Contributions of structural t-tubule heterogeneities and membrane Ca²⁺ flux localization to local Ca²⁺ signaling in rabbit ventricular myocytes

Peter Kekenes-Huskey¹, Johan Hake¹, Yuhui Cheng, Frank Sachse², John Bridge², Andrew McCammon¹, Anushka Michailova¹

¹University of California, San Diego, La Jolla, California, USA; ²University of Utah, Salt Lake City, UT, USA.

The micro-architecture of the transverse tubular system (t-system) and the arrangement of associated proteins are central to the function of ventricular cardiomyocytes. Recently, Savio-Galimberti and collaborators used confocal imaging and digital image processing to characterize the geometry of t-system in rabbit ventricular cells [1]. The average diameter of single t-tubules was estimated to be 448 ± 172 nm with constrictions occurring every $1.87 \pm 1.09 \,\mu\text{m}$ along their principal axis. Here, we used a modeling approach to investigate how local variations in t-tubular cross-sectional area and the distribution of membrane Ca²⁺ flux regulate Ca²⁺-entry, diffusion and buffering in rabbits [2]. The current model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres, the spatially distributed Ca²⁺ transporting proteins along the cell membrane (L-type Ca^{2+} channel, Na^+/Ca^{2+} exchanger, sarcolemmal Ca^{2+} pump) as well as stationary and mobile Ca²⁺ buffers (troponin C, ATP, calmodulin, Fluo-3). A finite element software package CSMOL was used to solve the coupled reactiondiffusion PDE system describing the time-dependent concentration profiles of the abovelisted species.[3]. The model was parameterized according to Sobie's et al. voltage-clamp data in rabbit ventricular myocytes with Ca^{2+} release at the sarcoplasmic reticulum disabled pharmacologically [4]. The results indicate that the constrictions and spatial arrangements of membrane Ca^{2+} proteins may cause local inhomogeneities in Ca^{2+} concentration. In addition, the activation of a catalytic Ca²⁺-binding site on Na⁺/Ca²⁺ exchanger on local Ca^{2+} gradients was examined in the presence or absence of fluorescent dye.

- [1] Savio-Galimberti et al., Biophys J 95:2053-2062, 2008.
- [2] Cheng et al., PLoS Comp Biol 2010, (in press).
- [3] Smoluchowski Solver (CSMOL), http://mccammon.ucsd.edu/smol/
- [4] Sobie et al., *Biophys J: Biophys Lett*:L54-L56, 2008.

Supported by NBCR (NIH grant 2 P41 RR08605), NIH GM31749, NSF MCB-0506593, MCA93S013, Center for Theoretical Biological Physics, Howard Hughes Medical Institute, SDSC, W. M. Keck foundation.