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Motivation for this Talk

Chemistry and Systems Biology: Continuous-time Markov chains
describe the stochastic dynamics of networks of reacting chemical
species.

Common Approaches

-Discrete-event stochastic simulation (Doob-Gillespie algorithm).
Rapidly becomes computationally intensive.

-Deterministic ODE (fluid) approximation for concentrations: Fine if
all species are present in large numbers. Some species may be
present in small numbers, especially in biological systems.

-Diffusion approximation I: fluctuations around the ODE solution
(linear noise approximation).
Two-step process. Does not respect the constraint that chemical
concentrations are never negative.

-Diffusion approximation II: direct Langevin-type approximation. Only

valid in general until boundary of the orthant is reached.
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SIMPLE EXAMPLE



Simple Example: Two species, two reactions

S1
α−⇀↽−
β

S2

V : volume times Avogadro’s number (fixed)
X̄V : vector of concentrations of the chemical species S1, S2 in
Markov chain model

ODE approximation: X̄V (·) ≈ x̄(·)

d x̄1

dt
= βx̄2(t)− αx̄1(t)

d x̄2

dt
= αx̄1(t)− βx̄2(t)
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Simple Example: Linear noise diffusion approximation

S1
α−⇀↽−
β

S2

ODE approximation: X̄V (·) ≈ x̄(·)

d x̄1

dt
= βx̄2(t)− αx̄1(t)

d x̄2

dt
= αx̄1(t)− βx̄2(t)

Linear noise approximation: X̄V (·) ≈ x̄(·) + 1√
V

Z̃(·)

dZ̃1(t) = (βZ̃2(t)− αZ̃1(t))dt +
√
βx̄2(t)dW2(t)−

√
αx̄1(t)dW1(t)

dZ̃2(t) = (αZ̃1(t)− βZ̃2(t))dt +
√
αx̄1(t)dW1(t)−

√
βx̄2(t)dW2(t)



Simple Example: Langevin approximation

S1
α−⇀↽−
β

S2

Langevin approximation: X̄V (·) ≈ Z(·)

dZ1(t) = (βZ2(t)− αZ1(t)) dt

+
1
√

V

(√
βZ2(t)dW2(t)−

√
αZ1(t)dW1(t)

)
dZ2(t) = (αZ1(t)− βZ2(t)) dt

+
1
√

V

(√
αZ1(t)dW1(t)−

√
βZ2(t)dW2(t)

)

Only valid until the first time Z1 or Z2 is zero.
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Kurtz’s Theorems

In general, theorems in
T. G. Kurtz, Limit theorems and diffusion approximations for
density-dependent Markov chains (1976) and Strong approximations
theorems for density-dependent Markov chains (1978)
can be used to justify the linear noise approximation for all time
and the Langevin approximation until the concentration of some
species is zero, i.e., Z reaches the boundary of the orthant, ∂Rd

+

These theorems require
Linear noise approximation: drift Lipschitz continuous and
continuously differentiable
Langevin approximation: drift and dispersion coefficients
Lipschitz continuous (implies linear growth bound)



GENERAL REACTION NETWORK SETUP



Chemical Reaction Network Model

Species: S1, . . . , Sd
Reactions:

d∑
i=1

vikSi
ck−→

d∑
i=1

v ′ikSi , k = 1, . . . , r

Change in state of Markov chain for reaction k: ṽk = v ′k − vk

Example:

S2 + S3 → S1 + S3

v1 =

0
1
1

 v ′1 =

1
0
1

 ṽ1 =

 1
−1
0
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Assumptions

Assume the set of reactions divides into three sets:
-A set of reactions indexed by R1 that are mass-dissipating:
there exists a vector u ≥ 1 such that u · ṽk ≤ 0 for all k ∈ R1

-A set of reactions indexed by R2 that involve only external
inputs: vk = 0 for all k ∈ R2

