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Abstract
A simple and fairly explicit formula has been given by Littlewood for the decompo-
sition of a simple GL(N)-module if viewed as an O(N) or Sp(NN/2)-module for certain
GL(N)-representations. We define an action of a reflection group on Young diagrams
which allows us to compute the restriction multiplicities in the general case via an
alternating sum over the Littlewood multiplicities.

There exist a number of ways how to describe the multiplicities of the restriction of a finite
dimensional representation of GI(N) to O(N) or Sp(N/2). Classically, they are given by
certain generating functions (see [Wy]). An explicit combinatorial formula in terms of well-
known tensor product multiplicites of GI(N) was given by Littlewood. However, this formula
only holds for GI(N) representations labeled by Young diagrams which are sufficiently ‘small’
in comparison to the rank NV, and it is certainly not true in general. More recently, rather
involved formulas have been found for the general case in [EW]. The purpose of this note is
to give a fairly simple explicit formula for the general case. It is inspired by certain formulas
for the tensor product multiplicities of so-called fusion categories, which is usually referred
to as Kac-Walton formula. Similar as these fusion categories have Grothendieck semirings
which are quotients of the ones of compact Lie groups, we show that the Grothendieck
semiring of O(N) or Sp(N/2) is obtained as a quotient of a (formally defined) Grothendieck
semiring Gr(O(o0)), which has an N-basis {[A]} labeled by the set of all Young diagrams.
The quotient map can be explicitly described via an action of a reflection group W of Coxeter
type Dy, for orthogonal groups, and of type B, for symplectic groups on Young diagrams.
Either the representation corresponding to a Young diagram A is already in the ideal, or it
can be mapped via an element w € W to a diagram w.\ in a fundamental domain which
consists of a labeling set of irreducible representations of O(N) resp. Sp(N/2); we then have
[w.\] 2 &(w)[A] modulo the above mentioned ideal, with £(w) the sign of w. The restriction
multiplicities for a particular orthogonal or symplectic group can now be easily computed
by taking Littlewood’s ones modulo the above-mentioned ideal. An explicit formula is given
in Theorem 3.2.
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1 Brauer algebras

1.1 Definitions

Brauer’s centralizer algebra C,, of orthogonal type is defined over the field C(x) of rational
functions over C; the field C could be replaced as well by any field of characteristic 0, such
as e.g. Q. It has a basis given by graphs with 2n vertices, arranged in two lines, and n edges
such that each vertex belongs to exactly one edge. Multiplication of a graph a with a graph
b is given by putting a on top of b. The product is then defined to be the graph obtained
by removing all cycles from the composite graph, multiplied by z¢, where ¢ is the number of
cycles (see [Br]).

Moreover, we define for graphs a € C,,, b € C,,, a new graph a ® b € C,,,,,, by putting the
graph b to the right of the graph a. Then a®* is equal to a ® a ® ... ® a (k times) and 1;
is the identity for Cj, the graph with k vertical edges.

Observe that C,, contains the group algebra of the symmetric group CS,, as a subalgebra;
it is spanned by graphs which connected the i-th lower vertex to an upper vertex, say the
7(i)-th vertex, for i = 1,2, ... n, where 7 € S,,. Let e be the graph in Cy with only horizontal
edges. It is easy to see that C, is generated by S, and ey = e® 1,, 5.

Similarly, we define the algebra C,,(N) over C for any integer N by substituting x = N.
This specialization is important for describing the commutant Endg(V®") of the action of
the orthogonal group G = O(N) on V®" where V is the defining N-dimensional vector
representation of O(N). More precisely, one can define a surjective homomorphism ® from
Cn(N) onto Endg(V®"). One can similarly define a symplectic Brauer algebra, and one
obtains analogous homomorphisms for the symplectic group Sp(N). It can be shown that
the symplectic Brauer algebra is isomorphic to the orthogonal Brauer algebra; in particular,
one obtains a surjective homomorphism from the orthogonal Brauer algebra with x = —N
onto Endg(V®") with G = Sp(N/2).

It is easy to see that the tensor product operation defined for C,, above is compatible with
these homomorphisms. Note also that the image of the element e € Co(N) in Endg(V®?)
is a multiple of the projection onto the trivial representation in V®?2 corresponding to the
bilinear form invariant under G.

