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Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of
G is also finitely-presented.

Examples of coherent groups:

Free groups.

Surface groups.

o

o

@ Abelian groups.
@ Polycyclic groups.
o

Fundamental groups of 3-manifolds (Scott; Shalen).
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Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of
G is also finitely-presented.

Examples of coherent groups:

o Free groups.

@ Surface groups.

@ Abelian groups.

@ Polycyclic groups.

e Fundamental groups of 3-manifolds (Scott; Shalen).
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Free-by-cyclic groups (Feighn and Handel).
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Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of
G is also finitely-presented.

Examples of coherent groups:

Free groups.
Surface groups.
Abelian groups.

Fundamental groups of 3-manifolds (Scott; Shalen).

°
°

°

@ Polycyclic groups.
°

@ Free-by-cyclic groups (Feighn and Handel).
°

Certain classes of small cancellation groups (McCammond and
Wise). For instance, G = (x1, ..., x,| W™), where m > |W/|.
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Examples of incoherent groups:
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Nonexamples:

Examples of incoherent groups:

F> x Fy. (Stallings-?; Grunewald)

More generally, any right-angled Artin group whose graph is
non-chordal, i.e., contains an embedded cycle of length > 4
without a cord. (Hermiller and Meier)

In particular: SL(n,Z), n > 4.

Rips construction: 2-dimensional hyperbolic groups
1-K—G— Q—1, where Qis f.p., |Q| = .

Aut(F>) and the braid group By (Gordon).
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@ More generally, any right-angled Artin group whose graph is
non-chordal, i.e., contains an embedded cycle of length > 4
without a cord. (Hermiller and Meier)

e In particular: SL(n,Z), n > 4.

@ Rips construction: 2-dimensional hyperbolic groups
1-K—G— Q—1, where Qis f.p., |Q| = .

e Aut(F>) and the braid group B4 (Gordon).

@ Doubles F xy F, where F is free of rank > 2 and
2 < |F : H| < co. (Gersten)
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Nonexamples:

Examples of incoherent groups:

e Fp x F,. (Stallings-?; Grunewald)

@ More generally, any right-angled Artin group whose graph is
non-chordal, i.e., contains an embedded cycle of length > 4
without a cord. (Hermiller and Meier)

e In particular: SL(n,Z), n > 4.

@ Rips construction: 2-dimensional hyperbolic groups
1-K—G— Q—1, where Qis f.p., |Q| = .

e Aut(F>) and the braid group B4 (Gordon).

@ Doubles F xy F, where F is free of rank > 2 and
2 < |F : H| < co. (Gersten)

Problem

(Serre, 1977) Are SL(3,Z) and SL(2, Z(%)) noncoherent?
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General conjecture

Definition

Let G be a Lie group. A subgroup I' < G is a lattice if [" is discrete
and Vol(G/T) < oc.
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Let G be a connected semisimple Lie group without compact
factors and G not locally isomorphic to SL(2,R) and SL(2,C).
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General conjecture

Let G be a Lie group. A subgroup I' < G is a lattice if [" is discrete
and Vol(G/T) < oc.

Let G be a connected semisimple Lie group without compact
factors and G not locally isomorphic to SL(2,R) and SL(2,C).
Then every lattice I in G is non-coherent.

Note that lattices in SL(2,R) and SL(2,C) are (virtually) free,
surface and 3-manifold groups, so they are coherent.
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Real-hyperbolic space: G = SO(n, 1)
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Real-hyperbolic space: G = SO(n, 1)

Let T < SO(n,1) be an arithmetic lattice of the simplest type
(associated with a quadratic form over a number field). Then T is
noncoherent provided that n > 4. (Kapovich, Potyagailo, Vinberg;
Agol)
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Real-hyperbolic space: G = SO(n, 1)

Theorem

Let T < SO(n,1) be an arithmetic lattice of the simplest type
(associated with a quadratic form over a number field). Then T is
noncoherent provided that n > 4. (Kapovich, Potyagailo, Vinberg;
Agol)  Examples: O(x3 + ... + x2 — V2x2, 1, Z).

Theorem

| \

Let I < SO(n,1) be an arithmetic lattice of quaternionic type
(associated with a hermitian quadratic form over a central
4-dimensional division ring). Then T is non-coherent provided that
n>4.
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Every arithmetic lattice I < SO(n, 1) is noncoherent provided that
n>4,n#T7.
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Every arithmetic lattice I < SO(n, 1) is noncoherent provided that
n>4,n#T7.

