Solving for �n+2, we obtain �n+2 = �̂n+2 for n odd by indu
tion. In parti
ular, �̂1�̂n = �1�nfor n odd, from whi
h one derives the �rst statement for �̂n with n even. It remains to proveEq. 1.2. Using (�) and �2 = �21 � q1, we get, for n odd,�2�n = �n+2 + q2(�n + q1�n�2) = �n+2 + q2(\�1�n�1):The 
laim follows from �̂1 = �1. The 
ase for n even goes similarly.



COXETER CONSTRUCTION FOR HECKE ALGEBRAS 31.3. We de�ne matri
es A1 and A2 byA1 = ��1 ��10 q1 � ; A2 = � q2 0��1 �1� :Using the formulas in Lemma 1.1, it is easy to 
he
k by indu
tion on k that(1.3) (A1A2)kA1 = � ��̂2k ��2k+1q1�2k�1 q1�2k � ;(1.4) A2(A1A2)k = � q2�̂2k q2�2k�1��2k+1 ��2k �and(1.5) (A1A2)k = � �̂2k �2k�1�q1�2k�1 �q1�2k�2�Lemma 1.2. The matri
es A1 and A2 satisfy the identity A1A2A1 ::: = A2A1A2 ::: (mfa
tors on both sides) if and only if �m�1 = 0, and, if m is odd, q1 = q2.Proof: Assume m = 2k+1 and �2k = 0. Then we also have 0 = �1�2k = �2k+1+ q2�2k�1.The 
laimed identity now follows from this and formulas 1.3 and 1.4 for m = 2k + 1. Ifm = 2k, observe that PA1P = Â2 and PA2P = Â1, where P is the 2� 2 matrix permutingthe two basis ve
tors. Hen
e (A2A1)k = P \(A1A2)kP . If �2k�1 = 0, we show as before that�2k = q1�2k�2. It follows from the last two senten
es that (A1A2)k = (A2A1)k if �2k�1 = 0.On the other hand, if A1A2::: = A2A1::: (m fa
tors in ea
h side), then it follows from Eq1.3-1.5 that �m�1 = 0 (as q1 6= 1 6= q2).1.4. As suggested by the last lemma, we are not so mu
h interested in the a
tual 
omputationof the fun
tions �n; it will be more important to 
ompute the possible values of �1 for whi
h�m�1 will be equal to 0, for a given m.Lemma 1.3. Assume q1 = q2 = q. Then �m�1 = 0 if and only if �1 = q1=22 
os(j�=m),j = 1; 2; ::: m� 1.Proof: It is 
lear for the fun
tions �m as de�ned at the end of Se
tion 1.2 that �m�1(q; q; �) =0 if � = j�=m. Observe that on the other hand the values of �m(q1; q2; �) are already uniquelydetermined by the ones of �1(q1; q2; �). More pre
isely, if we set �1(q1; q2; �) = x, then it fol-lows from the re
ursion relation (1.1) that �m�1(q1; q2; �) is a polynomial in x, q1 and q2 ofdegree m�1 (in x). Hen
e there exist exa
tly m�1 values of x for whi
h �m�1(q1; q2; �) = 0.De�nition 1.4. Let m 2 N. We de�ne 2
o(q1; q2; j�=m) = (q1q2)�1=4x, where x = �1 is thesolution in the equation �m�1 = 0 whi
h spe
ializes to q1=22 
os(j�=m) for q1 = q2 = q.Unfortunately, we do not have a ni
e formula for 2
o(q1; q2; j�=m), or, for that matter, aninterpretation as a fun
tion. Nevertheless, it is easy to 
ompute the �m's as polynomials inx = �1, q1 and q2 from the re
ursion relation 1.1, as well as their zeros, for small m. Weobtain �2 = x2 � q1, �3 = x3 � (q1 + q2)x and �5 = x5 � 2(q1 + q2)x3 + (q21 + q1q2 + q22)x.



