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Introduction 

T h e  fundamental questions of theoretical computer science ask what  are the most 
efficient methods t o  compute a given function. A variety of computational models are used 
including the Chomsky hierarchy, time and/or space bounded Turing machines, alternating 
Turing machines, array processors and many others. T h e  functions o r  decision problems 
considered by computer scientists are almost always combinatorial or  numerical in nature. 

Mathematical logic has also long studied problems in computability theory. However 
the aims and scope of mathematical logic and computational complexity have been quite 
different. Classically, mathematical logic has  considered general recursive functions as its 
principal model for computability, whereas computer science likes t o  deal with functions which 
are actually computable in the  real world. Mathematical logic has  rarely considered classes of 
functions simpler than the primitive recursive functions, while computer science seldom treats 
problems which are not  elementary recursive in the sense of Kalmar. 

However, the  problems of theoretical computer science can often be stated in terms 
familiar t o  mathematical logic. For concreteness, suppose we are given a function f .  Frequently 
we can, without  loss of generality, reduce f t o  a decision problem. By suitably encoding 
instances of the  decision problem we can reduce the problem of computing j t o  the  problem of 
recognizing a formal language A!. Now we can show t h a t  j is computable (relative t o  a given 
model of computation) if and only if the  language Af is definable in a certain formal way (which 
obviously depends on  the  model of computation). T h u s  we have restated a question about  the 
computability of j as a question about the  definability of A!. 

Questions about  the  most efficient o r  simplest means of defining an object have long 
been considered by mathematical logic. For instance, quantifier elimination has been 
investigated for many formal systems. T h u s  the  problem of how the  formal language A! can be 
defined may legitimately be considered par t  of mathematical logic. 

This  dissertation uses methods from mathematical logic t o  examine issues related t o  
computational complexity. T h e  kind of question dealt with is as follows: Given a formal theory 
R ,  what  functions can R define? Or ,  what  function symbols may be introduced in R ?  

We  say t h a t  R can define a function j when R proves (Vz)(3!y)A(z,y) and  j is defined 
t o  satisfy A(z,f(z)) for all z. In other  words, a proof of (Vz)(3!~)A(z,y)  provides an implicit 
definition of t he  function y=f(z). 

A constructive proof of (Vz)(3y)A(z1y) by definition contains an  algorithm for 
computing f .  T h u s  a constructive proof gives us an effective way (at  least in principle) t o  
compute j; t h a t  is to  say, a constructive proof specifies a recursive algorithm t o  compute y from 
Z. 
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However, a recursive function may be computable only in a theoretical sense: t he  time 
required t o  compute it may be far larger than the  lifespan of t he  universe. We  are more 

interested in jecrsibly computable functions, which can be calculated by today's (or tomorrow's) 
computers. I t  is generally accepted t h a t  the  correct formal definition for a feasible function is 
tha t  the  function be computable in polynomial time; i.e., t h a t  the  runtime of some Tur ing  
machine computing the  function be bounded by a polynomial in t he  length of t he  input .  

Accordingly, we are interested in the  question of when the  existence of a proof of 
(Vz)(ZIy)A(z,y) implies the existence of a feasible algorithm which, given z, computes y. A 
natural  condition to  pu t  on a proof is t h a t  it be a valid proof of a certain formal theory (indeed 
this is unavoidable). W e  can also pu t  conditions on  the formula A .  T h e  main results of this 
dissertation show t h a t  certain restrictions of these types on a proof of (Vz)(3y)A (z,y)  imply the 
existence of a function j such t h a t  (Vz)A(z,j(z)) and such t h a t  j has  a certain computational 
complexity. In particular, we may be able t o  deduce t h a t  j is polynomial time computable, j is 
a t  a certain level of t he  polynomial hierarchy, j is polynomial space computable, or  j is 
exponential time computable. 

W e  shall discuss exclusively a family of formal theories called Bounded Arithmetic, 
which are weak fragments of Peano arithmetic. T h e  language of Bounded Arithmetic includes 
the following function and predicate symbols: 

0 zero constant symbol 

S successor 

+ addition 

multiplication 

lf 4 "shift right" function, i.e., divide by two and round down 

1x1 = rlogz(z+l)l, the length of the  binary representation of x 

Z#Y = 21zl'Iul, the  "smash" function 

I less than or  equal t o  

(The notations l a J  and [a1 denote the  greatest integer < a  and the  least integer 2 a . )  

In Bounded Arithmetic, quantifiers of the form (Vz) or  (32) are called unbounded 
quantifiers. W e  also use bounded quantifiers which are of the  form ( V z s t )  or  (3z1t) where t is 
any term not  involving z. T h e  meanings of (Vz5 t )A  and ( 3 z i t ) A  are (Vz)(x<t>A)  and 
(3z) (z<thA) ,  respectively. A formula is bounded if and  only if i t  contains no  unbounded 
quantifiers. T h e  principal difference between Bounded Arithmetic and  Peano arithmetic is tha t  
in theories of Bounded Arithmetic the  induction axioms are restricted t o  bounded formulae. 

A special kind of bounded quantifiers are the  sharply bounded quantifiers, which are 
those of the  form ( V z l l t l )  or  (3z<( t J ) ,  where t is a term not  involving z. W e  classify the 
bounded formulae in a hierarchy zob,  c/, n / ,  c:, l l i ,  . . . by counting alternations of 
bounded quantifiers, ignoring the  sharply bounded quantifiers. Th i s  is analogous t o  the  
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definition of the arithmetic hierarchy since formulae are classified in the arithmetic hierarchy by 
counting alternations of unbounded quantifiers, ignoring bounded quantifiers. Hence, in 
Bounded Arithmetic, the roles of bounded and sharply bounded quantifiers are analogous t o  the 
roles of unbounded and bounded quantifiers, respectively, in Peano arithmetic. 

T h e  most important axioms for Bounded Arithmetic are the  induction axioms. The  

induction axioms are restricted t o  certain subsets of the bounded formulae. We are most 
interested in a modified induction axiom called C~~-PIND. T h e  xi)-PIND axioms are the 
formulae 

where A is a c?-formula. We define in Chapter 2 a hierarchy of theories s2', s2', s ~ ~ ,  . . . SO 

that  S; is a theory of Bounded Arithmetic axiomatized by a few simple open axioms and by 
C t-PIND. 

If R is a theory of Bounded Arithmetic we say tha t  the function f is c:-definable in R 
iff there is a xi)-formula A(z,y) such tha t  

(a) For all z, A(zf(z))  is true. 
(b) R t (vz)(3Y)A(z,Y) 
(c) R t ( ~ ~ ) ( ~ Y ) ( ~ ~ ) ( A ( z , Y ) A A  (z,z)> y=t.) 

We shall be mostly interested in functions which are xi)-definable in 5';. 

T h e  Meyer-Stockmeyer polynomial hierarchy is a hierarchy of predicates on the 
nonnegative integers which can be computed in polynomial time by a generalized version of a 
Turing machine. T h e  smallest class of the polynomial hierarchy is P ,  the se t  of predicates 
computable in polynomial time by some Turing machine. One s tep  up  is the class CIP, or  N P ,  
the  set of predicates computable by a non-deterministic polynomial time Turing machine. I t  is 
an important open question whether P=NP. T h e  classes in the polynomial hierarchy are P, 
z p ,  n p ,  X I ,  n1, - . . 

We can extend the polynomial hierarchy to  a hierarchy of functions by defining 
= P T C ( C t ) ,  the Polynomial-Time Closure of C,J', t o  be the set of functions which can be 

computed by a polynomial time Turing machine (i.e. a transducer) with an oracle for a 

predicate in C t .  

I t  is well known (and we prove i t  again in Chapter  1) t ha t  the predicates in C P  are 
precisely the predicates which can be expressed by a xi)-formula. Th i s  fact provides a link 
between computational complexity and the quantifier structure of formulae. 

The  principal theorem of this dissertation states tha t  any function which is 
c:-definable in ~2 is a Ot-function, and conversely tha t  every Ut-function is zib-definable in 
s;. (See Theorem 5.6 for the strongest version of this theorem.) This  provides a characterization 
of the  functions which are xi)-definable in S; in terms of computational complexity. 
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T h e  hardest part of this theorem is showing tha t  every c:-definable function is in 0:. 
An extremely brief outline of the proof is as  follows: Let A be a C:-formula and suppose S; 
proves (Vz)(3y)A(z1y). By Gentzen's cut  elimination theorem there is a free cu t  free proof of 
( Y ~ ) ( 3 ~ ) A ( z , y ) .  By examining the allowable inferences of natural deduction we discover tha t  
this free cu t  free proof contains an explicit 0:-algorithm for computing y from z .  This  method 
of proof is reminiscent of Kreisel [18] and Goad [14], in tha t  one of the  important ideas is t ha t  a 
free cut  free proof can be "unwound" to  yield an algorithm. T h e  proof is carried out  in detail in 
Chapter 5. 

A corollary to  the  main theorem is tha t  sz]. can Cf-define precisely the polynomial 
time functions and SZ2 can Ci-define precisely the functions in PTC(NP) .  

T h e  import of this theorem is twofold. On one hand, i t  provides a characterization of 
the Or-functions in terms of their definability by the formal theory S; of arithmetic. On the 
other hand, i t  s tates tha t  the  proof-theoretic strength of the formal theory S; is closely linked 
t o  the computational complexity of 0:-functions. 

Another way t o  s ta te  the main theorem is as follows: if AEC: and BEII; and if 
s ? ~ A *  B, then the predicate defined by A and B is in PTC(C{,). In particular, any predicate 
which S; can prove is equivalent t o  both a Cp- and a IIp-formula is in P; in other words, 
since Cp- and II:-formulae represent NP and co-NP predicates, the  class of predicates which 
Sz]. proves are in N P n c o - N P  is the class P of polynomial time predicates. (It  is an open 
question whether N P n c o - N P  is equal t o  P.) 

In Chapters  9 and 10 we discuss second-order theories of Bounded Arithmetic. We 
define two theories U; and V; of second-order Bounded Arithmetic which have the property 
tha t  the functions c:'*-definable in Uz]. (respectively, v;) are precisely the functions which are 
computable by some polynomial space Turing machine (respectively, by some exponential time 
Turing machine). This  provides a characterization of the PSPACE and EXPTIME functions in 
terms of definability in second-order Bounded Arithmetic. 

Chapter  7 discusses improved versions of Giidel incompleteness theorems for Bounded 
Arithmetic. I t  is shown tha t  the theory ~2 is strong enough t o  carry out  the arithmetization of 
metamathematics. T h u s  there is a formula FCFCO~(S;) which asserts t ha t  there is no  free cut  
free ~ i - ~ r o o f  of a contradiction. Also, there is a formula BDCO~(S;) which asserts tha t  there 
is no ~ i - ~ r o o f  P of a contradiction such tha t  every formula in P is bounded. W e  show that ,  
for i> l ,  S; can not prove either FCFCO~(S;) o r  BDCO~(S,'). 

One of our most important open questions is whether the hierarchy of theories s;, s;, 
s ~ ~ ,  . . . is proper. Of course this is analogous t o  the open problem of whether the polynomial 
hierarchy is proper. In Chapter 7 we make an unsuccessful a t tempt  t o  prove t h a t  this hierarchy 
of theories is proper. 

Chapter  8 builds upon the work of Chapter  7; the main theorem of Chapter 8 is a 
restatement of the N P = ? c o - N P  problem in proof-theoretic terms. I t  turns o u t  tha t  NP is 
equal t o  co-NP iff there is a bounded theory R of arithmetic satisfying a certain "anti- 
reflection" property. See Theorem 8.6 for the precise statement. 



Introduction 5 

T h e  prerequisites for reading this dissertation are some knowledge of computational 
complexity and of first order logic. Garey & Johnson [12] is a good introduction t o  
computational complexity; in addition, the polynomial hierarchy is defined in detail in Chapter 
1 below. Takeut i  [28] is the best source for the  proof theory t h a t  we use; in particular, our 
t reatment  of the  cut  elimination theorem is taken directly from Takeuti .  For the  reader who 
has studied first order logic but  not proof theory, Chapter  4 has an introduction t o  proof theory 
and the cu t  elimination theorem. 



Chapter 1 

The Polynomial Hierarchy 

This first chapter defines the polynomial hierarchy and explains the link between the 
computer science definition and the  mathematical logic definition. W e  begin by defining the 
polynomial hierarchy by using limited iteration and we prove tha t  this definition is equivalent t o  
the usual definition in terms of Turing machines. We then discuss how the polynomial hierar- 
chy can be defined without using limited iteration. The  main result of interest t o  us  is Theorem 
8 which states tha t  the polynomial hierarchy corresponds t o  a hierarchy of bounded formulae of 
Bounded Arithmetic. 

T h e  results of this chapter are equivalent t o  the original work of Cobham [5], Stock- 
meyer [26] and Wrathall (331, but  they are stated and proved in a different form. Some of the 
results are due originally t o  Ken t-Hodgson [17]. 

