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YOUNG SEMINORMAL REPRESENTATION
MURPHY ELEMENTS

AND
CONTENT EVALUATIONS

ABSTRACT
These are notes resulting from a course in Algebraic Combinatorics given at UCSD in winter

2003. The lectures where based on writings of A. Young [8], R. M. Thrall [7] and D. E. Rutherford
[6], A. Jucy [3] and G, Murphy [5]. The material covers basic identities leading to the construction
of Young’s seminormal units. Murphy elements are used first as an aid to the construction of the
entries in the seminormal matrices corresponding to the simple reflections then used to express
characters and conjugacy classes. As a by-product we obtain a new way of constructing certain
polynomials introduced in a recent paper by A. Goupil et Al. [2] and by Diaconis and Greene in
an earlier unpublished manuscript [1]. These polynomials yield some truly remarkable formulas
for the irreducible characters of the symmetric groups. More precisely, it is shown in [1] and [2]
that for each partition γ � k we can construct a symmetric polynomial Wγ which evaluated at
the contents of a partition λ � n ≥ k yield the central character value ωλ

γ,1n−k . The polynomials
Wγ are remarkably simple when expressed in terms of the power basis. Moreover, their power
basis expansion are of the form Wγ =

∑
ρ cγ

ρ(n) pρ with coefficients cγ
ρ(n) polynomials in n. The

approach followed in [2] is quite intricate and somewhat indirect. In [1] Diaconis and Greene follow
a purely combinatorial approach and derive an algorithm for constructing the polynomials Wγ . In
these notes we obtain explicit closed form expressions for Wγ . Our approach is based on a method
introduced by Macdonald [4] in an exercise where an explicit formula is obtained for the central
character value ωλ

k,1n−k .

Table of Contents

1.Young idempotents.
In this section we introduce the Young last letter order and establish some of the basic
properties of Young idempotents under this order.

2.Young’s seminormal units.
We construct here the Young seminormal units and prove their orthogonality. We also
construct the seminormal matrix units and compute the characters of the corresponding
representations. We terminate by proving seminormality.

3.The Murphy elements.
In this section we introduce the Murphy elements and prove their commutativity. We derive
the action of the class C2 of transposition on a seminormal tableau unit. We thus obtain in
a purely combinatorial way that the central character χλ

21n−2 |C2|/nλ/ is n(λ′) − n(λ). The
basic result here is that the seminormal units are simultaneous eigenfunctions of the Murphy
elements. We show that the eigenvalue of mk on the tableau unit e(T ) is given by the content
of the cell of k in T . We also obtain in a canonical way a polynomial PT (m2, . . . , mn) which
gives e(T ).
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4.The seminormal matrices.
In this section we derive the entries in Young’s seminormal matrices from the action of
Murphy elements on the seminormal matrix units.

5.Murphy elements and conjugacy classes.
We start by giving two different proofs that symmetric polynomials evaluated at the Murphy
elements yield class functions. This done our main goal is to obtain explicit formulas
for the symmetric polynomials that yield the Characters and the Classes. Tablesof these
polynomials are included in a few special cases.

1. The Young idempotents
In this section we recall some basic properties of the Young idempotents and set notation.

Most of the material covered in this section is presented in full detail in the lecture notes on the
“Young’s Natural Representation” . References to these notes will be indicated by the symbol
[YNR].

We shall use the French convention of depicting Ferrers diagrams as left justified rows of
lattice cells of lengths decreasing from bottom to top.

Recall that a tableau T of shape λ � n is a filling of the cells of the Ferrers diagram of λ with
the letters 1, 2, . . . , n. If the filling is row and column increasing then T is said to be “standard”.
The shape of T will be simply denoted λ(T ). Given a tableau T , we let R(T ) and C(T ) respectively
denote the ”Row Group” and ”Column Group” of T . As in [YNR] we set

P (T ) =
∑

α∈R(T )

α , N(T ) =
∑

β∈C(T )

sign(β) β , 1.1

and
E(T ) = P (T )N(T ) . 1.2

Note that if T has n cells and σ ∈ Sn then σT denotes the tableau obtained by replacing in T the
index i by σi for i = 1, . . . , n. It is easily seen that we have

R(σT ) = σR(T )σ−1 , C(σT ) = σC(T )σ−1

thus
P (σT ) = σP (T ) σ−1 , N(σT ) = σN(T ) σ−1 1.3

In particular if T1 and T2 are tableaux of the same shape and σT1,T2 is the permutation that sends T2

into T1 we have the identities

σT1,T2P (T2) = P (T1)σT1,T2 ,

σT1,T2N(T2) = N(T1)σT1,T2 ,

σT1,T2E(T2) = E(T1)σT1,T2 .

1.4

We have the following basic fact
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Proposition 1.1
If T1 and T2 are two tableaux with n cells, then we have

N(T2)P (T1) �= 0 or P (T1)N(T2) �= 0 1.4

only if
λ(T2) ≥ λ(T1) (in dominance) 1.5

In particular
λ(T2) < λ(T1) =⇒ N(T2)P (T1) = P (T1)N(T2) = 0

Proof
Construct the diagram T1 ∧ T2 by placing in the lattice cell (i, j) the intersection of row i

of T1 with column j of T2. Note that if one of these intersections contains two elements r and s

then R(T1) and C(T2) would have the transposition (r, s) in common, but then we would have, for
instance

N(T2)P (T1) = N(T2)(r, s)P (T1) = −N(T2)P (T1)

in plain contraddiction with 1.4. Thus 1.4 forces the cells of T1 ∧ T2 to contain at most one element.
Note that if we lower these elements down their columns by eliminating the empty cells we will
obtain a tableau T3 of shape λ(T2), thus the number of cells in the first i rows of T3 is given by

λ1(T2) + λ2(T2) + · · · + λi(T2) .

But all the elements of the first i rows of T1 are in the first i rows of T1 ∧ T2 and a fortiori must all
be in the first i rows of T3. This gives the inequality

λ1(T2) + λ2(T2) + · · · + λi(T2) ≥ λ1(T1) + λ2(T1) + · · · + λi(T1) .

Since this must hold true for all i we necessarily have 1.5 as asserted.
It will be convenient to denote the group algebra of Sn by A[Sn]. This given, Proposition

1.1 implies the following fundamental fact

Theorem 1.1
If the tableaux T1, T2 have both n cells, then for any element f ∈ A[Sn] we have

P (T1)fN(T2) �= 0 or N(T2)fP (T1) �= 0 =⇒ λ(T2) ≥ λ(T1) 1.6

In particular

λ(T1) �= λ(T2) =⇒ E(T1)fE(T2) = 0 (for all f ∈ A[Sn]) . 1.7

.
Proof

Note that we may write (using 1.3)

P (T1)fN(T2) =
∑

σ∈Sn

f(σ)P (T1)σN(T2) =
∑

σ∈Sn

f(σ)P (T1)N(σT2)σ−1,
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Thus the non vanishing of the left hand side forces the non vanishing at least one term in the
sum in the right hand side. But then 1.6 follows from 1.5. Of course the same will hold true if
N(T2)fP (T1) �= 0. But now note that

P (T1)N(T1)fP (T2)N(T2) �= 0 1.8

forces N(T1)fP (T2) �= 0 yielding
λ(T1) ≥ λ(T2) .

On the other hand, ( again by 1.6) , 1.8 itself forces

λ(T2) ≥ λ(T1) .

Thus only the equality λ(T1) = λ(T2) is compatible with the non vanishing of E(T1)fE(T2). This
proves 1.7 and completes the proof.

We have the following fundamental identity whose proof may be found in [YNR].
Proposition 1.2 (Von Neuman Sandwich Lemma)

For any element f ∈ A(Sn) and any tableau T

P (T ) f N(T ) = cT (f) P (T )N(T ) , 1.9

with
cT (f) = f N(T )P (T ) |ε ,

where ε denotes the identity permutation.

This result has the following important corollary.

Theorem 1.2
For any tableau T , the group algebra element E(T ) is idempotent. More pre-

cisely there is a non-vanishing constant h(T ) depending only on the shape of T such
that

E(T )E(T ) = h(T )E(T ) 1.10

Proof
Using 1.9 with f = N(T )P (T ), the identity in 1.9 gives

E(T )E(T ) = h(T )E(T ) .

with
h(T ) = N(T )P (T )N(T )P (T )

∣∣
ε

Note that if h(T ) were to vanish then E(T ) would be nilpotent. Now a cute argument shows that
that the coefficient of the identity of any nilpotent element of a group algebra necessarily vanishes.
Now this immediately leads to a contraddiction since we can easily see that

E(T )
∣∣
ε

=
∑

α∈R(T )

∑
β∈C(T )

sign(β)αβ
∣∣
ε

= 1 .
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In fact the identity αβ = ε holds only when α = β = ε. We shall show later that if T has shape λ

then
h(T ) =

n!
nλ

where nλ denotes the number of standard tableaux of shape λ. But for the moment it will suffice to
show that h(T ) depends only on λ(T ). Now this follows immediately from the identities

h(T ) = N(T )P (T )N(T )P (T )
∣∣
ε

=
1
n!

∑
σ∈Sn

σ N(T )P (T )N(T )P (T ) σ−1
∣∣
ε

=
1
n!

∑
σ∈Sn

N(σT )P (σT )N(σT )P (σT )
∣∣
ε

=
1
n!

∑
λ(T ′)=λ(T )

N(T ′)P (T ′)N(T ′)P (T ′)
∣∣
ε

This given, here and after we will use the symbol “hλ” to denote h(T ) for any tableau T of shape λ.

In the construction of Young’s Seminormal Representation we will make systematic use of
Young’s “last letter order”. Given two standard tableaux T1, T2 of the same shape we shall say
that k is the “last letter of disagreement” between T1 and T2 if the letters k + 1, k + 2, . . . , n

occupy exatly the same positions in T1 and T2, but k does not. This given we shall say that

“T1 precedes T2 in the Young last letter order”

and write
T1 <LL T2 1.11

if and only if the last letter of disagrement is higher in T1 than in T2.

If T is a standard tableau we shall denote by T (k) the tableau obtained by removing from
T the letters larger than k together with their cells. Note that if λ(T1) = λ(T2) and k + 1 is the last
letter of disagreement between T1 and T2 then λ

(
T1(k + 1)

)
= λ

(
T2(k + 1)) and 1.11 holds true if

and only if
λ(T1(k)) > λ(T2(k)) (in dominance) 1.12

For f ∈ A(Sn) let us set
↓ f =

∑
σ∈Sn

f(σ)σ−1 1.13

We shall refer to this operation as “flipping f” There are interesting identities connected with the
operation of passing from T to T (k), they may be stated as follows

Proposition 1.3
For any tableau T of shape λ � n and k ≤ n we have two elements pk(T ) and

nk(T ) such that
a) pk(T )P (T (k)) = P (T ) = P (T (k)) ↓pk(T ) ,

b) nk(T )N(T (k)) = N(T ) = N(T (k)) ↓nk(T ) .
1.13

Proof
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Note that the second equality in 1.13 a) follows by flipping both sides of the first equality.
The same holds true for 1.13 b). So in each case we need only show the first equality. Moreover
since we can pass from T to T (k) by successive removals of the largest letter, we can see that we
need only show our equalities in the case k = n − 1. To this end let us suppose that the row of T

that contains the letter n consists of the letters

a1 , a2 , . . . , ar , n .

In this case denoting by
(a1, a2, . . . , ar, n) and (a1, a2, . . . , ar)

the formal sums of all the permutations of Sn that leave fixed the elements of the complements of
{a1, a2, . . . , ar, n} and {a1, a2, . . . , ar} respectively, we have, by left coset decomposition

(a1, a2, . . . , ar, n) =
(
ε + (a1, n) + (a2, n) + · · · + (ar, n)

)
(a1, a2, . . . , ar) .

Multiplying this identity by the contributions to P (T ) coming from the other rows of T yields

P (T ) =
(
ε + (a1, n) + (a2, n) + · · · + (ar, n)

)
P (T (n − 1))

which is precisely the first equality in 1.13 a) for k = n − 1.
For 1.13 b) we can proceed in a similar way. Indeed let us suppose that the column of T

that contains the letter n consists of the letters

b1 , b2 , . . . , bs , n .

Denoting by
(b1, b2, . . . , bs, n)′ and (b1, b2, . . . , as)′

the formal sums of all the signed permutations of Sn that leavefixed the elements of the complements
of {b1, b2, . . . , bs, n} and {b1, b2, . . . , bs} respectively, we have, by left coset decomposition

(b1, b2, . . . , bs, n)′ =
(
ε − (b1, n) − (b2, n) − · · · − (bs, n)

)
(b1, b2, . . . , br)′ .

Multiplying this identity by the contributions to N(T ) coming from the other columns of T yields

N(T ) =
(
ε − (b1, n) − (b2, n) − · · · − (br, n)

)
N(T (n − 1))

which is precisely the first equality in 1.13 b) for k = n − 1. This completes our proof.

The following result will play a crucial role here.