4 HANS WENZLOne obtains from this the following result:�2 = 0 : �1 = �pq1,�3 = 0 : �1 = �pq1 + q2 or �1 = 0,�5 = 0 : �1 = �qq1 + q2 �pq1q2 or �1 = 0.1.5. Let V be a ve
tor spa
e with basis (�i; i 2 S), and with a bilinear form de�ned byh�i; �ii = 1 + qi and h�i; �ji = �2(q1q2)1=4
o(q1; q2; k�=m(i; j)) for i 6= j;where 
o(q1; q2;�=m(i; j)) is as de�ned in the last se
tion, and k is an integer satisfying1 � k � m(i; j). We also de�ne for i 2 S the operator Ti : V ! V by(1.6) Tiv = qiv � hv; �ii�i:Observe that for i 6= j 2 S, the operators Ti and Tj leave invariant the 2-dimensional subspa
espanned by �i and �j . Their a
tion on this subspa
e is des
ribed by the matri
es Ai and Ajobtained by substituting q1 by qi and q2 by qj in the formulas for the matri
es A1 and A2.Theorem 1.5. The Eq. 1.6 de�nes a representation of the He
ke algebra H(X).Proof: Let i 2 S. It follows from Eq.1.6 that Ti�i = ��i. Morover, Tiv�qiv 2 K�i, hen
eTi a
ts via multipli
ation by qi on the quotient spa
e V=K�i. Hen
e Ti satis�es the equation(Ti + 1)(Ti � q1) = 0, whi
h is equivalent to (H).Let i; j 2 S, and assume m(i; j) < 1. Then Ti and Tj leave invariant the subspa
e Wspanned by �i and �j , and a
t on W via the matri
es Ai and Aj. These matri
es satisfy rela-tion (B), by Lemma 1.4. It is easy to 
he
k that the restri
tion of h ; i to W is nondegeneratefor m(i; j) <1; this is easiest done by applying Gram-S
hmid to the ve
tors �i and �j (seenext se
tion for more details). Hen
e V =W �W?. Both Ti and Tj a
t by multipli
ation byqi resp. qj on W?, hen
e relation (B) is also satis�ed on W?.If m(i; j) =1, the braid relation be
omes void, and there is nothing to show.2. Unitarizibility2.1. Bilinear Form. We �rst show that the generators are self-adjoint with respe
t to ourbilinear form h ; i.Lemma 2.1. With notations as in the last se
tion, we have hTiv; wi = hv; Tiwi for v; w 2 Vand i = 1; 2; ::: n.Proof: One 
omputes hTiv; wi = qihv; wi + hv; �iihw;�ii = hv; Tiwi.2.2. Renormalization. Next we want to determine when our Coxeter type representation
an be unitarized. It will be 
onvenient to repla
e the ve
tors �i by the ve
tors �i = q�1=4i �i.Then we have(2.1) h�i; �ii = q�1=2i + q1=2i ; h�i; �ji = �2
o(qi; qj; �m(i; j) ) = �2 
os(�=m(i; j));



COXETER CONSTRUCTION FOR HECKE ALGEBRAS 5where the last equality holds if q1 = q2. In the following we assume that the elements qiare invertible in our ring, and that there exists an involutive algebra homomorphism � overour ground ring su
h that �1 = 1 and �qi = q�1i ; i = 1; 2. The most 
ommon examples for ourground ring would be the rational fun
tions in variables qi, with suitable algebrai
 fun
tionsadjoined, or the 
omplex numbers with qi being numbers of absolute value 1. The notions of
onjugate linear maps and sesquilinear forms extend to our slightly more general setting inthe obvious way.Proposition 2.2. The pairings in Eq. 2.1 extend to a unique invariant sesquilinear formh ; iS on V ; here invariant means that hTiv; TiwiS = hv; wiS for v; w 2 V and i = 1; 2; ::: n.Proof: It follows dire
tly from Eq 1.1 by indu
tion on n that �n is a homogeneous polyno-mial of degree n in the variables q1, q2 and x = �1, if we de�ne deg(x) = 1 and deg(qi) = 2,for i = 1; 2. Hen
e any solution x of �m = 0 is a homogeneous algebrai
 fun
tion in q1 andq2 of degree 1. This entails y = 2
o(q1; q02�=(m + 1)) = (q1q2)�1=4x has degree 0, i.e. it isan algebrai
 fun
tion in q1q�12 . Hen
e �y(q1; q2) = y(q2; q1) = ŷ. As �̂m = �m for m odd,by Lemma 1.1, it follows �y = y in this 
ase. If m is even, we have q1 = q2 and thereforeautomati
ally �y = y. So the 
oeÆ
ients h�i; �ji are all �xed by the involution � . Hen
e we
an de�ne a sesquilinear form h ; iS on V byhXi ai�i;Xj bj�jiS =Xi;j ai�bjh�i; �jiS :If qi is invertible, one 