1.1. Limited Iteration. 

An important class of functions is the class of functions which can be computed in 
polynomial time. By polynomial time, we mean tha t  the number of s teps in some program 
which computes the function is bounded by a polynomial of the length of the  input. T h e  con- 
cept of polynomial time is invariant for Turing machines and modern day sequential program- 
ming languages, as well as for other models of computation such as Random Access Machines 
(RAM'S). For  example, if a RAM program runs in time p(n)  on inputs  of length n ,  a multitape 
Turing machine can simulate the action of the  RAM program in time ~ ( ( p ( n ) ) ~ ) ,  (see [I]). 
Hence if p ( n )  is bounded by a polynomial, so  is the running time of the Turing machine. 

Instead of defining polynomial time computations directly in terms of Turing 
machines, we will define an operation called limited iteration for obtaining new functions. By 
start ing with a base set of functions and taking its closure under composition and limited itera- 
tion, we can construct all polynomial time computable functions. 

W e  adopt  the  convention tha t  all functions have domain N~ and codomain N for the 
rest of this dissertation where N denotes the  natural  numbers. Another approach which is 
often used is t ha t  functions have domain and range the set of strings of symbols from a finite 
alphabet. These two approaches are essentially equivalent; indeed, an integer can be considered 
as a string of zeros and ones, namely a s  its binary representation. However we find it advanta- 
geous t o  use integers since it allows us t o  relate the polynomial hierarchy t o  formal theories of 
arithmetic (in later chapters). 
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Definition: B is the following set of functions from N t o  N 

(I )  0,  (the constant zero function) 

(2) x w  S x ,  (the successor function) 

(3) x w  Lf XI ,  (the shift right function) 

(4) XB 2.2, (the shift left function) 

B will be the  base set  of functions from which we will obtain the polynomial time func- 
tions. T h e  first operation we can use t o  obtain new functions is composition. Composition is 
best defined by a few examples: 

Ezamples: 
(1) Logical operations. We will use the conventions t h a t  if x > 0  then x represents True and if 

x=0 then x represents False. 

Negation: ( l x )  = x<O = Choice(z,O,l) 
And: (XA y) = Choice(z,y,O) 
Or: (xvy) = Choice(x,l,y) 
Xor: (x @ y) = ( - X A Y ) V ( X A ~ Y )  

I t  is important t o  note tha t  for the time being 7, A, v and @ are numerical opera- 
tions. Later we will use 7, A and v extensively as logical operators. 

(2) Equality and Inequality: 

(3) Arithmetic modulo 2: 

(x%2) is equal t o  zero if x is even and one if x is odd. 

We also need t o  define functions for handling finite sequences of numbers. We will 
code our sequences by values called Godel numbers. T h e  Godel number for the sequence 
alla2, . . . ,ak is constructed as  follows. First write the a i l s  in binary notation so  we have a 
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string of O's, 1's and commas. Then write the string in reverse order and replace each 0 by 
"lo", each 1 by "11" and each comma by "00". The  resulting string of zeros and ones is the 
binary representation of the Gadel number <al ,  . . . , a k >  For example the Godel number of 
3,4,5 is (11101100101011001111)2 or 969,423. The  empty sequence has Godel number < >=O. 

Definition: B+ is the set of functions which contains all the functions in B plus the following 
functions: 

T h e  value of P may be defined arbitrarily when the second argument is not a valid 
Godel number for a sequence or if i > n .  

Again, the values of the functions Truncate and * have not been specified for argu- 
ments which are not Gadel numbers of sequences; it makes no difference how they are defined 
for arguments other than those above. 

Definition: We define the unary function 1x1 to  be rlog2(x+l)l, or the length of the binary 
representation of x. Note that  )01=0. 

If ?i? is a vector of numbers xl, , . . ,xn then 131 denotes the vector lxll, . . . ,Ixnl. 

Definition: p is a suitable polynomial iff p has nonnegative integer coefficients. 

Definition: Let k20 and let g : ~ k + ~  and ~ : N ~ + ~ + N  be arbitrary functions and let p and g 
be suitable polynomials. We say that  f:Nk-+N is defined by limited iteration from g and h 
with time bound p and space bound q iff the following holds: 

Let r:Nk+'-+N be defined a s  

Then we must have 

and j(2) is defined by 



Limited Iteration 

Our  definition for limited iteration is very similar t o  what  Grzegorczyk [15] and Cob- 
ham [5] call "limited recursion". 

Definition: A function ~ : N ~ + N  has polynomial growth rate  iff there is a suitable polynomial p 
such tha t  for all 3 ,  we have If(Z'))<p(lZ'I). Let C be a se t  of functions of polynomial growth 
rate. T h e  Polynomial-time closure of C ,  P T C ( C ) ,  is the  smallest class of functions which (1) 
contains C and B and (2) is closed under composition and definition by limited iteration. 

Theorem 1: P TC(0) T )  B+ . 

Proof.- This  is a technical result and the  proof is in the  appendix t o  this  chapter.  fl 

As an illustration of how limited recursion is used, we show t h a t  addition is in PTC(0) .  
We first define fl(x,y) by limited recursion from gl  and h l  with bounds p l  and ql, where 

and where 

Note t h a t  in the  definition of gl,  the  formula l*O*x*y*O means l*(O*(x*(y*O))) which is 
<l,O,x,y>. Similar considerations apply t o  the definition of h l  and for the rest of Chapter  1 
we follow the convention t h a t  * associates from right t o  left. 

Intuitively, fl(x, y)= < FlippedSum(x, y),O,O,0>, where FlippedSum(x, y) is a number 
whose binary expansion contains the  binary expansion of x+y in reverse order immediately fol- 
lowing the  high order bit. For  example, f1(4,8)=<(10011000)210,0,0>. Since g l  and  h l  are 
defined by composition from functions in B+, Theorem 1 says t h a t  gl,  h l€PTC(0) .  Hence 
f l€PTC(0) .  

Secondly, we define f2(x) by limited iteration from g2 and h, with bounds p 2  and q,, 
where 
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We now define Flip(x) using composition by 

and finally we can define addition as 

1.2. Polynomial-time Computations. 

In this section, we show t h a t  the operation of limited iteration can be used t o  define 
the concept of polynomial time computation. 

Theorem 2: Let C be a set of functions with polynomial growth rate. Then  f € P T C ( C )  iff there 
is a finite set  {hl, . . . , h k ) s C  and a Turing machine M, with oracles for hl, . . . ,hk  so  tha t  
M, computes f in polynomial time. 

Note t h a t  we are allowing M, t o  use oracles for functions hi.  In order t o  be defined 
properly i t  is required tha t  when the oracle is consulted, the elapsed time reflect the length of 
the input t o  and/or the  output  from the oracle. Garey and Johnson [12] define this concept as 
Oracle Turing machines with a correction t o  the  definition at the end of their book ( the first 
edition). Another way t o  define function oracles is t o  count an oracle invocation as a simple 
time unit and t o  put  an  a priori restriction on the amount of space used by the Turing machine. 
Thus  if we limit both the  time and the  space we get a correct definition of a Turing machine 
which uses function oracles. 

Definition: P is the set  of functions computable by polynomial time Tur ing  machines. 

Corollary 9: PTC(0)  = P. 

Prooj: of Theorem 2 .  

+ First we show tha t  f € P T C ( C )  implies tha t  the desired M, exists. T h e  proof is by induc- 
tion on the  complexity of the definition of f .  T o  s tar t  the proof by induction we note tha t  i f f  
is in B u C  the  result is obvious. If f is defined by composition from functions in P T C ( C )  the 
induction step is easy. 
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Suppose j is defined by limited iteration from g and h with time bound p and space 
bound q. T h e  induction hypothesis is tha t  there are Turing machines M, and Mh which com- 
pute g and h and have runtimes bounded by suitable polynomials p,  and p h  respectively. Let 
Mf be the Turing machine which uses M, and Mh as "subprograms" t o  compute j in a straight- 
forward manner. Then the  runtime of Mf is approximately bounded by 

This  bound is approximate since it does not  provide for the overhead of Mf invoking M, and 
Mh; however, clearly MI is polynomial time. 

+ Let M be a polynomial-time Turing machine with oracles hl, . . . , h k € C  and runtime 
bounded by the polynomial p. Let q(n) be a polynomial bounding the total amount of tape 
space used by M on inputs of length n .  We want  t o  show tha t  the function M computes is in 
PTC(C) .  Let the  states of M be go, . . . , q ~ + )  where qo is the initial s t a t e  and q ~ + i  is the oracle 
s ta te  for hi. We assume without loss of generality t h a t  M has two tapes with alphabet 
bo, . . . , b, where J22 and bo is the  blank symbol. An ID (instantaneous description) of M is 
given by the following items: 

(1) T h e  contents of the  work tape (current head position is a t  btJ: 

(2) T h e  contents of the oracle tape (current head position is a t  bUo): 

(3) T h e  current s t a t e  q,. 

W e  assume tha t  the input  and output  of M are coded as a binary string with bl coding 
0 and b2 coding 1. M is presumed t o  s t a r t  with the worktape positioned on the leftmost bit of 
the input and t o  halt on the  leftmost bit of the output .  T h e  inputs  and outputs  for the oracles 
are coded similarly. T h e  convention for invoking an oracle is tha t  upon entering s ta te  q ~ + ~ ,  the 
oracle for h i  is invoked with input value coded by the  string bUo . . - ban; the value output  by 

the oracle is coded as a binary string and written on the  oracle tape as the string bao - . b,;. 
After invoking an oracle the next s ta te  M enters is qN. 

W e  will code an ID of M by ( the Giidel number of) the sequence 

We define j by the  following procedure: we first define functions Init,  N e z t ,  and Decode, then 
define j3 by limited iteration from Init and Nez t ,  and finally define j ( z )  = Decode(/3(3,j3(x))). 
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Init is the function computing the initial s ta te  of M with input x. We first define jl(x) 
by limited iteration from gl  and h l  with bound p l  and ql, where 

Then define Encode(x)=P(l,jl(x)) and Init(x)=O*O*Encode(x)*0*0*0. 

We define Decode t o  be the  inverse of Encode as follows: define j2 by limited iteration 
from g2 and h2 with bounds p2 and q2, where 

Then define Decode(x)=P(2 f 2(x)). 

Next is the function which maps the Godel number of an ID of M t o  the G d e l  
number of the next ID of M. We sketch how Next is defined using composition only (no 
further use of limited iteration). First note that  to, 80 and u are given by 

T h e  oracle queries are given by (for i=1,2, . . . ,k): 

I t  should now be clear tha t  Next can be defined by the use of many Choice functions and sim- 
ple composition from the above functions and the functions in B'. 

W e  finally define j3 by limited iteration from Init  and Next with time bound p and 
space bound q3. Recall p is the bound on the runtime of M. q3 is the  polynomial 
q3(n) = 8.(1N+k+J+2l).(q(n)+l). So q3 bounds the length of the Godel numbers of ID'S of M. 
Now define 
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f ( 4  = Decode(P(3,f3(x))), 

and j is the function M computes and by construction j is in P T C ( C ) .  

Q.E.D. 

1.3. Bounded Quantifiers. 

Quantification is a construction which forms an n-ary predicate from an (n+l)-ary 
predicate. For  this chapter only we adopt the convention tha t  a predicate is a function with 
range {0,1) where 0 denotes False and 1 denotes True. 

Definition: Let C be a set of functions. Then PRED(C)  is the set  of predicates in C,  i.e., the 
functions in C with range {0,1). 

Definition: Let Q and R be functions. Then ('dy<Q(Z'))R(Z',y) is the predicate (i.e., function of 
2 )  which has value 1 iff for all y< Q(Z') the value of R(2,y)  is nonzero. Similarly, 
(3y<Q(2))R(Z',y) is the  predicate which has value 1 iff for some y<Q(Z) the value of R(Z',y) 
is nonzero. (Note t h a t  this definition applies even if R is not a predicate.) 

We will be interested only in bounded quantification, t ha t  is t o  say, in quantifiers of 
the form ( V x s  t)  o r  ( 3 x 5  t). Indeed, if we used unbounded quantification the construction below 
would just give the arithmetic hierarchy since the class A,j' defined below includes a version of 
the Kleene T predicate. 

W e  define two kinds of bounded quantification which are distinguished by the size of 
the bound. Polynomially Bounded Quantification allows bounds of the form 2p(lt1), where p is a 
polynomial; whereas Logarithmically Bounded Quantification allows only bounds of the form 

~ ( l t l ) .  

