
Restri
tion CoeÆ
ients for Classi
al GroupsHans Wenzl�O
tober 5, 2005Abstra
tA simple and fairly expli
it formula has been given by Littlewood for the de
ompo-sition of a simple GL(N)-module if viewed as an O(N) or Sp(N=2)-module for 
ertainGL(N)-representations. We de�ne an a
tion of a re
e
tion group on Young diagramswhi
h allows us to 
ompute the restri
tion multipli
ities in the general 
ase via analternating sum over the Littlewood multipli
ities.There exist a number of ways how to des
ribe the multipli
ities of the restri
tion of a �nitedimensional representation of Gl(N) to O(N) or Sp(N=2). Classi
ally, they are given by
ertain generating fun
tions (see [Wy℄). An expli
it 
ombinatorial formula in terms of well-known tensor produ
t multipli
ites of Gl(N) was given by Littlewood. However, this formulaonly holds for Gl(N) representations labeled by Young diagrams whi
h are suÆ
iently `small'in 
omparison to the rank N , and it is 
ertainly not true in general. More re
ently, ratherinvolved formulas have been found for the general 
ase in [EW℄. The purpose of this note isto give a fairly simple expli
it formula for the general 
ase. It is inspired by 
ertain formulasfor the tensor produ
t multipli
ities of so-
alled fusion 
ategories, whi
h is usually referredto as Ka
-Walton formula. Similar as these fusion 
ategories have Grothendie
k semiringswhi
h are quotients of the ones of 
ompa
t Lie groups, we show that the Grothendie
ksemiring of O(N) or Sp(N=2) is obtained as a quotient of a (formally de�ned) Grothendie
ksemiring Gr(O(1)), whi
h has an N-basis f[�℄g labeled by the set of all Young diagrams.The quotient map 
an be expli
itly des
ribed via an a
tion of a re
e
tion groupW of Coxetertype D1 for orthogonal groups, and of type B1 for symple
ti
 groups on Young diagrams.Either the representation 
orresponding to a Young diagram � is already in the ideal, or it
an be mapped via an element w 2 W to a diagram w:� in a fundamental domain whi
h
onsists of a labeling set of irredu
ible representations of O(N) resp. Sp(N=2); we then have[w:�℄ �= "(w)[�℄ modulo the above mentioned ideal, with "(w) the sign of w. The restri
tionmultipli
ities for a parti
ular orthogonal or symple
ti
 group 
an now be easily 
omputedby taking Littlewood's ones modulo the above-mentioned ideal. An expli
it formula is givenin Theorem 3.2.�partially supported by NSF grant DMS 0302437 1



1 Brauer algebras1.1 De�nitionsBrauer's 
entralizer algebra Cn of orthogonal type is de�ned over the �eld C (x) of rationalfun
tions over C ; the �eld C 
ould be repla
ed as well by any �eld of 
hara
teristi
 0, su
has e.g. Q . It has a basis given by graphs with 2n verti
es, arranged in two lines, and n edgessu
h that ea
h vertex belongs to exa
tly one edge. Multipli
ation of a graph a with a graphb is given by putting a on top of b. The produ
t is then de�ned to be the graph obtainedby removing all 
y
les from the 
omposite graph, multiplied by x
, where 
 is the number of
y
les (see [Br℄).Moreover, we de�ne for graphs a 2 Cn, b 2 Cm a new graph a
 b 2 Cn+m by putting thegraph b to the right of the graph a. Then a
k is equal to a
 a
 ::: 
 a (k times) and 1kis the identity for Ck, the graph with k verti
al edges.Observe that Cn 
ontains the group algebra of the symmetri
 group C Sn as a subalgebra;it is spanned by graphs whi
h 
onne
ted the i-th lower vertex to an upper vertex, say the�(i)-th vertex, for i = 1; 2; ::: n, where � 2 Sn. Let e be the graph in C2 with only horizontaledges. It is easy to see that Cn is generated by Sn and e1 = e
 1n�2.Similarly, we de�ne the algebra Cn(N) over C for any integer N by substituting x = N .This spe
ialization is important for des
ribing the 
ommutant EndG(V 
n) of the a
tion ofthe orthogonal group G = O(N) on V 
n, where V is the de�ning N -dimensional ve
torrepresentation of O(N). More pre
isely, one 
an de�ne a surje
tive homomorphism � fromCn(N) onto EndG(V 
n). One 
an similarly de�ne a symple
ti
 Brauer algebra, and oneobtains analogous homomorphisms for the symple
ti
 group Sp(N). It 
an be shown thatthe symple
ti
 Brauer algebra is isomorphi
 to the orthogonal Brauer algebra; in parti
ular,one obtains a surje
tive homomorphism from the orthogonal Brauer algebra with x = �Nonto EndG(V 
n) with G = Sp(N=2).It is easy to see that the tensor produ
t operation de�ned for Cn above is 
ompatible withthese homomorphisms. Note also that the image of the element e 2 C2(N) in EndG(V 
2)is a multiple of the proje
tion onto the trivial representation in V 
2 
orresponding to thebilinear form invariant under G.The algebra Cn has a q-deformation in form of the algebra Ĉn, de�ned over the �eldC (r; q) of rational fun
tions over C in variables r and q via generators and relations. Themain reason we mention this algebra is that it 
an be easier des
ribed via generators andrelations than the Brauer algebra itself. More pre
isely, it has generators T1; T2 ::: Tn�1,whi
h satisfy the braid relations TiTi+1Ti = Ti+1TiTi+1 and TiTJ = TjTi if ji� jj > 1 as wellas the relations(R1) EiTi = r�1Ei,(R2) EiT�1i�1Ei = r�1Ei; 2