-A set of reactions indexed by R3 that involve only external
outputs: v ′k = 0 for all k ∈ R3

Assume that there are external inputs and external outputs for
each species

Example

∅
c2−⇀↽−
c1

S1
c5−⇀↽−
c6

S2
c3−⇀↽−
c4

∅
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MARKOV CHAIN MODEL AND APPROXIMATIONS



Markov Chain Model for Concentrations
For independent Poisson processes, N1, . . . ,Nr ,

X̄V (t) = X̄V (0) +
1

V

r∑
k=1

ṽkNk

(
V
∫ t

0
λV

k (X̄V (s))ds
)

λV
k (x) ≈ λk(x) = ck

d∏
i=1

xvik
i

Langevin approximation (up until the boundary is reached)

Z(t) = X̄V (0) +

∫ t

0
µ(Z(s))ds +

1
√

V

r∑
k=1

ṽk

∫ t

0

√
λk(Z(s))dW̃k(s)

where µ(x) =
∑r

k=1 ṽkλk(x). Equivalent in law to

Z(t) = X̄V (0) +

∫ t

0
µ(Z(s))ds +

1
√

V

∫ t

0
σ(Z(s)) · dW (s)

where σ is the positive definite square root of

Γ(x) =
r∑

k=1

ṽk ṽT
k λk(x)
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ṽk

∫ t

0

√
λk(Z(s))dW̃k(s)

where µ(x) =
∑r
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Jump-Diffusion Approximation

Ẑ(t) = X̄V (0) +

∫ t

0
µ(Ẑ(s))1{Ẑ(s)>0}ds

+
1
√

V

(∫ t

0
σ(Ẑ(s))1{Ẑ(s)>0} · dW (s)

)
+

1
√

V

(
1
√

V

r∑
k=1

ṽkNk

(
V
∫ t

0
λ̂k(Ẑ(s))1{Ẑ(s)∈∂Rd

+}ds
))

where

λ̂k(x) = λk(x)1{xi≥ 1
V vik for i=1,...,d}



Jump-Diffusion Approximation (cont.)

Ẑ(t) = X̄V (0) +

∫ t

0
µ(Ẑ(s))1{Ẑ(s)>0}ds

+
1
√

V

(∫ t

0
σ(Ẑ(s))1{Ẑ(s)>0} · dW (s)

)
+

1
√

V

(
1
√

V

r∑
k=1

ṽkNk

(
V
∫ t

0
λ̂k(Ẑ(s))1{Ẑ(s)∈∂Rd

+}ds
))

= Zδ(t) with δ =
1
√

V
where

Zδ(t) = X̄V (0) +

∫ t

0
µ(Zδ(s))1{Zδ(s)>0}ds

+
1
√

V

(∫ t

0
σ(Zδ(s))1{Zδ(s)>0} · dW (s)

)
+

1
√

V

(
δ

r∑
k=1

ṽkNk

(
δ−2

∫ t

0
λ̂δk(Zδ(s))1{Zδ(s)∈∂Rd

+}ds
))

λ̂δk(x) = λk(x)1{xi≥ δ√
V

vik for i=1,...,d}



CONSTRAINED LANGEVIN EQUATION
(REFLECTED DIFFUSION APPROXIMATION)



Constrained Langevin Equation (Reflected Diffusion)

Z(t) = XV
(0) +

∫ t

0
µ(Z(s))ds +

1
√

V

∫ t

0
σ(Z(s))dW (s)

+
1
√

V

∫ t

0
γ(Z(s))dL(s)

Reflection Vector Field on ∂Rd
+:

γ(x) =
µ(x)

|µ(x)|
µ(x) =

r∑
k=1

ṽkλk(x)

Boundary process (one-dimensional, cts, non-decreasing):

L(t) =

∫ t

0
1{Z(s)∈∂Rd

+}
dL(s)



Main Theorem (Leite-W)

Weak (and strong) existence and uniqueness holds for the
Constrained Langevin Equation (CLE):

Z(t) = z +

∫ t

0
µ(Z(s))ds +

1
√

V

∫ t

0
σ(Z(s))dW (s)

+
1
√

V

∫ t

0
γ(Z(s))dL(s)

Proof: Locally γ, µ, σ satisfy a modification of conditions of
Dupuis and Ishii ’93 (bounded domains) and Z does not explode.