Definition: Let C be a set of functions closed under composition. Then P B 3 ( C )  is the set of 
predicates Q such tha t  

(1) Q:N'+N for some i e N ;  
(2) There  is an  R€PRED(C)  and a suitable polynomial p such t h a t  for all 2, 

PBV is defined similarly with a universal quantifier replacing the existential quantifier in (2). 
Note tha t  PBV(C)  and P B 3 ( C )  always contain PRED(C) .  
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Definition: Let C be a se t  of functions closed under composition. Then LB3(C)  is the  se t  of 
predicates Q such t h a t  

( 1 )  Q:N'+N for some i € N ;  
(2 )  There  is an R€PRED(C) and a suitable polynomial p such t h a t  for all 2, 

LBV is defined similarly with a universal quantifier replacing the  existential quantifier in (2) .  
Note t h a t  LBV(C) and LB3(C)  always contain PRED(C). 

In later chapters we will define bounded quantification in a different setting. Loga- 
rithmically bounded quantification corresponds t o  what  we later call sharply bounded 
quantification. Our  definition of logarithmically bounded quantification is closely related t o  
what  Bennet (3) called "part of" quantification and polynomially bounded quantification 
corresponds t o  wha t  he called "finite" quantification. 

1.4. The Polynomial Hierarchy. 

We are now in a position t o  define the  polynomial hierarchy. We  will differ from the 
usual definitions in t h a t  we define a hierarchy of functions as well as a hierarchy of predicates. 

Definition: (by induction on  k)  

(1) 08 is the  smallest set  of functions containing B and closed under composition, LB3 and 
LBV. 

T h e  sets of predicates A?, Ef and llf are well known t o  computer scientists and are 
called P ,  NP and c o - N P  respectively. Figure 1 shows a diagram of the  hierarchy of predicates 
A;, Ef' and llf'. 
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The  Polynomial Hierarchy 
Figure 1 

Proposition 4: = PTC(IIf )  for all k>O.  

Proof: This  is easy and is left as an exercise for the reader. 

There are many open problems concerning the polynomial hierarchy. We say the 
hierarchy collapses if there is a k such that  Cf=Cf+l. Otherwise we say that  the hierarchy is 
proper. Things which we do not know include: 

(1) Does P = N P ?  

(2) Does NP = co- N P ?  

(3) Does the polynomial hierarchy collapse? 

(4) Does Af  = c f n n f ?  In particular, does P = N P n c o - N P ?  

Most computer scientists are of the opinion that  all these questions have negative answers, espe- 
cially the first two. However, over a decade of determined efforts has failed to  resolve these 
questions. 



T h e  Polynomial Hierarchy 

One question we can answer is whether A{ = A)': 

Proposition 5: A 8  # A f . 

Proofi Let Parity :N+ N be the  function defined as 

Numones(z) = # of ones in the binary representation of z 

Parity (z)  = Numones(z)%2. 

Clearly, Parity E A ~ = P .  S o  i t  suffices t o  show t h a t  Parity $!A{. 
I t  is easy t o  show tha t  if f€A{ then j has polynomial size, unbounded fan-in circuits of 

constant depth.  This  is proved by induction on the complexity of the  definition o f f :  the  only 
two cases are composition and logarithmically bounded quantification and both are straightfor- 
ward. Bu t  Furs t ,  Saxe and Sipser [ll] have shown tha t  Parity does not  have constant depth,  
polynomial size circuits. 

Proposition 5 is somewhat unsatisfactory as i t  depends on the  fact  t h a t  the  initial 
functions in B all have constant depth  polynomial size circuits. Indeed if multiplication had 
been included in B it would n o  longer be true t h a t  all functions in B have constant depth poly- 
nomial size circuits. I t  would be desirable t o  establish a more general version of Proposition 5 
(if, in fact,  a more general version is true.) 

1.5. Eliminating PTC. 

In defining the  polynomial hierarchy we alternately applied PTC (polynomial time clo- 
sure) and PB3 (polynomially bounded quantification). I t  tu rns  out  t h a t  the  use of PTC is 
unnecessary and t h a t  t he  classes Cf' and llf' can be defined without using PTC and hence 
without using either Tur ing  machines o r  limited iteration. 

Lemma 6: 
(a) For all k>O, A; is closed under logarithmically bounded quantification (LBV and LB3) ,  

conjunction, disjunction and negation. 
(b) For  all k>O, llf' and Cf' are closed under L B 3 ,  LBV, conjunction and disjunction. 

Prooj: 

(a) Th i s  is immediate from the  definition of Af' except for showing closure under LBV 
and L B 3  when k > l .  Suppose t h a t  REAP and Q is defined by 

We  can define Q(3) by limited iteration from g and h with bounds p and q, where 
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Since g and h are in A{, so  is Q .  This  shows A{ is closed under LBV and a similar argument 
shows it is closed under L B 3 .  

(b) Since Cob = IId = A:, (b) is just a special case of (a) when k=O. So  suppose k 2 l .  
T h e  closure of II{ and C{ under conjunction and disjunction follows easily from (a). T o  show 
tha t  C{ is closed under LBV it suffices t o  show tha t  if REA{-~ and if p and q are suitable poly- 
nomials, then 

is in C{. But  S(3) is equivalent t o  

where r(Z) = 2.(q(Zlp(Z))+2).(p(Z)+l). T h u s  S(3) is in C i .  A similar argument shows I I i  is 
closed under L B 3 .  

Q.E.D. 

T h e  next theorem shows how P T C  can be eliminated from the  definition of the polyno- 
mial hierarchy. 

Theorem 7: (Meyer-Stockmeyer-Wrathall). 
(a) For all k > l ,  = PB3(II{) and = PBV(C{). 

(b) Let B* be the smallest set containing Bf which is closed under LBV, L B 3 ,  and composi- 

tion. Then c/=PB~(B*) and II/=PBV(B*). 

Proof: In order t o  prove (a) and (b) simultaneously, we define Dk+l to  be Hi+, and Ek+, t o  be 

C{+l, and Do  = Eo t o  be B*.  T h e  theorem asserts t ha t  = PB3(Dk)  and 11{+1 = PBV(Ek) 
for all k 2 0 .  I t  suffices t o  show tha t  = PB3(Dk)  since II/+l = PBV(Ek)  is an  immediate 
consequence of this. 

Let k be a fixed nonnegative integer. Directly from the definitions we have 
X{+12PB3(Dk). We need t o  show the reverse inclusion also holds. Let Co be D k .  Define Ci* to  
be the  set of functions definable by a single use of limited iteration from functions in Ci. Set 
Ci+l equal t o  the closure of Ci* under composition. 

We will show tha t  for all i ,  PB3(Dk)Z>PB3(Ci). Since UCi=Oi+l, this suffices t o  
prove the theorem. W e  will show by induction on i t ha t  for any Q€Ci ,  
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is in PB3(Dk) .  (This  may seem like an unusual definition for S b u t  it makes the  induction 
argument work well.) This  is easily seen t o  be true when i=O since Co is Dk  and by Lemma 6(b) 
D k  is closed under PBV. So assume i>O. Without  loss of generality we may assume Q has the 
form 

where G is in Dk and each Fi is in c~*_~.  (If this is not the case we can find a formula equivalent 
t o  Q in this form. For example, Q(3)=G(F1(F2(3))) is equivalent t o  the  formula 
( ~ V ~ ~ ~ ( ~ ) ) ( V = F ~ ( ~ ~ ~ ) A G ( F ~ ( V ) ) ) ,  where q is a suitable polynomial which bounds the  function 
F2. T h e  extra existential quantifier introduced by this may be eliminated from S by first inter- 
changing i t  with the logarithmically bounded quantifier in S by using the  trick of the proof of 
Lemma 6(b), and then combining i t  with the  original existential quantifier of S by using the 
pairing function. Note t h a t  the /3 function is always in Dk and hence i t  is permissible for G t o  
involve the  pairing function.) 

Let each Fj be defined by limited iteration from G, and Hi with time bound pi and 
space bound qj, where G, and Hi are in Ci-l. 

W e  informally define ValidComp (w,3) t o  be True iff 

(1) w is a sequence <wl, . . . ,wn>  and 
(2) Each wj codes a sequence <w,,~,  . . . ,wj  n . >  which codes the  computation of Fj(3). 

' I  

A precise definition is: 

k 

ValidComp ( ~ ~ 3 )  = P(o,w)=nh A ( W ~ , ~ = G ~ ( ~ ) ) A  
] =l 

where we used the  abbreviations w j  for P(j,w) and wj,, for p(m,@(j,w)). 

Now we can easily find a suitable polynomial r large enough s o  t h a t  Q(3) is equivalent 
t o  

T h e  only quantifiers in ValidComp are logarithmically bounded quantifiers, so  we may rewrite 
this last equation as 
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where R E C ~ - ~ .  So S(d) is equivalent t o  

Now we can use the method of the proof of Lemma 6(b) t o  interchange the  order of the second 
and third quantifiers. W e  then can use the  P function as a pairing function to  contract adjacent 
like quantifiers (since the P function is in Dk).  Hence S(3) is equivalent t o  

where s and t are suitable polynomials and R * E C ~ - ~ .  By the  induction hypothesis, S(d) is in 
PB3(Dk) ,  which completes the induction s tep  and the proof. 

Q.E.D. 

T h e  point of Theorem 7 is t h a t  we now can characterize the  classes Cb and Ilb of the 
polynomial hierarchy in a purely syntactic way. We s t a r t  with the initial set B+ of functions 

and take its closure under composition and logarithmically bounded quantification t o  obtain B*. 
We apply polynomially bounded quantification repeatedly t o  obtain Cb and IIb. (A somewhat 
stronger result is obtained by Kent-Hodgson [17] .) 

Hence the question of whether the polynomial hierarchy collapses is the question of 
whether there is a "quantifier elimination" theorem for polynomially bounded quantifiers. 

1.6. Bounded Arithmetic Formulae. 

An arithmetic jormula is a formula of first order logic which may contain the logical 
symbols A ,  V, 1 ,  3, V, >, and = and the non-logical symbols 0, S, +, ., #, 1x1, LIxJ, and 2 .  

T h e  non-logical symbols have the following meanings: 

0 zero constant symbol 

S successor 

+ addition 

multiplication 

Lf 4 "shift right1' function 

1.1 = r log2(x+l)~,  the length of the binary representation of x 
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Z#Y = 21~l'l~I, the  "smash" function 

< - less than or  equal t o  

A bounded quantifier is one of the form ( ' d x s t )  or  ( 3 x s t )  where t can be any term. A sharply 
bounded quantifier is one of the  form ( 'dxsl t l )  or  ( 3 x i l t l ) .  Note t h a t  if p is any suitable poly- 
nomial then the #, ., and Ltxj  functions can be used t o  form a term equal t o  2~(p I ) .  T h u s  

bounded and sharply bounded quantifiers correspond precisely t o  the  polynomially and loga- 
rithmically bounded quantifiers, respectively. 

An unbounded quantifier is a regular quantifier of the form (Yx) or (32). An arithmetic 
formula is bounded iff it contains n o  unbounded quantifiers. 

We  define a hierarchy of bounded arithmetic formulae as follows: 

Definition: T h e  following sets  of formulae are defined by induction on the complexity of formu- 
lae: 

(1) II,b = ~ , b  = A: is the set of formulae all of whose quantifiers are sharply bounded. 

(2) is defined inductively by: 

(a) ~ / + l X k b  
(b) If A is in ~ k b , ~  then so  are ( 3 x s t ) A  and ( ' d x s  1tl)A. 
(c) If A,BEC/+~ then A A B  and A v B  are in ~ t b , ~ .  
(d) If AEC/+~  and B E I I ~ ~  then 1 B  and B > A  are in 

(3) IIAl is defined inductively by: 

(a) n /+12xlP  
(b) If A is in then so  are ( 'dx5t)A and (3xs l t l )A .  
(c) If A,BEII/+~ then AAB and A v B  are in J3/+l. 
(d) If AEII/+, and BEE/+, then 1 B  and B > A  are in II/+,. 

(4) and n/+, are the smallest se ts  which satisfy (1)-(3). 

Th i s  hierarchy of bounded formulae is in many respects analogous t o  the  arithmetic 
hierarchy. T h e  classes and IIi are defined by counting alternations of bounded quantifiers, 
ignoring the  sharply bounded quantifiers. T h e  arithmetic hierarchy is defined by counting alter- 
nations of unbounded quantifiers, ignoring the bounded quantifiers. We  are using bounded and 
sharply bounded quantifiers in a manner analogous t o  the  use of unbounded and bounded 
quantifiers (respectively) in the  arithmetic hierarchy. 

Theorem 8: Let k > l .  C P  (respectively, IIp)  is the class of predicates which are defined by for- 
mulae in C/ (respectively, II:). 

Proofi By Theorem 7, Lemma 6, and the  definition of the  bounded arithmetic hierarchy, it 
suffices t o  prove the theorem for the  case k= l .  
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First we show Cf' contains all predicates defined by C: formulae. All the nonlogical 
symbols of bounded arithmetic can be computed in polynomial time and hence are in Of'. Since 
Of' is closed under composition and since Cf' is closed under conjunction, disjunction and loga- 
rithmically bounded quantification, the desired result is established. T h e  same argument also 
shows that  llf' contains all predicates defined by ll: predicates. 