The algebra C, has a g-deformation in form of the algebra C,, defined over the field
C(r, q) of rational functions over C in variables r and ¢ via generators and relations. The
main reason we mention this algebra is that it can be easier described via generators and
relations than the Brauer algebra itself. More precisely, it has generators 1y, Ty ... T}, 1,
which satisfy the braid relations 7;7;117; = T;11 11,41 and 1,7, = T;T; if |i — j| > 1 as well
as the relations

(Rl) E,Lﬂ = TﬁlEZ'
(R2) ETF\E; =r*'E;,



where Fj; is defined by the equation
(D) (q—q N -E)=T-1"

-1

It is possible to obtain the algebra C,(N) as limit lim,_,; C,(¢" ", q).

1.2 Algebraic structure

As usual, a Young diagram A = ()\;) is an array of boxes, with \; boxes in the i-th row. We
will freely identify A with a vector in Z™ whose i-th coordinate is equal to A; whenever m
is larger than the number of boxes. Let || be the number of boxes of \. We denote by X
the Young diagram with rows and columns interchanged. In particular, A} is the number of
boxes in the i-th column. We can now describe the structure of the algebra C,, as follows:

(a) The algebra C, is semisimple. Its simple components are labelled by the Young
diagrams with n, n —2, n —4, ..., 1 resp. 0 boxes. The labeling is such that whenever p, is
a minimal idempotent in C,, ), then p) ® ((1/x)e)®" is a minimal idemotent in C, o, ».

(b) The decomposition of a simple C,, module V,, 5 into simple C,_; modules is given by

Vn,)\ = @anl,u; (1)
I

where the summation goes over all Young diagrams g which can be obtained by either taking
away or, if A has less than n boxes, by adding a box to A. The labeling of simple components
is uniquely determined by the restriction rule, except for a possible choice of replacing A by
its transposed A\’ simultaneously for all Young diagrams (see e.g. [W1], Lemma 2.11).

(¢) The same statements hold for the algebra C,. Here we have the convention that the
eigenprojection of T corresponding to its eigenvalue ¢ is labeled by the Young diagram [2].

(d) Statements (a) and (b) also hold for the C-algebra C,,(N) provided that|N| > n. The
cases with n < |N| are more complicated. We need the following

Definition 1.1 (a) For G = O(N) we define Dy (resp. In) to be the set of all Young
diagrams X\ satisfying My + Ay < N (resp. those X for which \y + Xy = N +1 or A = [k],
k> N).

(b) For G = Sp(N/2) we define Dy (resp. In) to be the set of all Young diagrams A
satisfying \y < N/2 (resp. Ay = N/2 +1).

(c) The sets D and I} are defined by analogous (in)equalities for the columns of Young
diagrams. In particular, A\ € Dy if and only if ' € Dy

(e) The restriction rules for the quotients C,(N) = Endg (V") are given as follows: The
simple components of C,(N) are labeled by the Young diagrams in D' with n,n — 2, ...



boxes, and the restriction rule is as in (b), except that now only Young diagrams in D’y are
allowed.

The simple restriction rule above allows us to define canonical minimal idempotents as
follows: We call any sequence ¢ = (A;))i_; of Young diagrams a path of length n if Ay = [1]
and A;41) is obtained from A by adding or subtracting a box. We denote by #' the path
obtained from ¢ by removing the last Young diagram. Then the path idempotent p; is defined
to be the idempotent which acts on a simple C,-module W) as 0 if A # A,y and as py if
A = An). Inductive formulas have been given for these idempotents in [RW]. We shall need
the following result (see [RW], Theorem 2.3 and Theorem 2.4(b)):

Proposition 1.2 The path idempotent p, is given as a linear combination of the basis graphs
whose coefficients are well-defined at © = N whenever the path only contains Young diagrams
in D'y ; this is also true if the last diagram of t is in 1.

1.3 Gr(O(x))

As an idempotent p € C,(N) = Endg(V®") corresponds to the subrepresentation pV®", we
can translate the tensor product structure of Rep(G) into the setting of the algebras C, (V).
More generally, this can also be done as well for the algebras C,, which will lead to the
definition of a formal Grothendieck semiring Gr(O(o0)).