an easily 
al
ulate from relation (H) that 1�q�1i �q�1i Ti is the inverseof gi. One now shows by essentially the same 
omputation as in the proof of Lemma 2.1,using the basis (�i), that hTiv; wiS = hv; T�1i wiS for v; w 2 V and i = 1; 2; ::: n.Remark 2.3. 1. In the following we shall primarily be interested in the sesquilinear formde�ned in the last proposition. We shall therefore denote it just by h ; i for simpli
ity ofnotation. Several of the following 
onstru
tions, su
h as e.g. the Gram-S
hmid pro
edure 
anbe easily adapted to the 
orresponding bilinear form de�ned before.2. If we take the Coxeter graph of type An, we obtain a representation of Artin's braidgroup whi
h is equivalent to the famous (redu
ed) Burau representation. Of 
ourse, our
onstru
tion yields representations of braid groups for any Coxeter graph.2.3. Gram-S
hmid pro
edure. We would like to determine for whi
h 
hoi
es of qi theHermitian form de�ned in Prop. 2.2 be
omes an inner produ
t. To do so, we simply apply theGram-S
hmid pro
edure to determine an orthonormal basis, if possible. We shall denote thesesquilinear form 
onstru
ted in the previous Se
tion just by h ; i; the following 
onstru
tionswould work as well for the 
orresponding bilinear form.Let us 
hoose for the set S the numbers 1; 2; ::: jSj, if S is �nite, or N, if S is 
ountable.Let us assume for the moment that the restri
tion of h ; i to the span Vi�1 of the ve
tors�1; ::: �i�1 is nondegenerate, and let Ei�1 be the orthogonal proje
tion onto Vi�1. Then thei-th ve
tor vi of the Gram-S
hmid pro
ess is given by(2.2) vi = (�i �Ei�1�i)=k�i �Ei�1�ik;



6 HANS WENZLprovided k�i � Ei�1�ik 6= 0. We will use these norms to de�ne fun
tions Pi indu
tively byPn = 0 for n < 0, P0 = 1 and(2.3) Pi = k�i �Ei�1�ik2Pi�1 = ((q1=2 + q�1=2)� kEi�1�ik2)Pi�1:Hen
e, if vi is well-de�ned, we obtain from the last two equations(2.4) h�i; vii2 = Pi�1=Pi:The Pi's obviously are fun
tions of q1; :::; qi. Moreover, we have P1 = q1=21 + q�1=21 . We shallsee that the Pi's are Laurent polynomials in the variables q1=2j in many 
ases. The followingtwo lemmas are useful for 
al
ulating the fun
tions Pi.Lemma 2.4. Let i 2 S. We assume that h�i; �ji = 0 for all j � i� 2. Then(a) h�i; vi�1i = pPi�2=Pi�1h�i; �i�1i, and(b) Pi = (q1=2i + q�1=2i )Pi�1 � h�i; �i�1i2Pi�2.Proof: By de�nition and assumptions, we have k�j �Ej�1�ik2 = Pj�1=Pj for j = i; i� 1.If (vk)k is the orthonormal basis obtained from the �k via Gram-S
hmid, it follows from Eq.2.2 that vi�1 = pPi�1=Pi�2�i�1 + 
, with 
 2 Vi�2. As h�i; 
i = 0 by assumption, we obtain(a). As Ei�1�i =Pi�1j=1h�i; vjivj and as h�i; vji = 0 for j < i� 1, we havekEi�1�ik2 = kh�i; vi�1ik2 = Pi�1=Pi�2h�i; �i�1i2:It follows thatk�i �Ei�1�ik2 = k�ik2 � kEi�1�ik2 = q1=2i + q�1=2i � Pi�1=Pi�2h�i; �i�1i2:Multiplying this equation by Pi�2 shows (b).Lemma 2.5. Assume that i� 2 is a simple triple point of our graph, i.e. it is 
onne
ted onlyto the verti
es i, i � 1 and i � 3, by single edges, and both i and i � 1 are not 
onne
ted toany vertex j < i� 2. Then we have, for q = qi,Pi = (q1=2 + q�1=2)(Pi�1 � Pi�3):P roof: Let (vj) be the orthonormal basis obtained by Gram-S
hmid for j < i. As h�i; �ji =0 for j < i� 1, we 
an write Ei�1(�i) = x1vi�2+x2vi�1. As h�i; �ji = h�i�1; �ji for j < i� 1,we have x1 = h�i�1; vi�2i = �qPi�3=Pi�2;by Lemma 2.4,(a). As �i�1 is in the span of vi�2 and vi�1 and has norm q1=2 + q�1=2, we 
an
hose vi�1 su
h that h�i�1; vi�1i = pPi�1=Pi�2, using Lemma 2.4,(b). Hen
e we derive fromh�i�1; Ei�1(�i)i = 0 that �x1qPi�3=Pi�2 + x2qPi�1=Pi�2 = 0:One 
al
ulates from this that x2 = Pi�3=pPi�1Pi�2. We 
an now easily 
ompute k�i �Ei(�i)k2 = q1=2 + q�1=2 � x21 � x22, using the identities of Lemma 2.4. The expression for Pifollows from this.