For the reverse inclusion, let R be an arbitrary predicate in Cf'. By Theorem 7, R can 
be written in the form 

with SeDo, where, as in the proof of Theorem 7, Do is the smallest set of functions containing 
B+ and closed under composition and logarithmically bounded quantification. In other words, S 
is expressible by a formula which uses functions from B+ and logarithmically bounded 
quantification. 

So t o  show R is definable by a c:-formula, it will suffice t o  show that  S is definable 
by a c/-formula. T o  show that ,  we have to  show that  every occurrence of Choice, Truncate, * 
and p can be replaced by an equivalent arithmetic formula. 

T h e  simplest case is eliminating Choice from S. Suppose S is F(Choice(a,b,c)). Then 
S is equivalent t o  

By repeated transformations of this type, all occurrences of Choice can be eliminated from S. 

Eliminating Truncate, P, and * is a little more difficult. We shall show in great detail 
in Chapter 2 tha t  S is in fact equivalent t o  a Clb-formula. In particular, see Theorem 2.2 in $2.3 
and also see $2.4 and $2.5. So we omit the proof here. 

Since the lli predicates are the negations of the C{ predicates and the ll;-formulae 
are equivalent to  the negations of the Cl,b-formulae, we have immediately from the above that  
the llf' predicates are precisely the predicates definable by ll;-formulae (when k > l ) .  

Q.E.D. 

1.7. Relativization of the Polynomial Hierarchy. 

T h e  polynomial hierarchy can be relativized by allowing Turing machines to  query ora- 
cles. Recall tha t  we already defined in $1.2 what i t  means for a Turing machine to  use a func- 
tion oracle. 
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Definition: A junction oracle Cl is a function of polynomial growth rate whose domain is N~ for 
some k > l  and range is N. A predicate oracle is a function oracle which has range (0,l).  

Definition: Let Cll, . . . ,ak be a sequence of function oracles. T h e  following classes of functions 
and predicates are defined inductively on i: 

The  definition above gives us a relativization of the polynomial hierarchy for each fixed 
sequence of oracles fll, . . . ,ak. We shall also need a more general coecept of relativizing with 
respect to  an arbitrary set of oracles. We do  this by the definitions below. 

Definition: Let j be a positive integer and let p(xl, . . . ,xi) be a suitable polynomial. Then w! is 
equal to  the set of all j-ary function oracles fl satisfying If l(Z)l<~(lZl)  for a11  ZEN^. 

Definition: A junctional j is a function with domain 

and range N where i > 0  and each k j > l  and each p i  is a suitable polynomial. Thus  a func- 
tional maps a tuple of ko integers and i function oracles to  a nonnegative integer. Such a 
functional is called krary. 

T h e  functional j has polynomial growth rate iff there is a suitable polynomial r(2) 
k 

such tha t  for all ZEN O and all function oracles fll, . . . ,ai with flj€w{~ for l<j<i we have 

We next need to  relativize the definitions of P T C ,  PRED, PBV and P B 3 .  

Definition: Let C be a set of functionals. Then PRED(C) is the set of members of C which 
have range (0,l).  
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Definition: Let g and h be functionals such tha t  the domain of g is 

and the  domain of h is 

Let p and q be k-ary suitable polynomials. Then j is defined b y  limited iteration from g and 
h with time bound p and space bound q iff the  following holds: 

Let  r be the  functional with domain 

p ;  Nk+' X w:: x . . .  x wni 

so  tha t  for all oracles Ql,  . . . ,Qi with q ~ w a  for l ~ j s i  and for all 3 % ~ " ~  r is defined by 

7(x1,  . . . , X ~ , O , Q ~ ,  . . . ,ai) = g(xl ,  , . . , x ~ ~ Q ~ ,  . . . ,Qi) 

r ( x l ,  . . . ,xk,n+l1Q1, . . . ,Qi) = h(x l ,  . . . ,xk1n,r(x1, . . . ,xk,n,Q1, . . . ,Qi),Q1, . . . ,Qi). 

And we must  have t h a t  for all 2, n and a as above 

l ~ ( z > n , a ) l  5 q(Izl) 

and 

P i  Definition: Let C be a set  of functionals. We  say tha t  C is uniform iff there exists w:, . , . p,,, 

such t h a t  every functional ~ E C  has domain 

for some k, which depends on f .  

Definition: Let C be a uniform set  of functionals of polynomial growth rate .  T h e  domain of 
each functional in C is of the form 
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P 
P i  T h e  Polynomial-time closure, P T C ( C ) ,  of C is the  smallest uni- for some fixed wnll, . . . ,wni. 

form set  of functionals containing C such the following hold: 

(1) For each n-ary function ~ E B ,  there is an n-ary functional g € P T C ( C )  such tha t  
for all 3 and all 6, 

g(216) = f (3) .  

(2) For  each l s j s i ,  the  functional Pi defined by 

Pj (z l ,  . . . ,xnJin1, . . . = nj(x1, . - - ,znJ) 

is in C. 

(3) C is closed under composition and under definition by limited iteration. 

Definition: Let C be a se t  of functionals. Then P B 3 ( C )  is the  set of functionals Q such t h a t  Q 
has  range {0,1) and domain 

and such t h a t  there exists a suitable polynomial p and an R € P R E D ( C )  with domain 

Nk+' X w;;X X w: 

P such t h a t  for all ill, . . . ,ni with njEwn; for l<j< i,  we have 

PB'd(C) is defined similarly except t ha t  a bounded universal quantifier ( ~ y < 2 ~ ( p I ) )  is used 
instead of the  bounded existential quantifier. 

We  next define a polynomial hierarchy of functionals: 

P Definition: Let wn:, . . . ,w: be a sequence of function oracles. T h e  classes defined below are 

uniform sets  of functionals which have domains of the form 
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T h e  definition is by induction on  j :  

P Proposition 10: Let wn:, . . . ,wf: be a sequence of function oracles and let nl, . . . ,ni be oracles 

so  t h a t  n j ~ w :  for all l<j<i .  Let k>1. Then for all functions j, j€O{(nl, . . . ,ai) iff there 

exists a functional g€O{(w::, . . . ,w:,') such t h a t  for all P,  

Similar s tatements  hold for A{(n l ,  . . . ,ai), C{(nl ,  . . . ,ni) and l I{(a1,  . . . ,ai).  

T h e  proof of Proposition 10 is not too difficult and  we omit i t .  

1.8. Appendix. 

W e  prove Theorem 1 in this appendix. 

Theorem 1: PTC(O)?B+. 

Proo) W e  define the  functions of B f  by limited iteration from functions in B. 

( 1 )  Define B ~ ~ : N ~ + N  by limited iteration from g l  and hl with bounds pl  and q l ,  where 

S o  if t he  binary representation of z is z,-l . . . xo then Bit(i,z) is equal t o  zi. 
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( 2 )  Define j2 :N2+N by limited iteration from g 2  and h2 with bounds p2 and q2, where 

Set a*w = Choice (a=O12(S(2 -2~2w) ) , j 2 (a ,w) ) .  

(3) Define j3 :N+N by limited iteration from g3  and h3 with bounds p 3  and q3, where 

Set Truncate(w) = V 3 ( w ) / 4 J .  

(4 )  Define T R  ( i , w ) : ~ ' - + N  by limited iteration from g 4  and h4 with bounds p4 and q4, where 

So TR ( i , w )  is Truncate applied i ~ 1  times t o  w .  

( 5 )  Define j5:N2+N by limited iteration from g 5  and h5 with bounds p5  and 95, where 

1 if IP(l,w)l<i 
otherwise 
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(6) Define f6:N+N by limited iteration from g6 and h6 with bounds p6 and q6, where 

So f6(w)  = P ( l , w ) ,  the value of the first element in the sequence w .  

( 7 )  Define f7:N+N by limited iteration from g7 and h7 with bounds p7 and 97, where 

So f7(w)  = P(O,w), the number of elements in the sequence w .  

( 8 )  Define P : N ~ + N  by 

p( i ,w)  = Choice( i , f6(TR ( i ,w)) , f7(w)) .  

Q.E.D. 



Chapter 2 

Foundations of Bounded Arithmetic 

Bounded Arithmetic is a weak fragment of Peano arithmetic and is of interest t o  us 
because of its connections t o  the  polynomial hierarchy. I t  will take us a fair amount of work t o  
establish the relationship between Bounded Arithmetic and the polynomial hierarchy. This  
chapter is devoted t o  establishing the foundations of Bounded Arithmetic; in particular, we 
define some useful axiomatizations of fragments of Bounded Arithmetic. 

2.1. The Language of Bounded Arithmetic. 

T h e  first order language of Bounded Arithmetic contains all the  usual logical symbols 
A ,  V, 7, 3, =, 3, t/ and parentheses and the nonlogical function symbols S ,  0,  +, ., lzl, L+], 

and # and the  nonlogical predicate symbol 5.  These nonlogical symbols are intended t o  be 
applied t o  nonnegative integers; from now on, we use "integer" or  "number" t o  mean nonnega- 
tive integer. S ,  0,  +, ., and 5 are the  successor function, the  zero constant,  addition, multipli- 
cation, and  the  less-than-or-equal-to relation. 1x1 denotes the length of the binary represent* 
tion of z;  i.e. 1x1 = [log2(z+l)l. For example, 101 = 0.  liz] denotes t he  greatest integer less 

than or  equal t o  212. z#y is defined t o  be 2121'1rl. 

W e  will frequently abbreviate z .y  as z y .  Also A - B  is an abbreviation for the for- 
mula (A >B)A(B>A).  So  * is not a symbol in our first order logic. 

We  are using a larger se t  of non-logical symbols than is usually used for Peano arith- 
metic. Th i s  is partly t o  make it easy t o  define axiomatizations of fragments of Bounded Arith- 
metic. However, the  # function (pronounced "smash", see Nelson [19]) has a more important 
role. T h e  growth ra te  of # is exactly what  we need t o  define functions in the polynomial 
hierarchy. Since 1#2=21'1 and ~ ~ ~ ( z # y ) ] l = 1 ~ 1 . l y l ,  we can use #, Ltz], and . t o  write the  term 

2p(I21) where p is any polynomial with non-negative coefficients. As  we saw in Chapter  1, this is 
important  for defining the  polynomial hierarchy. Conversely, the  value of any term of Bounded 
Arithmetic is bounded above by 2p(I21) for some suitable polynomial p .  

W e  could generalize # as follows (see Hook (161). Define #2 = #. For i 2 2 ,  define 
#i+l t o  be the  binary function satisfying 

We  could now add #; t o  the language of arithmetic. Clearly, doing so  would give us functions 
which have a larger than  polynomial growth rate. In fact  we could replace # by #; everywhere 
in this dissertation and obtain analogous results except t h a t  instead of using polynomial time 
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Turing machines, we would use Turing machines with runtime bounded by terms involving #i. 
However we will not d o  this and we d o  not include #3, #,4,. . . in the language of Bounded 
Arithmetic. 

Using 0, S ,  +, and . we can construct terms t o  denote natural  numbers. For  example, 
both SSSO and (SSO)+(SO) are terms which denote the number 3. There are two canonical for- 
mats  for terms which denote numbers. First, s (~)o  is the term with k applications of the succes- 
sor function t o  0; this term has value k. Second, Ik is a term with value k defined inductively 

by 

Note tha t  the length of the term Ik is proportional to the length Ikl of the binary representation 
of k; this is not t rue of dk)O. This  will be important later when we arithmetize the syntax of 
Bounded Arithmetic in Chapter 8. 

W e  shall frequently use integers in formulae. T h e  integer is intended t o  be replaced by 
any closed term with value equal to  the integer. Usually it makes no difference which term is 
used. 

Definition: Quantifiers of the form (Vz) and (32) are called unbounded quantifiers. A bounded 
quantifier is one of the form ( V z s t )  or  ( 3 z s t )  where t is any term not  involving x. A sharply 
bounded quantifier is a bounded quantifier of the form (Vzs l t l )  or  (3z<lt l)  where again t is 
any term not  involving z. 

For the time being we will implicitly enlarge the syntax of first order logic t o  incor- 
porate bounded quantifiers. In Chapter  4 we shall give an explicit and precise description of 
how bounded quantifiers are treated in first order logic. We shall do  this by defining a natural 
deduction system with inferences for bounded quantifiers. T h e  main result of Chapter  4 will be 
a cut elimination theorem which allows us t o  eliminate unbounded quantifiers from proofs of 
bounded formulae. T h u s  our  main interest will be in first order logic without unbounded 
quantifiers. 

A bounded formula is a formula with no unbounded quantifiers. We define a hierarchy 
of bounded formulae as follows: 

Definition: T h e  following se ts  of formulae are defined by induction on the complexity of formu- 
lae: 

( I )  ll; = C; = A: is the set of formulae all of whose quantifiers are sharply bounded. 

(2) z /+~ is defined inductively by: 
3 n b  (a) Ck+l- k 

(b) If A is in c;+~ then so  are ( 3 x s t ) A  and (Vx<ltl)A. 
(c) If A,BEcIP,~ then A A B  and A v B  are in EL,. 