We say that two idempotents p and ¢ in an algebra A are (conjugation) equivalent if there
exist elements u and v in A such that p = uv and ¢ = vu. More generally, we say that two
idempotents p € C, and g € C,, are equivalent if we can find nonnegative integers n; and ns
such that (1e)®" ®p and (1e)®" ®gq are equivalent as defined in the previous sentence in the
algebra C,, 195, = Cipon,. [t follows from our labeling conventions that minimal idempotents
in components of algebras C, and C,, labeled by the same Young diagram are equivalent.
We denote by [p]| the equivalence class of an idempotent p, and by [)\] the equivalence class
of a minimal idempotent in a simple component of C, 5. In particular, if for p € C, we
denote by my the trace of p in the irreducible representation of C, labeled by A, we have
[p] = >, ma[A]. We define Gr(O(o0)) to be the N-span of [A], with A ranging over the set of
all Young diagrams. It is not hard to show that this is equivalent to the set of all equivalence
classes of idempotents in UC,,.

If py and p, are minimal idempotents in C,, and C,, respectively, we obtain an idempotent
PA@py in Cpypn. If we define df, to be the rank of the idempotent py ® p,, in the irreducible
representation of C,,, labeled by the Young diagram v, we obtain

Nl = pa©p] = Y d5, V]

By N-linearity this extends to an associative and abelian multiplication on Gr(O(oc)). We
remark that we can define the same Grothendieck semiring by using the g-deformation C,, of



C,. The latter is a consequence of the fact that the Drinfeld-Jimbo quantum group U,soy
has the same representation ring as the classical Lie algebra soy.

Exactly the same construction also goes through if we replace UC,, by the union UCS,, of
the group algebras of the symmetric group. In view of Schur duality, a minimal idempotent
px € CS,, now corresponds to an irreducible representation F* of GI(N) for N sufficiently
large. The resulting semiring will be denoted by Gr(Gl(occ). We denote the structure
coefficients by ¢ ,; which give the multiplicity of the simple GI(N)-module F"” in the tensor
product F* @ FH.

Lemma 1.3 Let X denote the transpose of the Young diagram . Then the map [A] — [N]
defines an automorphism of Gr(O(oc)) as well as of Gr(Gl(o0)).

Proof. 1t is easy to check that the generators of the algebra én(r, q) also satisfy the re-
lations of the algebra én(r, —q~1). Hence the map T; — T; induces an isomorphism between
these two algebras. Due to our convention of labeling the simple components, the eigenpro-
jection of T € én(r, —q ') for the eigenvalue ¢ is labeled by the Young diagram [1%]. This
implies that the simple component CAn,,\(r, q) will be mapped to CAn,,\:(r, —q '), by uniqueness
of the labeling of the simple components of én up to transposition. This induces the desired
automorphism of Gr(O(o0)).

The claim is shown similarly for Gr(Gl(occ)) by using the automorphism s; — —s; of
CS,,, where s; is the transposition permuting ¢ with ¢ 4+ 1. [J

Let us remark that the semiring Gr(O(o0)) can also be interpreted as follows: If the
number of boxes in the Young diagrams A and g are small in comparison to /N, the de-
composition of the tensor product of the corresponding representations V) and V,, does not
depend on the particular value of N. Hence Gr(O(00)) describes the tensor product rules of
O(N)-representations labeled by Young diagrams A and p whenever the number of boxes in
these diagrams is small compared to N. Hence we can determine the multiplicative structure
of Gr(O(o0)) from the tensor product rules of orthogonal groups. For inductive proofs we
define the alphabetical order on Young diagrams by A < g if and only if \; < p; for the
smallest index ¢ for which A; # p;. We can now formulate the following well-known results:

Lemma 1.4 (a) Let A be a Young diagram with k bozes in its last column, and let X be the
diagram \ without its last column. Then [N|[1¥] = X\ 4 Y2 m,[u], where u < X in alphabetical
order for all y for which m, # 0.

(b) Let A be a Young diagram with k' bozes in its last column, and let N be the diagram
X without its last row. Then [N][K'] = X+ Yo my[u], where p' < X' in alphabetical order for

all i for which m, # 0.

