COXETER CONSTRUCTION FOR HECKE ALGEBRAS

HANS WENZL

ABSTRACT. We give a generalization of Coxeter’s construction of representations of reflection
groups to braid groups.

It is well-known that one can associate to every graph X a braid group B(X) as follows:
the generators o; are labeled by the vertices ¢+ of the graph. The relations are given by
0i00; ... = 0;0;0; ... , where we have exactly m(i, j) factors on each side of the equation, and
where m(i,7) is equal to 2+ the number of edges connecting ¢ with j. While it is in general
hard to decide whether generators and relations produce a nontrivial object, this is easy here
thanks to Coxeter’s geometric representation. Each o; is represented by a reflection, and one
obtains a nontrivial representation of the braid group as a reflection group, i.e. where the
generators also satisfy the relation o? = 1.

The purpose of this note is to show that this construction can be easily generalized to
a representation without the reflection property. We find continuous deformations of the
reflection planes, depending on one or several parameters, which preserve the braid relations,
but no longer the reflection property. Now the images T; of the generators o; satisfy the Hecke
relation (T; —q;)(T; +1) = 0, with ¢; being a parameter. This representation can be defined in
analogy of the Coxeter representation via a bilinear form, or also via a sesquilinear form; here
the involution is given by ¢; = q[l. Doing this construction over the complex numbers, we
also determine for which values of ¢; these representations can be unitarized, using a simple
Gram-Schmid procedure.

For Coxeter graphs A,, n € N, this Gram-Schmidt procedure leads to inductive formulas
for a certain central idempotent of the corresponding Hecke algebras. These formulas already
appeared in previous work [W1]. They found subsequently several applications in von Neu-
mann algebras, mathematical physics and in topology. Unfortunately, one can not find such
simple formulas for other graphs, i.e. the formula would essentially only hold for the given
Coxeter representation. As another application, we give a fairly simple proof that a Hecke
algebra has a natural basis labeled by the elements of the corresponding reflection group.

The perhaps most interesting consequence of this work is the occurrence of formal characters
whose multiplication structure coefficients are g-version of the usual Clebsch-Gordan rules.
We also obtain g-versions of cos(mw/m) which so far are somewhat mysterious at least to this
author. It would be quite interesting if a more conceptual explanation of these phenomena
could be found.

*Supported in part by NSF grants.
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1. COXETER CONSTRUCTION

It is not the intention of this note to explore the utmost generality of this construction. We
will assume K to be a field, with variables ¢;. We shall freely adjoin algebraic functions in
the variables g; over this field whenever necessary.

1.1. Hecke algebras. Let X be a finite graph, with vertices labelled by the set S. Let, for
the vertices labeled by i and j, the number m(i, ) be equal to 24 the number of edges between
the vertices labelled by 7 and j. We fix a variable g; for each vertex ¢ with the condition ¢; = ¢;
if m(i, ) is odd. The Hecke algebra H = H(X;(g;)) over K is given by generators T;, i € S
and relations

(B) TTyT; ... =T;T;T; ... , with m(i,j) factors on each side,

(H) T7 = (¢ — V)Ti — gi.

1.2.  Let ¢1, 2,0 be variables, and let x; be a function in these variables such that x1(q1,g2;0) =
Xx1(q2, q1;0). We define formal ‘characters’ x,, = xn(q1,q2;0), n € Z recursively by x, = 0 for
n <0, xg =1 and

Xn+1 + qixXn—1 if nis odd,
(1'1) XnX1 = . .
Xn+1 + goxn—1 if n is even.

So all functions x, are uniquely determined by x;. We also define the functions y, by
Xn(q1,92;0) = xn(q2,q1;60). We have x1 = x1 by definition. It is easy to check that the
functions {x,, n € N} span the algebra generated by x1, and that the operation ~ defines an
endomorphism of this algebra.

Example : If ¢1 = g2 = q, it is easy to check that the functions

Xn (¢, q;0) = 2¢™? sin(nd) / sin(0)
satisfy the conditions above.