Theorem 1.3
For two standard tableau T1 and T2 of the same shape we have

N(T1)P (T2) �= 0 =⇒ T1 <LL T2 1.13
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Proof
Let k + 1 be the last letter of disagrement between T1 and T2. Using Proposition 1.3 we

derive the factorization

N(T1)P (T2) = nk(T1) N(T1(k))P (T2(k)) ↓pk(T2)

Thus
N(T1)P (T2) �= 0 =⇒ N(T1(k))P (T2(k)) �= 0

and Proposition 1.1 gives
λ((T1(k)) > λ(T2(k))

However we have seen that this holds true if and only if

T1 <LL T2 .

This completes our argument.

2. Young’s seminormal units
We have shown in the Representation Theory notes (here and after referred to by the symbol

[RT]) that the group algebra A(G) of a finite group G has a basis

{
{eλ

ij}nλ
i,j=1

}
λ∈Λ

2.1

with the property that

eλ
ije

µ
rs =




0 if λ �= µ ,
0 if λ = µ , but j �= r
eµ
is if λ = µ and j = r .

2.2

Moreover, we have also derived the identities

eλ
ij

∣∣
ε

=




0 if i �= j ,

1/hλ if i = j .
(with hλ = |G|/nλ) 2.3

From these identities it follows that we have the expansions

f =
∑
λ∈Λ

hλ

nλ∑
i,j=1

feλ
ji

∣∣
ε
eλ
ij , (for all f ∈ A(G)) . 2.4

This basis allows us to construct a complete set of representatives of irreducible representations of
G. These are simply given by the collection {Aλ}λ∈Λ obtained by setting

Aλ(σ) = ‖aλ
ij(σ))‖nλ

i,j=1 2.5

with
aλ

ij(σ) = hλeλ
ji

∣∣
σ−1 ( for all σ ∈ G) 2.6
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In fact, from 2.4 and 2.6 we derive the expansion

σ =
∑
λ∈Λ

nλ∑
i,j=1

aλ
ij(σ) eλ

ij . 2.7

and the relations in 2.3 immediately yield that

σeµ
r,s =

nµ∑
i=1

eµ
i,s aµ

i,r(σ) 2.8

or in matrix form
σ
〈
eµ
i,s

〉
1≤i≤nµ

=
〈
eµ
i,s

〉
1≤i≤nµ

Aµ(σ) 2.9

Now we see from 2.6 that the representation Aλ is orthogonal (that is aij(σ−1) = aji(σ)) if and only
if we have

eλ
ji(σ) = eλ

ij(σ
−1) ( for all σ ∈ G) 2.10

and this, in compact form may be simply be rewritten as

↓eλ
ij = eλ

ji 2.11

When Young set himself the task of finding a complete set of irreducible orthogonal representations
of Sn, his point of departure (see [8] QSA VI) was the construction of units eλ

ij satisfying conditions
2.2 and 2.3 together with the additional condition

↓eλ
ij =

dλ
i

dλ
j

eλ
ji . 2.12

These constructs have come to be referred to as “Young’s seminormal units”. It is easily seen
that setting

fλ
ij =

√
dλ

j

dλ
i

eλ
ij 2.13

the orthogonality condition in 2.11 will be satisfied by the fλ
ij and the desired orthogonal represen-

tations can then be readily obtained.

Surprisingly Young’s seminormal units can be written down with a minimal amount of
additional notation from the material which is already in our possession. To begin, we let

Tλ
1 , Tλ

2 , . . . , Tλ
nλ

denote the standard tableaux of shape λ in Young’s last letter order. Moreover the permutation that
sends Tλ

j onto Tλ
i will be denoted σλ

ij . In symbols

σλ
ij Tλ

j = Tλ
i 2.14
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Finally, for a tableau T with n cells, it will be convenient, to use the abreviations

T (n − 1) = T , T (n − 2) = T , T (n − 3) = T

This given, Young’s seminormal units are simply given by the formulas

eλ
ij = e(T

λ

i )
P (Tλ

i ) σλ
ij N(Tλ

j )
hλ

e(T
λ

j ) , 2.15

where for a given standard tableau T of shape λ the group algebra element e(T ) is recursively
defined by setting

e(T ) =




ε if T = [1] ,

e(T )P (T )N(T )
hλ

e(T ) otherwise.
2.16

The remainder of this section is dedicated to proving that these units satisfy the identities
in 2.2, 2.3 and 2.12. But before we can carry this out we need to derive a few identities.

Our basic tool is provided by the following
Proposition 2.1

For any standard tableau T we have

a) E(T )e(T )E(T ) = h(T ) E(T )

b) E(T )e(T )E(T ) = h(T ) E(T )

c) e(T )E(T )e(T ) = h(T ) e(T )

2.17

where we should set h(T ) = hλ when λ(T ) = λ.

To prove this we need two auxiliary identities which are of independent interest.

Lemma 2.1

a) e(T )P (T )N(T )
∣∣
ε

= 1 ,

b) e(T )P (T )N(T )
∣∣
ε

= 1 .
2.18

Proof
We proceed by induction on the size of T . So assume that 2.18 a) is true for any tableau with

n − 1 cells and let T be a tableau with n cells. Note that the induction hypothesis then implies that

e(T )P (T )N(T )
∣∣
ε

= 1 . 2.19

Now let the elements of T that are in the same row and column as n be given as in the proof of
Proposition 1.3. We may then write

σ P (T )N(T )
∣∣
ε
= P (T )

(
ε + (a1, n) + · · · + (ar, n)

)
(ε − (b1, n) − · · · − (bs, n)

)
N(T )

∣∣
σ−1 . 2.20

Note that for any pair i, j, the product of the two cycles (ai, n)(bj , n) is the 3-cycle (ai, n, bj) which
is not in Sn−1, and since all of the permutations in P (T ) or N(T ) are in Sn−1, the only terms in 2.20
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that will yield permutations in Sn−1 are those produced by the identity term ε. Thus we necessarily
have

σ P (T )N(T )
∣∣
ε
= P (T )N(T )

∣∣
σ−1 = σ P (T )N(T )

∣∣
ε
. (for all σ ∈ Sn−1) .

Multiplying this relation by e(T )
∣∣
σ

and summing over σ ∈ Sn−1 we get

e(T )P (T )N(T )
∣∣
ε

= e(T ) P (T )N(T )
∣∣
ε
.

and 2.19 gives
e(T ) P (T )N(T )

∣∣
ε

= 1 ,

proving 2.18 b). Now 2.16 gives

h(T )e(T )P (T )N(T )
∣∣
ε

= e(T )P (T )N(T )e(T )P (T )N(T )
∣∣
ε

(by Prop. 1.2) = e(T )
(
N(T )e(T )P (T )N(T )P (T )

∣∣
ε

)
P (T )N(T )

∣∣
ε

(by 2.18 b) =
(
e(T )P (T )N(T )P (T )N(T )

∣∣
ε

)
(by 1.10) = h(T ) e(T )P (T )N(T )

∣∣
ε

(by 2.18 b) = h(T ) .

This proves
e(T )P (T )N(T )

∣∣
ε

= 1 .

and completes the induction.

Proof of Proposition 2.1
To begin we have

E(T )e(T )E(T ) = P (T )N(T )e(T )P (T )N(T )

( by Prop. 1.2) = N(T )e(T )P (T )N(T )P (T )
∣∣
ε
P (T )N(T )

= e(T )P (T )N(T )P (T )N(T )
∣∣
ε
P (T )N(T )

( by 1.10) = h(T )e(T )P (T )N(T )
∣∣
ε
P (T )N(T )

( by 2.18 b)) = h(T ) P (T )N(T ) = h(T )E(T ) .

This proves 2.17 a).

Next we have

E(T )e(T )E(T ) = P (T )N(T )e(T )P (T )N(T )

( by Prop. 1.2) = N(T )e(T )P (T )N(T )P (T )
∣∣
ε
P (T )N(T )

= e(T )P (T )N(T )P (T )N(T )
∣∣
ε
P (T )N(T )

( by 1.10) = h(T )e(T )P (T )N(T )
∣∣
ε
P (T )N(T )

( by 2.18 a)) = h(T ) P (T )N(T ) = h(T )E(T ) .

This proves 2.17 b).
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Finally from the definition in 2.16 we get

e(T )E(T )e(T ) = e(T )
E(T )
h(T )

e(T )E(T )e(T )

( by 2.17 a)) = e(T )E(T )e(T )

( by 2.16) = e(T )E(T )e(T )
E(T )
h(T )

e(T )

( by 2.17 a)) = e(T )E(T )e(T )

( by 2.16) = h(T ) e(T ) .

This proves 2.17 c).

We are now ready to establish the basic properties of Young’s seminormal units. We begin
with a result which is an immediate consequence of the definition.

Theorem 2.1
For any standard tableau T the group algebra element e(T ) is idempotent.

Proof
For T = [1] this is true by definition, we can thus proceed by induction on the number of

cells of T . Now we have

e(T )e(T ) = e(T )
E(T )
h(T )

e(T ) e(T )
E(T )
h(T )

e(T )

(by induction) = e(T )
E(T )
h(T )

e(T )
E(T )
h(T )

e(T )

(by 2.17 a)) = e(T )
E(T )
h(T )

e(T ) = e(T ) . Q.E.D.

These idempotents are orthogonal, more precisely we have

Theorem 2.2
If T1 and T2 are standard tableaux with n cells then

e(T1) e(T2) =




0 if λ(T1) �= λ(T2)
0 if λ(T1) = λ(T2) but T1 �= T2

e(T1) if T1 = T2

2.20

Proof
Since by definition

e(T1) e(T2) = e(T 1)
E(T1)
h(T1)

e(T 1) e(T 2)
E(T2)
h(T2)

e(T 2) , 2.21

the first equality is an immediate consequence of 1.7. The last equality is a restatement of Theorem
2.1. We are left to prove the second equality. Since for n = 1, 2 there is nothing to prove, we shall
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proceed by induction on n and assume its validity for n − 1. This given we have the following
sequence of implications

e(T1) e(T2) �= 0

(by 2.21) ⇓
e(T 1) e(T 2) �= 0

(by induction) ⇓
T 1 = T 2

(when λ(T1) = λ(T2)) ⇓
T1 = T2

This proves our assertion.

Theorem 2.3
Young’s seminormal units statisfy the identities

eλ
ije

µ
rs =




0 if λ �= µ ,
0 if λ = µ , but j �= r
eµ
is if λ = µ and j = r .

2.22

Proof
From the definition in 2.15 we derive that

a) eλ
ij = e(T

λ

i )σλ
ij

E(Tλ
j )

hλ
e(T

λ

j ) , b) eµ
rs = e(T

µ

r )
E(Tµ

r )
hµ

σµ
rs e(T

µ

s ) . 2.23

Thus the first equality in 2.1 is an immediate consequence of 1.7. In the case µ = λ, 2.33 a) and b)
give

eλ
ij eλ

rs = e(T
λ

i ) σλ
ij

E(Tλ
j )

hλ
e(T

λ

j )e(T
λ

r )
E(Tµ

r )
hλ

σλ
rse(T

λ

s ) , 2.24

Now if r �= j, Theorem 2.2 gives e(T
λ

j )e(T
λ

r ) = 0, proving the second case of 2.22. Finally for λ = µ

and j = r, 2.24 becomes

eλ
ij eλ

js = e(T
λ

i ) σλ
ij

E(Tλ
j )

hλ
e(T

λ

j ) e(T
λ

j )
E(Tµ

j )
hλ

σλ
js e(T

λ

s ) ,

(by Theorem 2.1) = e(T
λ

i ) σλ
ij

E(Tλ
j )

hλ
e(T

λ

j )
E(Tµ

j )
hλ

σλ
js e(T

λ

s ) ,

(
by 2.17 a)

)
= e(T

λ

i ) σλ
ij

E(Tλ
j )

hλ
σλ

js e(T
λ

s ) ,

(by 1.4) = e(T
λ

i )
P (Tλ

i ) σλ
is N(Tλ

s )
hλ

e(T
λ

s ) = eλ
is .

2.25

This proves the last equality in 2.22 and completes our argument.

Note that we also have
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Theorem 2.4

eλ
ij

∣∣
ε

=




0 if i �= j ,

1/hλ if i = j .
2.26

Proof
The definition in 2.15 gives

eλ
ij

∣∣
ε

= e(T
λ

i )
P (Tλ

i ) σλ
ij N(Tλ

j )
hλ

e(T
λ

j )
∣∣∣
ε

= e(T
λ

j ) e(T
λ

i )
P (Tλ

i ) σλ
ij N(Tλ

j )
hλ

∣∣∣
ε

and the first case of 2.26 follows from Theorem 2.2. But for i = j this becomes

eλ
ii

∣∣
ε

= e(T
λ

i ) e(T
λ

i )
P (Tλ

i ) N(Tλ
i )

hλ

∣∣∣
ε

(by Theorem 2.1) =
1
hλ

e(T
λ

i ) P (Tλ
i )N(Tλ

i )
∣∣∣
ε

(by 2.18 b)) =
1
hλ

This completes our proof.

From the identities in 2.22 and formula 2.9, it follows that, for λ � n , the character of the
representation resulting from the action of Sn on a linear span

L
[
eλ
1s , eλ

2s , . . . , eλ
nλs

]
is the same as the character of the action of Sn on the left ideal A(Sn)e(Tλ

s ).

From this observation we derive the following important fact.