Proof. The proof follows from well-known tensor product rules for, say, SO(2m + 1),
as follows: First observe that it suffices to prove (a) in view of Lemma 1.3. Moreover, the
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set of weights of the highest weight module Vjjx; can be identified with the set of vectors
in Z™ whose coordinates have absolute value 0 or 1, with at most k£ nonzero coordinates.
Moreover, it is a well-known consequence of the Weyl character formula that V, C V, ® V,
for simple modules with highest weights p, A and v respectively only if 4 = A\ + w, where
w is a weight of V,,. Identifying the diagram A with the corresponding vector in Z™ which
represents the highest weight, the claim follows from the discussion above. []

The next proposition will be important when we compare the algebras C, with the al-
gebras C, (V). While the latter algebras are not semisimple in general, we can still define a
Grothendieck semiring as before, which we denote by Gr(C(N)). The following proposition
will be useful for comparing these two semirings. We formulate it in a slightly more general
context as follows: Let A be a finite dimensional algebra defined over C(z) via a given basis
(b;) for which the structure coefficients are well-defined at a given number N € C. Hence
we can also consider the C-algebra A(N) defined by the basis (b;(N)) with the structure
coefficients being the ones of A evaluated at N. It is easy to check that the algebras C,
satisfy these conditions for any N € C. Then we have

Proposition 1.5 If p(N) € A(N) is an idempotent, then we can find an idempotent p =
> aib; € A such that p(N) = > a;(N)b;(N). Moreover, if the idempotent p(N) is equivalent
to the idempotent q(N) in A(N), then so are the corresponding idempotents p and q in A.

Corollary 1.6 There exists an inclusion of Gr(C(N)) into Gr(O(oc))

1.4 Quotients

Let Gr(O(o0))+ be the Z-span of Gr(O(oc)), which obviously is an abelian ring; similarly
the representation ring Gr(G)+ of the group G, G = O(N) or G = Sp(N/2) is defined to be
the Z-span of Gr(G). Let Iy be the set of Young diagrams defined in Def. 1.1 in connection
with the group G = O(N) or G = Sp(N/2). We define Zy to be the ideal in Gr(O(0))+
generated by the elements [A] with A € Iy.

Lemma 1.7 The ring Gr(O(c0))+ is the Z-span of {[A], A € Dy} UZy.

Proof. Let us first observe that given a Young diagram \ it suffices to show that [A] is
congruent to some Z-linear combination »  m,[v] of diagrams v € Dy modulo Zy. We shall
prove this property in the symplectic case first. This will be done by induction with respect
to alphabetical order for Young diagrams. There is nothing to show if the number A; of
columns of A is < N 4+ 1. Let now A be a Young diagram with N + 2 columns and with £
boxes in its last column, and assume that the claim has already been shown for all smaller
diagrams. Let A be the diagram A without the last column. Then [5\] € Iy, and hence also
[A][1*]. But on the other hand, by Lemma 1.4 we also have

[A][1%] = A + [lower diagrams]. (%)
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Applying the induction assumption to the lower diagrams and solving for A we obtain the
claim for \.

If A has more than N + 2 columns, we apply the same strategy. Let again ) be the Young
diagram A\ without its last column. By induction assumption )\ is equivalent to a linear
combination Y m,[v] of Young diagrams v in Dy UZy with v < &. Using this, we obtain

[A] + [lower diagrams] = [A][1¥] = Z m, [v][1%],

where the right hand side is a linear combination of elements in {[v], v € Dy} UZy by the
results of the previous paragraph. Solving for A and using the induction assumption gives
the desired claim.

To prove the claim in the orthogonal case, it will be more convenient to do the induction
by applying the alphabetical order to the transposed Young diagrams. By definition of Z,
there is nothing to show if A has only one row. If A = [n, k|, the claim is shown by induction
on k, using that [[n]][[k]] is a linear combination of [[n, k]| and diagrams smaller than [n, k|.
If A has r > 2 rows, we define ) to be the diagram A without the last row. As before, we can
assume by induction assumption that A = >, my[v] with v € Dy U Iy for all v for which
m,, # 0. We can now finish the proof as before in the symplectic case, using Lemma 1.4,(b).