Lemma 1.1. ¥, = xn for n odd, and Xn, + g2Xn—2 = Xn + q1Xn—2 for n even. Moreover, we
also have

o
(1.2) o — {Xn+2+QZXn X1 ifn s odd,

Xn+2 + @2Xxn—1x1 if 7 is even.
Proof. The statements are proved by induction on n, with everything trivially true for
n < 1. Observe that
XTXn = Xnt2 + (@1 + @2)Xn + Q182Xn 2. (+)
Solving for xpt2, we obtain x,12 = Xnto for n odd by induction. In particular, x1xn = X1Xn
for n odd, from which one derives the first statement for x, with n even. It remains to prove
Eq. 1.2. Using (*) and x2 = x? — q1, we get, for n odd,
X2Xn = Xnt2 + @2(Xn + @1Xn—2) = Xn+2 + @(X1Xn_1)-

The claim follows from x; = x1. The case for n even goes similarly.
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1.3.  We define matrices Ay and Ay by

-1 X1> < @2 0 )
A = Ay = .
! < 0 q )’ 2 -x1 —1

Using the formulas in Lemma 1.1, it is easy to check by induction on k that

13 A ANV A, — < — X2k _X2k+1>’
( ) ( ! 2) ! qd1X2k—1 q1 X2k

1.4 Ao (As ANE — < q2X2k QQX2k1>

( ) 2( ! 2) —X2k+1 —X2k

and

15 A A k:< X2k X2k—1 )

(15) (A1 42) —q1X2k-1  —q1X2k—2

Lemma 1.2. The matrices Ay and As satisfy the identity A1AsAy ... = AsA1Ay ... (m

factors on both sides) if and only if xm_1 = 0, and, if m is odd, ¢1 = qo.

Proof. Assume m = 2k + 1 and x9, = 0. Then we also have 0 = x1x2k = X2k+1 + 92X 2k 1-
The claimed identity now follows from this and formulas 1.3 and 1.4 for m = 2k + 1. If
m = 2k, observe that PA;P = As and PAsP = Ay, where P is the 2 x 2 matrix permuting

the two basis vectors. Hence (A3 A1) = P(A;A3)FP. If xo,_1 = 0, we show as before that
X2k = q1X2k—2. It follows from the last two sentences that (A; A3)* = (A9 A1)* if yor_1 = 0.

On the other hand, if A;As... = AsA;... (m factors in each side), then it follows from Eq
1.3-1.5 that x,m—1 =0 (as ¢1 # 1 # ¢2).

1.4. Assuggested by the last lemma, we are not so much interested in the actual computation
of the functions yx,,; it will be more important to compute the possible values of x; for which
xm—1 will be equal to 0, for a given m.

Lemma 1.3. Assume ¢, = g2 = q. Then xm-1 = 0 if and only if x1 = ¢'/?2cos(jn/m),
i=1,2, .m—1,

Proof. It is clear for the functions y,, as defined at the end of Section 1.2 that x,,—1(q,¢;0) =
0 if @ = jm/m. Observe that on the other hand the values of x,,(q1, g2; ) are already uniquely
determined by the ones of x1(q1,q2;0). More precisely, if we set x1(q1,qo;6) = , then it fol-
lows from the recursion relation (1.1) that x,,—1(q1,qo;6) is a polynomial in z, ¢; and g9 of
degree m — 1 (in ). Hence there exist exactly m — 1 values of = for which x,,—1(q1, ¢2;0) = 0.

Definition 1.4. Let m € N. We define 2co(q1, qo; jm/m) = (q1g2)"Y/*z, where & = x; is the
solution in the equation x,,_1 = 0 which specializes to ¢'/%2 cos(jm/m) for g1 = g2 = q.

Unfortunately, we do not have a nice formula for 2co(qi, g2; jm/m), or, for that matter, an
interpretation as a function. Nevertheless, it is easy to compute the x,,’s as polynomials in
z = X1, 1 and gy from the recursion relation 1.1, as well as their zeros, for small m. We
obtain x2 = 2% — qi, x3 = #* — (1 + g2)z and x5 = 2° — 2(q1 + ¢2)2° + (¢} + Qg2 + @3z
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One obtains from this the following result:
x2=0: x1= :‘:\/q_la

x3=0: x1==xvq1 +qor x1 =0,

X5 =0: X1=i\/Q1+QQi\/Q1QQ or x1 = 0.

