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The Spaces and Metrics

M = G/K with G = U(3,C),U(3,H) or “U(3,O) = F4”

K = U(1,C)× U(1,C)× U(1,C),U(1,H)× U(1,H)× U(1,H)
or“U(1,O)× U(1,O)× U(1,O) = Spin(8)”
T (M)eK = F⊕ F⊕ F = Rd ⊕Rd ⊕Rd ,F = C, H, O and
d = 2, 4, 8.

〈..., ...〉eK = x1 〈..., ...〉1 ⊕ x2 〈..., ...〉2 ⊕ x3 〈..., ...〉3, xi > 0 and
〈z ,w〉i = Re zw .
This lecture is an exposition of joint work with Man Wai (Mandy)
Cheung.
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The curvature

If x1 = x2 then the sectional curvature is is strictly positive if
0 < x3

x1
< 1 or 1 < x3

x1
< 4

3 and there is some strictly negative
curvature if x3x1 >

4
3

The symmetric group acting by permuting facters preserves positive
curvature. We consider the case when x3 < x1 < x2. Since scaling by
a constant preserves the sign of curvature we consider
x1 = 1, x2 = 1+ r and x3 = s with r > 0 and 0 < s < 1.

With the notation above a necessary and suffi cient condition that the
sectional curvature be positive is r < s−2+2

√
1−s+s2
3 (equivalent to

Valiev’s result).

We note that if 0 < s < 1 then

s2

4
<
s − 2+ 2

√
1− s + s2
3

<
s2

3
.
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Fundamental domain for S3 acting on the homogeneous metrics of positive
curvature consists of the points in the first quadrant below the graph the
sets {(s, 0)| 0 < s < 1} and {(1, r)|0 < r < 1

3}.
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Ric(g) = x1r1 〈..., ...〉1 + x2r2 〈..., ...〉2 + x3r3 〈..., ...〉3 .

ri =
dx2i − dx2j − dx2k + (10d − 8)xjxk

2x1x2x3

where {i , j , k} = {1, 2, 3}.
Hamilton’s Ricci flow is given in these parameters as

dxi
dt
= −2rixi .

The goal is to say what happens to positive sectional curvature or
Ricci curvature under the above non-linear ODE.
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Sectional Curvature

We note that the set of metrics with xi = xj is preserved under the
Ricci flow.

So we will start with a metric with x1 = x2 = 1. Under these
conditions we consider the change in x3

x1
under the flow.

A direct calculation shows that for d = 2, 4, 8

d
dt
x3(t)
x1(t)

= −2x3(t)
x1(t)

(r3 − r1) =
−2d(1− x3

x1
)(4 (d−1)d − x3

x1
)

x21
.

Hence if 0 < x3(t)
x1(t)

< 1 then d
dt
x3(t)
x1(t)

< 0 , if 1 < x3(t)
x1(t)

< 4d−1d then
d
dt
x3(t)
x1(t)

> 0 and if x3(t)x1(t)
> 4d−1d then d

dt
x3(t)
x1(t)

< 0. That is the line

through 1, 1, 1 is repelling fixed point and that through 1, 1, 4d−1d is
an attractor.

The lines through 1, 1, 1 and 1, 1, 4d−1d give the full set of Einstein
metrics among the metrics with x1 = x2.
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This implies that if 1 < x1(0)
x3(0)

< 4d−1d then we have

limt→+∞
x1(t)
x3(t)

= 4d−1d under the Ricci flow.

Since 4
3 < 4

d−1
d for d = 2, 4, 8 we we have

Theorem
For all three examples the Ricci flow deforms certain metrics of strictly
positive sectional curvature to metrics with some stricly negative sectional
curvature.

We also note that since the Ricci tensor is positive definite for 1, 1, s
and 0 < s ≤ 4d−1d this implies that the flow cannot change the
signature of the Ricci tensor if it starts with strictly positive curvature
and x1 = x2.
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Ricci curvature
We assume x2 > x1 > x3 > 0 and scale to x1 = 1, x2 = 1+ r , x3 = s
with r > 0 and 0 < s < 1.

r1x1 =
−2rd − dr2 + (10d − 8)s + (10d − 8)rs − ds2

2(1+ r)s
,

r2x2 =
dr + dr2 + (10d − 8)s − ds2

2s

r3x3 =
(8d − 8) + (8d − 8)r − dr2 + ds2

2(1+ r)
.

If 0 < r < 8 only the first can change sign: positive definite Ricci
curvature if and only if

r <
√
1+ 8s2 − (1− 3s), d = 2

r <
√
1+ 15s2 − (1− 4s), d = 4

r <

√
1+

77
4
s2 − (1− 9

2
s), d = 8.

since all of these expressions are < 8 if 0 < s < 1.

N. Wallach () flag varieties 1/19 8 / 17



Ricci curvature
We assume x2 > x1 > x3 > 0 and scale to x1 = 1, x2 = 1+ r , x3 = s
with r > 0 and 0 < s < 1.

r1x1 =
−2rd − dr2 + (10d − 8)s + (10d − 8)rs − ds2

2(1+ r)s
,

r2x2 =
dr + dr2 + (10d − 8)s − ds2

2s

r3x3 =
(8d − 8) + (8d − 8)r − dr2 + ds2

2(1+ r)
.