Proposition 1.8 Let notations be as in the previous lemma. Then Gr(0O(o0))+ = Gr(C(N))+
and there exists a ring homomorphism W : Gr(O(o0))+ — Gr(G)+ which induces a bijection
between the N-span of {[A], A € Dy} and Gr(G) and an isomorphism Gring /Ty = Gr(G)+.

Proof. 1t follows from Cor 1.6 that there exists an inclusion of the Grothendieck semiring
Gr(C(N)) defined in connection with the algebras C,,(N) into Gr(O(c0)). In view of Prop.
1.2 the elements [A\] with A € D,, U Iy are contained in the image of this inclusion. It can be
shown by induction with respect to alphabetical order, exactly as it was done in the previous
lemma that for each Young diagram A the corresponding element [A] € Gr(O(o0)) is in the
Z-span of the image of Gr(C(N)) in Gr(O(0)); indeed, it suffices to solve for [A] in Eq (¥*)
of the proof of Lemma 1.7 and apply the induction assumption for the lower diagrams....
This shows that Gr(O(o0))+ and Gr(C(N))4 are isomorphic.

The map @ from C,(N) onto Endg(V®") induces a map & from Gr(C(N)) onto the
representation-semiring Gr(G). Extending this map to Gr(C(N))+ and combining it with
the isomorphism established in the last paragraph, we obtain a map ¥ from Gr(O(c0))+
onto Gr(G)+.

Next we want to show that Z) is contained in the kernel of ¥. By Prop. 1.2, there exists
for each A € I}, a path idempotent p, € C, » for which p;(N) is well-defined. The claim
follows as soon as we can show that ®(p,(N)) = 0. If G = O(NN) and V is its N-dimensional
vector representation, there exists a polynomial P,, due to El-Samra and King, such that
dim p;(N)V®" = Py(N) for any Young diagram A and any N-evaluable idempotent p; € Cp, ».
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The factorization of these polynomials into linear factors is explicitly given from which one
easily checks that P\(N) =0 for A € I}y (see e.g. [W3], p. 186 for more details). The claim
is similarly shown for G = Sp(N/2), where we now evaluate the polynomials at © = — N,
which determines the dimension of the corresponding Sp(N/2) representation up to a sign.

By Lemma 1.7 the elements [A], A € D', span the quotient Gr(O(oc))+/Zh. If ker® were
strictly larger than T4, Lemma 1.7 would imply that the set {®([\]), A € Dy} was linearly
dependent. This contradicts the fact that the irreducible representations of GG are labelled
by D .

2 Reduction modulo Zy

2.1 Reflection groups

Let W = W be the reflection group generated by S,,, with the obvious action on R™,
and the affine reflection s, in the plane x; + 29 = £ in the orthogonal case, and in the plane
x1 = £ in the symplectic case. With these natural actions, we also define a second action
on R™ by w.A = w(\+ p™) — p™. Observe that this also defines an action on Young
diagrams, whose image is an element in Z™.

We observe that if A is a Young diagram with < m rows, and w € W™ such that w.\
is again a Young diagram, then its image does not depend on the choice of m. To see this,
let {; = \; + pl(m . Then s,(ly, 1o, 13, ...) = (€ = Iy, ¢ — 13,13, ...) in the orthogonal case, and
So(ly,ly, ...) = (£ —1,1ls, ...) in the symplectic case. It is then straightforward to check that
w. A is independent of m for w € S,,, and for w = s,.

In view of these observations it will be convenient to embed all groups W™ into a large
group W = W) This group W has Coxeter type D for the O(N)-case, and type By
for the Sp(IN)-cases. It is generated by the group S, of finite permutations on a countable
set together with one additional reflection s,. It can be conveniently described by a faithful
representation on the space of sequences, on which S, acts via permutations of the entries
of the sequence and where the reflection sy changes the sign of the first (for type By) or
of the first two members of a sequence (for type D). In particular, we can define the sign
e(w) of an element w € W to be (—1)™, where m is the number of factors if we write w as
a product of simple reflections.

Let p be the sequence (1 — N/2 — i);en in the O(N)- case, and let p be the sequence
(=N —i); in the Sp(NN)-case. We also have an action of W on the set of integer sequences
A with only finitely many nonzero entries defined by w.A = w(A + p) — p. It is easy to see
that for A a Young diagram this action coincides with the one defined in the last section.