Foundations of Bounded Arithmetic 

(d) If AEC/+~  and BEII/+~ then -B and B > A  are in 

(3) IIAl is defined inductively by: 

( 4  nk",12ci 
(b) If A is in IIAl then so  are (Vz5 t )A  and ( 3 z < ( t ( ) A .  
(c) If A , B E I I ~ , ~ + ~  then A A B  and A v B  are in II/+l. 
(d) If A E ~ / + ,  and BEC/+~ then -B and B > A  are in II:+l. 

(4) and lli+l are the smallest sets  which satisfy (1)-(3). 

T h u s  C/ and IIi  are defined analogously t o  the  arithmetic hierarchy C i  and II; with 
bounded and sharply bounded quantifiers playing the  roles of unbounded and bounded 
quantifiers respectively. T h a t  is, we count the alternations of bounded quantifiers ignoring the 
sharply bounded quantifiers. Bounded quantifiers have the  following quantifier &change pro- 
perty: let A be any formula, then 

Essentially, w is a sequence which codes the  values of y for each value of z. We have not  yet 
defined the /3 function in Bounded Arithmetic and obviously the  quantifier bound for w depends 
on the  precise definition of P; however, the  use of the  # function is unavoidable. T h e  # func- 
tion has precisely the growth rate  necessary t o  make this quantifier exchange property hold; this 
is par t  of the  reason we feel tha t  using the  # function in Bounded Arithmetic is natural  and 
elegant . 

2.2. Axiomatisations of Bounded Arithmetic. 

Peano arithmetic is normally axiomatized by a small number of open axioms and an  
induction schema. W e  shall form the axioms for Bounded Arithmetic by increasing the number 
of open axioms and severely restricting the  induction axioms. 

Definition: BASIC is a finite se t  of t rue open formulae of arithmetic which are sufficient t o  
define the  simple properties relating the function and predicate symbols of Bounded Arith- 
metic. BASIC consists of the following 32 formulae: 
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(We are using 1 and 2 as  abbreviations for the terms S O  and SSO.) Except for the results of 
Chapter  6, the precise definition of BASIC is not too important; any sufficiently large set of 
t rue open formulae would suffice. However, for the sake of definiteness, BASIC is defined t o  
be the above 32 axioms. I t  will be important in Chapters  7 and 8 tha t  BASIC is a finite set 
(or a t  least a polynomial time recognizable set). 

In addition t o  the axioms in BASIC,  we have various types of induction axioms. 

Definition: Let \k be a set of formulae. T h e  W I N D  axioms are: 

A (o)~(Vz)(A(z)  3 A  ( S X ) ) ~  (Vz)A (z)  

where A is any formula in \k. 

T h e  9-PIND axioms are: 
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where A is any formula in 9. 
T h e  9-LIND axioms are: 

where A is any formula in 9. 

A little reflection yields t he  intuitive feeling tha t  9-IND is stronger than  9-PIND. 
For  example, suppose we know A(0) is true and we wish t o  deduce t h a t  A(100) is true. If we 
use 9- IND we will deduce A ( l )  from A(O), then A(2) from A(1), and so  on for 100 steps. On  
the other  hand,  9-PIND deduces A(1), then A(3), A(6), A(12), A(25), A(50), and  finally 
A(100). T h u s  the 9-IND axiom "automated" 100 inferences, whereas the 9-PIND automated 
only 7 inferences. Since the conclusions of 9-IND and 9-PIND are the  same we conclude tha t  
the hypothesis of 9-PIND is stronger than the hypothesis of 9-IND and hence we feel t ha t  
the 9-PIND axioms are weaker than the W-IND axioms. We  shall prove this properly below. 

This  is a good place t o  mention explicitly t h a t  we d o  not have the function z w  2' in 
Bounded Arithmetic. Hence the conclusion (Vz)A (1x1) of W-LIND is weaker than (Vz)A(z). 
Indeed, in a nonstandard model for Bounded Arithmetic the  function z w  2' may not  be total  
and hence z w  1x1 may not  be onto. 

Definition: T h e  following theories are fragments of Bounded Arithmetic. Each theory has the 
language of arithmetic defined in 52.1. 

(1) S; has axioms: 
(a) BASIC axioms 
(b) c;-PIND axioms. 

(2) T~~ has axioms: 
(a) BASIC axioms 
(b) c;-IND axioms. 

(3) S2 is US;. 
t 

(4) T2 is U Ti .  
i 

(5) s$-') is the  theory with only the BASIC axioms. T4-l) is t he  same theory. 

Later we shall show tha t  T ~ F  s~~ and ~~~t Ti-' where i > O .  T h e  theories we are most 
interested in are s;, as these fragments of Bounded Arithmetic have the  nicest properties. Most 
of this  dissertation is concerned with the theories S;. T h e  subscript "2" denotes t he  presence of 
the  # function. In general, for k ~ 1 ,  S; is defined like S; bu t  with the function symbols #, for 
all 2 < j < k  and with their defining axioms. 
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Proposition 1: 9-IND ==+ 9-LIND. 

Proof: T h e  hypotheses of 9-IND and 9-LIND are the  same and the  conclusion of 9- IND is 
stronger than the  conclusion of 9-LIND. 

2.3. Introducing Function and Predicate Symbols. 

Bounded Arithmetic is powerful enough t o  define many functions besides the  six func- 
tions in the  formal language. I t  is generally true tha t  whenever a theory can define a function, 
a conservative extension is obtained by augmenting the language t o  include a new function sym- 
bol for the  defined function. W e  shall be especially interested in introducing function symbols 
which can be used in formulae in induction axioms. 

Definition: Let R be a fragment of Bounded Arithmetic. Suppose A is a c:-formula and t h a t  

and  

Then  we say tha t  R can xib-define the  function j such t h a t  (Vd)A(Z,f(?)) is satisfied. (It 
should be noted tha t  the  above definition makes sense only if d and y are all t he  free vari- 
ables of A ;  if not, enlarge Z t o  include the  rest of them.) 

Definition: Let j be a new function symbol. We  define Aob(j), C:(j) and  n;(j) t o  be sets of 
bounded formulae in the  language of Bounded Arithmetic plus the  symbol j. These sets of 
formulae are defined by counting alternations of bounded quantifiers, ignoring the  sharply 
bounded quantifiers, exactly as in the  definition of sob, C: and nib. 

If p is a new predicate symbol we define A ~ ~ ( ~ ) ,  Cib(p) and  IIib(p) similarly. 

Theorem 2: Let R be a fragment of Bounded Arithmetic. Suppose R can CP-define the  func- 

tion j. Let R* be the theory obtained from R by adding j as a new function symbol and 
adding the  defining axiom for j. Then,  if i>O and B is a Cib(j)- (or a nib(j)- ) formula, there 

is a B* E C? (or nibl respectively) such tha t  R * t  B**B. 

Proof: T h e  defining axiom for j is 

where A is a Clb-formula. Let B be a bounded formula containing the symbol f. W e  first 
define the formula B1 as follows: suppose j occurs in a term which bounds a quantifier, say 
( Q x 5 s ) D  is a subformula of B where the  term s involves j. Replace each occurrence of j(7) in 
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s by the  term t(7). ( t  is t he  bound in the  cP-definition of j ,  see the  definition above.) This  
yields a term s'. Now, ( 3 z < s ) D  is provably equivalent t o  ( 3 z < s ' ) ( z < s ~ D )  and ( V z 5 s ) D  is 
provably equivalent t o  (Vz<s ' ) (z<s>D) .  By repeating this procedure, we can form B1 so  t h a t  

(1) R * t  B* B1, and 

(2) B1 does not contain j appearing in any term which bounds a quantifier. 

We  next obtain a formula B2 in prenex normal form by applying prenex operations t o  B1 so  

t h a t  R * t  B24+ B1. Furthermore, if B is a c;)- (or a II;)-) formula, then s o  are B1 and B2. 

Let the  mantissa of B2 be D ;  tha t  is t o  say, suppose 

where D is an open formula. Let j (3)  be a term appearing in D. Obtain D' by replacing j(3) 
everywhere in D by a new variable z .  Define 

and 

Let D' and D~ be their respective prenex normal forms. Then D' is a ll:(f)-formula and D3 is 
a CP(j)-formula, and  

Define B3 from B2 by replacing the mantissa D by either D' or  D ~ ,  whichever is 
appropriate. We  can d o  this so  tha t  B3 has the  same alternation of (non-sharply) bounded 
quantifiers as B2. Also, 

B3 was formed from B2 so t h a t  all occurrences of the term j(?) were eliminated. By iterating 
this procedure, we obtain B4 from B3, B5 from B4, and so  on, until  all occurrences of j have 

been eliminated. We  let B *  be the  Bi such t h a t  i 2 2  and j does not  appear in Bi .  

Q.E.D. 
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Corollary 9: Let R be one of the  theories S; or T; (where i 2 l ) .  Suppose fl, . . . ,fk are func- 
tions cP-definable by R .  Let R be the theory obtained from R by including new function 
symbols fl, . . . ,fk and their defining axioms and including all c,"@-PIND axioms or 

c,"@-IND axioms (respectively). Then R is a conservative extension of R .  

Proof: Form R *  by adjoining fl, . . . ,fk and adding their defining axioms. I t  is well known tha t  

R* is a conservative extension of R .  Now, by Theorem 2, each ~,"(fi-formula is provably (in 

R*) equivalent t o  a c,"-formula. T h u s  R *  k c:@-PIND (or Cib@-IND respectively). Hence 

RER*. 

T h e  upshot of t he  last theorem is t h a t  we may freely adjoin cP-definable functions t o  
any fragment of Bounded Arithmetic and use these function symbols without restriction in 
induction formulae. 

We  can also define a similar condition for introducing new relation symbols: 

Theorem 4: Let R be a fragment of Bounded Arithmetic. Suppose A and B are C: and Il: for- 

mulae, respectively. Also suppose R k A * B .  Let R *  be the  theory obtained from R by 
adjoining a new predicate symbol p and  the  defining axiom 

( 2  must  include all the  free variables of A.) 

Then R *  is a conservative extension of R and if i2l and C is any c:(~)- or  

Il,"(p)-formula then there is a xi)- or Il,"-formula C* (respectively) such t h a t  R*F C* c*. 

Proof: Similar t o  the  proof of Theorem 2. 

I t  is convenient t o  have a name for predicates which satisfy the conditions of Theorem 
4: 

Definition: Let R be a theory and A be any formula. W e  say t h a t  A is A," with respect t o  the 
theory R iff there are formulae BEE," and C E ~ , "  such t h a t  R k A * B  and R k  A* C. 

When i t  is clear which theory R is being discussed, we shall merely say A is Aib  
when we mean A is Aib with respect t o  R .  

I t  follows immediately from Theorem 4 t h a t  if A is a A:-formula, then a new predi- 
cate symbol p can be introduced with the  defining axiom p(Z)*A(3) and  tha t  p can be used 
freely in formulae in induction axioms. T h u s  we have established conditions for introducing 
new function and  predicate symbols into a fragment of Bounded Arithmetic, so t h a t  t he  new 
symbols can be used in induction axioms. 
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Ezample: We define the  binary subtraction function as 

We show t h a t  1- can be c:-defined in Ti. T o  do this we have t o  show tha t  T; can prove 

and 

where M(z,y,z) is the  formula on  the righthand side of t he  defining axiom for A .  

T h e  second formula t o  be proved is the  uniqueness condition. This  follows directly 
from the  BASIC axioms without the  use of any induction axioms. 

T o  prove the  existence condition, we will need t o  use the  induction axioms. I t  is not 
hard t o  prove the following formulae in T:: 

From these two formulae we use Clb-IND t o  derive 

T h u s  the  subtraction function can be defined in T:. 

We will later show by a much more complicated argument t h a t  the - function can be 
c:-defined in S2' as well. 

As an  application of the above example, we show t h a t  t he  theory T~~ can derive the 
IIib-IND axioms. 

Theorem 5: T h e  nib-~ND axioms are theorems of T; if i2l. 

Proof.- Let A be a nib-formula. We  want  t o  show 

Let B(z ,  y) be the  Cib-formula -A(y.-z). Then 
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or, equivalently, 

From this we can readily derive 

T i t  A(O)h('dz)(A(z)>A(Sz))>A(y). 

Taking the  universal closure of this last formula proves the  desired induction axiom. 

Q.E.D. 

2.4. Bootstrapping S: - P h s ~  1. 

T h e  term "bootstrapping" is a computer term which describes the process of s tar t ing 
the operations of a computer. I t  used t o  be common t o  power up  a computer with only a small 
amount of software loaded, say about  80 bytes, the  amount of d a t a  which fits on a Hollerith 
card. Th i s  small amount  of software would be responsible for reading from tape o r  cards the 
entire operating system, thus  making the  computer fully operational. Th i s  process was called 
"bootstrapping" from the  analogy of "lifting oneself by the bootstraps." 

