
MATH 251 LIE GROUPS

EXPONENTIAL MAPS FOR MATRIX GROUPS

We review some of the key theorems relating the structures of a Lie group and its
corresponding Lie algebra. Recall that for a matrix Lie group G ⊂ Gl(n) (real or complex
invertible n× n matrices), we can view the Lie algebra g as a subspace of n× n matrices.
In particular, we can define the exponential function on g via its power series.

Theorem 1 Let G be a matrix Lie group with Lie algebra g. Then the differential
d exp : g→ g at an arbitrary X ∈ g is given by

d exp(X) = exp(X)
∞∑

n=0

(−1)n

(n+ 1)!
adnX = exp(X) f(adX),

where f(adX) is defined via the power series of the function f(z) = 1−e−z

z .

Outline of proof: This was done in class via a brute-force power series calculation as
follows: By definition of differential, d exp(X) is the linear map from g to exp(X)g, the
tangent space at exp(X) which can be calculated as

d exp(X)Y =
d

dt |t=0
exp(X+tY ) =

∞∑
m=0

1

m!

d

dt |t=0
(X+tY )m =

∞∑
m=0

m−1∑
i=0

1

m!
XiY Xm−1−i.

Expanding exp(−X) = exp(X)−1 as a power series, and doing some resummations of the
resulting power series in the non-commuting variables X and Y , one can show that

exp(−X) d exp(X)Y =
∞∑

n=0

1

(n+ 1)!

n∑
s=0

(
s∑

k=0

(−1)k
(
n+ 1
k

)
)XsY Xn−s =

=
∞∑

n=0

1

(n+ 1)!

n∑
s=0

(−1)s
(
n
s

)
)XsY Xn−s =

∞∑
n=0

(−1)n

(n+ 1)!
adnX(Y ).

It can now be checked easily that this is equal to f(adX)Y .

We have seen before that if f(z) and h(z) are given by power series with radius of con-
vergence ≥ R, with f(z)h(z) = k(z) and if X is a matrix with ‖X‖ < R, then also
f(X)h(X) = k(X). In particular, if we have

h(z) =
z

1− e−z
=
∞∑
k

(−1)k+1

k + 1
(e−z − 1)k, (∗)

we have h(adX)f(adX) = idg for ‖adX‖ sufficiently small, i.e. h(adX) is the inverse of
f(adX).
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Corollary Let Z(t) = log(expX exp tY ). Then

Z ′(t) = h(adZ(t))Y =
∞∑
k=0

(−1)k+1

(k + 1)!
(
∑
`,m

(−1)`+m 1

`! m!
t`ad`Y ad

m
X)k Y,

where the summation goes over all `,m ≥ 0 for which `+m > 0.

Proof. On the one hand we have

d

dt
(expZ(t)) =

d

dt
(expX exp tY ) = expX exp(tY ) Y.

On the other hand, using the chain rule, we get

d

dt
(expZ(t)) = d exp(Z(t)) Z ′(t) = f(adZ(t))Z

′(t).

Setting these two expressions for d
dt (expZ(t)) equal and solving for Z ′(t) by multiplying

both sides by h(adZ(t)), we get the first equality. For the second equality, we use the power
series expansion for h(z) in terms of (e−z − 1), see (∗). We first observe that

exp(adlog(expX exp tY )) = exp adX exp adtY ;

indeed, this follows from exp(adZ) = AdexpZ for Z ∈ g and the homomorphism property
of Ad, i.e. Adgh = AdgAdh. It then follows that

h(adZ(t))Y =
∞∑
k

(−1)k+1

k + 1
(exp(−adlog(expX exp tY ))− 1)k Y =

=
∞∑
k

(−1)k+1

k + 1
(exp ad−tY exp ad−X − 1)k Y.

The second equality now follows by expanding the last expression in terms of power series
in adX and t adY .

Theorem We can express log(expX expY ) in terms of a series consisting of brackets in
X and Y which converges for X and Y sufficiently close to 0. In particular, the product
expX expY is determined by the Lie algebra structure of g.

Proof. It follows from Z(0) = X, the previous corollary and the fundamental theorem
of calculus that

log(expX expY ) = Z(0) +

∫ 1

0

Z ′(t) dt =

= X +
∞∑
k=0

(−1)k+1

(k + 1)!
(
∑
`,m

(−1)`+m 1

(`+ 1)! m!
ad`Y ad

m
X)k Y,
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where the summation over ` and m is as in the corollary. By definition of adX and adY ,
this describes a rather complicated series of brackets in X and Y .

Remark It is possible to calculate explicit expressions for the brackets in the power series
of the last theorem via certain recursive formulas. This is the context of what is gener-
ally known as Campbell-Baker-Hausdorff theorem. However, for our purposes, it is not
necessary to know these explicit expressions.

Theorem (Local group homomorphism) Let G and H be (matrix) Lie groups with Lie
algebras g and h, and let φ : g→ h be a Lie algebra homomorphism. Then there exists an
open neighborhood U of 1 ∈ G and a map Φ : G→ H such that

Φ(u1u2) = Φ(u1)Φ(u2), for u1, u2 ∈ U,

and Φ(expX) = exp(φ(X)) for X ∈ log(U) ⊂ g. We call Φ a local group homomorphism
associated to φ.

Proof. As the group multiplication is continuous, we can find an open neighborhood
U of 1 ∈ G such that u1u2 is in the domain of log whenever u1, u2 ∈ U . Let Xi = log ui
for i = 1, 2. We define

Φ(u) = exp(φ(log u)) for u ∈ U2 = {u1u2, ui ∈ U, i = 1, 2}.

Then we have, for u1, u2 ∈ U ,

Φ(u1u2) = Φ(exp(log(expX1 expX2))) = exp(φ(log(expX1 expX2))) =

= exp(φ(series of brackets in X1 and X2)) =

= exp(same series of brackets in φ(X1) and φ(X2)) =

where we used the series for log(expX1 expX2) from the last theorem and the fact that φ
is a Lie algebra homomorphism,

= exp(log(expφ(X1) expφ(X2))) = expφ(X1) expφ(X2)) = Φ(u1)Φ(u2).

Theorem (Global group homomorphism) We use the same notations as in the last theorem.
If G is a simply connected group, then there exists a unique group homomorphism Φ : G→
H such that Φ(expX) = exp(φ(X)) for all X in an open neighborhood of 1 ∈ G.

Proof. The idea of the proof is to express a given element g ∈ G as a product of
ui ∈ U , 1 ≤ i ≤ k, where ui = g−1i−1gi and the gi’s are group elements on a path from
1 = g0 to g = gk chosen sufficiently close to each other that the ui’s are in U as in the
previous theorem. Using the local homomorphism property of the last theorem, one can
show that

Φ(g) = Φ(u1)Φ(u2) ... Φ(uk)

does not depend on the choice of path or choice of elements gi on the path, and that Φ is
indeed a group homomorphism. See your notes for details.
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