Lemma 2.1 Let A € A be a Young diagram with < m rows.
(a) Let w € W™ C W. Then w.)\ is well-defined independent of the choice of m €
NU {oc}.



(b)There ezists an element w € W such that either w.A € Dy U Iy or w(A+ p) has two
identical coordinates. Moreover, if w.\ € Dy, it is contained in X\, i.e. (w.\); < N\; for all i.

Proof. Part(a) has already been shown in this section. We will prove the statements of
part (b) for the orthogonal case, with the proofs for the symplectic case being very similar.
Let l; = A\; + p;, for v € N. If [{ + 15 < 0, there is nothing to show. Otherwise, let w; be
the permutation such that the elements of w;s,(\ + p) are decreasing. If they are strictly
decreasing, it follows from the fact that (A + p); = p; for all but finitely many indices 7 that
w1S(A 4+ p) = p + p for some Young diagram p. Moreover, one checks from the definition
of wy that wis,(A + p); < (A + p); for all 4, i.e. p C A Continuing this procedure, we
will eventually either end up with a Young diagram in Dy U Iy, or w(A + p) will have two
identical entries, as claimed in (a). O

2.2 Multiplicative characters

We call any ring homomorphism y : Gr(O(00))+ — C a multiplicative character of Gr(O(00)).
Using the duality with G = O(N) or G = Sp(IN)/2), it is easy to construct examples of char-
acters for UC,(N): If g € G, p|[N] € C,(N) and Tr is the usual trace on V®" we define
X = Xg by X([p[N]]) = Tr(g*"®(p[n])). It is easy to check that this defines a multiplcative
character on Gr(C(NV))+, and hence also on Gr(O(0))+ (see Prop. 1.8).

We say that a character of Gr(O(oc)) annihilates Zy up to degree m if x([\]) = 0 for
any element [A] in Zy for which the Young diagram A has at most m rows.

To produce such characters, recall that if ¢ is an orthogonal matrix of rank 2m + 1, with
eigenvalues 1 and aiﬂ, 1t = 1,2, ... m, then its character for the representation labeled by
the Young diagram A is given by

(m) (m)

det(a" = o O S det(af T a7 ); 2)

here p(m) =m+1/2—i. If we set a; = ™V =14/t this formula becomes

det (sin(2(A + p™);e;m) /0)/ et (sin(2p™ e;7 /0): (3)

Similarly, the character for a matrix g € Sp(m) with eigenvalues oziil, 1=1,2, ... mis given
by the same formulas as in Eq. 2 and 3, but now with p(m) = m + 1 — i and without the

factor 2 under the sines in Eq. 3. We shall consider the following characters, with N € N
fixed:

(a) G =0(M), M =2m+1: Let { = N+ M — 2, and let g = g(€) be an orthogonal
M x M matrix with eigenvalues 1 and e*27V =167/t where either all €; are integers, or all ¢;
are half-integers.

(b) G = Sp(m): Let N € N, set £ = N +m + 1 and let g be a symplectic matrix with
eigenvalues 2™V 167/¢ where now all €; are integers.
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In view of the Weyl group symmetries, we can assume without restriction of generality
that £ > ¢ > e > ... > €, > 0. Let Ey be the set of all m-tuples € = (¢;) satisfying these
conditions, and let x4 ([A]) be the orthogonal resp. symplectic character of the matrix g(e)
in the representation Vy. Then the set of vectors {xx = (Xg()([A])), A € Dy} is a subset of
the column vectors of the so-called S-matrix appearing in connection with representations
of affine Kac-Moody algebras related to orthogonal and symplectic Lie algebras (see [Kc]
Section 13, or also e.g.[TW], Section 9 for an elementary description for this setting). This
matrix is invertible, hence these vectors are linearly independent. As a consequence of this,
we obtain the following useful statement:

Let a =3 \cp, ma[A and let b=3" _, ny[A] be linear combinations of elements [A] in
Dy for which each diagram A has at most m rows. Then x,(a) = x,4(b) for all x, as in (b)
if and only if a = b.