where Ei is de�ned by the equation(D) (q � q�1)(1� Ei) = Ti � T�1i :It is possible to obtain the algebra Cn(N) as limit limq!1 Ĉn(qN�1; q).1.2 Algebrai
 stru
tureAs usual, a Young diagram � = (�i) is an array of boxes, with �i boxes in the i-th row. Wewill freely identify � with a ve
tor in Zm whose i-th 
oordinate is equal to �i whenever mis larger than the number of boxes. Let j�j be the number of boxes of �. We denote by �0the Young diagram with rows and 
olumns inter
hanged. In parti
ular, �0i is the number ofboxes in the i-th 
olumn. We 
an now des
ribe the stru
ture of the algebra Cn as follows:(a) The algebra Cn is semisimple. Its simple 
omponents are labelled by the Youngdiagrams with n, n� 2, n� 4, ..., 1 resp. 0 boxes. The labeling is su
h that whenever p� isa minimal idempotent in Cn;�, then p� 
 ((1=x)e)
r is a minimal idemotent in Cn+2r;�.(b) The de
omposition of a simple Cn module Vn;� into simple Cn�1 modules is given byVn;� �=M� Vn�1;�; (1)where the summation goes over all Young diagrams � whi
h 
an be obtained by either takingaway or, if � has less than n boxes, by adding a box to �. The labeling of simple 
omponentsis uniquely determined by the restri
tion rule, ex
ept for a possible 
hoi
e of repla
ing � byits transposed �0 simultaneously for all Young diagrams (see e.g. [W1℄, Lemma 2.11).(
) The same statements hold for the algebra Ĉn. Here we have the 
onvention that theeigenproje
tion of T1 
orresponding to its eigenvalue q is labeled by the Young diagram [2℄.(d) Statements (a) and (b) also hold for the C -algebra Cn(N) provided thatjN j > n. The
ases with n < jN j are more 
ompli
ated. We need the followingDe�nition 1.1 (a) For G = O(N) we de�ne DN (resp. IN ) to be the set of all Youngdiagrams � satisfying �1 + �2 � N (resp. those � for whi
h �1 + �2 = N + 1 or � = [k℄,k > N).(b) For G = Sp(N=2) we de�ne DN (resp. IN) to be the set of all Young diagrams �satisfying �1 � N=2 (resp. �1 = N=2 + 1).(
) The sets D0N and I 0N are de�ned by analogous (in)equalities for the 
olumns of Youngdiagrams. In parti
ular, � 2 DN if and only if �0 2 D0N(e) The restri
tion rules for the quotients �Cn(N) �= EndG(V 
n) are given as follows: Thesimple 
omponents of �Cn(N) are labeled by the Young diagrams in D0N with n; n � 2; :::3