Proposition 2.2
The character of the action of Sn on L

[
eλ
1s , eλ

2s , . . . , eλ
nλs

]
depends only on λ

and it is given by the formula

χλ =
∑

T∈St(λ)

P (T )N(T )
hλ

where “T ∈ St(λ)” is to indicate that the sum is over all tableaux of shape λ.
Proof

It is shown in the [RT] notes that if e is an idempotent of the group algebra A(G) then the
character χe of the left multiplication action of G on the ideal A(G)e is given by the formula

χe =
∑
σ∈G

σ eσ−1
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Taking T = Tλ
s , from this formula we obtain that

χλ =
∑
σ∈G

σ e(T ) σ−1 =
∑

σ∈Sn

σ e(T )
P (T )N(T )

hλ
e(T )σ−1

(Circular rearrangements are OK) =
∑

σ∈Sn

σ e(T )e(T )
P (T )N(T )

hλ
σ−1

(by Theorem 2.1) =
∑

σ∈Sn

σ e(T )
P (T )N(T )

hλ
σ−1

=
∑

σ∈Sn

σ
N(T ) e(T )P (T )

hλ
σ−1

(by Von Neuman lemma) =
(
e(T )P (T )N(T )

∣∣
ε

) ∑
σ∈Sn

σ
N(T )P (T )

hλ
σ−1 .

and 2.18 b) gives (by 1.3)

χλ =
∑

σ∈Sn

N(σT )P (σT )
hλ

.

This proves the Theorem since σT describes all tableaux of shape λ, as σ varies in Sn.

Remark 2.1
It is easily derived from the identities in 2.22 that the set

{
{eλ

ij}nλ
ij=1

}
λ�n

is independent.
Furthermore, we proved in [YNR] that the numbers of standard tableaux nλ satisfy the identity

∑
λ�n

n2
λ = n! .

Thus
{
{eλ

ij}nλ
ij=1

}
λ�n

is an independent subset of A(Sn) of cardinality equal to the dimension of
A(Sn). So it must be a basis. From this it is easy to derive that the expansion of any element
f ∈ A(Sn) in terms of the Young’s seminormal units is given by formula 2.4. We terminate this
section with two important applications of this formula.

We begin with the following beautiful identity of Alfred Young.

Theorem 2.5
For any standard tableau T

e(T ) =
∑
S

χ(S = T ) e(S) 2.27

where the sum is over all standard tableaux S yielding T upon removal of n .
Proof

Using formula 2.4 for f = e(T ) and Young’s units we get, (if T has n cells)

e(T ) =
∑
λ�n

hλ

nλ∑
i,j=1

e(T ) eλ
ji

∣∣∣
ε
eλ
ij 2.28
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Now we have

e(T ) eλ
ji

∣∣∣
ε

= e(T )e(T
λ

j )
P (Tλ

j )σλ
jiN(Tλ

i )
hλ

e(T
λ

i )
∣∣∣
ε

= e(T
λ

i )e(T )e(T
λ

j )
P (Tλ

j )σλ
jiN(Tλ

i )
hλ

∣∣∣
ε
, .

2.29

and we immediately derive from Theorem 2.2 that this term doesn’t vanish only if

T
λ

i = T = T
λ

j . 2.30

In particular this forces i = j, and 2.29 becomes

e(T ) eλ
ii

∣∣∣
ε

= e(T
λ

i )e(T )e(T
λ

i )
P (Tλ

i )N(Tλ
i )

hλ

∣∣∣
ε

(by Theorem 2.1) = e(T
λ

i )
P (Tλ

j )N(Tλ
i )

hλ

∣∣∣
ε

(by 2.18 b)) =
1
hλ

.

2.31

Using 2.30 and 2.31 reduces 2.28 to

e(T ) =
∑

λ

nλ∑
i=1

χ
(
T

λ

i = T
)
eλ
ii . 2.32

Since

eλ
ii = e(T

λ

i )
P (Tλ

i )N(Tλ
i )

hλ
e(T

λ

i ) = e(Tλ
i )

formula 2.32 is only another way of writing 2.27.

A immediate corollary of Theorem 2.5 is the identification of the constant hλ.
Proposition 2.3

hλ =
n!
nλ

2.33

Proof
Equating coefficients of the identity on both sides of 2.27, and using 2.26 we get

1
h(T )

=
∑
S

χ(S = T )
1

h(S)
.

Assuming that T has n cells, and that λ(T ) = µ we may rewrite this identity in the form

1
hµ

=
∑

λ

χ(µ→λ)
1
hλ

, 2.34

where the symbol “µ→λ” is to express that λ is obtained by adding a cell to µ. Multiplying both
sides of 2.33 by n! and setting

kµ =
(n − 1)!

hµ
, kλ =

n!
hλ
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converts 2.34 into the identity
n kµ =

∑
λ

χ(µ→λ) kλ .

which is precisely the recursion statisfied by the number of standard tableaux. From this it easily
follows that we must have

kλ = nλ ∀ λ

as desired.

The seminormality of the Young units is based on the following remarkable fact.
Theorem 2.6

For any standard tableaux T we have

↓e(T ) = e(T ) . 2.35

Proof
Since 2.35 is obviously true for T = [1] we can proceed by induction on the number of cells

of T . This given we have

↓e(T ) = e(T )
N(T )P (T )

h(T )
e(T )

Using 2.27 this may be rewritten as

↓e(T ) =
∑

T 1=T

∑
T 2=T

e(T1)
N(T )P (T )

h(T )
e(T2) 2.36

Since

e(T1)
N(T )P (T )

h(T )
e(T2) = e(T 1)

E(T1)
h(T1)

e(T 1)
N(T )P (T )

h(T )
e(T 2)

E(T2)
h(T2)

e(T 2)

from Theorem 1.1 we derive that T1, T2 and T must all have the same shape. But then the conditions
T 1 = T = T 2 force them all to be the same, converting 2.36 to

↓e(T ) = e(T )
E(T )
h(T )

e(T )
N(T )P (T )

h(T )
e(T )

E(T )
h(T )

e(T )

= e(T )
P (T )N(T )

h(T )
e(T )

N(T )P (T )
h(T )

e(T )
P (T )N(T )

h(T )
e(T )

(by 1.9 used twice) =
ab

h(T )3
e(T )P (T )N(T ) P (T )N(T )e(T )

(by 1.10) =
ab

h(T )2
e(T )P (T )N(T )e(T ) =

ab

h(T )
e(T )

2.37

where
a = N(T )e(T )N(T )P (T )

∣∣∣
ε

and b = e(T )P (T )N(T )P (T )
∣∣∣
ε
.

To avoid computing these constants we simply observe that ↓e(T ) and e(T ) must have the same
coefficient of the identity, and since this coefficient must be 1/h(T ) by 2.26, the identity in 2.37 forces

ab = h(T )
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and proves 2.35.

We are finally ready to prove seminormality.

Theorem 2.7
For each partition λ we have constants

dλ
1 , dλ

2 , . . . , dλ
nλ

2.38

giving

↓ eλ
ij =

dλ
i

dλ
j

eλ
ji (for all 1 ≤ i, j ≤ nλ) . 2.39

Proof
Since 2.39 may also be written as

↓ eλ
ij =

dλ
i /dλ

1

dλ
j /dλ

1

eλ
ji ,

there is no loss in assuming that
dλ
1 = 1 .

This given, we need only show that for some constants dj we have

↓ e1j =
1
dj

ej1 (for 1 ≤ j ≤ nλ), 2.40

where to lighten our notation we shall for a moment omit the superscript λ. In fact, 2.40 implies

↓ ei1 = di e1i (for 1 ≤ i ≤ nλ),

and then 2.22 gives

↓ eij = ↓ (ei1e1j) = (↓ e1j)(↓ ei1) =
di

dj
ej1 e1i =

di

dj
eji ,

proving 2.39. So let us then prove 2.40. To this end we use the expansion formula 2.4 and get

↓ e1j =
nλ∑
r=1

nλ∑
s=1

(
(↓ e1j)esr

∣∣
ε

)
ers 2.41

However, note that Theorem 2.6 gives

(↓ e1j)esr

∣∣
ε

= e(T j)
N(Tj)P (Tj)

hλ
σj1e(T 1)e(T s)

N(Ts)P (Ts)
hλ

σsre(T r)
∣∣∣
ε

=
N(Tj)P (Tj)

hλ
σj1e(T 1)e(T s)

N(Ts)P (Ts)
hλ

σsre(T r)e(T j)
∣∣∣
ε
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and the non vanishing of the two products

e(T 1)e(T s) and e(T r)e(T j)

forces s = 1 and r = j reducing 2.41 to

↓ e1j =
(
(↓ e1j)e1j

∣∣
ε

)
ej1

and this proves 2.40 with
1
dj

= (↓ e1j)e1j

∣∣
ε
.

This completes the proof and this section. The actual nature of the constants in 2.38 will
come to the surface in the next section.

3. The Murphy elements
A remarkable set of group algebra elements was shown by Murphy [5] to play an elegant

role in the study of representations of Sn. It develops that these elements considerably simplify
manipulations with Young seminormal units. Their definition is quite simple. We set

mk = (1, k) + (2, k) + (3, k) + · · · + (k − 1, k) (for k = 2, 3, . . . , n) 3.1

These elements generate a commutative subalgebra of A(Sn). In fact we have the following basic
relations.

Theorem 3.1
Letting sh denote the transposition (h, h + 1)

a) mh mk = mk mh (for 2 ≤ h ≤ k ≤ n) ,

b) sh mk sh = mk (for h �= k, k − 1) ,

c) sk mk sk = mk+1 − sk .

d) sk−1 mk sk−1 = mk−1 + sk .

3.2

Proof
Note first that in A(S3) we have

(1, 2)
(
(1, 2) + (1, 3) + (2, 3)

)
=

(
(1, 2) + (1, 3) + (2, 3)

)
(1, 2)

and this immediately implies
m2 m3 = m3 m2 .

This relation will clearly remain valid in A(Sn) for all n ≥ 3. So we may proceed by induction and
suppose that

m2 , m3 , . . . , mn−1
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have been shown to commute in A(Sn−1). Since they will necessarily commute also in A(Sn). and

C2 = m2 + m3 + · · · + mn 3.3

is a conjugacy class, we deduce that for all 2 ≤ k ≤ n − 1 we have

m2 mk + · · · + mn−1 mk + mk mn = mk (m2 + m3 + · · · + mn)

= (m2 + m3 + · · · + mn) mk

= m2 mk + · · · + mn−1 mk + mn mk

This yields
mk mn = mn mk (for all 2 ≤ k ≤ n − 1)

and proves 3.2 a). Now note that 3.2 b) is trivial when h > k. On the other hand, when h < k,
conjugation of mk by sh only interchanges the terms (h, k) and (h + 1, k) in mk. Thus 3.2 b) must
hold true for all h �= k precisely as asserted. Finally, we see that we also have

sk

(
(1, k)+(2, k)+ · · ·+(k−1, k)

)
sk = ((1, k+1)+(2, k+1)+ · · ·+(k−1, k+1)−mk+1 − (k, k+1) .

This proves 3.2 c). The proof is now complete since 3.2 d) immediately follows from 3.2 c) upon
replacing k by k − 1.

What is truly remarkable is that the Murphy elements have the Young seminormal units eλ
ij

as their common eigenvectors. This is an immediate consequence of the following identity.

Theorem 3.2
For every standard tableaux T of shape λ � n we have

C2 e(T ) =
(
n(λ′) − n(λ)

)
e(T ) , 3.4

where for a partition λ = (λ1, λ2, . . . , λk) we set

n(λ) =
k∑

i=1

(i − 1)λi 3.5

and λ′ denotes the conjugate of λ

Proof
Since C2 commutes with every element of A(Sn) we derive that

C2 e(T ) = e(T )
P (T )C2N(T )

hλ
e(T ) , 3.6

and Von Neuman’s lemma then yields

P (T )C2N(T ) = C2N(T )P (T )
∣∣
ε

E(T ) .
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Substituting this in 3.6 we get

C2 e(T ) =
(
C2N(T )P (T )

∣∣
ε

)
e(T )

P (T )N(T )
hλ

e(T )

=
(
C2N(T )P (T )

∣∣
ε

)
e(T ) .

It remains to prove
C2N(T )P (T )

∣∣
ε

= n(λ′) − n(λ) . 3.7

Now the definition in 1.1 gives

C2N(T )P (T )
∣∣
ε

=
∑

1≤i<j≤n

∑
α∈R(T )

∑
β∈C(T )

sign(β)χ
(
βα = (i, j)

)
. 3.8

However, it should be apparent that unless the indices i, j are in the same row or column of T

it is impossible to interchange their positions in T by a row permutation followed by a column
permutation without messing up the positions of the other entries in T . Thus the only way we can
have the equality βα = (i, j) is β = (i, j) or α = (i, j) . This reduces the evaluation of the right
hand side of 3.8 to counting transpositions in C(T ) and R(T ). Now if

λ = (λ1, λ2, . . . , λk) and λ′ = (λ′
1, λ

′
2, . . . , λ

′
h)

then the number of transpositions in C(T ) and R(T ) are respectively given by

h∑
i=1

(
λ′

i

2

)
and

k∑
i=1

(
λi

2

)
.

This reduces 3.8 to

C2N(T )P (T )
∣∣
ε

=
k∑

i=1

(
λi

2

)
−

h∑
i=1

(
λ′

i

2

)
,

and it easily seen that this is only another way of writing the equality in 3.7. Our proof of 3.5 is thus
complete.