2.3 The quotients Gr(O(c0))+/Iy and Gr(O(o0))+ /Ly

To formulate the main result of this section, we define a second action of W on Young
diagrams by w'. A = (w.\")".

Theorem 2.2 Let G = O(N) or G = Sp(N/2), with the ideals Ty resp. I defined accord-
ingly.

(a) The quotient Gr(O(00))+/In has a Z basis {[u], pn € Dn}. For an arbitrary Young
diagram X, we either have [\| € Iy or there exists w € W such that w. A € Dy and
[A] = e(w)[w.A] mod Zy.

(b) The quotient Gr(O(o0))+/Zy has a Z basis {[u],n € Dy}. For an arbitrary Young
diagram X, we either have [N € Iy or there ezxists w € W such that w'.\ € Dy and
[A] = e(w)[w.\] mod Z). In particular, the N-span of the elements [u] mod I, u € DYy
forms a sub-semiring of Gr(O(c0))+ /Ly which is isomorphic to Gr(G).

Proof. The statements in (a) are equivalent to the first two sentences in statement
(b) by Lemma 1.3. The first sentence in (a) and (b) hence follows from Prop. 1.8. To
prove the second sentence, it suffices to show that x([w.\]) = e(w)x([A\]) for all characters
X = X4 as described above. Indeed, by the remark at the end of the last section, this forces
[w.A] = e(w)[A] mod Zy. Ifw € S, C W the claim follows from the determinant formulas for
Xg> see Eq 2 and 3. Moreover, sin(27(¢ — ly)e;/¢) = (—1)*9 ! sin(27lye;/¢). Hence replacing
A by s,.A results in interchanging the first two columns of the matrix whose determinant
gives the character, with a possible sign change for both columns in the orthogonal case (see
Section 2.1). It follows that x([s,.A]) = —x([A]). The proof for the symplectic case is similar,
but easier.
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3 Restriction Coefficients

Let py be a minimal idempotent in CS,,. Then it can be written as a sum of mutually
commuting minimal idempotents in C,. Let bf; be the number of those idempotents which
are in C, ,; equivalently, bﬁ is the trace of py in an irreducible C, ,-module. Again, these
coefficients depend on whether we take the orthogonal or symplectic Brauer algebra, which
will be made precise below.

The connection of these coefficients with representation theory of Lie groups is easily es-
tablished as follows. Let V' be an N-dimensional vector space with N > n. By Schur duality,
F* = p\V®" is an irreducible GI(N)-module. As N > n, we obtain a faithful representa-
tion of the Brauer algebra C,(N) on V®" such that its image is isomorphic to Endg(V®")
for G = O(N) or G = Sp(N/2). Hence it follows that the coefficient b} determines the
multiplicity of the simple G-module V,, in F*. If N < n, this multiplicity will be denoted
by b3 (N). The coefficients b} were computed by Littlewood as follows where part (c) is a
simple consequence of parts (a) and (b) as well as Lemma 1.3:

Theorem 3.1 (Littlewood) If G = O(N), we have bl); = CW, where the summation goes

over all Young diagrams which have an even number of boxes in each row, and CW 15 the
multiplicity of the simple GI(N)-module F” in F* @ F*. In particular, b;\L =0 unless p C A,
and by = 1.

(b) If G = Sp(N), we have by = 3", c,,, where the summation goes over all Young

diagrams which have an even number of boxes in each column, and cf;u is as in (a).
(¢) The orthogonal and symplectic restriction coefficients are related by b)(0) = bﬁ;(Sp)

We can now express the restriction coefficients b;\L(N) as follows

Theorem 3.2 Let G = O(N) or G = Sp(N/2), and let W be the reflection group of type
Dy, resp of type By as defined in Section 2.1. Then the multiplicity b;)(N) of a simple
G-module V,, in a simple GI(N)-module F* is given by

weWw

Proof. Let g € G and let x, resp. Xg ) be the characters induced by it on UC, resp
UC,(N). Moreover, Let py € CS,, be a minimal idempotent. Then we have

Z b (N)X (1)) = x(p2) Zqug Z Z by uXo([11])-

pneDYy peDly, w

As X_E,N)([,u]) = Xq([p]) for € D)y and as the y, separate the o € DY, the claim follows.
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