boxes, and the restri
tion rule is as in (b), ex
ept that now only Young diagrams in D0N areallowed.The simple restri
tion rule above allows us to de�ne 
anoni
al minimal idempotents asfollows: We 
all any sequen
e t = (�(i))ni=1 of Young diagrams a path of length n if �(1) = [1℄and �(i+1) is obtained from �(i) by adding or subtra
ting a box. We denote by t0 the pathobtained from t by removing the last Young diagram. Then the path idempotent pt is de�nedto be the idempotent whi
h a
ts on a simple Cn-module W� as 0 if � 6= �(n) and as pt0 if� = �(n). Indu
tive formulas have been given for these idempotents in [RW℄. We shall needthe following result (see [RW℄, Theorem 2.3 and Theorem 2.4(b)):Proposition 1.2 The path idempotent pt is given as a linear 
ombination of the basis graphswhose 
oeÆ
ients are well-de�ned at x = N whenever the path only 
ontains Young diagramsin D0N ; this is also true if the last diagram of t is in I 0N .1.3 Gr(O(1))As an idempotent p 2 Cn(N) �= EndG(V 
n) 
orresponds to the subrepresentation pV 
n, we
an translate the tensor produ
t stru
ture of Rep(G) into the setting of the algebras Cn(N).More generally, this 
an also be done as well for the algebras Cn, whi
h will lead to thede�nition of a formal Grothendie
k semiring Gr(O(1)).We say that two idempotents p and q in an algebra A are (
onjugation) equivalent if thereexist elements u and v in A su
h that p = uv and q = vu. More generally, we say that twoidempotents p 2 Cn and q 2 Cm are equivalent if we 
an �nd nonnegative integers n1 and n2su
h that ( 1xe)
n1
p and ( 1xe)
n2
q are equivalent as de�ned in the previous senten
e in thealgebra Cn+2n1 = Cm+2n2 . It follows from our labeling 
onventions that minimal idempotentsin 
omponents of algebras Cn and Cm labeled by the same Young diagram are equivalent.We denote by [p℄ the equivalen
e 
lass of an idempotent p, and by [�℄ the equivalen
e 
lassof a minimal idempotent in a simple 
omponent of Cn;�. In parti
ular, if for p 2 Cn wedenote by m� the tra
e of p in the irredu
ible representation of Cn labeled by �, we have[p℄ =P�m�[�℄. We de�ne Gr(O(1)) to be the N-span of [�℄, with � ranging over the set ofall Young diagrams. It is not hard to show that this is equivalent to the set of all equivalen
e
lasses of idempotents in [Cn.If p� and p� are minimal idempotents in Cn and Cm respe
tively, we obtain an idempotentp�
 p� in Cn+m. If we de�ne d��� to be the rank of the idempotent p�
 p� in the irredu
iblerepresentation of Cn+m labeled by the Young diagram �, we obtain[�℄[�℄ = [p� 
 p�℄ =X� d���[�℄:By N-linearity this extends to an asso
iative and abelian multipli
ation on Gr(O(1)). Weremark that we 
an de�ne the same Grothendie
k semiring by using the q-deformation Ĉn of4