If 0 < r < 8 only the first can change sign: positive definite Ricci
curvature if and only if

r <
√
1+ 8s2 − (1− 3s), d = 2

r <
√
1+ 15s2 − (1− 4s), d = 4

r <

√
1+

77
4
s2 − (1− 9

2
s), d = 8.

since all of these expressions are < 8 if 0 < s < 1.
N. Wallach () flag varieties 1/19 8 / 17



To change the signature we start with a point with r1 = 0 and hope
that dr1dt = −2∑ rixi ∂r1

∂xi
< 0. This works for d = 2, 4, 8 respectively if

0 < s < 1−
√
5
8
= 0.20943058...

0 < s <
30+ 5

√
21− 3

√
5(21+ 4

√
21)

30
= 0.361437...

0 < s <
693+ 11

√
2737− 7

√
22(511+ 9

√
2737)

616
= 0.389089...

Theorem
For all the examples the Ricci flow of a metric with positive definite Ricci
tensor can flow to one with signature (d , 2d).
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Finally we consider the flow from positive sectional curvature to
indefinite Ricci. Here we have two results. The first is due to Böhm
and Wilking in the 12 dimensional example. Our proof uses some of
their ideas.

Theorem
There exist homogeneous metrics of strictly positive sectional curvature on
the 12 and 24 dimensional examples that deform under the Ricci flow to
metrics with some negative Ricci curvature.

Theorem
If go is a homogeneous Riemannian structure on the 6 dimensional
example with strictly positive sectional curvature then under the Ricci flow
it retains strictly positive Ricci curvature.
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We continue with the assumption x2 > x1 > x3 > 0 so x2
x1
= 1+ r

and x3
x1
= s with r > 0 and 0 < s < 1.

r ′ =
−2(x ′2x1 − x ′1x2)

x21
= 2(1+ r)(r1 − r2) = g(d , r , s)

s ′ =
−2(x ′3x1 − x ′1x3)

x21
= h(d , r , s).

g(d , r , s) =


−4 rs (2+ r − 3s), d = 2
−8 rs (2+ r − 4s), d = 4
−8 rs (4+ 2r − 9s), d = 8

.

N. Wallach () flag varieties 1/19 12 / 17



We continue with the assumption x2 > x1 > x3 > 0 so x2
x1
= 1+ r

and x3
x1
= s with r > 0 and 0 < s < 1.

r ′ =
−2(x ′2x1 − x ′1x2)

x21
= 2(1+ r)(r1 − r2) = g(d , r , s)

s ′ =
−2(x ′3x1 − x ′1x3)

x21
= h(d , r , s).

g(d , r , s) =


−4 rs (2+ r − 3s), d = 2
−8 rs (2+ r − 4s), d = 4
−8 rs (4+ 2r − 9s), d = 8

.

N. Wallach () flag varieties 1/19 12 / 17



We continue with the assumption x2 > x1 > x3 > 0 so x2
x1
= 1+ r

and x3
x1
= s with r > 0 and 0 < s < 1.

r ′ =
−2(x ′2x1 − x ′1x2)

x21
= 2(1+ r)(r1 − r2) = g(d , r , s)

s ′ =
−2(x ′3x1 − x ′1x3)

x21
= h(d , r , s).

g(d , r , s) =


−4 rs (2+ r − 3s), d = 2
−8 rs (2+ r − 4s), d = 4
−8 rs (4+ 2r − 9s), d = 8

.
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h(d , r , s) =


4 1−s1+r (−2− 3r + s), d = 2
8 1−s1+r (−3− 4r + s), d = 4
81−s1+r (−7− 9r + 2s), d = 8

.

If 0 < s < 1 and r > 0 then h(d , r , s) < 0. We can thus think of r as
a function of s in this range and have

r ′(s) =
r ′(t)
s ′(t)

=
r
s
f (d , r , s)

f (d , r , s) =
g(d , r , s)
h(d , r , s)

=
1+ r
1− s


2+r−3s
2+3r−s , d = 2
2+r−4s
3+4r−s , d = 4
4+2r−9s
7+9r−2s , d = 8
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Lemma
Suppose that we have a solution to the Ricci flow with initial condition
so > 0, r(so ) > 0 and r(s) is defined for 0 < s1 ≤ s ≤ so .
1. If f (d , r(s), s) ≥ C > 0 in this range then we have

r(s) ≤ sC r(so )
sCo

, s1 ≤ s ≤ so .

2. If 0 < f (d , r(s), s) ≤ C in this range we have

r(s) ≥ sC r(so )
sCo

, s1 ≤ s ≤ so .
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Lemma

If d = 2 then r2, r3 > 0 if 0 < s < 1 and 0 < r < 2(1+
√
2).

Lemma
If d = 2, 0 < s < 1 and r(s) > s then r ′(s) > 0. Suppose that
0 < so < 1 , so < r(so ) ≤ 2so and 0 < s1 < so is such that r(s) is
defined and r(s) > s for s1 ≤ s ≤ so .Then r(s) < 2s.

The point here is that the smallest value of C in the calculus lemma is 1.
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We have seen that the condition for some negative Ricci curvature is

r >
√
1+ 8s2 − (1− 3s) > 3s.

The condition for positive sectional curvature is

r <
s − 2+ 2

√
1− s + s2
3

<
s2

3
.

The Lemma above implies that under this condition r(s) can never
pass 2s.

This completes the argument for the case d = 2.
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For d = 4 or 8 we begin with to be determined values of s > 0 and
r > 0 under the blue graph.

Our argument (as in the case of Bohm-Wilking) works only when s is
very small.

One finds that in these cases one can take C = 5
6 so

r(s) ≥ s 56Const.

for s suffi cientlly small and since s → 0 along the Ricci flow hence
along the flow r

s becomes arbitrarily large.
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