COXETER CONSTRUCTION FOR HECKE ALGEBRAS 7Lemma 2.6. The sesquilinear form h ; i is an inner produ
t on the ve
tor spa
e Vn if andonly if P1; P2; :::; Pn are positive.Proof: By 
onstru
tion, we obtain an orthogonal basis from the ve
tors �i�Ei�1�i, i 2 S,provided the proje
tions Ei�1 are well-de�ned. The latter statement is the 
ase if and only ifthe polynomials Pj are nonzero for 1 � j < i. As k�i �Ei�1�ik2 = Pi�1=Pi, we see that oursesquilinear form is positive de�nite if and only if all these square norms are positive, whi
his equivalent to all the fun
tions Pi being positive.2.4. Polynomials for Weyl groups. We 
ompute the fun
tions Pi for the Coxeter graphs
orresponding to Weyl groups, using Lemmas 2.4 and 2.5. We 
hoose the labelling for thegraph Bn su
h that the endpoint with the double edge is labelled by 1, and with i+ 1 beingthe vertex not labelled yet whi
h is 
onne
ted with the vertex i. For type Dn, it will be
onvenient to start the labeling at the endpoint of the longest leg, with the endpoints nextto the triple point being labeled by n� 1 and n, Moreover, observe that we only have singleedges for types An and Dn, and also for all edges of Bn ex
ept for the one between 1 and 2.So we 
an set qi = q for all i in An and Dn, and for all i 6= 1 in type Bn. We set q1 = Q intype Bn. Then we getAn : Pi = q(i+1)=2 � q�(i+1)=2q1=2 � q�1=2 = qi=2 + q(i�2)=2 + ::: + q�i=2;Bn : Pi = Q1=2q(i�1)=2 +Q�1=2q�(i�1)=2:For type Dn, the �rst n � 1 fun
tions Pi will 
oin
ide with the ones for An. Using Lemma2.5, we obtainPn = (q(n�1)=2 + q�(n�1)=2)(q1=2 + q�1=2) = qn=2 + q(n�2)=2 + q�n=2 + q�(n�2)=2:Using the labelling 
oming from the extensions of graphs A4 � D5 � E6 � E7 � E8, we getfor P5 the polynomial in the last formula for n = 5, and, by Lemma 2.4,E6 : P6 = (q1 + 1 + q�1)(q2 � 1 + q�2);E7 : P7 = (q1=2 + q�1=2)(q3 � 1 + q�3);E8 : P8 = (q4 + q3 � q1 � 1� q�1 + q�3 + q�4):For G2, we get, as usual, P1 = q1=2 + q�1=2 andG2 : P2 = Q1=2q1=2 � 1 + q�1=2Q�1=2:Finally, we get for F4 the polynomialsF4 : P1 = Q1=2+Q�1=2; P2 = Q+1+Q�1; P3 = Q1=2q1=2+Q�1=2q�1=2; P4 = Qq�1+Q�1q�1:



8 HANS WENZLTheorem 2.7. Consider a He
ke algebra 
orresponding to a Weyl group, and assume Q = qin the nonsimply la
ed 
ases BCFG. Its Coxeter type representation is unitary if and only ifq = e2�it, with jtj � 1=h, where h is the Coxeter number.Proof: One observes that for Q = q the zeros of all the polynomials Pi 
omputed in theprevious se
tion are roots of unity. It is not hard to 
he
k that the highest degree of su
hroots of unity 
oin
ides with the Coxeter number of the graph (e.g. for E8 it would be 30).Remark 2.8. If we set Q = e2�is, we 
an also easily express the values for whi
h our Coxetertype representation is unitary. This is left as an exer
ise to the interested reader.2.5. AÆne He
ke algebras. We brie
y look at He
ke algebras 
orresponding to aÆne re-
e
tion groups. We shall show for aÆne type A in some detail why our Coxeter representation
an never be unitarized, ex
ept for q = 1 when our sesquilinear form be
omes positive semi-de�nite. Re
all that the Coxeter graph for aÆne type Ân 
an be des
ribed as the boundaryof a polygon with n+ 1 sides.Lemma 2.9. The polynomials Pi for aÆne type Ân are equal to the ones for An if i � n,and Pn+1 = (q(n+1)=4 � q�(n+1)=4)2.Proof: This is a straightforward 
al
ulation. We give some details for the interested reader.Let (vj) be the Gram-S
hmid orthonormal basis for type An. Then we 
an write ve