Cn. The latter is a 
onsequen
e of the fa
t that the Drinfeld-Jimbo quantum group UqsoNhas the same representation ring as the 
lassi
al Lie algebra soN .Exa
tly the same 
onstru
tion also goes through if we repla
e [Cn by the union [C Sn ofthe group algebras of the symmetri
 group. In view of S
hur duality, a minimal idempotentp� 2 C Sn now 
orresponds to an irredu
ible representation F � of Gl(N) for N suÆ
ientlylarge. The resulting semiring will be denoted by Gr(Gl(1). We denote the stru
ture
oeÆ
ients by 
���; whi
h give the multipli
ity of the simple Gl(N)-module F � in the tensorprodu
t F � 
 F �.Lemma 1.3 Let �0 denote the transpose of the Young diagram �. Then the map [�℄ 7! [�0℄de�nes an automorphism of Gr(O(1)) as well as of Gr(Gl(1)).Proof: It is easy to 
he
k that the generators of the algebra Ĉn(r; q) also satisfy the re-lations of the algebra Ĉn(r;�q�1). Hen
e the map Ti 7! Ti indu
es an isomorphism betweenthese two algebras. Due to our 
onvention of labeling the simple 
omponents, the eigenpro-je
tion of T1 2 Ĉn(r;�q�1) for the eigenvalue q is labeled by the Young diagram [12℄. Thisimplies that the simple 
omponent Ĉn;�(r; q) will be mapped to Ĉn;�0(r;�q�1), by uniquenessof the labeling of the simple 
omponents of Ĉn up to transposition. This indu
es the desiredautomorphism of Gr(O(1)).The 
laim is shown similarly for Gr(Gl(1)) by using the automorphism si 7! �si ofC Sn , where si is the transposition permuting i with i+ 1. �Let us remark that the semiring Gr(O(1)) 
an also be interpreted as follows: If thenumber of boxes in the Young diagrams � and � are small in 
omparison to N , the de-
omposition of the tensor produ
t of the 
orresponding representations V� and V� does notdepend on the parti
ular value of N . Hen
e Gr(O(1)) des
ribes the tensor produ
t rules ofO(N)-representations labeled by Young diagrams � and � whenever the number of boxes inthese diagrams is small 
ompared to N . Hen
e we 
an determine the multipli
ative stru
tureof Gr(O(1)) from the tensor produ
t rules of orthogonal groups. For indu
tive proofs wede�ne the alphabeti
al order on Young diagrams by � < � if and only if �i < �i for thesmallest index i for whi
h �i 6= �i. We 
an now formulate the following well-known results:Lemma 1.4 (a) Let � be a Young diagram with k boxes in its last 
olumn, and let ~� be thediagram � without its last 
olumn. Then [~�℄[1k℄ = �+Pm�[�℄, where � < � in alphabeti
alorder for all � for whi
h m� 6= 0.(b) Let � be a Young diagram with k0 boxes in its last 
olumn, and let ~�0 be the diagram� without its last row. Then [~�0℄[k0℄ = � +Pm�[�℄, where �0 < �0 in alphabeti
al order forall � for whi
h m� 6= 0.Proof . The proof follows from well-known tensor produ
t rules for, say, SO(2m + 1),as follows: First observe that it suÆ
es to prove (a) in view of Lemma 1.3. Moreover, the5



set of weights of the highest weight module V[1k℄ 
an be identi�ed with the set of ve
torsin Zm whose 
oordinates have absolute value 0 or 1, with at most k nonzero 
oordinates.Moreover, it is a well-known 
onsequen
e of the Weyl 
hara
ter formula that V� � V� 
 V�for simple modules with highest weights �; � and � respe
tively only if � = � + !, where! is a weight of V�. Identifying the diagram ~� with the 
orresponding ve
tor in Zm whi
hrepresents the highest weight, the 
laim follows from the dis
ussion above. �The next proposition will be important when we 
ompare the algebras Cn with the al-gebras Cn(N). While the latter algebras are not semisimple in general, we 
an still de�ne aGrothendie
k semiring as before, whi
h we denote by Gr(C(N)). The following propositionwill be useful for 
omparing these two semirings. We formulate it in a slightly more general
ontext as follows: Let A be a �nite dimensional algebra de�ned over C(x) via a given basis(bi) for whi
h the stru
ture 
oeÆ
ients are well-de�ned at a given number N 2 C . Hen
ewe 
an also 
onsider the C -algebra A(N) de�ned by the basis (bi(N)) with the stru
ture
oeÆ
ients being the ones of A evaluated at N . It is easy to 
he
k that the algebras Cnsatisfy these 
onditions for any N 2 C . Then we haveProposition 1.5 If p(N) 2 A(N) is an idempotent, then we 
an �nd an idempotent p =P�ibi 2 A su
h that p(N) =P�i(N)bi(N). Moreover, if the idempotent p(N) is equivalentto the idempotent q(N) in A(N), then so are the 
orresponding idempotents p and q in A.Corollary 1.6 There exists an in
lusion of Gr(C(N)) into Gr(O(1))1.4 QuotientsLet Gr(O(1))� be the Z-span of Gr(O(1)), whi
h obviously is an abelian ring; similarlythe representation ring Gr(G)� of the group G, G = O(N) or G = Sp(N=2) is de�ned to bethe Z-span of Gr(G). Let IN be the set of Young diagrams de�ned in Def. 1.1 in 
onne
tionwith the group G = O(N) or G = Sp(N=2). We de�ne IN to be the ideal in Gr(O(1))�generated by the elements [�℄ with � 2 IN .Lemma 1.7 The ring Gr(O(1))� is the Z-span of f[�℄; � 2 DNg [ IN .Proof: Let us �rst observe that given a Young diagram � it suÆ
es to show that [�℄ is
ongruent to some Z-linear 
ombinationPm�[�℄ of diagrams � 2 DN modulo IN . We shallprove this property in the symple
ti
 