1.5. Let V be a vector space with basis («;, i € S), and with a bilinear form defined by

(aj,05) =1+¢q; and (a4 a;) = —2(q1qQ)1/4c0(q1,q2;kw/m(i,j)) for 7 # 3,

where co(q1,qo;m/m(i,j)) is as defined in the last section, and k is an integer satisfying
1 <k <m(i,j). We also define for i € S the operator T; : V. — V by

(1.6) Tiv = qiv — (v, ;) .

Observe that for i # j € S, the operators T; and T} leave invariant the 2-dimensional subspace
spanned by «; and «;. Their action on this subspace is described by the matrices A; and A;
obtained by substituting ¢; by g; and ¢y by ¢; in the formulas for the matrices A; and As.

Theorem 1.5. The Eq. 1.6 defines a representation of the Hecke algebra H(X).

Proof. Let 1+ € S. It follows from Eq.1.6 that T;a; = —a;. Morover, T;v — ;v € Kq;, hence
T; acts via multiplication by ¢; on the quotient space V/K ;. Hence T; satisfies the equation
(T; + 1)(T; — 1) = 0, which is equivalent to (H).

Let 7,5 € S, and assume m(i,j) < co. Then T; and T} leave invariant the subspace W
spanned by «; and «;, and act on W via the matrices A; and A;. These matrices satisfy rela-
tion (B), by Lemma 1.4. Tt is easy to check that the restriction of ( , ) to W is nondegenerate
for m(i, j) < oo; this is easiest done by applying Gram-Schmid to the vectors «; and «; (see
next section for more details). Hence V = W @ W+. Both T; and T act by multiplication by
q; resp. q; on W, hence relation (B) is also satisfied on W+,

If m(i,j) = oo, the braid relation becomes void, and there is nothing to show.

2. UNITARIZIBILITY

2.1. Bilinear Form. We first show that the generators are self-adjoint with respect to our
bilinear form ( , ).

Lemma 2.1. With notations as in the last section, we have (Tyv,w) = (v, Tyw) for v,w € V
andi=1,2, ... n.

Proof. One computes (T;v, w) = ¢;(v,w) + (v, a;){w, ;) = (v, Tw).

2.2. Renormalization. Next we want to determine when our Coxeter type representation
“1/4

can be unitarized. It will be convenient to replace the vectors «; by the vectors 8; = ¢q; ' «;.

Then we have

(2.1) B Bi)=a; """ +4q

3/27 <ﬂluﬂ]> = _QCO(QZ7QJ7 ﬁ) = _2COS(7T/m(i7j))7
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where the last equality holds if g1 = ¢2. In the following we assume that the elements ¢;
are invertible in our ring, and that there exists an involutive algebra homomorphism ~ over
our ground ring such that 1 = 1 and g; = q{l,i = 1,2. The most common examples for our
ground ring would be the rational functions in variables ¢;, with suitable algebraic functions
adjoined, or the complex numbers with g; being numbers of absolute value 1. The notions of
conjugate linear maps and sesquilinear forms extend to our slightly more general setting in
the obvious way.

Proposition 2.2. The pairings in FEq. 2.1 extend to a unique invariant sesquilinear form
(, )s on V; here invariant means that (T;v, Tyw)s = (v,w)s forv,w € V and i =1,2, ... n.

Proof. It follows directly from Eq 1.1 by induction on n that x, is a homogeneous polyno-
mial of degree n in the variables g1, ¢o and 2 = x1, if we define deg(z) = 1 and deg(q;) = 2,
for 1 = 1,2. Hence any solution z of x,, = 0 is a homogeneous algebraic function in ¢; and
g2 of degree 1. This entails y = 2co(q1, ¢ym/(m + 1)) = (qi1g2) /*z has degree 0, i.e. it is
an algebraic function in ¢iq; . Hence §(q1,¢2) = y(q2,q1) = 9. AS Xon = Xm for m odd,
by Lemma 1.1, it follows y = y in this case. If m is even, we have ¢; = ¢ and therefore
automatically ¥ = y. So the coefficients (3;, ;) are all fixed by the involution ~. Hence we
can define a sesquilinear form ( , )s on V by