Remark 3.1
We should mention that the identity in 3.7 implies a classical identity (see [4]) satisfied by

the characters of Sn. To see this note that since conjugation by an elemnt σ ∈ Sn does not change
the coefficient of the identity, formula 3.7 may also be rewritten as

hλ

n!

∑
σ∈Sn

C2 σ
N(T )P (T )

hλ
σ−1

∣∣
ε

= n(λ′) − n(λ) .

But then Proposition 2.1 gives

hλ

n!
C2 χλ

∣∣
ε

= n(λ′) − n(λ) .
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Since n!/hλ = nλ we finally obtain that

|C2|
nλ

χλ
21n−2 = n(λ′) − n(λ) , 3.9

where χλ
21n−2 gives the value of χλ at the conjugacy class C2 and |C2| gives the cardinality of C2.

It is customary to call the difference “j − i ” the “content ” of the lattice cell (i, j). For
instance in the figure below we display the Ferrers diagram of the partition (5, 3, 3) with its cells
filled by their contents.

3.10

For a given tableau T with n cells and an integer 2 ≤ k ≤ n let us denote by cT (k) the content of the
cell that contains k in T . This given it is easy to see that for any tableau T of shape λ we necessarily
have

n∑
k=2

cT (k) = n(λ′) − n(λ) . 3.11

This simple observation causes Theorem 3.2 to have the following truly remarkable corollary.

Theorem 3.3
For every standard tableau T with n cells we have for 2 ≤ k ≤ n

a) mk e(T ) = cT (k) e(T ) ,

b) e(T )mk = cT (k) e(T ) .
3.12

Proof
Note that since by Theorem 2.6 e(T ) is self flipping and mk is trivially so, 3.12 b) can be

obtained by flipping both sides of 3.12 a). So we need only prove the latter. From the definition in
2.16 it follows that

e( ) = ε − (1, 2) and e( ) = ε + (1, 2) .

Thus we see that
m2 e( ) = −e( ) and m2 e( ) = e( ) .

This verifies 3.12 a) for n = 2. So we may proceed by induction and suppose that 3.12 a) has been
verified up to n − 1. In particular if T is any standard tableau with n cells we will necessarily have

mk e(T ) = cT (k)e(T ) = cT (k)e(T ) (for 2 ≤ k ≤ n − 1) . 3.13

Thus

mk e(T ) = mk e(T )
P (T )N(T )

h(T )
e(T )

(by 3.13) = cT (k) e(T )
P (T )N(T )

h(T )
e(T ) = cT (k) e(T ) .

3.14
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This proves 3.12 for for 2 ≤ k ≤ n− 1. But for k = n we may use 3.4 with n(λ′)−n(λ) given by 3.11
and get

(m2 + m3 + · · · + mn) e(T ) = (cT (2) + cT (3) + · · · + cT (n)) e(T ) .

Subtracting the identities in 3.14 for 2 ≤ k ≤ n − 1 yields

mn e(T ) = cT (n) e(T ) .

completing the induction and the proof.

A beautiful consequence of this result is a completely explicit formula for Young’s semi-
normal units. To present this development we need a few preliminary observations. To begin note
that if P (x2, x3, . . . , xn) is any polynomial in its arguments and T is any standard tableau, then from
Theorem 3.3 it follows that

P (m2, m3, . . . , mn) e(T ) = P (cT (2), cT (3), . . . , cT (n)) e(T )

now we may construct P (x2, x3, . . . , xn) in such manner that P (cT (2), cT (3), . . . , cT (n)) = 1 while
at the same time the operator P (m2, m3, . . . , mn) kills all the other seminormal idempotents. To
give a precise and efficient construction of such a polynomial we need notation.

Let us recall that the “addable cells ” a partition µ of n− 1 are the cells we may add to the
Ferrers diagram of µ to obtain of the Ferrers diagram of a partition of n. The collection of contents
of the addable cells of µ will be simply denoted “ACµ”. For instance it is easily seen from figure 3.10
that

AC533 = {−3, 2, 5} .

This given we have

Theorem 3.4
For any standard tableau T we recursively define a polynomial PT (x2, x3, . . . , xn)

by setting

PT (x2, x3, . . . , xn) = PT (x2, x3, . . . , xn−1)
∏

c∈AC
λ(T )

c�=cT (n)

xn − c

cT (n) − c
,

(
with P[1] = 1

)
3.16

Then

PT (m2, m3, . . . , mn) e(S) =




0 if S is standard and S �= T ,

e(T ) if S = T
3.17

Proof
For T = [1] there is nothing to prove. We can thus proceed by induction and assume 3.17

to be valid for all for tableaux with n − 1 cells. Note that the induction hypothesis immediately
implies that the expression

PT (m2, m3, . . . , mn−1) e(S)
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fails to vanish only if and only if S = T and in that case we have

PT (m2, m3, . . . , mn−1) e(T ) = 1

This also proves the first case of 3.17 when S �= T . So we are left with the case S = T . Now from
from 3.16 it follows that for S = T

PT (m2, m3, . . . , mn) e(S) =
( ∏

c∈AC
λ(T )

c�=cT (n)

xk − c

cT (n) − c

)
e(S)

(
by 3.12 a)

)
=

( ∏
c∈AC

λ(T )

c�=cT (n)

cS(n) − c

cT (n) − c

)
e(S)

This may also be written as

PT (m2, m3, . . . , mn) e(S) =
( ∏

c∈ACµ

c�=cT (n)

cS(n) − c

cT (n) − c

)
e(S) 3.18

where for convenience we have set
µ = λ(S) = λ(T )

Note further that the equality S = T forces cS(n) ∈ ACµ. So for the right hand side of 3.18 not to
vanish we must have cS(n) = cT (n). But this holds true if and only if S = T . In this case we have

∏
c∈AC

λ(T )
c�=cT (n)

cS(n) − c

cT (n) − c
=

∏
c∈AC

λ(T )
c�=cT (n)

cT (n) − c

cT (n) − c
= 1

and 3.18 reduces to
PT (m2, m3, . . . , mn) e(T ) = e(T ) ,

completing the proof of the Theorem.

We can now prove the following remarkable fact

Theorem 3.5
For any standard tableau T we have

e(T ) = PT (m2, m3, . . . , mn) . 3.19

Proof
Assume that

T = Tµ
r . 3.20



1 2 3
1

3

2

1

2

3

1

2

3

1

4

3

2

5
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Then
PT (m2, m3, . . . , mn)eλ

ji

∣∣
ε

= PT (m2, m3, . . . , mn)eλ
jje

λ
ji eλ

ii

∣∣
ε

= PT (m2, m3, . . . , mn)e(T
λ
j )eλ

ji e(T
λ
i )

∣∣
ε

= e(T
λ
j )eλ

ji e(T
λ
i ) PT (m2, m3, . . . , mn)

∣∣
ε

3.21

Now, by 3.20 and Theorem 3.4, we have

PT (m2, m3, . . . , mn)e(T
λ
j ) �= 0 =⇒ λ = µ and j = r 3.22

Similarly, in view of 3.12 b) we also derive that

e(T
λ
i )PT (m2, m3, . . . , mn) �= 0 =⇒ λ = µ and i = r 3.23

Using 3.21, 3.22 and 3.23 the expansion in 2.4 with f = PT (m2, m3, . . . , mn) reduces to

PT (m2, m3, . . . , mn) = hµ PT (m2, m3, . . . , mn)e(T
µ
r )

∣∣
ε
e(T

µ
r )

(by 3.20) = hµ PT (m2, m3, . . . , mn)e(T )
∣∣
ε
e(T )

(by Theorem 3.4) = hµ e(T )
∣∣
ε
e(T )

(by 2.26) = e(T )

completing the proof of the Theorem.

It might be good at this point to exhibit a few instances of the identity in 3.19. For the
tableaux with three cells Theorem 3.4 gives

e( ) = (m2 + 1)(m3 + 1)/6 , e( ) = (m2 + 1)(m3 − 2)/6

e( ) = −(m2 − 1)(m3 − 1)/6 , e( ) = −(m2 − 1)(m3 + 2)/6

We should also note that we have

e( ) = −(m2 − 1)(m3 + 2)(m4 − 2)(m4 + 2)(m5 − 2)/96 .

These expressions are easily derived if we take the view that the successive linear factors must be
selected to kick each additional label into the position that it occupies in the target tableau.

4. The seminormal matrices

In this section we shall work out explicit formulas for the seminormal matrices correspond-
ing to simple reflections for any given partition µ. Since we shall keep µ fixed throughout our
derivation, to simplify the displays we will sometimes omit the superscript µ. So we assume that

T1 , T2 , . . . , Tnµ 4.1

are the standard tableaux of shape µ in the Young Last Letter Order. We pick a simple transposition
sk = (k, k + 1) (for 1 ≤ k ≤ n− 1) and proceed to construct all the entries of the seminormal matrix
Aµ(sk). Suppose first that for a pair 1 ≤ r < s ≤ nµ we have

sk Tr = Ts . 4.2



k

k+1

Tr = k+1

k

Ts=
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Note that since Tr and Ts only differ in the positions of k and k + 1, the last letter of disagreement
between Tr and Ts is necessarily k + 1. Moreover, since r < s ⇒ Tr <LL Ts it follows that k + 1
is higher in Tr than in Ts. Clearly k and k + 1 cannot be in the same row or column of Tr for then
4.2 would force Ts not to be standard. Furthermore two successive integers can never be in the
same diagonal of any standard tableau. In conclusion we see that these two tableaux can only be as
indicated in the figure below

4.3

This given our first step is to compute the image by sk of the seminormal idempotent
err = e(Tr). To this end we use the expansion formula in 2.4 and start by writing

ske(Tr) =
∑

λ

hλ

nλ∑
i,j=1

(
ske(Tr) eλ

ji

∣∣∣
ε

)
eλ
ij . 4.4

However, since by our conventions e(Tr) = eµ
rr a use of Theorem 2.3 quickly reduces 4.4 to

ske(Tr) = hµ

nµ∑
i=1

(
ske(Tr) eµ

ri

∣∣∣
ε

)
eµ
ir

= hµ

nµ∑
i=1

(
sk eµ

ri

∣∣∣
ε

)
eµ
ir

= hµ

nµ∑
i=1

eµ
ri(sk) eµ

ir .

4.5

Now it develops that this expansion can be reduced drammatically further by use of Murphy
elements. To this end set

Π =
n∏

h=2

h�=k,k+1

c2∏
c=c1

c�=cTr (h)

(mh − c)
(cTr (h) − c)

4.6

where c1 and c2 respectively denote the minimum and the maximum of the contents of the cells of
the diagram of µ. Note that since Tr and Ts only differ in the positions of k and k + 1 we will have

cTr (h) = cTs(h) (for all h �= k, k + 1) . 4.7

It follows from 4.6 and 3.12 a) that

Π e(Ti) =




0 if i �= r, s,

e(Tr) if i = r,

e(Ts) if i = s.

4.8
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In fact, the last two cases of 4.8 are immediate consequences of 4.6 and 4.7. On the other hand we
see from 4.6 that

Π e(Ti) �= 0 =⇒ cTi(h) = cTr (h) ∀ h �= k, k + 1 .

Since standard tableaux increase along diagonals these equalities force Ti to be identical with Tr

except for the positions of k and k + 1. In other words the non-vanishing of Πe(Ti) forces Ti = Tr

or Ti = Ts. This proves the first case of 4.8.

Note next that, since there is no occurrence of mk and mk+1 in the right hand side of 4.6, it
follows from Theorem 3.1 that

Π sk = sk Π 4.9

This given, we get
sk e(Tr) = sk Π e(Tr)

(by 4.9) = Π ske(Tr)

(by 4.5) = hµ

nµ∑
i=1

eµ
ri(sk) Π eµ

ir

(by 2.22) = hµ

nµ∑
i=1

eµ
ri(sk) Π eµ

ii eµ
ir

(by 4.9) = hµ eµ
rr(sk) eµ

rr + hµ eµ
rs(sk) eµ

sr .

This may be rewritten as

sk eµ
rr = a eµ

rr + b eµ
sr , 4.10

where a and b are constants we shall soon determine.

To begin we multiply both sides of 4.10 by the Murphy element mk and get (using 3.2 c))

(sk mk+1 − 1) eµ
rr = a mk eµ

rr + b mk eµ
sr ,

and 3.12 a) gives

cTr (k + 1) sk eµ
rr − eµ

rr = a cTr (k) eµ
rr + b cTr (k + 1) eµ

sr ,

Subtracting from this 4.10 multiplied by cTr (k + 1) yields

−eµ
rr = a (cTr (k) − cTr (k + 1)) eµ

rr .

Thus
a =

1
cTr

(k + 1) − cTr
(k)

. 4.11

Our next step is to multiply 4.10 by sk. This gives

eµ
rr = a sk eµ

rr + b sk eµ
sr .

(by 4.10) = a(a eµ
rr + b eµ

sr ) + b sk eµ
sr .

= a2 eµ
rr + ab eµ

sr + b sk eµ
sr .