ase �rst. This will be done by indu
tion with respe
tto alphabeti
al order for Young diagrams. There is nothing to show if the number �1 of
olumns of � is � N + 1. Let now � be a Young diagram with N + 2 
olumns and with kboxes in its last 
olumn, and assume that the 
laim has already been shown for all smallerdiagrams. Let ~� be the diagram � without the last 
olumn. Then [~�℄ 2 IN , and hen
e also[~�℄[1k℄. But on the other hand, by Lemma 1.4 we also have[~�℄[1k℄ = �+ [lower diagrams℄: (�)6



Applying the indu
tion assumption to the lower diagrams and solving for � we obtain the
laim for �.If � has more than N+2 
olumns, we apply the same strategy. Let again ~� be the Youngdiagram � without its last 
olumn. By indu
tion assumption ~� is equivalent to a linear
ombinationPm� [�℄ of Young diagrams � in DN [ IN with � < ~�. Using this, we obtain[�℄ + [lower diagrams℄ = [~�℄[1k℄ =X� m�[�℄[1k℄;where the right hand side is a linear 
ombination of elements in f[�℄; � 2 DNg [ IN by theresults of the previous paragraph. Solving for � and using the indu
tion assumption givesthe desired 
laim.To prove the 
laim in the orthogonal 
ase, it will be more 
onvenient to do the indu
tionby applying the alphabeti
al order to the transposed Young diagrams. By de�nition of IN ,there is nothing to show if � has only one row. If � = [n; k℄, the 
laim is shown by indu
tionon k, using that [[n℄℄[[k℄℄ is a linear 
ombination of [[n; k℄℄ and diagrams smaller than [n; k℄.If � has r > 2 rows, we de�ne ~� to be the diagram � without the last row. As before, we 
anassume by indu
tion assumption that ~� = P� m� [�℄ with � 2 DN [ IN for all � for whi
hm� 6= 0. We 
an now �nish the proof as before in the symple
ti
 
ase, using Lemma 1.4,(b).Proposition 1.8 Let notations be as in the previous lemma. Then Gr(O(1))� �= Gr(C(N))�and there exists a ring homomorphism 	 : Gr(O(1))�! Gr(G)� whi
h indu
es a bije
tionbetween the N-span of f[�℄; � 2 DNg and Gr(G) and an isomorphism Grin�=I 0N �= Gr(G)�.Proof: It follows from Cor 1.6 that there exists an in
lusion of the Grothendie
k semiringGr(C(N)) de�ned in 
onne
tion with the algebras Cn(N) into Gr(O(1)). In view of Prop.1.2 the elements [�℄ with � 2 Dn [ IN are 
ontained in the image of this in
lusion. It 
an beshown by indu
tion with respe
t to alphabeti
al order, exa
tly as it was done in the previouslemma that for ea
h Young diagram � the 
orresponding element [�℄ 2 Gr(O(1)) is in theZ-span of the image of Gr(C(N)) in Gr(O(1)); indeed, it suÆ
es to solve for [�℄ in Eq (*)of the proof of Lemma 1.7 and apply the indu
tion assumption for the lower diagrams....This shows that Gr(O(1))� and Gr(C(N))� are isomorphi
.The map � from Cn(N) onto EndG(V 
n) indu
es a map �̂ from Gr(C(N)) onto therepresentation-semiring Gr(G). Extending this map to Gr(C(N))� and 
ombining it withthe isomorphism established in the last paragraph, we obtain a map 	 from Gr(O(1))�onto Gr(G)�.Next we want to show that I 0N is 
ontained in the kernel of 	. By Prop. 1.2, there existsfor ea
h � 2 I 0N , a path idempotent pt 2 Cn;� for whi
h pt(N) is well-de�ned. The 
laimfollows as soon as we 
an show that �(pt(N)) = 0. If G = O(N) and V is its N -dimensionalve
tor representation, there exists a polynomial P�, due to El-Samra and King, su
h thatdim pt(N)V 
n = P�(N) for any Young diagram � and any N -evaluable idempotent pt 2 Cn;�.7