Moreover,
Zδn =⇒ Z as δn → 0,

where Z solves the CLE.
Proof: C -tightness argument (modified from Kang-W ’07) and
any limit point solves the CLE. Use weak uniqueness for CLE to
prove convergence.
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Identifying the Limit

Zδ(t) = X̄V (0) +

∫ t

0
µ(Zδ(s))1{Zδ(s)>0}ds

+
1
√

V

(∫ t

0
σ(Zδ(s))1{Zδ(s)>0} · dW (s)

)
+
δ−1

√
V

∫ t

0

r∑
k=1

ṽk λ̂
δ
k(Zδ(s))1{Zδ(s)∈∂Rd

+}ds

+
δ
√

V

r∑
k=1

ṽkN̂k

(
δ−2

∫ t

0
λ̂δk(Zδ(s))1{Zδ(s)∈∂Rd

+}ds
)



EXAMPLES



Example I: Two species, six reactions

∅
c2−⇀↽−
c1

S1
c5−⇀↽−
c6

S2
c3−⇀↽−
c4

∅

λ1(x) = c1x1, λ2(x) = c2, λ3(x) = c3x2, λ4(x) = c4

λ5(x) = c5x1, λ6(x) = c6x2

With c1 = 10−4, c2 = 1, c3 = 1, c4 = 10−4, c5 = 100, c6 = 1,
V = 100, and starting state x0 = (0.02, 1.00) (near steady-state
for deterministic model)



Our diffusion approximation (CLE) ∅
c2−⇀↽−
c1

S1
c5−⇀↽−
c6

S2
c3−⇀↽−
c4

∅

Z(t) = z +

∫ t

0
µ(Z(s))ds

+
1
√

V

(∫ t

0
σ(Z(s)) · dW (s) +

∫ t

0
γ(Z(s))dL(s)

)

µ1(x) = c2 − c1x1 − c5x1 + c6x2, µ2(x) = c4 − c3x2 + c5x1 − c6x2

(σσT )(x) =

[
c2 + c1x1 + c5x1 + c6x2 −(c5x1 + c6x2)
−(c5x1 + c6x2) c4 + c3x2 + c5x1 + c6x2

]
γ(x) = µ(x)/|µ(x)|



Comparison of different methods

MCM CLE LNA

LE-NR LE-Chop

Figure: MCM=Markov Chain Model, CLE=Constrained Langevin Equation,
LNA=Linear Noise Approximation, LE-NR=Langevin Equation with Normal
Reflection at boundary, LE-Chop=LE with Chopping off of negative
excursions. Simulations run until time t = 104



Comparison of mean running times

Model Mean Running Time 95%-C.I.

MCM 310.338 s (309.624, 311.052)
LNA 320.178 s (319.645, 320.711)
CLE 308.922 s (307.686, 310.159)
LE-NR 282.607 s (281.706, 283.509)
LE-Chop 251.664 s (251.584, 251.743)

Table: Mean running time in seconds for the simulations. The mean running
time is calculated by averaging the running times over 10 independent runs.
The 95%-confidence interval for this average is also calculated.



Example II (Brusselator): Two species, six reactions

∅
c2−⇀↽−
c1

S1
c5→ S2

c3−⇀↽−
c4

∅

2S1 + S2
c6→ 3S1

λ1(x) = c1x1, λ2(x) = c2, λ3(x) = c3x2, λ4(x) = c4

λ5(x) = c5x1, λ6(x) = c6x2
1 x2

With c1 = 1, c2 = 1, c3 = 10−4, c4 = 10−4, c5 = 11,
c6 = 10,V = 100, and starting state x0 = (2, 1).