Zazﬂuzb Bi) S—Zaz (Bis Bj)s

If ¢; is invertible, one can easily calculate from relation (H) that 1 —¢; ' —g; 'T; is the inverse
of g;. One now shows by essentially the same computation as in the proof of Lemma 2.1,
using the basis (5;), that (T;v, w)s = (v,T[lw)s forv,weVandi=1,2, ... n.

Remark 2.3. 1. In the following we shall primarily be interested in the sesquilinear form
defined in the last proposition. We shall therefore denote it just by ( , ) for simplicity of
notation. Several of the following constructions, such as e.g. the Gram-Schmid procedure can
be easily adapted to the corresponding bilinear form defined before.

2. If we take the Coxeter graph of type A,, we obtain a representation of Artin’s braid
group which is equivalent to the famous (reduced) Burau representation. Of course, our
construction yields representations of braid groups for any Coxeter graph.

2.3. Gram-Schmid procedure. We would like to determine for which choices of g; the
Hermitian form defined in Prop. 2.2 becomes an inner product. To do so, we simply apply the
Gram-Schmid procedure to determine an orthonormal basis, if possible. We shall denote the
sesquilinear form constructed in the previous Section just by (, ); the following constructions
would work as well for the corresponding bilinear form.

Let us choose for the set S the numbers 1,2, ... |S|, if S is finite, or N, if S is countable.
Let us assume for the moment that the restriction of ( , ) to the span V;_; of the vectors
B1, ... Bi—1 is nondegenerate, and let F; 1 be the orthogonal projection onto V;_1. Then the
i-th vector v; of the Gram-Schmid process is given by

(2.2) vi = (Bi — Ei1B8:)/1Bi — EiaBill,
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provided ||8; — E;_15;]| # 0. We will use these norms to define functions P; inductively by
P,=0forn<0, Pp=1and

(2.3) Pi= i — BiaBill’Pii = (4" + ¢ '*) = IIBi 1 Bil*) Pi1.

Hence, if v; is well-defined, we obtain from the last two equations

(2.4) (Bi,vi)® = P 1/ Py

The P;’s obviously are functions of ¢1, ..., ¢;. Moreover, we have P, = qi/2 + q;1/2. We shall

/2

see that the P;’s are Laurent polynomials in the variables qjl- in many cases. The following

two lemmas are useful for calculating the functions F;.
Lemma 2.4. Leti € S. We assume that (f;,55) =0 for all j < i —2. Then
(a) (Bi,vi-1) = V/Pi—2/Pi1(Bi; Bi-1), and

(b) P; = (qil/2 + q;l/Q)Pzel —{Bi, Bi—1)?Pis.

Proof. By definition and assumptions, we have ||3; — E;_15;||* = Pj_1/P; for j =4,i — 1.
If (vg)g is the orthonormal basis obtained from the £y via Gram-Schmid, it follows from Eq.
2.2 that v, | = \/Pi',l/Pi,g,Bifl + v, with v € V;_9. As (f3;,7) = 0 by assumption, we obtain
(a). As E; 16; = Z;;ﬁ(ﬁi,vﬁvj and as (8;,v;) =0 for j <i — 1, we have

IEi 1 Bill* = [{Bi, vi))I? = Pioa/ Pia{Bi, Bi1)?.
It follows that
92 9 92 1/2 -1/2 9
18i = EiaBil" = 1Bill” = |BicaBill” = a;"" +a; "~ — Pia /Pima(Bi, Bim1) "
Multiplying this equation by P;_5 shows (b).
Lemma 2.5. Assume that i —2 is a simple triple point of our graph, i.e. it is connected only

to the vertices 1, 1 — 1 and © — 3, by single edges, and both i and i — 1 are not connected to
any vertexr 7 < 1 — 2. Then we have, for g = q;,

P=(¢"? + ¢ V3P — Piy).