The fa
torization of these polynomials into linear fa
tors is expli
itly given from whi
h oneeasily 
he
ks that P�(N) = 0 for � 2 I 0N (see e.g. [W3℄, p. 186 for more details). The 
laimis similarly shown for G = Sp(N=2), where we now evaluate the polynomials at x = �N ,whi
h determines the dimension of the 
orresponding Sp(N=2) representation up to a sign.By Lemma 1.7 the elements [�℄, � 2 D0N span the quotient Gr(O(1))�=I 0N . If ker~� werestri
tly larger than I 0N , Lemma 1.7 would imply that the set f~�([�℄); � 2 DNg was linearlydependent. This 
ontradi
ts the fa
t that the irredu
ible representations of G are labelledby D0N .2 Redu
tion modulo IN2.1 Re
e
tion groupsLet W = W (m) be the re
e
tion group generated by Sm, with the obvious a
tion on Rm ,and the aÆne re
e
tion so in the plane x1 + x2 = ` in the orthogonal 
ase, and in the planex1 = ` in the symple
ti
 
ase. With these natural a
tions, we also de�ne a se
ond a
tionon Rm by w:� = w(� + �(m)) � �(m). Observe that this also de�nes an a
tion on Youngdiagrams, whose image is an element in Zm.We observe that if � is a Young diagram with � m rows, and w 2 W (m) su
h that w:�is again a Young diagram, then its image does not depend on the 
hoi
e of m. To see this,let li = �i + �(m)i . Then so(l1; l2; l3; :::) = (` � l2; ` � l1; l3; :::) in the orthogonal 
ase, andso(l1; l2; :::) = (`� l1; l2; :::) in the symple
ti
 
ase. It is then straightforward to 
he
k thatw:� is independent of m for w 2 Sn, and for w = so.In view of these observations it will be 
onvenient to embed all groups W (m) into a largegroup W = W (1). This group W has Coxeter type D1 for the O(N)-
ase, and type B1for the Sp(N)-
ases. It is generated by the group S1 of �nite permutations on a 
ountableset together with one additional re
e
tion so. It 
an be 
onveniently des
ribed by a faithfulrepresentation on the spa
e of sequen
es, on whi
h S1 a
ts via permutations of the entriesof the sequen
e and where the re
e
tion s0 
hanges the sign of the �rst (for type B1) orof the �rst two members of a sequen
e (for type D1). In parti
ular, we 
an de�ne the sign"(w) of an element w 2 W to be (�1)m, where m is the number of fa
tors if we write w asa produ
t of simple re
e
tions.Let � be the sequen
e (1 � N=2 � i)i2N in the O(N)- 
ase, and let � be the sequen
e(�N � i)i in the Sp(N)-
ase. We also have an a
tion of W on the set of integer sequen
es� with only �nitely many nonzero entries de�ned by w:� = w(� + �) � �. It is easy to seethat for � a Young diagram this a
tion 
oin
ides with the one de�ned in the last se
tion.Lemma 2.1 Let � 2 � be a Young diagram with � m rows.(a) Let w 2 W (m) � W . Then w:� is well-de�ned independent of the 
hoi
e of m 2N [ f1g. 8



(b)There exists an element w 2 W su
h that either w:� 2 DN [ IN or w(�+ �) has twoidenti
al 
oordinates. Moreover, if w:� 2 DN , it is 
ontained in �, i.e. (w:�)i � �i for all i.Proof: Part(a) has already been shown in this se
tion. We will prove the statements ofpart (b) for the orthogonal 
ase, with the proofs for the symple
ti
 