Observation

All known constructions of non-arithmetic lattices in SO(n, 1),
n > 4 (Makarov; Gromov-Piatetsky-Shapiro; Agol) lead to
noncoherent groups. (Kapovich, Potyagailo, Vinberg)
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Complex-hyperbolic space: G = SU(n, 1)
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Let T < SU(2,1) be a cocompact lattice (arithmetic or not) with
infinite abelianization. Then ' is noncoherent.
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Complex-hyperbolic space: G = SU(n, 1)

Let T < SU(2,1) be a cocompact lattice (arithmetic or not) with
infinite abelianization. Then ' is noncoherent.

Every cocompact arithmetic lattice of the simplest type (associated
with a hermitian quadratic form over a number field) in SU(n, 1),
n > 2, is noncoherent.

Observation

All known examples of non-arithmetic lattices in SU(n,1),n=2,3
are noncoherent.
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Quaternionic and octontionic hyperbolic spaces

Every lattice in Isom(HH") and Isom(OH?) is noncoherent.

Proof: Reduction to the SO(4,1), SO(8,1) cases.
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Proof in the complex-hyperbolic case

Assume T is torsion-free. Since H*(I') # 0 and T is a Kihler group,
1-AN—=T—2%-1
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1-AN—=T—2%-1

(Delzant’s Alternative) Either A is f.g. or M = CH?/T
holomorphically fibers over a Riemann surface.
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e If M fibers then the image of the generic fiber group is f.g. but
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1-AN—=T—2%-1

(Delzant’s Alternative) Either A is f.g. or M = CH?/T
holomorphically fibers over a Riemann surface.

e If M fibers then the image of the generic fiber group is f.g. but
not f.p. (Kapovich).
e If Ais f.g., then either it is not f.p. (and I is noncoherent) or A
is f.p. and then is a PD(2) group (Hillman). Then A is a surface
group (Eckmann—Linnel—Miiller). But for any extension of the
form

1—-m(S) =T — 221,

I contains Z2.
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Assume T is torsion-free. Since H*(I') # 0 and T is a Kihler group,
1-AN—=T—2%-1

(Delzant’s Alternative) Either A is f.g. or M = CH?/T
holomorphically fibers over a Riemann surface.

e If M fibers then the image of the generic fiber group is f.g. but
not f.p. (Kapovich).
e If Ais f.g., then either it is not f.p. (and I is noncoherent) or A
is f.p. and then is a PD(2) group (Hillman). Then A is a surface
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form

1—-m(S) =T — 221,

I contains Z2. (Essentially due to Birman—Lubotzky—McCarthy)
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Proof in the complex-hyperbolic case

Assume T is torsion-free. Since H*(I') # 0 and T is a Kihler group,
1-AN—=T—2%-1

(Delzant’s Alternative) Either A is f.g. or M = CH?/T
holomorphically fibers over a Riemann surface.

e If M fibers then the image of the generic fiber group is f.g. but
not f.p. (Kapovich).
e If Ais f.g., then either it is not f.p. (and I is noncoherent) or A
is f.p. and then is a PD(2) group (Hillman). Then A is a surface
group (Eckmann—Linnel—Miiller). But for any extension of the
form

1—-m(S) =T — 221,
I contains Z2. (Essentially due to Birman—Lubotzky—McCarthy)
Describe holomorphic fibration in the blown up “complete
quadrangle” case if times permits.
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Proof in the real-hyperbolic case

Show that I' contains a subgroup A isomorphic to Ax¢ B, where
A, B are f.p. and H!(C) has infinite rank.
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Show that I' contains a subgroup A isomorphic to Ax¢ B, where
A, B are f.p. and H!(C) has infinite rank.
Then H?(A) has infinite rank and A is not even FP;.
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Proof in the real-hyperbolic case

Show that I' contains a subgroup A isomorphic to Ax¢ B, where
A, B are f.p. and H!(C) has infinite rank.

Then H?(A) has infinite rank and A is not even FP;.

More on this if time permits.
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subgroups of SL(3,Z) we currently only know:
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As an example of the latter, consider Coxeter group T(3,4,4) or
T(3,6,6). They are crystallographic (embed in GL(3,Z)) and
contain surface subgroups of finite index.
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Remarks on SL(3, Z)

Among finitely generated torsion-free infinite index non-solvable
subgroups of SL(3,Z) we currently only know:

1. Free subgroups.

2. Groups Z? x Fi, where Fj is free of rank k.

3. Surface subgroups.

As an example of the latter, consider Coxeter group T(3,4,4) or
T(3,6,6). They are crystallographic (embed in GL(3,Z)) and
contain surface subgroups of finite index.

Note that they are all f.p.

We do not even know if Z2 x Z embeds in SL(3, Z)!
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