The deterministic ODE model for this chemical reaction system
exhibits a stable limit cycle (with parameters shown).



Our diffusion approximation (CLE)

Z(t) = z +

∫ t

0
µ(Z(s))ds

+
1
√

V

(∫ t

0
σ(Z(s)) · dW (s) +

∫ t

0
γ(Z(s))dL(s)

)

µ1(x) = c2 − c1x1 − c5x1 + c6x2
1 x2,

µ2(x) = c4 − c3x2 + c5x1 − c6x2
1 x2

(σσT )(x) =

[
c2 + c1x1 + c5x1 + c6x2

1 x2 −(c5x1 + c6x2
1 x2)

−(c5x1 + c6x2
1 x2) c4 + c3x2 + c5x1 + c6x2

1 x2

]
γ(x) = µ(x)/|µ(x)|



Comparison of MCM and CLE

MCM CLE

Figure: Simulations run until t = 104. A scatter plot for LNA is not shown
since LNA oscillates and diverges during a long simulation.



Comparison of Running Times for MCM and CLE

Model Mean Running Time 95%-C.I.

MCM 915.332 s (912.949, 917.715)
CLE 255.127 s (254.843, 255.410)

Table: Mean running time in seconds for the simulation of MCM and CLE.
The mean running time is calculated by averaging the running times over the
10 independent runs. The 95%-confidence interval from this average is also
calculated.



Simulations of Trajectories in Time

Figure: LNA increases in oscillation and diverges during a long simulation.



Example III (Bistability)

S1
c1−⇀↽−
c2

∅ S2
c3−⇀↽−
c4

∅ S3
c5−⇀↽−
c6

∅

S3 + S2
c7−→ 2S1 2S1

c8−→ S1 + S2 S1 + S2
c9−→ S2.

c1 = 1/
√

10, c2 = 0.01, c3 = 1, c4 = 0.01, c5 = 1, c6 = 10, c7 = 8/10, c8 = 1, c9 = 1.5/
√

10. ODE model is

bistable with two real stable points near (1.2679 · 10−1, 2.90328 · 10−3, 9.97683) and

(2.96686, 2.31681, 3.50454).

MCM CLE LNA



Future Work

Investigate what happens if some species do not have inflows.

Other applications: population genetics, neuroscience?

Error estimates for approximation of X̄V by CLE.

Numerical approximation of reflected diffusion.



THANK YOU!



Reflected Diffusions and (Bio)Chemical Reaction Networks
Abstract

Continuous-time Markov chain models are often used to describe the stochastic dynamics of
networks of reacting chemical species, especially in the growing field of systems biology.
Discrete-event stochastic simulation of these models rapidly becomes computationally intensive.
Consequently, more tractable diffusion approximations are commonly used in numerical
computation, even for modest-sized networks. However, existing approximations (e.g., linear noise
and Langevin), do not respect the constraint that chemical concentrations are never negative.
In this talk, we propose an approximation for such Markov chains, via reflected diffusion processes,
that respects the fact that concentrations of chemical species are non-negative. This fixes a
difficulty with Langevin approximations that they are frequently only valid until the boundary of
the positive orthant is reached. Our approximation has the added advantage that it can be written
down immediately from the chemical reactions. This contrasts with the linear noise approximation,
which involves a two-stage procedure — first solving a deterministic ordinary differential equation,
followed by a stochastic differential equation for fluctuations around those solutions.
An invariance principle for reflected diffusions, due to Kang and Williams, is adapted in justifying
our approximation under mild assumptions. Some numerical examples illustrate the advantages of
our approximation over direct simulation of the Markov chain or use of the linear noise
approximation.

This talk is based on joint work with David Anderson, Des Higham and Saul Leite.
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