tors �iby �1 = (q1=2 + q�1=2)v1 and�i = �qPi�2=Pi�1vi�1 +qPi=Pi�1vi:for 2 � i � n. Let xi = h�n+1; vii. Then h�n+1; v1i = �1 implies x1 = �pP0=P1, and oneshows by indu
tion on i, using h�n+1; �ii = 0, that xi = �1=pPi�1Pi for 2 � i < n. Similarly,one 
al
ulates from h�n+1; �ni = �1 that xn = �(Pn�1 + 1)=pPn�1Pn.It is easy to show by indu
tion on i that Pij=1 x2j = Pi�1=Pi for i < n, and kEn(�n+1)k2 =Pnj=1 x2j = 2(Pn�1 + 1)=Pn. It follows thatPn+1 = (q1=2 + q�1=2)Pn � 2Pn�1 � 2 = q(n+1)=2 � 2 + q�(n+1)=2:Corollary 2.10. The Coxeter type representation for aÆne He
ke algebras of type Ân 
annot be unitarized.Proof: If q = e2�it, we have Pn+1(q) = �4 sin2(n+ 1)t�=2.Remark 2.11. Similar statements 
an be shown for other aÆne He
ke algebras. Here thegraphs have no 
y
les, and the additional polynomial 
an be 
al
ulated fairly easily, usingLemmas 2.4 and 2.5. 3. Some Appli
ations3.1. Support proje
tions. Let X be a graph with n edges, and let k < n. Let us assumethat the bilinear form h ; i de�ned in the previous se
tion is nondegenerate on V as well as



COXETER CONSTRUCTION FOR HECKE ALGEBRAS 9on Vk, the span of f�i; 1 � i � kg. We de�ne fk to be the proje
tion onto the orthogonal
omplement of Vk. Moreover, we also de�ne the element ei 2 End(V ) byei : v 2 V 7! ei(v) = hv; �ii�i:Observe that ei is a s
alar multiple of the proje
tion onto �i, with the multiple being k�ik2.Then we have the following easyLemma 3.1. The idempotents fk are de�ned indu
tively by f0 = 1, and by(3.1) fk = fk�1 � Pk�1Pk fk�1ekfk�1;where ei is the orthogonal proje
tion onto the span of �i.Proof: As the image of ek is 
ontained in the span of fvj ; j � kg, the element fk�1ekfk�1must be a multiple of the proje
tion onto vk. This multiple is equal tohvk; fk�1ekfk�1vki = hvk; ekvki = h�k; vki2:The 
laim now follows from Eq. 2.4.Remark 3.2. For Coxeter graph An, one 
an use the formula in the previous lemma to de�neelements fk indu
tively, where we take for ei the element in the 
orresponding He
ke algebrade�ned by ei = �q�1=2(gi � q). Observe that the braid relation for type A, i.e. with onlysingle edges, 
an be expressed equivalently byeiei+1ei � q(1 + q)2 ei = ei+1eiei+1 � q(1 + q)2 ei+1:It is then a fairly straightforward proof by indu
tion to show that the fks are 
entral idempo-tents in the He
ke algebra uniquely determined by eifk = 0 = fkei for all i � k. This has beenimportant for simplifying Jones' proof for restri
tion of index values of subfa
tors (see [Jo℄,[W1℄). The formula has also found appli
ations in mathemati
al physi
s and low-dimensionaltopology, see e.g. [FRS℄, [KL℄, [Li℄, [MV℄.Unfortunately, it seems that su
h a widespread appli
ation of the formula in Lemma 3.1does not seem to hold for other graphs.3.2. Basi
s about He
ke algebras. We 
an now use our results to derive some basi
 resultsabout He
ke algebras in a fairly easy way. We need some terminology from the theory ofre
e
tion groups; see [B℄, [H℄ for more details. Let X be a graph, and let W =W (X) be the
orresponding re
e
tion group; here the generators, denoted by si, satisfy besides the braidrelations also s2i = 1 for all i. We speak of a redu
ed expression of an element w 2 W if itis written as a produ
t of generators with the minimum number of fa
tors; that number is
alled the length of w, denoted by `(w). It is known that the element Tw = Ts1Ts2 ::: Tsr ,where s1s2 ::: sr is a redu
ed expression for w, is well-de�ned independent of the 
hoi
e ofthe redu
ed expression. It is quite easy to 
he
k that the elements Tw, with w 2W , span theHe
ke algebra H = H(X). We want to prove that they are also linearly independent.