ase being very similar.Let li = �i + �i, for i 2 N . If l1 + l2 � 0, there is nothing to show. Otherwise, let w1 bethe permutation su
h that the elements of w1so(� + �) are de
reasing. If they are stri
tlyde
reasing, it follows from the fa
t that (�+ �)i = �i for all but �nitely many indi
es i thatw1so(� + �) = � + � for some Young diagram �. Moreover, one 
he
ks from the de�nitionof w1 that w1so(� + �)i � (� + �)i for all i, i.e. � � �. Continuing this pro
edure, wewill eventually either end up with a Young diagram in DN [ IN , or w(� + �) will have twoidenti
al entries, as 
laimed in (a). �2.2 Multipli
ative 
hara
tersWe 
all any ring homomorphism � : Gr(O(1))�! C amultipli
ative 
hara
ter ofGr(O(1)).Using the duality with G = O(N) or G = Sp(N)=2), it is easy to 
onstru
t examples of 
har-a
ters for [Cn(N): If g 2 G, p[N ℄ 2 Cn(N) and Tr is the usual tra
e on V 
n, we de�ne� = �g by �([p[N ℄℄) = Tr(g
n�(p[n℄)). It is easy to 
he
k that this de�nes a multipl
ative
hara
ter on Gr(C(N))�, and hen
e also on Gr(O(1))� (see Prop. 1.8).We say that a 
hara
ter of Gr(O(1)) annihilates IN up to degree m if �([�℄) = 0 forany element [�℄ in IN for whi
h the Young diagram � has at most m rows.To produ
e su
h 
hara
ters, re
all that if g is an orthogonal matrix of rank 2m+1, witheigenvalues 1 and ��1i , i = 1; 2; ::: m, then its 
hara
ter for the representation labeled bythe Young diagram � is given bydet(�(�+�(m))ij � ��(�+�(m))ij )= det(��(m)ij � ���(m)ij ); (2)here �(m)i = m + 1=2� i. If we set �j = e2�p�1�j=`, this formula be
omesdet(sin(2(�+ �(m))i�j�)=`)= det(sin(2�(m)i �j�=`); (3)Similarly, the 
hara
ter for a matrix g 2 Sp(m) with eigenvalues ��1i , i = 1; 2; ::: m is givenby the same formulas as in Eq. 2 and 3, but now with �(m)i = m + 1 � i and without thefa
tor 2 under the sines in Eq. 3. We shall 
onsider the following 
hara
ters, with N 2 N�xed:(a) G = O(M); M = 2m + 1: Let ` = N +M � 2, and let g = g(�) be an orthogonalM �M matrix with eigenvalues 1 and e�2�p�1�j�=`, where either all �j are integers, or all �jare half-integers.(b) G = Sp(m): Let N 2 N , set ` = N +m + 1 and let g be a symple
ti
 matrix witheigenvalues e�2�p�1�j�=`, where now all �j are integers.9



In view of the Weyl group symmetries, we 
an assume without restri
tion of generalitythat ` > �1 > �2 > ::: > �m � 0. Let E` be the set of all m-tuples � = (�j) satisfying these
onditions, and let �g(�)([�℄) be the orthogonal resp. symple
ti
 
hara
ter of the matrix g(�)in the representation V�. Then the set of ve
tors f�� = (�g(�)([�℄)); � 2 DNg is a subset ofthe 
olumn ve
tors of the so-
alled S-matrix appearing in 
onne
tion with representationsof aÆne Ka
-Moody algebras related to orthogonal and symple
ti
 Lie algebras (see [K
℄Se
tion 13, or also e.g.[TW℄, Se
tion 9 for an elementary des
ription for this setting). Thismatrix is invertible, hen
e these ve
tors are linearly independent. As a 
onsequen
e of this,we obtain the following useful statement:Let a =P�2DN m�[�℄ and let b =P�2DN n�[�℄ be linear 
ombinations of elements [�℄ inDN for whi
h ea
h diagram � has at most m rows. Then �g(a) = �g(b) for all �g as in (b)if and only if a = b.2.3 The quotients Gr(O(1))�=IN and Gr(O(1))�=I 0NTo formulate the main result of this se
tion, we de�ne a se
ond a
tion of W on Youngdiagrams by w0:� = (w:�0)0.Theorem 2.2 Let G = O(N) or G = Sp(N=2), with the ideals IN resp. I 0N de�ned a