4.12
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Note that cTr
(k+1)−cTr

(k) = 1 forces k and k+1 to be in the same row of Tr and cTr
(k+1)−cTr

(k) =
−1 forces k and k + 1 to be in the same column. Since these two alternatives have been excluded
we can’t have a2 = 1. But then 4.12 shows that we can’t have b = 0. This allows us to extract sk eµ

sr

out of 4.12 and obtain
sk eµ

sr = (1−a2)
b eµ

rr − a eµ
sr . 4.13

To determine b we need a further consequence of Theorem 1.3 which is quite interesting in its own
right. This may be stated as follows.

Proposition 4.1
For two standard tableaux T1 T2 of the same shape we have

a) E(T2) e(T1) �= 0 =⇒ T2 <LL T1 ,

b) e(T1) E(T2) �= 0 =⇒ T1 <LL T2 .
4.12

Proof
Let k + 1 be the last letter of disagreement between T1 and T2. In view of the recursive

definition of the seminormal unit e(T2) given in 2.16 we may write e(T1) in the form

e(T1) = e
(
T1(k − 1)

)
P

(
T1(k)

)
R1 4.13

where R1 is a residual factor of no concern. In the same vein, using 1.13 b) we may write

E(T2) = P (T2) nk(T2)N
(
T2(k)

)
. 4.14

Using 4.13 and 4.14 we see that

E(T2) e(T1) �= 0 =⇒ N
(
T2(k)

)
e
(
T1(k − 1)

)
P

(
T1(k)

)
�= 0 .

Thus from Proposition 1.1 it follows that

E(T2) e(T1) �= 0 =⇒ λ
(
T2(k)

)
≥ λ

(
T1(k)

)
(in dominance)

and 4.12 a) necessarily follows from the definition of Young’s Last Letter Order. The proof of 4.12
b) is entirely analogous.

As a corollary of 4.12 we can now immediatly derive the following surprising result.

Proposition 4.1
The constant b appearing in 4.10 and 4.13 is plainly and simply equal to 1.

Proof
Note that since eµ

sr = eµ
sse

µ
sre

µ
rr we may write

hµ eµ
sr = e(T s)

E(Ts)
hµ

e(T s)
(
e(T s)E(Ts)σµ

sre(T r)
)
e(T r)

E(Tr)
hµ

e(T r)

= e(T s)
E(Ts)

hµ

(
e(T s)E(Ts)σµ

sre(T r)
)E(Tr)

hµ
e(T r)

= e(Ts)E(Ts)σµ
sre(Tr)
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and since by assumption we have skTr = Ts we can set σµ
sr = sk in this last identity and obtain

hµ eµ
sr = e(Ts)E(Ts)sk e(Tr)

(by 4.10) = e(Ts)E(Ts)
(
a eµ

rr + b eµ
sr

)
= a e(Ts)E(Ts)e(Tr) + b e(Ts)E(Ts)eµ

sr

= a e(Ts)E(Ts)e(Tr) + b e(Ts)E(Ts)
(
e(Ts)

E(Ts)
hµ

sk e(Tr)
)

(Using 2.17 c)) = a e(Ts)E(Ts)e(Tr) + b e(Ts)E(Ts)sk e(Tr)

= a e(Ts)E(Ts)e(Tr) + b hµ eµ
sr .

4.15

Now note that we cannot have

E(Ts)e(Tr) �= 0

for otherwise our Proposition 4.1 would give s < r which contraddicts our original assumptions.
Thus 4.15 necessarily reduces to

hµ eµ
sr = b hµ eµ

sr

which forces

b = 1

and completes our proof.

To continue our construction of the seminormal matrix corresponding to the simple trans-
position sk we need to compute the image by sk of the idempotent e(Tr) when k and k + 1 are in
the same row or column. Our point of departure, also in these cases is formula 4.5. Moreover, since
now the tableau sk Tr is no longer standard, from 4.6 we derive that

Π e(Ti) =




0 if i �= r,

e(Tr) if i = r.
4.16

This given, multiplying both sides of 4.5 by Π we derive that

ske(Tr) = skΠ e(Tr) = Π ske(Tr) = hµ

nµ∑
i=1

eµ
ri(sk) Π eµ

ir

= hµ

nµ∑
i=1

eµ
ri(sk) Π eµ

ii eµ
ir

(by 4.16) = hµ eµ
rr(sk)eµ

rr

= a e(Tr) .

4.17

with

a = hµ eµ
rr(sk) . 4.18



k

k+1

Tr =
i1

i2

j
2

j
1
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To determine a we multiply both sides of 4.18 by the Murphy element mk and use 3.2 c) to get

a cTr (k) eµ
rr = mk skeµ

rr

= skmk+1 e(Tr) − e(Tr)

= cTr
(k + 1) sk e(Tr) − e(Tr)

(by 4.18) = cTr
(k + 1) a e(Tr) − e(Tr) ,

and this gives

a =
1

cTr (k + 1) − cTr (k)
=

{ 1 if k and k + 1 are in the same row of Tr ,

−1 if k and k + 1 are in the same column.
4.19

To state our final result in a compact form we need one further observation concerning the
case when k and k + 1 are not in the same row or column of Tr. Then if k + 1 is in cell (i1, j1) and k

is in cell (i2, j2) we may write

cTr
(k) − cTr

(k + 1) = (j2 − i2) − (j1 − i1)

= j2 − j1 + i1 − i2

When k + 1 is in a higher cell than k in Tr, as it was assumed at the beginning of this section, then
the quantity

πk(Tr) = cTr (k) − cTr (k + 1) = −1/a 4.20

gives the “taxi-cab distance” between k and k + 1. That is the length of any path that joins k + 1
to k by EAST and SOUTH steps. See figure below where we have drawn such a path by a dashed
line.
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This given, the identities proved in this section yield the following fundamental result

Theorem 4.2
Let

Tµ
1 , Tµ

2 , . . . , Tµ
nµ

be the standard tableaux of shape µ � n in Young’s Last Letter Order, then for any
pair 1 ≤ r, i ≤ nµ and 1 ≤ k < n we have

sk eµ
ru =




eµ
ru if k and k + 1 are in the same row of Tµ

r

−eµ
ru if k and k + 1 are in the same column of Tµ

r

− 1
πk(Tµ

r )
eµ
ru + eµ

su if Tµ
s = skTµ

r and k + 1 is higher than k in Tµ
r

1
πk(Tµ

r )
eµ
ru +

(
1 − 1

π2
k(Tµ

r )

)
eµ
su if Tµ

s = skTµ
r and k is higher than k + 1 in Tµ

r

4.21
Proof

Given 4.19, the first two cases are simply a restatement of 4.17 right multiplied by eµ
ru. Note

next that if we combine 4.10, 4.11, 4.20 and Proposition 4.1 we obtain

sk eµ
rr = − 1

πk(Tµ
r )

eµ
rr + eµ

sr 4.22

This gives the third case after right multiplication by eµ
ru. Similarly, 4.13 gives

sk eµ
sr =

(
1 − 1

π2
k(Tµ

r )

)
eµ
rr +

1
πk(Tµ

r )
eµ
sr 4.23

Since πk(Tµ
r ) = πk(Tµ

s ), the fourth case of 4.21 is obtained by an interchange of r and s followed by
right multiplication by eµ

su. This completes the proof.

From 4.21 we obtain a rather simple recipe for constructing the seminormal representation
matrix Aµ(sk). More precisely we have

Theorem 4.3
If Aµ(sk) is the matrix yielding the action of the simple transposition sk =

(k, k + 1) on the basis
〈
eµ
1,u, eµ

2,u, . . . , eµ
nµ,u

〉
, that is

sk

〈
eµ
1,u, eµ

2,u, . . . , eµ
nµ,u

〉
=

〈
eµ
1,u, eµ

2,u, . . . , eµ
nµ,u

〉
Aµ(sk) 4.24

then Aµ(sk) = ‖aµ
ij(sk)‖nµ

i,j=1 with

arr(sk) =




−1
πk(Tµ

r )
if k + 1 is higher than k in Tµ

r ,

1
πk(Tµ

r )
if k is higher than k + 1 in Tµ

r ,

4.25
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where πk(Tµ
r ) is the taxi-cab distance between k and k + 1 in Tµ

r . Moreover for i �= j we
have

aij(sk) =




0 if skTµ
i �= Tµ

j ,

1
1 − π2

k(Tµ
i )

if skTµ
i = Tµ

j and i < j,

1 if skTµ
i = Tµ

j and i > j.

4.26

Proof
The equation in 4.23 simply says that for each 1 ≤ j ≤ nµ we have

skeµ
ju =

nµ∑
i=1

eµ
iu aµ

ij(sk)

Thus the identities in 2.25 and 2.26 are obtained by equating coefficients of the units eµ
iu on both

sides of 4.21.

We are now in a position to obtain explicit expressions for the factors dµ
i occurring in 2.39.

Our starting point is the following auxiliary identity.

Proposition 4.2
Let Tµ

s = sk Tµ
r with r < s then

dµ
s /dµ

r =
(
1 − 1/π2

k(Tr)
)
. 4.27

Proof
Equating coefficients of the identity in 4.23 and using 2.26 gives

sk eµ
sr

∣∣
ε

=
(
1 − 1

π2
k(Tr)

) 1
hµ

. 4.28

On the other hand we have

sk eµ
sr

∣∣
ε

= ↓(sk eµ
sr)

∣∣
ε

= (↓eµ
sr) sk

∣∣
ε

( by 2.39) =
dµ

s

dµ
r

eµ
rs sk

∣∣
ε

=
dµ

s

dµ
r

sk eµ
rs

∣∣
ε

( by 4.22 right multiplied by eµ
rs) =

dµ
s

dµ
r

(
− 1/πk(Tµ

r ) eµ
rs + eµ

ss

)∣∣∣
ε

=
dµ

s

dµ
r

1
hµ

.

4.29

and 4.27 follows by combining 4.28 and 4.29.
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To complete the construction of these factors we need one further result.

Proposition 4.3
For any λ and any 1 ≤ s ≤ nλ we can join Tλ

1 to Tλ
s by a chain of tableaux

Tλ
1 = Tλ

i1 →Tλ
i2 → · · · →Tλ

im−1
→Tλ

im
= Tλ

s 4.30

with the following two basic properties

(a) Tλ
ir−1

<LL Tλ
ir

for all 1 ≤ r ≤ m − 1,
4.31

(b) Tλ
ir

= skrT
λ
ir−1

with skr = (kr, kr + 1).
Proof

The assertion is trivial for λ � 2. So, by induction, let us assume we have proved the result
for any µ � n − 1. Let then λ � n and 1 ≤ s ≤ nλ. To construct the chain in 4.30 we need some
notation. To begin let cs be the lattice cell that contains n in Tλ

s and let c1 be the lattice cell that
contains n in Tλ

1 . We should note that c1 is necessarily be the highest corner of the diagram of λ.
Now set λ(T

λ

s ) = µ. Using the induction hypothesis we construct a chain for T
λ

s :

Tµ
1 = Tµ

j1
→Tµ

j2
→ · · · →Tµ

jm−1
→Tµ

jm
= T

λ

s . 4.32

This given, let Tλ
ir

, for 1 ≤ r ≤ m, be the tableau obtained by adding n to Tµ
jr

in the cell cs. If it
happens that c1 = cs then the tableaux Tλ

ir
will be satisfy 4.30 and 4.31 and we are done. If cs is a

lower corner of the diagram of λ then the chain

Tλ
i1 →Tλ

i2 → · · · →Tλ
im−1

→Tλ
im

= T
λ

s . 4.33

will satisfy 4.31 a) and b). Now we only need to construct a chain that joins Tλ
1 to Tλ

i1
. The crucial

observation is that when cs �= c1 then c1 is both the highest corner of the diagrams of µ and λ. Thus
in Tµ

1 the label n− 1 is necessarily in c1. In particular Tλ
i1

has n in cs and n− 1 in c1. This given, the
tableau sn−1T

λ
i1

will have n in c1 and n − 1 in cs. Thus

sn−1T
λ
i1 <LL Tλ

i1 .

This reduces us to the previous case since now n is the highest corner of λ. Thus the constrution of
the desired chain can now be carried out by prepending the chain in 4.33 with the chain that joins
Tλ

1 to sn−1T
λ
i1

. This completes the induction and the proof.

Combining the last two propositions we obtain

Theorem 4.4
If

Tλ
1 = Tλ

i1 →Tλ
i2 → · · · →Tλ

im−1
→Tλ

im
= Tλ

s

is any chain satisfying 4.31 a) and b) then

dλ
s =

m−1∏
r=1

(
1 − π2

kr
(Tµ

ir
)
)

4.34
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Proof
Clearly, 4.34 follows by succesive applications of 4.27.

5. Murphy elements and conjugacy classes
We should point out that the name “Murphy elements” may be a bit unfair. These el-

ements first appeared in a 1971 paper of A. Jucys. In a 1980 paper Murphy’s rediscovers these
elements (presumably) independently of Jucys work. Murphy’s fundamental contribution is dis-
covering their connection with Young’s seminormal units. However, in a remarkable 1972 paper
Jucys goes on to show that that every class function of Sn may be expressed as a symmetric polyno-
mial in m2, m3, . . . , mn. Jucys’ development was basically existential. The purpose of this section is
to reestablish Jucys’ results in a constructive manner and obtain explicit expressions for the charac-
ters of Sn as well as the conjugacy classes. We should mention that such a constructive approach was
adopted in a joint paper by P. Diaconis and C. Greene [1] where a number of explicit formulas were
derived in special cases. We also solve here a number of problems posed in the Diaconis-Greene
paper.

