Noncoherence of lattices

Michael Kapovich

January 20, 2013

Definitions and examples

Definition
A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.
- Surface groups.

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.
- Surface groups.
- Abelian groups.

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.
- Surface groups.
- Abelian groups.
- Polycyclic groups.

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.
- Surface groups.
- Abelian groups.
- Polycyclic groups.
- Fundamental groups of 3-manifolds (Scott; Shalen).

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.
- Surface groups.
- Abelian groups.
- Polycyclic groups.
- Fundamental groups of 3-manifolds (Scott; Shalen).
- Free-by-cyclic groups (Feighn and Handel).

Definitions and examples

Definition

A group G is called coherent if every finitely-generated subgroup of G is also finitely-presented.

Examples of coherent groups:

- Free groups.
- Surface groups.
- Abelian groups.
- Polycyclic groups.
- Fundamental groups of 3-manifolds (Scott; Shalen).
- Free-by-cyclic groups (Feighn and Handel).
- Certain classes of small cancellation groups (McCammond and Wise). For instance, $G=\left\langle x_{1}, \ldots, x_{n} \mid W^{m}\right\rangle$, where $m>|W|$.

Nonexamples:

Examples of incoherent groups:

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)
- More generally, any right-angled Artin group whose graph is non-chordal, i.e., contains an embedded cycle of length ≥ 4 without a cord. (Hermiller and Meier)

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)
- More generally, any right-angled Artin group whose graph is non-chordal, i.e., contains an embedded cycle of length ≥ 4 without a cord. (Hermiller and Meier)
- In particular: $S L(n, \mathbf{Z}), n \geq 4$.

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)
- More generally, any right-angled Artin group whose graph is non-chordal, i.e., contains an embedded cycle of length ≥ 4 without a cord. (Hermiller and Meier)
- In particular: $S L(n, \mathbf{Z}), n \geq 4$.
- Rips construction: 2-dimensional hyperbolic groups $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$, where Q is f.p., $|Q|=\infty$.

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)
- More generally, any right-angled Artin group whose graph is non-chordal, i.e., contains an embedded cycle of length ≥ 4 without a cord. (Hermiller and Meier)
- In particular: $S L(n, \mathbf{Z}), n \geq 4$.
- Rips construction: 2-dimensional hyperbolic groups $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$, where Q is f.p., $|Q|=\infty$.
- $\operatorname{Aut}\left(F_{2}\right)$ and the braid group B_{4} (Gordon).

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)
- More generally, any right-angled Artin group whose graph is non-chordal, i.e., contains an embedded cycle of length ≥ 4 without a cord. (Hermiller and Meier)
- In particular: $S L(n, \mathbf{Z}), n \geq 4$.
- Rips construction: 2-dimensional hyperbolic groups $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$, where Q is f.p., $|Q|=\infty$.
- $\operatorname{Aut}\left(F_{2}\right)$ and the braid group B_{4} (Gordon).
- Doubles $F \star_{H} F$, where F is free of rank ≥ 2 and $2<|F: H|<\infty$. (Gersten)

Nonexamples:

Examples of incoherent groups:

- $F_{2} \times F_{2}$. (Stallings-?; Grunewald)
- More generally, any right-angled Artin group whose graph is non-chordal, i.e., contains an embedded cycle of length ≥ 4 without a cord. (Hermiller and Meier)
- In particular: $S L(n, \mathbf{Z}), n \geq 4$.
- Rips construction: 2-dimensional hyperbolic groups

$$
1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1, \text { where } Q \text { is f.p., }|Q|=\infty
$$

- $\operatorname{Aut}\left(F_{2}\right)$ and the braid group B_{4} (Gordon).
- Doubles $F \star_{H} F$, where F is free of rank ≥ 2 and $2<|F: H|<\infty$. (Gersten)

Problem

(Serre, 1977) Are $S L(3, \mathbf{Z})$ and $S L\left(2, \mathbf{Z}\left(\frac{1}{p}\right)\right)$ noncoherent?

General conjecture

Definition

Let G be a Lie group. A subgroup $\Gamma<G$ is a lattice if Γ is discrete and $\operatorname{Vol}(G / \Gamma)<\infty$.

General conjecture

Definition

Let G be a Lie group. A subgroup $\Gamma<G$ is a lattice if Γ is discrete and $\operatorname{Vol}(G / \Gamma)<\infty$.

Conjecture

Let G be a connected semisimple Lie group without compact factors and G not locally isomorphic to $S L(2, \mathbf{R})$ and $S L(2, \mathbf{C})$. Then every lattice Γ in G is non-coherent.

General conjecture

Definition

Let G be a Lie group. A subgroup $\Gamma<G$ is a lattice if Γ is discrete and $\operatorname{Vol}(G / \Gamma)<\infty$.