ord-ingly.(a) The quotient Gr(O(1))�=IN has a Z basis f[�℄; � 2 DNg. For an arbitrary Youngdiagram �, we either have [�℄ 2 IN or there exists w 2 W su
h that w:� 2 DN and[�℄ � "(w)[w:�℄ mod IN .(b) The quotient Gr(O(1))�=I 0N has a Z basis f[�℄; � 2 D0Ng. For an arbitrary Youngdiagram �, we either have [�℄ 2 I 0N or there exists w 2 W su
h that w0:� 2 DN and[�℄ � "(w)[w:�℄ mod I 0N . In parti
ular, the N-span of the elements [�℄ mod I 0N ; � 2 D0Nforms a sub-semiring of Gr(O(1))�=I 0N whi
h is isomorphi
 to Gr(G).Proof: The statements in (a) are equivalent to the �rst two senten
es in statement(b) by Lemma 1.3. The �rst senten
e in (a) and (b) hen
e follows from Prop. 1.8. Toprove the se
ond senten
e, it suÆ
es to show that �([w:�℄) = "(w)�([�℄) for all 
hara
ters� = �g as des
ribed above. Indeed, by the remark at the end of the last se
tion, this for
es[w:�℄ �= "(w)[�℄ mod IN . If w 2 Sm � W the 
laim follows from the determinant formulas for�g, see Eq 2 and 3. Moreover, sin(2�(`� l2)�j=`) = (�1)2�j+1 sin(2�l2�j=`). Hen
e repla
ing� by so:� results in inter
hanging the �rst two 
olumns of the matrix whose determinantgives the 
hara
ter, with a possible sign 
hange for both 
olumns in the orthogonal 
ase (seeSe
tion 2.1). It follows that �([so:�℄) = ��([�℄). The proof for the symple
ti
 
ase is similar,but easier.
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3 Restri
tion CoeÆ
ientsLet p� be a minimal idempotent in C Sn . Then it 
an be written as a sum of mutually
ommuting minimal idempotents in Cn. Let b�� be the number of those idempotents whi
hare in Cn;�; equivalently, b�� is the tra
e of p� in an irredu
ible Cn;�-module. Again, these
oeÆ
ients depend on whether we take the orthogonal or symple
ti
 Brauer algebra, whi
hwill be made pre
ise below.The 
onne
tion of these 
oeÆ
ients with representation theory of Lie groups is easily es-tablished as follows. Let V be an N -dimensional ve
tor spa
e with N > n. By S
hur duality,F � = p�V 
n is an irredu
ible Gl(N)-module. As N > n, we obtain a faithful representa-tion of the Brauer algebra Cn(N) on V 
n su
h that its image is isomorphi
 to EndG(V 
n)for G = O(N) or G = Sp(N=2). Hen
e it follows that the 
oeÆ
ient b�� determines themultipli
ity of the simple G-module V� in F �. If N � n, this multipli
ity will be denotedby b��(N). The 
oeÆ
ients b�� were 
omputed by Littlewood as follows where part (
) is asimple 
onsequen
e of parts (a) and (b) as well as Lemma 1.3:Theorem 3.1 (Littlewood) If G = O(N), we have b�� =P� 
���, where the summation goesover all Young diagrams whi
h have an even number of boxes in ea
h row, and 
��� is themultipli
ity of the simple Gl(N)-module F � in F �
 F �. In parti
ular, b�� = 0 unless � � �,and b�� = 1.(b) If G = Sp(N), we have b�� = P� 
���, where the summation goes over all Youngdiagrams whi
h have an even number of boxes in ea
h 
olumn, and 
��� is as in (a).(
) The orthogonal and symple
ti
 restri
tion 
oeÆ
ients are related by b��(O) = b�0�0(Sp)We 
an now express the restri
tion 
oeÆ
ients b��(N) as followsTheorem 3.2 Let G = O(N) or G = Sp(N=2), and let W be the re
e
tion group of typeD1 resp of type B1 as de�ned in Se
tion 2.1. Then the multipli
ity b��(N) of a simpleG-module V� in a simple Gl(N)-module F � is given byb�(N) =Xw2W "(w)b�w0:�:P roof: Let g 2 G and let �g resp. �(N)g be the 
hara
ters indu
ed by it on [Cn resp[ �Cn(N). Moreover, Let p� 2 C Sn be a minimal idempotent. Then we haveX�2D0N b��(N)�(N)g ([�℄) = �(p�) =X� b���g([�℄) = X�2D0NXw "(w)b�w:��g([�℄):As �(N)g ([�℄) = �g([�℄) for � 2 D0N and as the �g separate the � 2 D0N , the 
laim follows.11
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