To begin we shall derive two separate proofs of the following basic fact.

Theorem 5.1
If Q(y2, y3, . . . , yn) is a symmetric polynomial in its arguments then the group

algebra element
Q(m2, m3, . . . , mn) 5.1

is a class function of Sn.
1st Proof

The result follows if we prove that

σ Q(m2, m3, . . . , mn) σ−1 = Q(m2, m3, . . . , mn) ( ∀ σ ∈ Sn) 5.2

Since the simple transpositions s1, s2, . . . , sn−1 generate Sn we need only check the identities

sk Q(m2, m3, . . . , mn) sk = Q(m2, m3, . . . , mn) ( ∀ k = 1, 2, . . . , n − 1) 5.3

Moreover, since every symmetric polynomial in y2, y3, . . . , yn is a polynomial in the elementary
symmetric functions

e1(y2, y3, . . . , yn) , e2(y2, y3, . . . , yn) , . . . , en−1(y2, y3, . . . , yn) , 5.4

and products of class functions are class function we need only verify 5.2 when Q is one of the
elementaries in 5.4.

Now we can do this all at once by showing 5.3 for

Q(y2, y3, . . . , yn) =
n−1∑
r=1

tr er(y2, y3, . . . , yn) =
n∏

h=2

(1 + t yh)
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To this end note that the relations in 3.2 b) give us

sk

( n∏
h=2

(1 + t mh)
)

sk =
( n∏

h=2

h�=k,k−1

(1 + t mh)
)

sk (1 + t mk) (1 + t mk+1)sk . 5.5

But from 3.2 c) and d) we then obtain

sk (1 + t mk) (1 + t mk+1)sk = sk (1 + t mk) sk sk (1 + t mk+1)sk

= (1 + t mk+1 − t sk) (1 + t mk + t sk)

= (1 + t mk+1 − t sk + t mk + t sk + t2(mk+1 − sk)(mk + sk)

= (1 + t mk+1 + t mk + t2(mk+1mk + mk+1sk − sk mk − 1)

5.6

Now note that right multiplication of 3.2 c) by sk also gives

mk+1sk − sk mk − 1 = 0

Substituting this in 5.6 reduces it to

sk (1 + t mk) (1 + t mk+1)sk = (1 + t mk+1 + t mk + t2(mk+1mk)

= (1 + t mk) (1 + t mk+1)

Using this relation in 5.5 finally yields the desired identity

sk

( n∏
h=2

(1 + t mh)
)

sk =
( n∏

h=2

(1 + t mh)
)

completing our first proof.

We have seen that the seminormal units e(T ) may be expressed as polynomials in the
Murphy elements. We need to do the reverse here and express the Murphy elements in terms of the
seminormal units. More precisely

Theorem 5.2
For k ≤ n we have

mk =
∑

T ∈ST (n)

cT (k) e(T ) 5.7

where the symbol “T ∈ ST (n)” is to indicate that the sum is to be carried out over
all standard tableaux with n cells.
Proof

Formula 2.4 with f = mk gives

mk =
∑
λ�n

hλ

nλ∑
i,j=1

mk eλ
ji

∣∣
ε
eλ
ij 5.8
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However from the relations in 2.22 we derive that

mk eλ
ji = mk eλ

jje
λ
ji

(by 3.12 a)) = cT λ
j
(k) eλ

jje
λ
ji = cT λ

j
(k) eλ

ji ,

and 2.26 gives

mk eλ
ji

∣∣
ε

= cT λ
j
(k) eλ

ji

∣∣
ε

=




0 if i �= j

cT λ
j
(k) /hλ if i = j

Using this in 5.8 reduces it to

mk =
∑
λ�n

nλ∑
j=1

cT λ
j
(k) eλ

jj .

This completes our proof since this identity is simply another way of writing 5.7.

We are now ready to give our

2nd Proof of Theorem 5.1.
From 5.7 and the orthogonality relations in 2.20 we derive that

mk1mk2 · · ·mkl
=

∑
T ∈St(n)

cT (k1) cT (k2) · · · cT (kl) e(T ) .

It thus follows that for any polynomial Q(y2, y2, . . . , yn) we must also have

Q(m2m3 · · ·mn) =
∑

T ∈St(n)

Q
(
cT (2), cT (3), · · · , cT (n)

)
e(T ) . 5.9

Now if Q(y2, y2, . . . , yn) is a symmetric function in its arguments, the order in which the quanti-
ties cT (2), cT (3), · · · , cT (n) are substituted in Q(y2, y2, . . . , yn) is immaterial and by grouping terms
where Q

(
cT (2), cT (3), · · · , cT (n)

)
takes the same value, formula 5.9 may be rewritten in the form

Q(m2m3 · · ·mn) =
∑
λ�n

Q
(
cλ(2), cλ(3), · · · , cλ(n)

) ∑
T∈ST (λ)

e(T ) . 5.10

where the quantities cλ(2), cλ(3), · · · , cλ(n) represent the contents of the cells of the diagram of λ

in some preferred order and the symbol “T ∈ ST (λ)” represents that the sum is to be carried out
over all standard tableaux of shape λ. Now 5.10 would complete the proof once we realize that the
summand

Uλ =
∑

T∈ST (λ)

e(T ) =
nλ∑
i=1

eλ
ii 5.11

is none other than the character χλ. However, all we need here is to show that the Uλ are class
functions, and for that we need only verify that they commute with all the seminormal units eµ

rs.
However this is an immediate consequence of the relations in 2.22.
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To show the converse of Theorem 5.1 we need only show that the irreducible characters χλ

may be expressed as symmetric polynomials in the Murphy elements. To see where this leads us,
suppose that for each partition λ we have a symmetric polynomial

Qλ(x2, x3, . . . , xn) 5.12

such that
χλ = Qλ(m2, m3, . . . , mn) 5.13

Now it follows immediately from Proposition 2.2 and 2.33 that

χλ = hλ

nλ∑
i=1

eλ
ii . 5.14

Using the identities in 2.22 we then immediately derive that

χλ χµ =

{ 0 if µ �= λ ,

hλ χλ if µ = λ .
5.15

These are the well known orthogonality relations satisfied by the irreducible characters. Combining
5.13 with 5.15 we derive that we must have

Qλ(m2, m3, . . . , mn) χµ =

{ 0 if µ �= λ ,

hλ χλ if µ = λ .
5.16

However, from 3.12 a) and the symmetry of Qλ it follows (as in the 2nd proof of Theorem 5.1) that

Qλ(m2, m3, . . . , mn) eµ
ii = Qλ(cµ(2), cµ(3), . . . , cµ(n)) eµ

ii

and thus we also have

Qλ(m2, m3, . . . , mn) χµ = Qλ(cµ(2), cµ(3), . . . , cµ(n)) χµ 5.17

Comparing with 5.16 we derive that the polynomial Qλ must satisfy the identities

Qλ(cµ(2), cµ(3), . . . , cµ(n)) =

{ 0 if µ �= λ ,

hλ if µ = λ .
5.17

Experimenting with special cases shows that these equations do not uniquely determine Qλ. Nev-
ertheless, all we need here is a systematic way of constructing one particular solution for each λ.
Now it develops that we may in fact, produce Qλ in terms of a symmetric polynomial which first
appears in an exercise of Macdonald (see [4] ex. 5, 6 and 7 p. 117).

Let us recall that the symbol (x)a represents the “lower factorial polynomial” that is

(x)a = x(x − 1)(x − 2) · · · (x − a + 1)
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This given, our starting point is the following remarkable result.

Proposition 5.1
For a given integer vector a = (a1 > a2 > . . . > an ≥ 0) set

Ξa(y) = Ξa(y1, y2, . . . , yn) =
det

∥∥(yi)aj

∥∥
1≤i,j≤n∏

1≤i<j≤n(yi − yj)
. 5.18

then for all b = (b1 > b2 > . . . > bn ≥ 0) we have

Ξa[ b ] =




a1!a2! · · · an!∏
1≤i<j≤n(ai − aj)

if b = a ,

0 if |b| ≤ |a| & b �= a . (†)

5.19

Proof
By the definition of determinant we have

det
∥∥(yi)aj

∥∥
1≤i,j≤n

=
∑

σ∈Sn

sign(σ) (y1)aσ1
(y2)aσ2

· · · (yn)aσn
5.20

Now note that for an integer x we have

(x)a =
x!

(x − a)!

Thus with the replacements yi→bi we may rewrite 5.20 in the form

det
∥∥(bi)aj

∥∥
1≤i,j≤n

= b1!b2! · · · bn!
∑

σ∈Sn

sign(σ)
1

(b1 − aσ1)!(b2 − aσ2)! · · · (bn − aσn
)!

5.21

Now for the summand corresponding to σ to survive we must have

b1 ≥ aσ1 , b2 ≥ aσ2 , . . . , bn ≥ aσn ,

and this gives
b1 + b2 + · · · + bn ≥ a1 + a2 + · · · + an

Thus when |b| ≤ |a| all terms in 5.20 do vanish unless b = a. But in this case only the identity term
fails to vanish, and 5.21 reduces to

det
∥∥(ai)aj

∥∥
1≤i,j≤n

= a1!a2! · · · an! .

This implies 5.19 precisely as stated.

(†) Recall that for a vector y = (y1, y2, . . . , yn) we set |y| = y1 + y2 + · · · + yn
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The identities in 5.19 strongly suggest that we should be able to use the polynomial Ξa(y)
in the construction of Qλ. This is prescisely what we will do. However to carry this out we need
some notation and a few auxiliary facts.

For a pair of integers m, k ≥ 0 set

Σk(m) =
m∑

s=1

ik , 5.22

with the understanding that
Σ0(m) = m . 5.23

The following result is well known

Proposition 5.2
The sequence of polynomials Rk(x) with generating function

∑
k≥0

uk

k!
Rk(x) = eu eux − 1

eu − 1
5.24

yields all the integer sums in 5.22. More precisely we have

Σk(m) = Rk(m) ∀ k, m ≥ 0 5.25

Proof
We have ∑

k≥0

uk

k!
Σk(m) =

∑
k≥0

uk

k!

m∑
i=1

ik

=
m∑

i=1

∑
k≥0

(iu)k

k!
=

m∑
i=1

ei u

= eu + e2 u + · · · + em u

= eu em u − 1
eu − 1

.

This proves 5.25.

It will be good to see here a few of these polynomials. We should mention that they were
computed with MAPLE directly from 5.24:

R1(x) =
1
2
x(x + 1)

R2(x) =
1
6
x(x + 1)(2x + 1)

R3(x) =
1
4
x2(x + 1)2

R4(x) =
1
30

x(2x + 1)(x + 1)(3x2 + 3x − 1)
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R5(x) =
1
12

x2(2x2 + +2x − 1)(x + 1)2

R6(x) =
1
42

x(2x + 1)(x + 1)(3x4 + 6x3 − 3x + 1)

If λ = (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0) is a partition we set l(λ) = m and call it the “length of
λ ”. This given if l(λ) ≤ n we set

λ(n) =
(
λ1(n), λ2(n), . . . , λn(n)

)
with

λi(n) =




λi + n − 1 if 1 ≤ i ≤ l(λ)

n − i if l(λ) < i ≤ n

It will also be convenient here and after to denote by “C(λ) ” the sequence of contents of the diagram
of a partition λ, in some order.

Recalling that we denote by pk(x1, x2, . . . , xn) the “power sum” symmetric function

pk(x) = pk(x1, x2, . . . , xn) = xk
1 + xk

2 + · · · + xk
n

we have the following basic fact

Theorem 5.3
The symmetric polynomial

πn,k(x) = Rk(n − 1) +
k∑

s=1

(k

s

)(
ns − (n − 1)s

)
pk−s(x) 5.26

yields the identities

pk[λ(n)] = πn,k[C(λ)] for all λ � n 5.27

Proof
If l(λ) < n set

λi = 0 for all i > l(λ) .

From the definition of contents we then get that

pk[C(λ)] =
n∑

i=1

λi∑
j=1

(j − i)k

=
n∑

i=1

λi∑
j=1

k∑
a=0

(k

a

)
(−i)k−aja

=
n∑

i=1

k∑
a=0

(k

a

)
(−i)k−aRa(λi)

. 5.28
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Note that this formula remains valid for k = 0 provided we adopt the convention of setting

po[C(λ)] = n for all λ � n . 5.29

In fact, setting k = 0, the last line of 5.28 reduces to

n∑
i=1

Ro(λi)

and 5.23 gives
n∑

i=1

Ro(λi) =
n∑

i=1

λi = n .

This given, we derive that

∑
k≥0

pk[C(λ)]
k!

uk =
n∑

i=1

∑
a≥0

Ra(λi)
a!

ua
∑
k≥a

(−i)k−a

(k − a)!
uk−a

(using 5.25) =
n∑

i=1

eu

eu − 1
(
eλi u − 1

)
e−i u

=
1

1 − e−u

n∑
i=1

(
e(λi−i) u − e−i u

)

=
e−n u

1 − e−u

n∑
i=1

(
e(λi+n−i) u − e(n−i)u

)

=
e−n u

1 − e−u

n∑
i=1

∑
k≥1

(
λk

i (n) − (n − i)k
)uk

k!