Proof. Let (v;) be the orthonormal basis obtained by Gram-Schmid for j < i. As (8;, 3;) =
0 for j <i—1, we can write F;_1(8;) = z1v;—2 + zovi—1. As (B;, B;) = (Bi—1, ;) for j <i—1,

we have
z1 = (Bi—1,vi—2) = —\/Pi—3/Pi_s,

by Lemma 2.4,(a). As f3;_; is in the span of v;_5 and v;_; and has norm ¢'/? + ¢~'/%, we can
chose v;_1 such that (5;_1,v;—1) = /Pi—1/Pi—2, using Lemma 2.4,(b). Hence we derive from

(Bi—1, Ei—1(Bi)) = 0 that

One calculates from this that z9 = P;_3/v/Pi_1P_2. We can now easily compute ||3; —
Ei(B)|I> = ¢"/? + ¢~ Y/? — 23 — 23, using the identities of Lemma 2.4. The expression for P;
follows from this.

1/2
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Lemma 2.6. The sesquilinear form ( , ) is an inner product on the vector space V,, if and
only if P, Py, ..., P, are positive.

Proof. By construction, we obtain an orthogonal basis from the vectors 8; — E; _15;,1 € S,
provided the projections F; 1 are well-defined. The latter statement is the case if and only if
the polynomials P; are nonzero for 1 < j < 4. As ||3; — E;_15i||*> = Pi_1/P;, we see that our
sesquilinear form is positive definite if and only if all these square norms are positive, which
is equivalent to all the functions P; being positive.

2.4. Polynomials for Weyl groups. We compute the functions P; for the Coxeter graphs
corresponding to Weyl groups, using Lemmas 2.4 and 2.5. We choose the labelling for the
graph B,, such that the endpoint with the double edge is labelled by 1, and with 7 + 1 being
the vertex not labelled yet which is connected with the vertex i:. For type D,, it will be
convenient to start the labeling at the endpoint of the longest leg, with the endpoints next
to the triple point being labeled by n — 1 and n, Moreover, observe that we only have single
edges for types A, and D,,, and also for all edges of B,, except for the one between 1 and 2.
So we can set ¢; = ¢ for all ¢ in A, and D, and for all ¢ # 1 in type B,. We set ¢ = Q) in
type By,. Then we get

(i+1)/2 _ qf(i+1)/2
ql/2 — q1/2

q

B,: P o=Q20 D212 i-1/2,

For type D,, the first n — 1 functions P; will coincide with the ones for A,. Using Lemma
2.5, we obtain

P, = (q(nfl)/2 + q*(nfl)/Q)(ql/Z + q71/2) — qn/2 + q(n72)/2 + q—n/Q + qf(nfg)/Ql

Using the labelling coming from the extensions of graphs A4 C D5 C Eg C E7 C Eg, we get
for P5 the polynomial in the last formula for n = 5, and, by Lemma 2.4,

Es: Po=(¢'+14+q¢ ") (¢ —1+q?),
Er: Pr=(¢"?+q¢ V)P -1+¢7%),

By: Ps=(q"+¢—q¢' =1—q¢ "+q¢°+q")
For G, we get, as usual, P, = ¢'/? + ¢~'/? and
Go: Py=QY?¢"%2 - 144120712
Finally, we get for Fy the polynomials

Fy: PL=QYV?+Q7 Y% P=Q+1+Q7Y, Py =QY%M*+Q V¢ Y?, Py =Q¢-1+Q ¢
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Theorem 2.7. Consider a Hecke algebra corresponding to a Weyl group, and assume Q) = q
in the nonsimply laced cases BOFG. Its Cozeter type representation is unitary if and only if
q = e?™ with |t| < 1/h, where h is the Cozeter number.

Proof. One observes that for () = ¢ the zeros of all the polynomials P; computed in the
previous section are roots of unity. It is not hard to check that the highest degree of such
roots of unity coincides with the Coxeter number of the graph (e.g. for Eg it would be 30).

Remark 2.8. If we set () = ¢*™*, we can also easily express the values for which our Coxeter
type representation is unitary. This is left as an exercise to the interested reader.