Conjecture

Let G be a connected semisimple Lie group without compact factors and G not locally isomorphic to $S L(2, \mathbf{R})$ and $S L(2, \mathbf{C})$. Then every lattice Γ in G is non-coherent.

Note that lattices in $S L(2, \mathbf{R})$ and $S L(2, \mathbf{C})$ are (virtually) free, surface and 3-manifold groups, so they are coherent.

Real-hyperbolic space: $G=S O(n, 1)$

Real-hyperbolic space: $G=S O(n, 1)$

Theorem

Let $\Gamma<S O(n, 1)$ be an arithmetic lattice of the simplest type (associated with a quadratic form over a number field). Then Γ is noncoherent provided that $n \geq 4$. (Kapovich, Potyagailo, Vinberg; Agol)

Real-hyperbolic space: $G=S O(n, 1)$

Theorem

Let $\Gamma<S O(n, 1)$ be an arithmetic lattice of the simplest type (associated with a quadratic form over a number field). Then Γ is noncoherent provided that $n \geq 4$. (Kapovich, Potyagailo, Vinberg; Agol) Examples: $O\left(x_{1}^{2}+\ldots+x_{n}^{2}-\sqrt{2} x_{n+1}^{2}, \mathbf{Z}\right)$.

Real-hyperbolic space: $G=S O(n, 1)$

Theorem

Let $\Gamma<S O(n, 1)$ be an arithmetic lattice of the simplest type (associated with a quadratic form over a number field). Then Γ is noncoherent provided that $n \geq 4$. (Kapovich, Potyagailo, Vinberg; Agol) Examples: $O\left(x_{1}^{2}+\ldots+x_{n}^{2}-\sqrt{2} x_{n+1}^{2}, \mathbf{Z}\right)$.

Theorem

Let $\Gamma<S O(n, 1)$ be an arithmetic lattice of quaternionic type (associated with a hermitian quadratic form over a central 4-dimensional division ring). Then 「 is non-coherent provided that $n \geq 4$.

Corollary

Every arithmetic lattice $\Gamma<S O(n, 1)$ is noncoherent provided that $n \geq 4, n \neq 7$.

Corollary

Every arithmetic lattice $\Gamma<S O(n, 1)$ is noncoherent provided that $n \geq 4, n \neq 7$.

Observation

All known constructions of non-arithmetic lattices in $S O(n, 1)$, $n \geq 4$ (Makarov; Gromov-Piatetsky-Shapiro; Agol) lead to noncoherent groups. (Kapovich, Potyagailo, Vinberg)

Complex-hyperbolic space: $G=S U(n, 1)$

Complex-hyperbolic space: $G=S U(n, 1)$

Theorem

Let $\Gamma<S U(2,1)$ be a cocompact lattice (arithmetic or not) with infinite abelianization. Then Γ is noncoherent.

Complex-hyperbolic space: $G=S U(n, 1)$

Theorem

Let $\Gamma<S U(2,1)$ be a cocompact lattice (arithmetic or not) with infinite abelianization. Then Γ is noncoherent.

Corollary

Every cocompact arithmetic lattice of the simplest type (associated with a hermitian quadratic form over a number field) in $\operatorname{SU}(n, 1)$, $n \geq 2$, is noncoherent.

Complex-hyperbolic space: $G=S U(n, 1)$

Theorem

Let $\Gamma<S U(2,1)$ be a cocompact lattice (arithmetic or not) with infinite abelianization. Then Γ is noncoherent.

Corollary

Every cocompact arithmetic lattice of the simplest type (associated with a hermitian quadratic form over a number field) in $\operatorname{SU}(n, 1)$, $n \geq 2$, is noncoherent.

Observation

All known examples of non-arithmetic lattices in $S U(n, 1), n=2,3$ are noncoherent.

Quaternionic and octontionic hyperbolic spaces

Theorem

Every lattice in Isom $\left(\mathbf{H H}^{n}\right)$ and $\operatorname{Isom}\left(\mathbf{O H}^{2}\right)$ is noncoherent.
Proof: Reduction to the $S O(4,1), S O(8,1)$ cases.

Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

Proof in the complex-hyperbolic case
Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1 .
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

- If M fibers then the image of the generic fiber group is f.g. but not f.p. (Kapovich).

Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

- If M fibers then the image of the generic fiber group is f.g. but not f.p. (Kapovich).
- If Λ is f.g., then either it is not f.p. (and Γ is noncoherent) or Λ is f.p. and then is a $\operatorname{PD}(2)$ group (Hillman).

Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

- If M fibers then the image of the generic fiber group is f.g. but not f.p. (Kapovich).
- If Λ is f.g., then either it is not f.p. (and Γ is noncoherent) or Λ is f.p. and then is a $\operatorname{PD}(2)$ group (Hillman). Then Λ is a surface group (Eckmann-Linnel-Müller).

Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

- If M fibers then the image of the generic fiber group is f.g. but not f.p. (Kapovich).
- If Λ is f.g., then either it is not f.p. (and Γ is noncoherent) or Λ is f.p. and then is a $\operatorname{PD}(2)$ group (Hillman). Then Λ is a surface group (Eckmann-Linnel-Müller). But for any extension of the form

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Γ contains \mathbf{Z}^{2}.

Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

- If M fibers then the image of the generic fiber group is f.g. but not f.p. (Kapovich).
- If Λ is f.g., then either it is not f.p. (and Γ is noncoherent) or Λ is f.p. and then is a $\operatorname{PD}(2)$ group (Hillman). Then Λ is a surface group (Eckmann-Linnel-Müller). But for any extension of the form

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Γ contains \mathbf{Z}^{2}. (Essentially due to Birman-Lubotzky-McCarthy)

Proof in the complex-hyperbolic case

Assume Γ is torsion-free. Since $H^{1}(\Gamma) \neq 0$ and Γ is a Kähler group,

$$
1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Theorem

(Delzant's Alternative) Either Λ is f.g. or $M=\mathbf{C H}^{2} / \Gamma$ holomorphically fibers over a Riemann surface.

- If M fibers then the image of the generic fiber group is f.g. but not f.p. (Kapovich).
- If Λ is f.g., then either it is not f.p. (and Γ is noncoherent) or Λ is f.p. and then is a $\operatorname{PD}(2)$ group (Hillman). Then Λ is a surface group (Eckmann-Linnel-Müller). But for any extension of the form

$$
1 \rightarrow \pi_{1}(S) \rightarrow \Gamma \rightarrow \mathbf{Z}^{2} \rightarrow 1
$$

Γ contains \mathbf{Z}^{2}. (Essentially due to Birman-Lubotzky-McCarthy) Describe holomorphic fibration in the blown up "complete quadrangle" case if times permits.

Proof in the real-hyperbolic case

Show that Γ contains a subgroup Λ isomorphic to $A \star c B$, where A, B are f.p. and $H^{1}(C)$ has infinite rank.

Proof in the real-hyperbolic case

Show that Γ contains a subgroup Λ isomorphic to $A \star_{c} B$, where A, B are f.p. and $H^{1}(C)$ has infinite rank.
Then $H^{2}(\Lambda)$ has infinite rank and Λ is not even $F P_{2}$.

Proof in the real-hyperbolic case

Show that Γ contains a subgroup Λ isomorphic to $A \star_{c} B$, where A, B are f.p. and $H^{1}(C)$ has infinite rank.
Then $H^{2}(\Lambda)$ has infinite rank and Λ is not even $F P_{2}$.
More on this if time permits.

Remarks on SL(3, Z)

Remarks on $S L(3, \mathbf{Z})$

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

Remarks on $S L(3, \mathbf{Z})$

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

1. Free subgroups.

Remarks on $S L(3, \mathbf{Z})$

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

1. Free subgroups.
2. Groups $\mathbf{Z}^{2} \rtimes F_{k}$, where F_{k} is free of rank k.

Remarks on SL(3, Z)

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

1. Free subgroups.
2. Groups $\mathbf{Z}^{2} \rtimes F_{k}$, where F_{k} is free of rank k.
3. Surface subgroups.

Remarks on SL(3, Z)

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

1. Free subgroups.
2. Groups $\mathbf{Z}^{2} \rtimes F_{k}$, where F_{k} is free of rank k.
3. Surface subgroups.

As an example of the latter, consider Coxeter group $T(3,4,4)$ or $T(3,6,6)$. They are crystallographic (embed in $G L(3, Z)$) and contain surface subgroups of finite index.

Remarks on SL(3, Z)

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

1. Free subgroups.
2. Groups $\mathbf{Z}^{2} \rtimes F_{k}$, where F_{k} is free of rank k.
3. Surface subgroups.

As an example of the latter, consider Coxeter group $T(3,4,4)$ or $T(3,6,6)$. They are crystallographic (embed in $G L(3, Z)$) and contain surface subgroups of finite index.
Note that they are all f.p.

Remarks on $S L(3, \mathbf{Z})$

Among finitely generated torsion-free infinite index non-solvable subgroups of $S L(3, \mathbf{Z})$ we currently only know:

1. Free subgroups.
2. Groups $\mathbf{Z}^{2} \rtimes F_{k}$, where F_{k} is free of rank k.
3. Surface subgroups.

As an example of the latter, consider Coxeter group $T(3,4,4)$ or $T(3,6,6)$. They are crystallographic (embed in $G L(3, Z)$) and contain surface subgroups of finite index.
Note that they are all f.p.
We do not even know if $\mathbf{Z}^{2} \star \mathbf{Z}$ embeds in $S L(3, Z)$!