=
e−n u

1 − e−u

∑
k≥1

(
pk[λ(n)] − Rk(n − 1)

)uk

k!
.

5.30

Now this may be inverted to

∑
k≥1

pk[λ(n)]
uk

k!
=

∑
k≥1

Rk(n − 1)
)uk

k!
+

(
en u − e(n−1)u

) ∑
k≥0

pk[C(λ)]
uk

k!
.

Equating coefficients of uk in this equality gives

pk[λ(n)] = Rk(n − 1) +
k∑

s=1

(k

s

)(
ns − (n − 1)s

)
pk−s[C(λ)] .

and this proves 5.27 with πn,k given by 5.26, precisely as asserted.

This result has the following immediate corollary.
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Theorem 5.4
Let P be a symmetric polynomial in (x1, . . . , xn) and let

P = H(p1, p2, · · · , pn) =
∑

ρ

cρ pρ

be its expansion in terms of the power symmetric function basis. Then the symmetric
polynomial

πnP = H(p1, p2, · · · , pn)
∣∣∣
pk→πn,k

yields the identities (
πnP

)[
C(λ)

]
= P

[
λ(n)

]
∀λ � n

Now we need only one more fact to obtain our polynomial Qλ, Namely the following
classical formula.

Lemma 5.1

The number of standard tableaux of shape λ � n is given by the ratio

fλ =
n!

λ1(n)!λ2(n)! · · ·λn(n)!

∏
1≤i<j≤n

(λi(n) − λj(n)) 5.31

In particular we get that

hλ =
n!
fλ

=
λ1(n)!λ2(n)! · · ·λn(n)!∏
1≤i<j≤n(λi(n) − λj(n))

5.32

Proof

It is well known (see [4] p. 114) that for any ρ � n we have the Schur function expansion

pρ =
∑
λ�n

χλ
ρ Sλ

since we also have

Sλ(x1, . . . , xn) =
det

∥∥x
λj+n−j
i

∥∥n

i,j=1

det
∥∥xn−j

i

∥∥n

i,j=1

we see that

χλ
ρ = pρ det

∥∥xn−j
i

∥∥n

i,j=1

∣∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

. 5.33
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In the particular case that ρ = 1n this gives

fλ =
∑

σ∈Sn

sign(σ)
∑

α1+α2+···+αn=n

n!
α1!α2! · · ·αn!

xα1+n−σ1
1 xα2+n−σ2

2 · · ·xαn+n−σn
n

∣∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

.

= n!
∑

σ∈Sn

sign(σ)
1

(λ1(n) + σ1 − n)!(λ2(n) + σ2 − n)! · · · (λn(n) + σn − n)!

=
n!

λ1(n)!λ2(n)! · · ·λn(n)!

∑
σ∈Sn

sign(σ)
(
λ1(n)

)
n−σ1

(
λ2(n)

)
n−σ2

· · ·
(
λn(n)

)
n−σn

=
n!

λ1(n)!λ2(n)! · · ·λn(n)!
det

∥∥(
λi(n)

)
n−j

∥∥n

i,j=1

5.34
This yields the desired formula 5.31 since the determinant in 5.34 can be reduced by simple column
manipulations to the Vandermonde determinant evaluated at λ1(n), λ2(n), . . . , λn(n),.

We can now finally state the main result of this section

Theorem 5.5
For λ � n set

Qλ[y1, y2, . . . , yn] = πn Ξλ(n) [y1, y2, . . . , yn ] 5.35

then for µ � n we have

Qλ[C(µ)] =




hλ if µ = λ

0 if µ �= λ

. 5.36

In particular we must also have

χλ = Qλ[0, m2, . . . , mn] 5.37

Proof
Since the numerator in 5.18 is clearly an alternating polynomial in y1, y2, . . . , yn, the Van-

dermonde determinant factors out and the ratio evaluates to a symmetric polynomial. We can thus
apply Theorem 5.4 and derive that

Qλ[C(µ)] = Ξλ(n)

[
µ(n)

]
.

Since
n∑

i=1

λi(n) =
(n

2

)
+ n =

n∑
i=1

µi(n)

we can apply Proposition 5.1 and derive that

Qλ[C(µ)] =




λ1(n)!λ2(n)!···λn(n)!∏
1≤i<j≤n

(
λi(n)−λj(n)

) if µ �= λ ,

0 if µ = λ .
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and 5.36 immediately follows from the identity in 5.32.
Now note that combining 5.36 with 3.12 we get for any standard tableau T of shape µ

Qλ[0, m2, . . . , mn] e(T ) = Qλ(C(µ)) e(T ) =




hλ e(T ) if µ = λ

0 if µ �= λ .
5.38

Since
χµ =

∑
λ(T )=µ

e(T )

from 5.38 we get that

Qλ[0, m2, . . . , mn]χµ =




hλ χλ if µ = λ ,

0 if µ �= λ .

Subtracting from this result the well known identities

χλ χµ =




hλ χλ if µ = λ ,

0 if µ �= λ .

yields (
Qλ[0, m2, . . . , mn] − χλ

)
χµ = 0 , for all µ � n . 5.39

Since Theorem 5.1 guarantees that the group algebra element

Qλ[0, m2, . . . , mn] − χλ

is a class function, the identities in 5.39 are sufficient to guarantee that this difference must identically
vanish. This completes our proof.

It develops that these polynomials are quite remarkable in their relative simplicity. To
begin with, computer experimentation reveals that the polynomial Ξλ(n)[y1, y2, . . . , yn] may be quite
monstruous even for small partitions. Of course that should be expected. When expressed in terms
of the power basis it may still take a few lines of print even for λ � 4. However, surprisingly, the
replacement pk→πn,k produces drammatic simplifications so that the resulting polynomials end up
containing only a few terms. For instance for the partitions of 4 we obtain

Q1111 = 1 + 4p1 − p2/2 + p2
1/2 − p3

Q211 = −3 − 6p1 + 3p2/2 − p2
1/2 + p3

Q22 = 20 + +p1 − 4p2

Q31 = −3 + 6p1 + 3p2/2 − p2
1/2 − p3

Q4 = 1 − 4p1 − p2/2 + p2
1/2 + p3

Even for partitions of 6 these polynomials contain only a few terms. For instance we get

Q321 = 161 − 22p2 − 8p2
1 − p2

2 + 6p4 .
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Theorem 5.5 has two corollaries that are worth stating at this point.

Theorem 5.6
The polynomial

Hn[y1, y2, . . . , yn] =
∑
λ�n

Qλ[y1, y2, . . . , yn]

satisfies the identities

Hn[C(µ)] = hµ for all µ � n 5.40

Proof
This is an immediate consequence of 5.36.

Again these polynomials are surprisingly simple. For instance up to n = 6 we obtain

H3(y) = 1 + p2

H4(y) = 16 − 2p2 + p2
1

H5(y) = p4 − 6p2 − p2
1 + 46

H6(y) = −9p4 + 2p2
2 + 14p2 + 12p2

1 + 11

Theorem 5.7
For ρ � n set

Zρ[y1, y2, . . . , yn] =
∑
λ�n

Qλ[y1, y2, . . . , yn]χλ
ρ/zρ 5.41

where for ρ = 1α12α2 · · ·nαn as customary we set

zρ = 1α12α2 · · ·nαn α1!α2! · · ·αn! 5.42

then
Zρ[C(µ)] = hµ χµ

ρ/zρ 5.43

and the conjugacy class Cρ (as an element of the group algebra of Sn) is given by the
formula

Cρ = Zρ[0, m2, . . . , mn] 5.44

Proof
The identity in 5.43 follows immediately from 5.36. Next, recall that the class function Cρ,

in terms of the characters, has the expansion

Cρ =
∑
λ�n

χλ χλ
ρ/zρ
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Thus 5.44 is an immediate consequence of 5.37.

We give below a few samples we obtained from formula 5.41

Z[2,2](y) = 1
2p2

1 − 3
2p2

Z[3,2](y) = 12p1 + p1p2 − 4p3

Z[3,3](y) = −30 + 6p2 + 3p2
1 + 6p2 + 1

2p2
2 − 5

2p4

In a recent paper [2] A. Goupil et al, endevour to express the central parameter

ωλ
ρ = χλ

ρ hλ/zρ 5.45

as polynomial depending on ρ evaluated at C(λ). The results they obtain are interesting in the
present context since their polynomials yield alternate versions of the polynomails Zρ.

More precisely one of their results may be stated as follows

Theorem 5.7 (Goupil et al [2])
For each partition of n of the form

γ, 1n−r with γ � r

we can construct a symmetric polynomial

Gγ =
∑
|ρ|≤r

cγ
ρ(n) pρ with cρ(n) ∈ Q[n] 5.46

satisfying

Gγ [C(λ)] =
∑
|ρ|≤r

cγ
ρ(n) pρ[C(λ)] = ωλ

γ,1n−r (for all λ � n) 5.47

The polynomials Gγ constructed by Goupil et al are also relatively simple when expressed
in terms of power sums. The proof of Theorem 5.7 by Goupil et al is algorithmic, but the resulting
algorithm is of considerable complexity. Our aim here is to obtain an alternate algorithm.

It develops that the crucial idea in carrying this out stems from a calculation initiated by
Macdonald in the same previously quoted exercise (†). In fact, the aim of Macdonald in that exercise
is to obtain a formula for ωλ

k,1n−k . Extending Macdonald’s idea to its most general form naturally
leads us to the following remarkable result.

(†) Ex. 7, page 117 of [4].
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Theorem 5.8
Let γ be a partition of m all of whose parts are > 1 and set

Ψγ,n(y) =
1
zγ

∑
α�r

χα
γ Ξα(n)(y) 5.48

then the polynomial
Φγ,n(y) = πn Ψγ,n(y) 5.49

yields the identities

Φγ,n

[
C(λ)

]
= wλ

γ,1n−r (∀ λ � n) 5.50

Proof
From the well known formula

χλ
ρ = pρ det ‖xn−j

i ‖n
i,j=1

∣∣∣
x

λ1+n−1
1 x

λ2+n−2
2 ···xλn+n−n

n

using our notation, we get for ρ = γ, 1n−r

χλ
γ,1n−r = pn−r

1 pγ det ‖xn−j
i ‖n

i,j=1

∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

Expanding pγ in terms of Schur functions we get

χλ
γ,1n−r =

∑
α�r

χα
γ pn−r

1 Sα(x1, . . . , xn)∆n(x1, . . . , xn)
∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

=
∑
α�r

χα
γ pn−r

1 det
∥∥x

αj(n)
i

∥∥n

i,j=1

∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

=
∑
α�r

χα
γ pn−r

1

∑
σ∈Sn

sign(σ) x
ασ1 (n)
1 x

ασ2 (n)
2 · · ·xασn (n)

n

∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

Following Macdonald we use the multinomial expansion of pn−r
1 and obtain

χλ
γ,1n−r =

∑
α�r

χα
γ

∑
σ∈Sn

sign(σ)
∑

p1+p2+···+pn=n−r

(n − r)!
p1!p2! · · · pn!

x
ασ1 (n)+p1

1 x
ασ2 (n)+p2

2 · · ·xασn (n)+pn
n

∣∣∣
x

λ1(n)
1 x

λ2(n)
2 ···xλn(n)

n

= (n − r)!
∑
α�r

χα
γ

∑
σ∈Sn

sign(σ)
1

(λ1(n) − ασ1(n)!(λ2(n) − ασ2(n)! · · · (λn(n) − ασn(n)!

Since all the parts of γ are > 1 we have that zγ,1n−r = zγ(n− r)! thus 5.45 with ρ = γ, 1n−r and 5.32
give

ωλ
γ,1n−r = χλ

γ,1n−r

hλ

zγ(n − r)!
=

χλ
γ,1n−r

zγ(n − r)!
λ1(n)!λ2(n)! · · ·λn(n)!∏
1≤i<j≤n(λi(n)! − λj(n)!)
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Using this in our previous relation we obtain

wλ
γ,1n−r =

1
zγ

∏
1≤i<j≤n(λi(n)! − λj(n)!)

∑
α�r

χα
γ

∑
σ∈Sn

sign(σ)
λ1(n)!λ2(n)! · · ·λn(n)!

(λ1(n) − ασ1(n)!(λ2(n) − ασ2(n)! · · · (λn(n) − ασn
(n)!

=
1
zγ

∑
α�r

χα
γ

∑
σ∈Sn

sign(σ) (λ1(n))ασ1
(λ2(n))ασ2

· · · (λn(n))ασn∏
1≤i<j≤n(λi(n)! − λj(n)!)

=
1
zγ

∑
α�r

χα
γ Ξα(n)

[
λ(n)

]
. 5.51

Now, from 5.49 and Theorem 5.4 we get that

Φγ,n

[
C(λ)

]
= Ψγ,n

[
µ(λ)

]
and 5.51 together with the definition in 5.48 gives 5.50 and completes the proof of the theorem.

Formulas 5.48 and 5.49 combined are not sufficient to render explicit the dependence on n.
To achieve this and obtain expansions similar to 5.47 for the polynomials Φγ,n we need one further
step. This is provided by the following basic identity.