2.5. Affine Hecke algebras. We briefly look at Hecke algebras corresponding to affine re-
flection groups. We shall show for affine type A in some detail why our Coxeter representation
can never be unitarized, except for ¢ = 1 when our sesquilinear form becomes positive semi-
definite. Recall that the Coxeter graph for affine type A,, can be described as the boundary
of a polygon with n + 1 sides.

Lemma 2.9. The polynomials P; for affine type A, are equal to the ones for A, if i < m,
and P,y = (qntD/4 — g=(n+1)/4)2,

Proof. This is a straightforward calculation. We give some details for the interested reader.
Let (vj) be the Gram-Schmid orthonormal basis for type A,. Then we can write vectors f;

by B = (¢"/? + ¢~ "/?)v; and

Bi = =/ Pi—2/Pi1vi1 + £/ P/ Piqv;.
for 2 < i < mn. Let z; = (By41,v;). Then (f,41,v1) = —1 implies z; = —/Py/ Py, and one

shows by induction on i, using (8,41, ;) = 0, that z; = —1/\/P,_1 P; for 2 < i < n. Similarly,
one calculates from (8,11, 8,) = —1 that 2, = —(P,—1 +1)/v/Pro1Pn.

It is easy to show by induction on i that 3754 :v? =P /P fori <n, and |E,(Bni1)|? =
P4 =2(P, 1 4+1)/P,. 1t follows that
Pn+1 — (q1/2 + qfl/Q)Pn _ 2Pn71 _ 2 _ q(n+1)/2 _ 2 + qf(n—l—l)/Q-

Corollary 2.10. The Cozxeter type representation for affine Hecke algebras of type A, can
not be unitarized.

Proof. If ¢ = €2™* we have P, 11(q) = —4sin®(n + 1)tn/2.

Remark 2.11. Similar statements can be shown for other affine Hecke algebras. Here the

graphs have no cycles, and the additional polynomial can be calculated fairly easily, using
Lemmas 2.4 and 2.5.

3. SOME APPLICATIONS

3.1. Support projections. Let X be a graph with n edges, and let £ < n. Let us assume
that the bilinear form (, ) defined in the previous section is nondegenerate on V as well as
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on Vi, the span of {f;,1 < i < k}. We define f; to be the projection onto the orthogonal
complement of Vj. Moreover, we also define the element ¢; € End(V') by
ei:vEVise(v)=(v,5)0.

Observe that e; is a scalar multiple of the projection onto S;, with the multiple being ||3;||%.
Then we have the following easy
Lemma 3.1. The idempotents fi, are defined inductively by fo = 1, and by
Py

By

where e; is the orthogonal projection onto the span of B;.

(3.1) e =fe1—

Je—1exfr—1.

Proof. As the image of ey, is contained in the span of {v;,j < k}, the element f;_jexfr—1
must be a multiple of the projection onto vg. This multiple is equal to

(i, fr1ek fr1vk) = (Uk, exvi) = (Br, vi)*

The claim now follows from Eq. 2.4.

Remark 3.2. For Coxeter graph A,, one can use the formula in the previous lemma to define
elements fr inductively, where we take for e; the element in the corresponding Hecke algebra
defined by ¢; = —¢'/2(¢g; — q). Observe that the braid relation for type A, i.e. with only
single edges, can be expressed equivalently by
9 e =it — i,
(1 + q)Q ) i+164C4+1 (1 T q)Q i+1
It is then a fairly straightforward proof by induction to show that the fis are central idempo-
tents in the Hecke algebra uniquely determined by e; fr = 0 = fre; for all 1 < k. This has been
important for simplifying Jones’ proof for restriction of index values of subfactors (see [Jo],
[W1]). The formula has also found applications in mathematical physics and low-dimensional
topology, see e.g. [FRS], [KL], [Li], [MV].

Unfortunately, it seems that such a widespread application of the formula in Lemma 3.1
does not seem to hold for other graphs.