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ally follow the standard approa
h, whi
h goes as follows. Assume linearindependen
e. De�ne the ve
tor spa
e V with basis fvw; w 2W (X)g. Identifying the ve
torsvw with the elements Tw, it follows from the multipli
ative stru
ture of the He
ke algebra that(3.2) Tivw = (vsiw if `(siw) > `(w),(qi � 1)vw + qivsiw if `(sw) < `(w).On the other hand, if we 
an show that the maps de�ned above do indeed de�ne a representa-tion of the He
ke algebra, then the Tw are linearly independent; indeed, already the elementsTwv1 = vw are linearly independent. See [B℄, [H℄ for more details.3.3. Rank 2 Case. A He
ke algebra is 
alled of rank 2 if the 
orresponding graph has exa
tlytwo verti
es. Hen
e the only variation is given by the number of edges between these twoverti
es. We also in
lude the 
ase of in�nitely many verti
es, in whi
h 
ase the braid relationbe
omes va
uous.Lemma 3.3. A He
ke algebra of rank 2 has a basis labeled by the elements of the 
orrespond-ing Coxeter group.Proof: . If we have 0 < m � 2 < 1 edges, the 
orresponding re
e
tion group is thedihedral group of order 2m. It follows from Eq. 1.6 that we obtain for any integer 0 < j � ma representation with respe
t to the basis f�1; �2g given by the matri
es(3.3) T1 7! ��1 ��10 q1 � and T2 7! � q2 0��1 �1� ;where �1 = (q1q2)1=42
o(q1; q2; j�=m). It is now easy to 
he
k that the tra
e of the matrixrepresenting T1T2 is equal to 4(q1q2)1=2
o2(j�=m) � q1 � q2. Hen
e these representations aremutually nonisomorphi
 for 0 < j < m=2. Moreover, if m is even, we have four mutuallynonisomorphi
 one-dimensional representations, while for m odd, we have two nonisomorphi
one-dimensional representations. Forming the dire
t sum of all of these representations, weobtain a representation of the He
ke algebra whose image has dimension 2m. This is theorder of the 
orresponding dihedral Coxeter group, and hen
e the elements Tw labeled by theelements w 2W are linearly independent.If we have in�nitely many edges between the two verti
es, there is nothing to show.3.4. General 
ase. LetWI �W be a subgroup ofW generated by a subset of the generatorssi. Then it is well-known that there exists for ea
h 
oset of WI in W an element w0 su
h that(3.4) `(wwo) = `(w0) + `(w)for any w 2WI . This 
an be shown by pi
king an element w0 of minimal length in the given
oset. If the additivity property did not hold, one 
ould �nd an element of shorter length inthe 
oset, using the deletion 
ondition (see e.g. [H℄ Se
tion 5.8).Proposition 3.4. The elements Tw, w 2W (X) form a basis for the He
ke algebra H(X).



COXETER CONSTRUCTION FOR HECKE ALGEBRAS 11Proof: We follow the standard proof, i.e. we have to show that the a
tions of the elementsTi on the ve
tor spa
e V de�ned in Eq. 3.2 de�ne a representation of the He
ke algebra.Observe that ea
h relation only involves two elements, say Ti and Tj. Let W (i; j) be there
e
tion group generated by si and sj, and let H(i; j) be the 
orresponding He
ke algebra.Then for ea
h w0 2 W (X), the span Vw0 of fvww0 ; w 2 W (i; j)g is invariant under bothTi and Tj . Let V (i; j) be the span of ve
tors vw, w 2 W (i; j). By Lemma 3.3 and thedis
ussion in Se
tion 3.2 we obtain a representation of H(i; j) on V (i; j). If we pi
k for w0 theelement of minimum length in our given 
oset, it follows from Eq 3.2 and 3.4 that the mapvw 2 V (i; j) 7! vww0 , 
ommutes with the a
tion of H(i; j). Hen
e the 
ommutation relationsbetween Ti and Tj also hold on Vw0 . Referen
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