Similarly we need t o  bootstrap s;. T h a t  is, we shall have t o  d o  a lot of work to  define 
some simple functions and predicates in Si (for example, subtraction). Once we have completed 
the bootstrapping i t  will be easy t o  show t h a t  S; is actually a fairly strong system which can 
define a variety of functions and predicates. 

T o  a certain extent,  our  bootstrapping of S; is recapitulating the  work of Ed Nelson 
[19], Wilkie-Paris [31] and Wilmers 1321. However, [I91 and [31] work in the theory S2 not  s;, 
and they are consequently only concerned about defining functions and  predicates with arbi- 
trary bounded formulae. For  us, i t  is very important t h a t  functions be zlb-defined and predi- 
cates be A/-defined. Wilmers [32] does use a very weak fragment of Sp bu t  his work does not 
seem t o  apply t o  s;. 

Before we begin the  bootstrapping of S2' we show t h a t  the c/-LIND axioms can be 
derived in 5';. 

Theorem 6: Let i20. T h e  c:-LIND axioms are theorems of S; 

Proof: Let A be a zib-formula. W e  want  t o  show t h a t  
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Let B(z)  be the formula A(1z)). Then 

and 

sit A ( o ) ~  B(O) 

si t (Vz)(A (z) >A (Sz)) >(Vz)(B(Lf XI) 3 B(z)). 

But  B is a xib-formula so by the use of the xi"-PIND axiom for B we get 

sit A(o)A(vx)(A(~)>A(sx))>(vx)B(~) 

which is what  we wanted t o  show. 

Q.E.D. 

W e  bootstrap ,921 by showing tha t  the following functions and predicates are 
c/-definable in s2' and are A/ with respect t o  s;, respectively. 

(a) W e  introduce one predicate and two functions by: 

T h e  uniqueness and existence conditions for these functions follow easily from 
the BASIC axioms without any use of induction. Since the defining formula for a < b  is 
open it is trivially A:. 

(b) T h e  predecessor function is an  inverse t o  the successor function defined by 

T h e  uniqueness condition for this definition follows easily from the BASIC axioms 
without any use of induction axioms. For  existence, let M(a,b)  be the defining equation 
for P(a)=b;  then we can prove 

and 

from the BASIC axioms again without any use of induction axioms. Finally, c/-PIND 
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This  predicate symbol is clearly A/ with respect t o  s;. Moreover, S; can prove many 
nice properties of Power2. In particular, s2' can prove the following formulae: 

For example, the fourth formula follows from the open formula 

which in turn  can be proved in ~2 (without the use of any induction axioms.) We leave 
t o  the reader the verification of our claim tha t  the  other four formulae are also theorems 
of s;. 

(d) We can define an exponentiation function with restricted range by: 

or  informally, Exp(a,b) = 2 min(lbl,a) 

Let M(a,b,c)  be the formula on the righthand side of the definition of Exp. 
Then,  by the properties of Power2 discussed above, 

Also, 

S i t  M ( ~ , Y , ~ ) A x <  I Y I ~ M ( S ~ , Y , ~ ~ )  

s:t M ( ~ , Y , ~ ) ~ ~ ~ I Y I ~ M ( S ~ , Y , ~ . )  

S ~ ~ - M ( X , Y , ~ ) > ~ < ~ Y + ~  

From this we get 



Foundations of Bounded Arithmetic 

sit (3z~2y+l)M(z,y,z)~(3z12y+l)M(Sz,y,~). 

Hence, 

On the  other hand, S i t  (Vy)M(~ ,y , l )  so by c/-LIND with respect t o  the variable u 
(remember, we don't count sharply bounded quantifiers): 

sit ( ~ Z I  IY~)(~~S~Y+~)(~<IYI~M(~,Y,~)) 
and hence 

sit (vzSIY()(32.12Y+l)M(z,~,~). 

And since z~lyl~M(lyl,y,z)>M(z,y,z), we have 

This  is what  we needed t o  demonstrate t h a t  Ezp is properly defined in s:. 
I t  is important t o  note tha t  we have not defined exponentiation, bu t  only a res- 

tricted exponentiation. Indeed, in the formula 

the argument y is a "dummy variable" whose sole purpose is t o  restrict the range of the 
function. Frequently we shall simplify our notation and write 2' as a function when it is 
provably well defined; for instance, we would write (tli<lxl)B(2') instead of the  more 
correct ( ~ i l  l z l ) ~ ( 2 ~ ~ ( ' ~ l ~ I ) ) .  

(e) b=Mod2(a) +=+ b+2.L+aJ=a 

Mod2(a) is either zero or  one depending on whether a is even or odd,  respec- 
tively. We can easily prove the necessary uniqueness and existence conditions from the 
BASIC axioms. 

(f) We define functions for obtaining the "less significant part" and the "more significant part" 
by defining the following predicate and functions: 
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Clearly, Decornp is A/-defined. Also, is not difficult t o  see tha t  

This  establishes the uniqueness conditions for both MSP and LSP .  

I t  remains t o  show tha t  the existence conditions hold; namely, t ha t  

Since S; t ~ e c ~ r n ~ ( a , ~ , ~ , a ) ,  we know tha t  

Also, the following are provable in s;: 

and 

D e c o m p ( a , b , c , d ) ~  c < a ~ d <  a .  

I t  follows readily tha t  

From this, by use of c/-LIND 

Since ~ ~ ~ ~ z > J a ( ~ D e c o m p ( a ~ z ~ a ~ O ) ,  this suffices t o  prove the existence condition. 

(g) c=Bit(b,a) c=Mod2(MSP(a1b)) 

So  Bit(b,a) is the value of the bit in the 2' position of the binary representation 
of a .  Since Bit is defined a s  the composition of functions already introduced in S; it is 
clear tha t  Bit is zlb-defined. 

An important property which is provable in S; is: 

T h a t  is, i t  is provable tha t  the  binary representation of a number uniquely determines 
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the number. This  can be proved in Si  by using c/-LIND with respect t o  the variable 
u on the formula 

T h e  details are left t o  the reader. 

Further  note t h a t  S; can prove all the simple relationships between Bit,  M S P  
and LSP; for example, 

(h) Before we can define the subtraction function, we need a restricted version of subtraction: 

So  LENMINUS(a,b) is equal t o  lall-b, o r  in other  words, LENMINUS is a subtraction 
function with domain restricted t o  very small numbers. T h e  uniqueness condition is easy 
t o  prove from the BASIC axioms. Because the  function is restricted we are able to  
prove the existence condition with induction on ~ ~ ~ - f o r m u l a e .  I t  will suffice t o  show tha t  

sit- ( ~ z I l a o ( 3 ~ l l a l ) ( z + ~ = l a l ) .  

Now, 

sit x < I ~ ( A x + ~ = I ~ I > s ( x ) + P ( ~ ) = I ~ I  

By Ct-LIND we obtain the desired result. 

(i) Finally, we show t h a t  subtraction can be c/-defined in S; 

T h e  uniqueness condition for subtraction is immediate from the BASIC axioms. 
T h e  existence condition is not  too hard now tha t  we have defined MSP and LENMINUS; 
we will use c/-LIND on the formula M(a,b,u)  defined as 
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Here we are using ( a J l u  as an abbreviation for LENMINUS(a,u). Now, 

So ~ ( a , b , 0 ) .  Also, s2'k ~ ( a , b , u ) > M ( a , b , S u )  can be proved without too much 
difficulty; this follows from the fact that  S2' can prove all of the  following: 

(i) b~a~MSP(b,z)<MSP(a,z)v(MSP(b,z)=MSP(a,z)hLSP(b,z)~LSP(a,z)) 

(ii) b < ~AX+MSP(~,S~)=MSP(~,S~)AB~~(~, a)=Bit(z, b ) 3  
>2z+MSP(b,z)=MSP(a,z) 

(iii) b 5 a ~ z + M s P ( b , S z  )=MSP(a,Sz)h Bit(z,a)> Bit(z, b ) 3  

3(2z+l)+MSP(b,z)=MSP(a,z) 

(iv) b l  U A X + M S P ( ~ , S ~  )=MSP(a,Sz)hBit(z,a)<Bit(t.,b)> 
3(2z.- l)+MSP(b,z)=MSP(a,z) 

By c/-LIND, S ; k ~ ( a , b , ( a l ) ,  which is equivalent to  the existence condition for the 
definition of subtraction since S;F MSP(Z,O)=Z. 

(j) QuoRem(a,b,c,d) (b=Ohc=Ohd=O)v(d< bha=c. b+d) 

c=La/bJ (3d<b)QuoRem(alb,c,d) 

d=Rem(a,b) ++ ( 3 c ~ a ) Q u o R e m ( a , b , c , d )  

The uniqueness conditions are easily proved. The  existence conditions can be 
proved by induction on the length of a ;  we leave this as an exercise for the reader. (Hint: 

a how do  you compute the quotient and remainder for - if you know them for [fa] /b ?) 
b 

(k) b 1 a Rem(a,b)=Ohb#O 
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(m) Comma(b,a) Even(b)~Bit(b,a)=l~Bit(Sb,a)=~ 

Comma and Digit are immediately seen t o  be A/-definable and c/-definable 
by s;. They will be useful for defining an encoding for sequences. I t  is important t o  note 
tha t  we will not be using the same encodings for sequences as we used in Chapter 1. 

These functions and relations define protosequences, and give us a primitive 
method of encoding sequences. Protosequences have the restriction tha t  each element of 
the protosequence is coded by a fixed length code; if necessary, leading zeros are added to  
the element t o  pad it out t o  the required length. PSqSL(a,b,c) asserts t ha t  a encodes a 
protosequence of c numbers, each of which is coded as a b-bit number and is preceded by 
a comma. T h e  fact tha t  a is such a protosequence can be verified by checking the posi- 
tions of the "commas" in a .  Note tha t  there is no  protosequence for the empty sequence. 

W e  leave it t o  the reader t o  prove tha t  ProtoLen and Protosize can be 
c/-defined in S; and tha t  PSqSL and ProtoSeq are A/ with respect t o  S& 

So  if a = < a l , .  . . ,ak> then Protop(i ,a)=ai .  Note tha t  (unlike the sequences 
used in Chapter  1) the numbers are not coded in bit-reversed order. T h e  sequence is 
coded with a l  coded by the  low order bits of the binary representation of a and with a k  
coded by the high order bits. 

T h e  uniqueness condition for P ro top  is a consequence of the fact t ha t  the binary 
representation of a number uniquely determines the number, which as we noted earlier is 
provable in S;. 

I t  is important t o  note t h a t  since ~ ~ ~ t ~ r o t o S i z e ( a ) < J a J ,  the quantifier 
(Vy<ProtoSize(a)) can be replaced by a sharply bounded quantifier. Th i s  makes it pos- 
sible t o  prove the existence condition for P ro top  by using c/-LIND with respect t o  the 
variable u on the formula 



Bootstrapping S: - Phase 1 

s2' also proves tha t  protosequences exist. Indeed, it can be shown by induction 
on the length of a tha t  

ProtoStar(a, b) is the Gijdel number for the protosequence obtained by adding b 
as an additional element to  the end of the protosequence coded by a .  If b is too large to 
fit into the protosequence, only the less significant part  of b is used. 

W e  omit the  proofs of the uniqueness and existence conditions for Protos tar .  
T h e  reader may supply them if desired. 

2.6. Bootstrapping S: - Phase 2. 

For the second phase of bootstrapping s2' we wish t o  define sequences with variable 
length elements; these sequences will supercede the protosequences defined above. Some of the 
functions and predicates we wish t o  define are: 

Seq(w) true iff w is a valid sequence 

Size(w) the  maximum of the lengths of entries of w 

Len(w) the number of elements in w 

P(i,w) the value of the i-th value of w 

* a function which adds  a new element t o  the end of a sequence 

** a function which concatenates two sequences 

I t  is not difficult t o  define Seq, Size, * and ** since each of these can be defined by "local" 
operations. However, Len(w) and p are harder to  define. Computing Len(w) involves counting 
the number of Comma's in w and hence is a "globaln operation. Likewise, t o  calculate p(i,w), it 
is necessary to  locate the  i-th entry of w and this  again requires counting. 
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Hence we are led t o  the following: 

Definition: Let A(a,  y,3) be any formula. T h e  function f(y,3) is defined by length bounded count- 
ing from A iff f satisfies 

where ( # a s  t)( . - ) means "the number of a s t  such tha t  . . . ". 

Of course, we can define bounded counting in a similar way, except t h a t  the bound t 
need not be a length. Bounded counting has been investigated by Valiant [29] and i t  is an open 
problem whether functions defined by bounded counting are always in the polynomial hierarchy. 
Of course, any function which is definable by a bounded formula is in the polynomial hierarchy 
and thus  we are not  able t o  use bounded counting in (a t  least a t  our present s t a t e  of 
knowledge). However, functions defined by bounded counting are computable by polynomial- 
space bounded Turing machines and in 510.2 we discuss how bounded counting may be defined 
in a second-order theory of Bounded Arithmetic. 