€i€i+1€; —

3.2. Basics about Hecke algebras. We can now use our results to derive some basic results
about Hecke algebras in a fairly easy way. We need some terminology from the theory of
reflection groups; see [B], [H] for more details. Let X be a graph, and let W = W (X) be the
corresponding reflection group; here the generators, denoted by s;, satisfy besides the braid
relations also s? = 1 for all i. We speak of a reduced expression of an element w € W if it
is written as a product of generators with the minimum number of factors; that number is
called the length of w, denoted by ¢(w). It is known that the element T, = Ty, T, ... Ts,,
where s1s9 ... s, is a reduced expression for w, is well-defined independent of the choice of
the reduced expression. It is quite easy to check that the elements T,,, with w € W, span the
Hecke algebra H = H(X). We want to prove that they are also linearly independent.
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We will basically follow the standard approach, which goes as follows. Assume linear
independence. Define the vector space V with basis {v,,,w € W(X)}. Identifying the vectors
vy With the elements T, it follows from the multiplicative structure of the Hecke algebra that

Vs;w if £(sjw) > 4(w),
(qi - 1)Uw + qiVs;w if E(Sw) < E(w)

On the other hand, if we can show that the maps defined above do indeed define a representa-
tion of the Hecke algebra, then the T, are linearly independent; indeed, already the elements
Ty,v1 = vy are linearly independent. See [B], [H] for more details.

(3.2) Tivy = {

3.3. Rank 2 Case. A Hecke algebra is called of rank 2 if the corresponding graph has exactly
two vertices. Hence the only variation is given by the number of edges between these two
vertices. We also include the case of infinitely many vertices, in which case the braid relation
becomes vacuous.

Lemma 3.3. A Hecke algebra of rank 2 has a basis labeled by the elements of the correspond-
ing Cozeter group.

Proof. . If we have 0 < m — 2 < oo edges, the corresponding reflection group is the
dihedral group of order 2m. It follows from Eq. 1.6 that we obtain for any integer 0 < 7 < m
a representation with respect to the basis {«, as} given by the matrices

-1 —xa 2 0
(33) T — <0 Q1> and T, — <_X1 _1>,

where x1 = (q1g2)"/*2co(q1, g2; jm/m). Tt is now easy to check that the trace of the matrix
representing T1Th is equal to 4(q1g2)"/?co®(jm/m) — q1 — qo. Hence these representations are
mutually nonisomorphic for 0 < j < m/2. Moreover, if m is even, we have four mutually
nonisomorphic one-dimensional representations, while for m odd, we have two nonisomorphic
one-dimensional representations. Forming the direct sum of all of these representations, we
obtain a representation of the Hecke algebra whose image has dimension 2m. This is the
order of the corresponding dihedral Coxeter group, and hence the elements T;, labeled by the
elements w € W are linearly independent.
If we have infinitely many edges between the two vertices, there is nothing to show.

3.4. General case. Let W; C W be a subgroup of W generated by a subset of the generators
s;. Then it is well-known that there exists for each coset of W in W an element wg such that

(3.4) L(ww,) = £(wy) + £(w)

for any w € W;. This can be shown by picking an element wg of minimal length in the given
coset. If the additivity property did not hold, one could find an element of shorter length in
the coset, using the deletion condition (see e.g. [H] Section 5.8).

Proposition 3.4. The elements Ty, w € W(X) form a basis for the Hecke algebra H(X).
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Proof. We follow the standard proof, i.e. we have to show that the actions of the elements
T; on the vector space V defined in Eq. 3.2 define a representation of the Hecke algebra.
Observe that each relation only involves two elements, say T; and T;. Let W (i, j) be the
reflection group generated by s; and s;, and let H(i, j) be the corresponding Hecke algebra.
Then for each wy € W(X), the span V,,, of {vyw,, w € W(i,j)} is invariant under both
T; and T;. Let V(i,j) be the span of vectors v,, w € W(i,j). By Lemma 3.3 and the
discussion in Section 3.2 we obtain a representation of H (i, 7) on V (4, 7). If we pick for wg the
element of minimum length in our given coset, it follows from Eq 3.2 and 3.4 that the map
vy € V(i,7) = Vypw,, commutes with the action of H(7,j). Hence the commutation relations
between T; and T} also hold on V.
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