Proposition 5.3
For α � m < n let

Rα[x1, x2, · · · , xn;n] = Ξα(n)[x(n)], 5.52

where for convenience we have set

x(n) =
(
x1(n), x2(n), . . . , xn(n)

)
(with xi(n) = xi + n − i) ,

then

Rα[x1, x2, · · · , xn;n]
∣∣∣
xn=0

= Rα[x1, x2, · · · , xn−1;n − 1] 5.53

Proof
Note that if aj ≥ 1 we may write

(yi)aj
= yi (yi − 1)aj−1 for i = 1, . . . , n .

Thus

det
∥∥(yi)aj

∥∥n

i,j=1

∣∣∣yn=0

an=0

= y1y2 · · · yn−1 det




(y1 − 1)a1−1 · · · (y1 − 1)an−1−1 1
(y2 − 1)a1−1 · · · (y2 − 1)an−1−1 1

...
...

...
...

(yn−1 − 1)a1−1 · · · (yn−1 − 1)an−1−1 1
0 · · · 0 1



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Thus from the definition in 5.18 we get that

Ξa[y1, y2, . . . , yn

∣∣∣yn=0

an=0

= det




(y1 − 1)a1−1 · · · (y1 − 1)an−1−1

(y2 − 1)a1−1 · · · (y2 − 1)an−1−1

... · · ·
...

(yn−1 − 1)a1−1 · · · (yn−1 − 1)an−1−1




/ ∏
1≤i<j≤n−1

(yi − yj)

5.54
Note that for l(α) < n we have αn(n) = 0 and αi(n) ≥ 1 for all i < n. Moreover, we also have

xi(n) − 1 = xi + n − i − 1 = xi(n − 1) (for i = 1, . . . , n − 1)

and
αi(n) − 1 = αi + n − i − 1 = αi(n − 1) (for i = 1, . . . , n − 1)

Thus, setting yi = xi(n) and ai = αi(n), in 5.54 immediately gives 5.53 precisely as asserted.

Proposition 5.3 has the following remarkable corollary

Proposition 5.4
If α � m then for any n ≥ m we have the power basis expansion

Ξα(n)(y1, y2, . . . , yn) =
∑

|ρ|≤m

cα
ρ (n) pρ(y1, y2, . . . , yn) . 5.55

This given, define the coefficients dα
ρ (n) through the equation

∑
|ρ|≤m

cα
ρ (n) pρ

∣∣∣
pk→Rk(n−1)+

∑k

s=1 (k
s)(ns−(n−1)s)qs

=
∑

|ρ|≤m

dα
ρ (n) qρ 5.56

where q1, q2, . . . , qm are indeterminates and for ρ = 1k12k2 · · ·mkm we set

qρ = qk1
1 qk2

2 · · · qkm
m

then for all n ≥ m we have

dα
ρ (n) = dα

ρ (m) ( for all |ρ| ≤ m ). 5.57

Proof
It is easily seen from the definition in 5.18 that Ξα is a polynomial of degree

a1 + a2 + · · · + an −
(

n

2

)

thus it follows that, when α � m, the polynomial in the left hand side of 5.55 is of degree m. Thus
the power sum expansion of Ξα(n)(y1, y2, . . . , yn) must necessarily be of the form given in 5.55.

For convenience set for all k ≥ 1

qk(x1, x2, . . . , xn) =
n∑

i=1

k∑
s=0

(
k

s

)
(−i)k−a Ra(xi) 5.58
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Note that by combining 5.26, 5.27 and 5.28 we derive that,

pk

(
x1(n), x2(n), . . . , xn(n)

)
= Rk(n − 1) +

k∑
s=1

(
k

s

)
(ns − (n − 1)s)qs(x1, x2, . . . , xn) 5.59

Then it follows from the definition in 5.52 that

Rα[x1, x2, . . . , xn ;n ] =
∑

|ρ|≤m

cα
ρ (n) pρ(x1(n), x2(n), . . . , xn(n)) .

(by 5.56) =
∑

|ρ|≤m

dα
ρ (n) qρ(x1, x2, . . . , xn)

5.60

where for ρ = 1k12k2 · · ·mkm we set

qρ(x1, x2, . . . , xn) = qk1
1 (x1, x2, . . . , xn)qk2

2 (x1, x2, . . . , xn) · · · qkm
m (x1, x2, . . . , xn)

Note next that Proposition 5.3 gives

Rα[x1, x2, . . . , xn ;n ]
∣∣∣
xm+1=xm+2=···=xn=0

= Rα[x1, x2, . . . , xm ;m ]

(by 5.60 for m = n) =
∑

|ρ|≤m

dα
ρ (m) qρ(x1, x2, . . . , xm)

5.61

On the other hand 6.60 itself gives

Rα[x1, x2, . . . , xn ;n ]
∣∣∣
xm+1=xm+2=···=xn=0

=
∑

|ρ|≤m

dα
ρ (n) qρ(x1, x2, . . . , xn)

∣∣∣
xm+1=xm+2=···= xn=0

.

5.62
But we plainly see from 5.58 that for all k ≥ 0 we have

qk(x1, x2, . . . , xn)
∣∣∣
xm+1=xm+2=···= xn=0

= qk(x1, x2, . . . , xm) . 5.63

Combining 5.61, 5.62 and 5.63 gives∑
|ρ|≤m

dα
ρ (m) qρ(x1, x2, . . . , xm) =

∑
|ρ|≤m

dα
ρ (n) qρ(x1, x2, . . . , xm)

and this forces 5.57, completing the proof.

Theorem 5.9
Let γ be a partition of m all of whose parts are > 1 and set

Wγ(p1, p2, . . . , pm ; n) =
1
zγ

∑
α�m

χα
γ

∑
|ρ|≤m

dα
ρ (m) pρ

∣∣∣
p0→n

5.64

then for all λ � n we have

Wγ(p1, p2, . . . , pm ; n)
∣∣∣
pk→pk[ C(λ)]

= ωγ,1n−m 5.65
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In particular the conjugacy class Cγ,1n−m ∈ A(Sn) is given by the formula

Cγ,1n−m = Wγ(p1, p2, . . . , pm ; n)
∣∣∣
pk→pk[m2,m2,...,mn]

. 5.66

Proof

It follows from Proposition 5.4 that, for γ � m, the polynomial

Φγ,n = πn Ψγ,n

defined in 5.49, may also be written in the form

Φγ,n =
1
zγ

∑
α�m

χα
γ

∑
|ρ|≤m

dα
ρ (m) pρ

We should note however that the definition 5.56 yields that some powers of q0 will necessarily occur
in the expansion on the right hand side of 5.56. Since for any λ � n , we have p0[C(λ)] = n, we see
that in making the replacement qk→pk[C(λ)], the variable q0 will necessarily be replaced by n. Thus
5.65 follows by combining Theorems 5.8 and 5.9. Formula 5.66 can then be derived from 5.65 the
same way we derived 5.37 from 5.36.

The reader may find interesting to observe the remarkable simplicity of some of our poly-
nomials Wγ given in the tables which follow.

W2 = p1

W3 = 1/2 n (n − 1) + p2

W4 = − (−3 + 2n)p1 + p3

W22 = 1/2 n (n − 1) + 1/2p1
2 − 3/2p2

W5 = 1/6 n (n − 1) (5n − 19) + p4 − (−10 + 3n)p2 − 2p1
2

W32 = −1/2
(
16 − 13 n + n2

)
p1 − 4p3 + p2 p1

W6 = 2 (3n − 4) (n − 5)p1 + p5 − (−25 + 4n)p3 − 6p2 p1

W42 = −4/3 n (n − 1) (2n − 7) − 5p4 + (−35 + 12n)p2 + p3 p1 − (−11 + 2n)p1
2

W33 = 1/8 n (n − 1)
(
n2 − 13 n + 34

)
− 5/2p4 + 1/2p2

2 − 1/2 (n − 3) (n − 10)p2 + 3p1
2

W222 = 1/2
(
10 − 9 n + n2

)
p1 + 10/3p3 + 1/6p1

3 − 3/2p2 p1
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W7 = −1/24 n (n − 1)
(
49 n2 − 609 n + 1502

)
− 9/2p2

2 − 8p3p1 + 2 (−36 + 7n)p1
2

+ 1/2
(
504 + 21n2 − 241 n

)
p2 − 5/2 (2 n − 21)p4 + p6

W52 = 10 (−11 + 2n)p3 + 1/6
(
−174 n2 + 889 n − 864 + 5n3

)
p1

− (3 n − 40)p2p1 + p4p1 − 6p5 − 2p1
3

W43 = −1/2 (n − 5) (n − 36)p3 + 1/2
(
−240 − 53 n2 + 251 n + 2n3

)
p1

− (−27 + 2n)p2p1 − 6p5 + p3p2

W322 = −1/4 (n − 1)
(
n2 − 25 n + 72

)
n + 1/2p2p1

2 − 3/2p2
2 − 4p3p1

− 1/4
(
n2 − 25 n + 104

)
p1

2 + 5/4
(
n2 − 25 n + 60

)
p2 + 15p4

W8 = 1/3
(
48 n2 + 3283 − 918 n

)
p3 − 4/3

(
−264 n2 − 945 + 1058n + 16n3

)
p1

+ 2 (24 n − 197)p2p1 − 2 (−49 + 3n)p5 +
32
3

p1
3 − 12p3p2 + p7 − 10p4p1

W62 = 3n (n − 1)
(
3 n2 − 35 n + 82

)
− 6p2p1

2 + 27p2
2 − (4 n − 73)p3p1

+
(
6 n2 − 110 n + 379

)
p1

2 + p5p1 −
(
−564 n + 1099 + 54n2

)
p2 + 10 (−28 + 3n)p4 − 7p6

W53 = −1/24 n (n − 1)
(
10 n3 − 273 n2 + 2243 n − 4770

)
− 2p2p1

2 − 1/2 (6n − 65)p2
2 + p4p2 + 40p3p1

+
(
n2 − 61 n + 260

)
p1

2 + 7/3
(
−372 + n3 + 206 n − 27 n2

)
p2 − 1/2

(
455 + n2 − 61 n

)
p4 − 7p6

W44 = 2/3 n (n − 1)
(
6 n2 − 62 n + 139

)
+ 9p2

2 + 1/2p3
2 − (2 n − 23)p3p1

+ 1/2
(
4 n2 + 267 − 76 n

)
p1

2 − 3/2 (8n − 21) (2n − 13)p2 + 15 (−7 + n)p4 − 7/2p6

W422 = 1/2
(
560 − 121 n + n2

)
p3 − 1/6

(
−471 n2 − 1890 + 22 n3 + 2069 n

)
p1 + 1/2 (30n − 247)p2p1

+ 21p5 − 1/2 (−19 + 2n)p1
3 + 1/2p3p1

2 − 5p4p1 − 3/2p3p2

W332 =
(
2 n2 − 62 n + 245

)
p3 + 1/8

(
2240 − 2490 n + n4 + 607 n2 − 38 n3

)
p1 − 5/2p4p1

− 1/2
(
−25 n + n2 + 190

)
p2p1 + 1/2p1p2

2 + 21p5 + 3p1
3 − 4p3p2

W2222 = 1/24 n (n − 1)
(
3 n2 − 67 n + 182

)
+ 1/24p1

4 − 3/4p2p1
2 +

9
8

p2
2 + 10/3p3p1

+ 1/4
(
n2 − 17 n + 56

)
p1

2 − 1/4
(
140 − 63 n + 3n2

)
p2 −

35
4

p4

These notes would not be complete without the evaluation of the elementary symmetric
functions at the Murphy elements. This can be stated as follows

Theorem 5.10
For s = 1, 2, . . . , n we have

es(m2, m3, . . . , mn) =
∑

l(ρ)=n−s

Cρ 6.66

Proof
Remarkably, this identity is equivalent to a formula giving the principal specialization of

Schur functions. This is shown by a purely combinatorial argument by Diaconis and Greene in [1].
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We shall reverse the cart here and derive it from the Schur function identity. To be precise it is shown
in [4] (ex. 4 p. 45) that for λ � n and for all N ≥ n we have

Sλ(x1, . . . xN )
∣∣∣
x1=···=xN=1

=
1
hλ

∏
(i,j)∈λ

(
N + j − i) 6.67

On the other hand, Frobenius formula gives

Sλ(x1, . . . xN )
∣∣∣
x1=···=xN=1

=
∑
ρ�n

χλ
ρ

zρ
pρ(x1, . . . xN )

∣∣∣
x1=···=xN=1

=
∑
ρ�n

χλ
ρ

zρ
N l(ρ)

Clearly the validity of 6.67 and 6.68 for all N implies the polynomial equality

∑
ρ�n

χλ
ρ

zρ
t l(ρ) =

1
hλ

∏
(i,j)∈λ

(
t + j − i)

Thus it follows from Theorem 3.3 that

n∏
k=2

(t + mk) χλ =
( ∑

ρ�n

χλ
ρ

zρ
hλ t l(ρ)

)
χλ

and equating coefficients of tn−s we finally obtain

es(m2, m3, . . . , mn) χλ =
( ∑

l(ρ)=n−s

χλ
ρ

zρ
hλ

)
χλ

=
( ∑

l(ρ)=n−s

Cρ

)
χλ

and the validity of this for all λ � n proves 6.66.
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