Theorem 7: Let A(z,y,3) be A/ with respect t o  s;. Let f be the  function defined by length 
bounded counting from A.  Then f can be c/-defined in S& 

Proofi W e  introduce a new (k+l)-ary function symbol g defined by 

T h e  existence and uniqueness conditions from g are readily proved in sZ1. For the  existence 
condition we use c/-LIND with respect t o  u on the  formula 

Note t h a t  we needed the  fact  t h a t  A is A/ in order t o  c/-define g.  

W e  define the  function Numones, which computes t he  number of ones in the binary 
representation of a number a ,  by 

T h e  uniqueness and existence conditions for Numones are provable in s2' by induction on the  
length of a - we omit the  details. Note t h a t  the  use of t he  # function is required t o  express the 
bound on w in the defining equation of Numones; this is the  first time we have used the  # 
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function for bootstrapping s;. 
We can now define j as 

Q.E.D. 

Theorem 8: S; proves the following: 

Prooj: I t  is not hard t o  prove this using cP-LIND. This depends on the fact t ha t  S; can prove 
simple properties about  Bit, M S P  and LSP; see §2.4(g). 

Theorem 9: T h e  following functions are CP-definable in S; and hence can be introduced as 
defined function symbols. 

where s and t are terms and A is a A/-formula. T h e  free variables of s are the % the free 
variables of t and of A may include y and 2. T h e  terms s and t may involve Clb-defined 
function symbols. 

Proof: T h e  existence and uniqueness conditions for jl and j2 can be proved easily by using 
Clb-LIND on the length of s. We can define j3 in terms of Numones by 

Lemma 10: Let j l ,  j2, and j3 be the function symbols introduced in Theorem 9. Then S; 
proves the following: 
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Proof: This  is actually what  we proved in Theorem 9. Note we have defined f 3  so  tha t  if 

(Vysls1)-A(y) then f3(2)=Is(+1. 

We are now ready t o  introduce function and predicate symbols in S2' for handling gen- 
eral sequences. W e  leave the provability of the necessary uniqueness and existence conditions t o  
the reader. 

(a) b=Substring(a,i,j) b=MSP(LSP(a,j),i) 

So  the binary representation of b is t ha t  portion of a's binary representation 
starting with the 2j-I bit and ending with the 2i bit. For example, if a=1310=11012 then 
S~bstrin~(a,0,3)=101~=5~~ and Substring(a, l,3)=102=210. 

(b) Seq(w) (Vz< Iw I) [Even(i)>Cornrna(i, w)~Dig i t ( i ,w)< l ]~(Cornrna(O,  W)V w=O) 

So  a sequence is any number whose binary representation codes a string of O's, 
1's and commas, provided tha t  the two low order bits code a comma (also, the number 0 
codes a sequence). We are requiring tha t  the two lowest order bits code a comma so  tha t  
we can treat  the empty and non-empty sequences uniformly. 

(c) a=Len(w) (-Seq(w)Aa=O)~(Seq(w)Aa=(#i< I wJ)Cornrna(i, w)) 

(d) b=Decode(a) (~=OA-ProtoSeq(a))~(ProtoSeq(a)~b=Proto~(l,a)) 

b=Encode(a) PSqSL(b,laJ,l)~a=Protop(l, b) 

T h e  existence condition for Encode follows from the remark made in §2.4(0) 
above. 
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(e) a=Startp(i,w) (a=OA-Seq(w))v(Seq(w)A 

Aa=(pz< I w1+1) [~en(Substrin~(w,~,x))=i~Even(x)]) 

Note the /3 function is defined so  that  P(O,w)=Len(w). 

(f) Site(w) = max{L3(End/3(il w )I StartP(i,w ))J : i<Len(w)) 

(h) a *  b = a**(4.Encode(b)+l) 

Note that  unlike the conventions in Chapter 1, <al ,  . . . , an>*an+l  is 
<al ,  . . . ,an+,>.  Also, from now on, * associates from left to  right. 

So Subseq(w,i,j) is the subsequence <P(i,w), . . . ,P(j.-l,w)> of w. 

(j) UniqSeq(w) Seq(w)~Digit()wl.- 2,w)#O~ 

A l ( 3 i s  1 wl) (Dig i t ( i ,w)=~~ Comma(i+2, w)) 

UniqSeq(w) asserts that  w is a sequence and tha t  all entries in w are coded 
without any extraneous leading zeros. The  reason we are interested in UniqSeq is that  
S; proves 

UniqSeq(a)~ UniqSeq(b)h(Vi< Len(a))(P(i, a)=P(i, b ) ) 3  a= b 
and 

s e q ( a ) 3 ( 3  w)( Uniqseq(w)A(Vi<Len(a))(P(i, a)=P(i, w))). 

(k) SqBd(a,b) = (2b+1)#(4.(2.~+1)~) 
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SqBd is useful since 

S ~ F  UniqSeq(w)l\Len(w)< I b I + l h ( ~ i < L e n ( w ) ) ( P ( S ( w ) <  a )>  w<SqBd(a, b). 

2.6. Bootatmapping T: . 
Now t h a t  we have completed the bootstrapping of s:, we want  t o  bootstrap T i .  For- 

tunately we will need t o  d o  much less work t o  bootstrap T i .  Indeed, once we have defined a 
few simple functions, we will be able t o  show tha t  T: proves all the c:-PIND axioms. Hence 
T:~s: and all the functions defined in the last two  sections can be introduced into T:. 

W e  begin by showing t h a t  the following functions may be introduced in T i :  

(a) a < b  a l b h a f b  

c=max(a,b) ( c > a l \ c = b ) v ( c > b ~ c = a )  

(b) b=P(a)  (a=Ol\ b=O)vSb=a 

W e  showed in an example earlier t ha t  subtraction is c:-definable in T i .  So  we 
can define P ( a ) = a l l .  

When we introduced Power2 as a defined predicate symbol of S: we showed 
t h a t  s2' can prove many basic properties of the Power2 predicate. T h e  same comments 
apply t o  T i .  

(d) c=Ezp(a,  b) +=+ Power2(c)hIc~=l+min(l bl,a) 

i.e., ~ z ~ ( a , b ) = 2 " ' ~ " ( l ~ ~ ~ ~ ) .  

Let M(a,b,c)  be the righthand side of the defining equation for Ezp.  Then,  

and 

Hence, 
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Since T i t  ~ ( x , 0 , 1 ) ,  we can use Ct-IND t o  obtain 

which is the existence condition for the definition of Exp. 

(e) Decomp(a,b,c,d) (j lcl< b ~ ( d . 2 ~ ~ " ( l ~ l ~ ' ) + c = a )  

c=LSP(a,b) ~ ( 3 d < a ) D e c o m p ( a , b , c , d )  

d=MSP(a,b) ~ ( 3 c ~ a ) D e c o m p ( a , b , c , d )  

I t  is easy t o  see tha t  Decomp may be introduced as a nib-defined predicate 
symbol of T i .  Also, the uniqueness conditions for L S P  and MSP follow from the 
BASIC axioms. I t  will suffice therefore to  show tha t  

T i t ( 3 x 1  a)(3y<a)Decomp(alb,~,y). 

But  

T i t  ~ e c o m ~ ( a , b , c ,  d)hc+l <2min(b'lal)> Decomp(a+l, b, c+l ,d)  

and 

T i t  ~ e c o m ~ ( a , b , c , d ) ~ c + l ~ 2 ~ ~ " ( ~ ~ ~ ~ ~ ) ~ ~ e c o m ~ ( a + l , b , 0 , d + l ) .  

Hence we can use c/-IND t o  prove the  existence condition. 

Definition: When Q and R are theories, we write Q t  R t o  mean t h a t  every theorem of R is a 
theorem of Q .  

Theorem 11: Let i2l. T; proves the  c:-PIND axioms. Hence T,'F s,' 

Prooj: Let A be any c:-formula. We want to  show tha t  

(where a is a free variable which appears only as indicated.) Let B(a ,u )  be the formula 
A(MSP(a,la(.- u)). Then 
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Now, from c;-LIND on B ,  we have 

But ,  

T i t  ~ ( l a I ) > ~ ( a ) .  

Q.E.D. 

If we examine the  proof of Theorem 11, we note tha t  only zib-LIND is used, not 
c?-IND. Hence what  we have proved is: 

Theorem 18: Let R i  be the theory S: plus the zib-LIND axioms. Then R i  is equivalent t o  s ~ ~ .  

Proof: R i t  s;' is proved by the  proof of Theorem 11. Theorem 6 implies t h a t  sit R ~ .  

Q.E.D. 

Theorem 19: Let i>O.  Then 
(a)  s;+c:-LIND is equivalent t o  s~+c:-PIND. 
(b) s~+c;-IND is equivalent t o  s~+II;-IND. 
(c) s:+c:-LIND is equivalent t o  Si+IIib-LIND. 
(d) s~+c:-PIND is equivalent t o  s,'+II,~-PIND. 

Proof: T h e  inclusion of S i  means t h a t  we can use all of t he  c/-defined function symbols of S2' 
freely. 
(a) By Theorem 12. 
(b) One half of this is Theorem 5. T h e  other direction is proved by exactly the  same idea of 

"reversing" the direction of the  induction. 
(c) Th i s  is proved by an argument similar t o  the proof of (b). 
(d) By (a) and (c) it suffices t o  show t h a t  s ~ + I I ~ ) - L I N D  is equivalent t o  S;+W-PIND. 

s~'+II:-PIND =+-II:-LIND follows from the  proof of Theorem 6 modified so  tha t  
A E I I :  instead of c:. Likewise, the proof of Theorem 11 modified so tha t  A m i b  shows 
t h a t  s;+II;-LIND ==+ II:-PIND. 

Q.E.D. 
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2.7. Replacement Axioms. 

An important  property of the  natural  numbers is the  replacement axiom, also called 
the  collection axiom. This  axiom is (VXI a)(3y)Ae*(3t)(Vzs a)(% t )A.  One of the reasons 
this axiom is useful is t h a t  i t  shows t h a t  unbounded quantifiers may be moved outside the scope 
of bounded quantifiers. In the  classical setting, it is t he  unbounded quantifiers which are most 
important  and the  bounded quantifiers are generally ignored, and the  replacement axioms s ta te  
t h a t  the order of bounded and unbounded quantifiers may be exchanged. 

In ou r  setting, however, bounded quantifiers are important  and  the sharply bounded 
quantifiers are generally ignored. A natural  question is whether there is a version of the  replace- 
ment  axiom for our setting. T h e  answer is partly yes, in t h a t  bounded quantifiers may be 
moved outside sharply bounded quantifiers. 

Definition: T h e  c;-replacement axioms are the formulae of t he  form 

where s and t are arbitrary terms and A is any c;-formula, and  other  free variables may 
appear in A .  

Theorem 14: Let i>l.  Then the  c;-replacement axioms are theorems of s;. 

Proofi Let A be any c;-formula. Let Y and Z be the  formulae 

We  want  t o  show sit Ye* Z(l tl). Now, s2jt Z((t l )> Y is obvious. Also, 

and 

Q.E.D. 

Definition: T h e  sets  C;(AS) and ~I;(As) are defined inductively by: 

(1) C ~ ( A S )  is the se t  of lI:-formulae which are A: with respect t o  the  theory s:. Similarly, 
~I:(As) is the  se t  of C:-formulae which are A: with respect t o  t he  theory s:. 
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(2) Ci t l (AS)  is the smallest set satisfying: 
(a) c ~ ~ , ~ ( A s ) ~ I I ~ ~ ( A s )  and 
(b) If A E C ~ ~ , ~ ( A S )  then ( 3 x 5  t)A is in C;~+~(AS). 

(3) l l i b , l ( ~ ~ )  is the smallest set satisfying: 
(a) l I A 1 ( A ~ ) 2 C i b ( A ~ )  and 
(b) If A E ~ A ~ ( A S )  then (Vxs  t)A is in n ib , l (~S) .  

T h e  (AS) means alternative sense. Note that  C: is a proper subset of C:(AS) and that  
CA1(AS) is a proper subset of zLl. 

Let R i  be the theory S: plus the c;-replacement axioms. 

Corollary 15: If A is a Cib- or a nib-formula, then there is a *(AS)- or a nib(AS)-formula B 
(respectively) which is provably equivalent to  A in the theory R;. 

Corollary 15 is easily proved by induction on the complexity of A .  Note that  we are 
using the fact that  the function p is zlb-definable. Theorem 14 asserts tha t  S i t  R;. Although 
we don't know if the converse is true, we do  have the following theorem: 

Theorem 16: R i+l t S; 

Proof: by induction on i. For i=l it  is obvious. So assume i 2 2  and R i + l t  S2i-l. By Theorem 
13 it suffices to  show that  Ri+l proves every c:-LIND axiom. 

