1) Let $\theta_n: \mathcal{S}_n \to \mathcal{S}_n$ be the bijection given in class such that for all $\sigma \in S_n$, $inv(\sigma) = maj(\theta_n(\sigma))$.

Remmel

- (a) Find $\theta_9(482163597)$.
- (b) Find $\theta_9^{-1}(764913285)$.
- (2) Let $\phi: R(0^k, 1^{n-k}) \to R(0^k, 1^{n-k})$ be the map defined in Theorem 1.5 of the Mendes-Remmel book such that $maj(r) = inv(\phi(r))$ for all $r \in R(0^k, 1^{n-k})$.
- (a) Find $\phi(0110110)$.
- (b) Find $\phi^{-1}(1001011)$.
- (3) Let

$$[n]_{p,q} = p^{n-1} + p^{n-2}q + \dots + pq^{n-2} + q^{n-1} = \frac{p^n - q^n}{p - q},$$

$$[n]_{p,q}! = [n]_{p,q}[n - 1]_{p,q} \dots [1]_{p,q}, \text{ and}$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}![n - k]_{p,q}!}.$$

For any sequence of natural numbers $\sigma = \sigma_1 \dots \sigma_n$, let

$$inv(\sigma) = \sum_{1 \leq i < j \leq n} \chi(\sigma_i > \sigma_j) \text{ and } coinv(\sigma) = \sum_{1 \leq i < j \leq n} \chi(\sigma_i < \sigma_j).$$

- (a) Prove $[n]_{p,q}! = \sum_{\sigma \in S_n} q^{inv(\sigma)} p^{coinv(\sigma)}$.
- (b) Prove $\binom{n}{k}_{p,q} = \sum_{r \in \mathcal{R}(1^k0^{n-k})} q^{inv(r)} p^{coinv(r)}$ where $\mathcal{R}(1^k0^{n-k})$ is the set of all rearrangements of k 1's and n-k 0's.
- (4) Give combinatorial proofs of the following indentities.

(a)
$$\binom{n}{k}_{p,q} = p^k \binom{n-1}{k}_{p,q} + q^{n-k} \binom{n-1}{k-1}_{p,q}$$
.

(b)
$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = q^k {n-1 \brack k}_{p,q} + p^{n-k} {n-1 \brack k-1}_{p,q}.$$

(c)
$$\binom{x+n+1}{n} = \sum_{i=0}^{n} \binom{x+i}{i}$$
.

(d)
$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_q = \sum_{j=0}^k q^{k-j} \begin{bmatrix} n-j \\ k-j \end{bmatrix}_q$$
.

(5)

(a) By enumerating partitions with respect to the number of parts, the size, and the size of the largest part, show directly that

$$\begin{split} & \sum_{m \geq 1} \frac{q^m z w^m}{(1 - zq)(1 - zq^2) \cdots (1 - zq^m)} = \\ & \sum_{m \geq 1} \frac{q^{m^2} z^m w^m}{(1 - zq)(1 - zq^2) \cdots (1 - zq^m)(1 - wq)(1 - wq^2) \cdots (1 - wq^m)}. \end{split}$$

(b) By enumerating partitions with respect to the number of parts, the size, and the size of the largest part, show directly that

$$\sum_{m\geq 1} q^m z w^m (1+zq)(1-zq^2) \cdots (1+zq^{m-1}) = \sum_{m\geq 1} \frac{q^{\binom{m+1}{2}} z^m w^m}{(1-wq)(1-wq^2) \cdots (1-wq^m)}.$$