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Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of
G is also finitely-presented.

Examples of coherent groups:

Free groups.

Surface groups.

Abelian groups.

Polycyclic groups.

Fundamental groups of 3-manifolds (Scott; Shalen).

Free-by-cyclic groups (Feighn and Handel).

Certain classes of small cancellation groups (McCammond and
Wise). For instance, G = 〈x1, ..., xn|W m〉, where m > |W |.
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Nonexamples:

Examples of incoherent groups:

F2 × F2. (Stallings-?; Grunewald)

More generally, any right-angled Artin group whose graph is
non-chordal, i.e., contains an embedded cycle of length ≥ 4
without a cord. (Hermiller and Meier)

In particular: SL(n,Z), n ≥ 4.

Rips construction: 2-dimensional hyperbolic groups
1→ K → G → Q → 1, where Q is f.p., |Q| =∞.

Aut(F2) and the braid group B4 (Gordon).

Doubles F ?H F , where F is free of rank ≥ 2 and
2 < |F : H| <∞. (Gersten)

Problem

(Serre, 1977) Are SL(3,Z) and SL(2,Z( 1
p )) noncoherent?
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General conjecture

Definition

Let G be a Lie group. A subgroup Γ < G is a lattice if Γ is discrete
and Vol(G/Γ) <∞.

Conjecture

Let G be a connected semisimple Lie group without compact
factors and G not locally isomorphic to SL(2,R) and SL(2,C).
Then every lattice Γ in G is non-coherent.

Note that lattices in SL(2,R) and SL(2,C) are (virtually) free,
surface and 3-manifold groups, so they are coherent.
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Real-hyperbolic space: G = SO(n, 1)

Theorem

Let Γ < SO(n, 1) be an arithmetic lattice of the simplest type
(associated with a quadratic form over a number field). Then Γ is
noncoherent provided that n ≥ 4. (Kapovich, Potyagailo, Vinberg;
Agol) Examples: O(x2

1 + ...+ x2
n −
√

2x2
n+1,Z).

Theorem

Let Γ < SO(n, 1) be an arithmetic lattice of quaternionic type
(associated with a hermitian quadratic form over a central
4-dimensional division ring). Then Γ is non-coherent provided that
n ≥ 4.
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Corollary

Every arithmetic lattice Γ < SO(n, 1) is noncoherent provided that
n ≥ 4, n 6= 7.

Observation

All known constructions of non-arithmetic lattices in SO(n, 1),
n ≥ 4 (Makarov; Gromov-Piatetsky-Shapiro; Agol) lead to
noncoherent groups. (Kapovich, Potyagailo, Vinberg)
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Complex-hyperbolic space: G = SU(n, 1)

Theorem

Let Γ < SU(2, 1) be a cocompact lattice (arithmetic or not) with
infinite abelianization. Then Γ is noncoherent.

Corollary

Every cocompact arithmetic lattice of the simplest type (associated
with a hermitian quadratic form over a number field) in SU(n, 1),
n ≥ 2, is noncoherent.

Observation

All known examples of non-arithmetic lattices in SU(n, 1), n = 2, 3
are noncoherent.
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Quaternionic and octontionic hyperbolic spaces

Theorem

Every lattice in Isom(HHn) and Isom(OH2) is noncoherent.

Proof: Reduction to the SO(4, 1),SO(8, 1) cases.
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Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since H1(Γ) 6= 0 and Γ is a Kähler group,

1→ Λ→ Γ→ Z2 → 1.

Theorem

(Delzant’s Alternative) Either Λ is f.g. or M = CH2/Γ
holomorphically fibers over a Riemann surface.

• If M fibers then the image of the generic fiber group is f.g. but
not f.p. (Kapovich).
• If Λ is f.g., then either it is not f.p. (and Γ is noncoherent) or Λ
is f.p. and then is a PD(2) group (Hillman). Then Λ is a surface
group (Eckmann—Linnel—Müller). But for any extension of the
form

1→ π1(S)→ Γ→ Z2 → 1,

Γ contains Z2. (Essentially due to Birman–Lubotzky–McCarthy)
Describe holomorphic fibration in the blown up “complete
quadrangle” case if times permits.
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Proof in the real-hyperbolic case

Show that Γ contains a subgroup Λ isomorphic to A ?C B, where
A,B are f.p. and H1(C ) has infinite rank.

Then H2(Λ) has infinite rank and Λ is not even FP2.
More on this if time permits.
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Remarks on SL(3,Z)

Among finitely generated torsion-free infinite index non-solvable
subgroups of SL(3,Z) we currently only know:
1. Free subgroups.
2. Groups Z2 o Fk , where Fk is free of rank k .
3. Surface subgroups.
As an example of the latter, consider Coxeter group T (3, 4, 4) or
T (3, 6, 6). They are crystallographic (embed in GL(3,Z )) and
contain surface subgroups of finite index.
Note that they are all f.p.
We do not even know if Z2 ? Z embeds in SL(3,Z )!
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