## TORI, WEIGHTS AND ROOTS

The proof of the following theorem can be found in the lecture notes for which a link is given on the course web site. See Proposition 13.1, Lemma 13.2 and Proposition 13.3 in these notes:
Theorem 5.1 Any connected abelian Lie group $G$ is isomorphic to $(\mathbf{R} / \mathbf{Z})^{m} \times \mathbf{R}^{k}$ for non-negative integers $k$ and $m$. In particular, if $G$ is compact, it is isomorphic to $(\mathbf{R} / \mathbf{Z})^{m}$ for some $m$.

Definition A compact connected abelian Lie group $T$ is called a torus. By the previous theorem, $T \cong(\mathbf{R} / \mathbf{Z})^{m}$ for some $m$.

If $T$ is a torus as in the definition, its Lie algebra $\mathfrak{t}$ can be identified with $\mathbf{R}^{m}$, and its exponential map is given by

$$
\begin{equation*}
\exp : \mathbf{t}=\left(t_{1}, t_{2}, \ldots t_{m}\right) \in \mathbf{R}^{m} \mapsto \mathbf{z}=\left(z_{1}, z_{2}, \ldots z_{m}\right) \tag{*}
\end{equation*}
$$

where $z_{j}=e^{2 \pi i t_{j}}$. Observe that this is just a way how to explicitly describe the quotient $\operatorname{map} \mathbf{R}^{m} \rightarrow(\mathbf{R} / \mathbf{Z})^{m}$, where $\mathbf{R} / Z$ is identified with the circle $S^{1}=\{z \in \mathbf{C},|z|=1\}$.

Theorem 5.2 Any 1-dimensional representation $\Phi: T=(\mathbf{R} / \mathbf{Z})^{m} \rightarrow \mathbf{C}$ is given in the form

$$
\mathbf{z}=\left(z_{j}\right)_{j} \in\left(S^{1}\right)^{m} \mapsto \mathbf{z}^{\lambda}=z_{1}^{\lambda_{1}} z_{2}^{\lambda_{2}} \ldots z_{m}^{\lambda_{m}}
$$

where the numbers $\lambda_{1}, \lambda_{2}, \ldots$ are integers.
Proof. Let $\mathfrak{t}=\mathbf{R}^{m}$ be the Lie algebra of $T$. Then the Lie algebra map $\phi: \mathbf{R}^{m} \rightarrow \mathbf{C}$ is linear, hence of the form

$$
\left(t_{1}, t_{2}, \ldots t_{m}\right) \mapsto \sum_{j} \tilde{\lambda}_{j} z_{j}
$$

for some scalars $\tilde{\lambda}_{j}$. Hence

$$
\begin{equation*}
\Phi(\mathbf{z})=\Phi\left(\exp \left(t_{1}, t_{2}, \ldots t_{m}\right)\right)=\exp \left(\phi\left(t_{1}, \ldots t_{m}\right)\right)=\exp \left(\sum \tilde{\lambda}_{j} t_{j}\right) \tag{1}
\end{equation*}
$$

Now observe that if we take for $\mathbf{t}$ one of the standard basis vectors $\mathbf{e}_{k}$, i.e. $t_{j}=\delta_{k j}$, then $\exp \mathbf{t}=1$ by $(*)$. This also forces $\Phi(\exp \mathbf{t})=e^{\tilde{\lambda}_{k}}=1$, from which we conclude that $\tilde{\lambda}_{j}=2 \pi i \lambda_{j}$ for some integer $\lambda_{j}$. Hence we get from (1)

$$
\Phi(\mathbf{z})=\prod_{j} e^{2 \pi i \lambda_{j} t_{j}}=\prod_{j} z_{j}^{\lambda_{j}}
$$

by definition of $z_{j}$, below $(*)$.