Let A be any c:-formula. We want to  show 

By Corollary 15, there is a C:(AS)-formula B such that  R i tA(x) -B(x) .  Let B have the form 

where CEII~!~. We assume without loss of generality that  the terms t i  do  not include the vari- 
ables yl, . . . ,yn. Of course x will generally appear in ti. For notational simplicity we assume 
that  n = l  for the rest of the proof and write t(x) instead of tl(x). 

Let D be the formula 

Let u be a new variable. Then,  by prenex operations, 
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Let j be the Clb-definable function satisfying 

Thus,  

Since D E I I ; ! ~ ,  we can use I I i 6 1 - ~ ~ ~ ~ ,  to  get 

Note that  we are justified in using I I i ! l - ~ ~ ~ ~  by our induction hypothesis and by Theorem 13. 
Fin ally, 

Q.E.D. 

2.8. Minimization Axioms. 

We next introduce two new axiom schemas which can be used to  axiomatize Bounded 
Arithmetic. 
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Definition: Let 9 be a set of formulae. The  9-MIN axiom schema consists of the axioms 

where A is any formula in 9. 
The  9-LMIN axioms are given by the schema 

where again A E 9 .  

Theorem 17: Let i> 1.  In the theory s;, 
(a) c:-MIN is equivalent to nib-IND , and 
(b) c:-LMIN is equivalent t o  lI:-PIND. 

ProoJ- T h e  proofs of (a) and (b) are almost identical, so we will prove only (b). 

First, we show that  c:-LMIN ===3 lI:-PIND. Let AE~I:. Then by c:-LMIN , 

and thus 

7(Vz)A (x)AA(O) > ( ~ X ) ( A ( L $ X J ) A ~ A  (z)) 

which is what we needed to  show. 

Secondly, we show lit-PIND ===3 c:-LMIN. Let A(z) be a c:-formula. Let B(z)  be 
the formula (Vy<z)(lA(y)). Now, by lI:-PIND , 

and since A(u)>7B(u) ,  we have 

Since the BASIC axioms imply y < z >  LjyJ5 L$zJ we get 

The  LMIN axiom for A is an immediate consequence of this. 
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Q.E.D. 

By the previous theorem, we can use the minimization axioms instead of induction 
axioms to  axiomatize Bounded Arithmetic. In a more classical setting, Paris and Kirby [21] 
have studied how minimization axioms can be used to axiomatize fragments of Peano arith- 
metic. Paris and Kirby have shown that  c:-MIN and II:-MIN are equivalent with respect to  
a simple open theory P-. However in Bounded Arithmetic we have a different situation. 

Theorem 18: Let i> 1. s~+II:-MIN is equivalent to  s~+c~~,~-MIN.  

Proof: Since II:~c:+~, one direction is trivial. We need t o  show that  II:-MIN + C:+~-MIN 
in the presence of s;. We begin by showing that  s~+II:-MIN proves the c~~,~(As)-MIN 
axioms. 

Let AEC/+~(AS). So A(z)  has the form 

where  BE^: (since i > l ) .  We can assume without loss of generality that  the terms t i  do  not 

include the variables yj. Let B*(X,Y~, . . . ,yn) be the formula 

Let C(w,a) be the formula 

By Theorem 2, C is ~ i - ~ r o v a b l ~  equivalent to  a nib-formula. C asserts that  w is a protose- 
quence coding values for z and y; which witness that  (3z)A(z) is true. Now, 

Since protosequences code entries as fixed length codes, 

So by applying ~:-MIN, we get a minimum value for w which satisfies C(w,a) ( a  is held con- 
stant) .  But now Protop(n+l,w) gives a minimum value for z satisfying A(z). This completes 
the proof that  s~+II~-MIN proves the C~~~(AS)-MIN axioms. 

T o  finish the proof of our current theorem, we must show that  s~+c/+,(As)-MIN 
proves the c~~,~-MIN axioms. It will suffice to  show that  s~+c~~(As)-MIN proves the 

b Ci+l-replacement axioms, since by Corollary 15 a Ckl-formula is equivalent to a 
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b  formula via Xi+l-replacement. The  proof of Theorem 17(a) shows that  
Xib,,(AS)-MIN + II;+,(AS)-IND. Also, s~+~~;+~(As)-IND + C i b , l ( ~ ~ ) - ~ ~ ~  can be shown 
by using the proof of Theorem 5 (this depends on the fact that  the defining equation for sub- 
traction ( )  does not contain any sharply bounded quantifiers.) Clearly, 
Xib,,(AS)-IND =+ C~+,(AS)-LIND. Hence it suffices t o  prove the following lemma. 

Lemma 19: Let i>O.  s~+c~~,~(As)-LIND =+ C;:l-replacement. 

ProoJ- For i=O, this lemma is a consequence of Theorem 14. For i>l,  by Theorems 14 and 
13(a) it suffices t o  show tha t  s~'.+c~(As)-LIND proves tha t  every g l - f o r m u l a  is equivalent 
t o  a Xib,,(As)-formula. The proof of this lemma is a more complicated version of the proof of 
Corollary 15 which we omitted earlier. 

Suppose, for the sake of contradiction, tha t  2 < j < i + l  and tha t  j is the least value for 
which there exists a CI-formula which is not provably equivalent t o  a C;(AS)-formula by 
s;+c~:,(As)-LIND. 

We shall now show that  if BEE! then B is provably equivalent t o  a c](As)-formula. 
I t  suffices to  assume tha t  

where A~ll~!,,  as multiple adjacent existential quantifiers in B can be combined by use of the /3 
function and multiple sharply bounded universal quantifiers can be handled by iterating this 
argument below. 

We prove tha t  B is equivalent t o  the formula Z(lt1) where Z(u) is the formula 

We use the proof of Theorem 14 t o  prove this. The  crucial point of the proof of Theorem 14 
used XI-LIND on the formula Z(u). But how can we use LIND on Z? Well, by our choice of 
j and since AEII~!~, s;+c~~,~(As)-LIND proves that  Z is equivalent t o  a X?(AS)-formula. 
Hence we are justified in using LIND on the formula Z. 

This completes the proof of the lemma and of Theorem 18. 

Q.E.D. 

(Remark: In the original version of this dissertation we erroneously claimed t o  have 
proved Theorems 18 and 20 for i 2 0  instead of i2 1.) 

An important theorem about the minimization axioms is the following. 

Theorem 20: Let i>l. The  c:-MIN axioms are theorems of s;+'. 
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Prooj: Let A(z)  be any  formula. Let B(a,b,c)  be 

Clearly, 

We also claim tha t  

S i t  ~ ( a ) ~ a # 0 ~ b < ~ a ~ ~ ( ~ x ~ a ) ~ ( a , b , x ) ~ ( 3 x < a ) ~ ( a , ~ b , x ) .  

This  is t rue because 

S i t  b < I ~ ~ A B (  a , b , c ) ~ ( 3 ~ < 2 1 ' 1 ~ ( ~ + ~ )  ) A ( c + ~ ) 3 B ( a , S b , c )  

and 

~ 2 ' t  b < l a l ~ B ( a , b , c ) ~ ( V y < 2 1 ~ ~ ( ~ + ~ )  )(-A(c+y))>B(a,~b,c+2I~I~(~+l)). 

These last two results follow from the bit manipulation techniques developed while bootstrap- 
ping s;. Finally, from the  definition of B we have 

Put t ing  the above results together proves the claim. 

Since B is a ~ i : ~ - f o r m u l a ,  we can use C~~,~-LIND on the  formula (3x<a)B(a ,b ,z)  t o  

get 

From this the C~:~-MIN axiom for A is immediate. 

Q.E.D. 

Corollary 21: If i 2 0 ,  s;+' t T;. 

Prooj: For i l l ,  this  follows from Theorems 20, 17(a) and 13(b). For i=O, this is a corollary t o  
the next theorem. 0 
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The  next theorem provides a direct proof of the previous corollary; in fact i t  is some- 
what stronger. Furthermore, the proof does not depend on any of the earlier theorems in this 
section. Recall that  the A: formulae are those provably equivalent to  both a c:- and a 
II>-formula. 

Theorem 22: Let i>l.  The  Aib-IND axioms are theorems of s;. (A> means with respect to 
s; .) 

Proof.- (according to  M .  Dowd [8], the case i=l is independently due to  R. Statman) 

Let A be a formula such that  there are formulae A' in C: and A~ in IIib such that  
S ~ F A - A '  and S ~ F A - A ~ .  Let B(x,z) be the formula 

so B is provably equivalent to  a n;b-formula. We claim that  

sit (V.5 C)B(X,[+~J)>(VZ~C)B(X,~) 

where c and d are new free variables. This is because A(x.-y)>A(x) follows from 
A(x: y ) ~ A ( z l [ $ ~ J )  and A(x- [fYJ)>A(x). SO by ~>-PIND , 

But clearly, (Vx< c)B(x, c)>(A (O)>A(c)) and (Vx)(A(x)>A(Sx))>(Vxi c)B(x,O) are provable in 
s;. Hence, S; proves 

and the desired induction axiom for A follows immediately by a V-introduction, since c is a free 
variable which occurs only as indicated in the last formula. 

Q.E.D. 

2.9. Summary of Axiomatizations of Bounded Arithmetic. 

We briefly summarize some of the results of this chapter. 
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Theorem 13: For all i 2 0 ,  T;+'+ s;+' and s~~+'+ T; .  

Proof: by Theorem 11 and Corollary 21. 

Theorem 14: Let i 2 0 .  In the presence of s2', we have the following implications: 

(b) C&MIN ~ ~ , - M I N  

(c) ~ & ~ - r e ~ l a c e m e n t  + Ci)-PIND + Ci)-replacement. 

Proof: By Theorems 5 ,  6, 11, 13, 14, 16, 17, and 18 and Corollary 21. 



Chapter 3 

Definability of Polynomial Hierarchy Functions 

T h e  previous chapter  investigated several different ways to axiomatize Bounded Arith- 
metic. W e  will now be concerned exclusively with the  fragments  of Bounded Arithmetic 
axiomatized by PIND axioms, t h a t  is to say, with the  theories S;. 

I t  t u rns  o u t  t h a t  using PIND is a very natural  way to define Bounded Arithmetic. 
Indeed, there is a very close relationship between the theories S; and the  polynomial hierarchy. 
W e  discuss par t  of the relationship in this  chapter.  T h e  rest is established in Chapter  5. 

In Chapter  1, we defined a polynomial hierarchy of both predicates and functions. T h e  
classes of predicates were C i ,  I l i  and A i l  where Cf  is NP and A f  is P. In Chapter  1, we 
considered a predicate to be a function with range {0,1) with the  value 0 denoting "false" and  1 
denoting "true". W e  will no  longer follow this  convention; instead, we think of a predicate in 
the usual sense as a property of natural  numbers. 

T h e  classes Ob formed the  polynomial hierarchy of functions. T h e  functions in O i  are 
the  functions which are computable in polynomial t ime by a Tur ing  machine (for computer 
scientists, a transducer) with an  oracle for a predicate in E L l .  Fo r  example, is the  set  of 
functions computable in polynomial time. 

Theorem 1: Let  k 2 l .  Let  j be an  m-ary Ob-function. Let  t(2) be a term (in the  language of 
Bounded Arithmetic) so t h a t  for all 2 € N m ,  j(Z')<t(Z'). Then  there is a Ci-formula A such 
t h a t  

(2) ~ 2 %  (v2)(vY)(vt.)(~(Z' ,Y)~~(Z'lt . )>~=z) 

(3) Fo r  all ?i?€Nm, A(?i?,j(Z')) is true. 

Theorem 1 says t ha t  the theory S: can cP-define all of the  functions which are poly- 
nomial time computable relative to the predicates. W e  will prove the converse of this in 
Chapter  5. 

Prooj: Firs t  we examine the  condition of the  term t bounding j .  Suppose t h a t  (1)-(3) hold and 
t h a t  s (2)  is another  term such tha t  for all 2 € N m ,  j(2)<s(Z'). Let  B be the  formula 
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Then,  
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E true. and for all ?ENm, B(Z',j(?)) ' 

T h u s  it will suffice t o  prove tha t  if j€U{ then there exists some term t such t h a t  (1)-(3) 
hold. We  prove this by induction on the  complexity of t he  definition of j. T o  begin the  induc- 
tion argument we consider functions j in the  se t  B defined in Chapter  1. In the  induction step 
we will consider separate cases for j defined by composition, limited iteration, o r  bounded 
quantification from previously defined functions. 

Case ( I ) :  Suppose jEB. Clearly j can be c/-defined by s2'. 
Case (2): Suppose j is defined by composition as j(?)=g(hl(?), . . . ,hn(?)) where g, 

hl, . . . , h n  are functions in Op and t h a t  s2f can c;-define g, hl, . . . , hn  with the  formulae 

respectively. Let A(?,z) be the  formula 

Then AEC; and for all z;fN, A(z',j(?)) is true. Let t(2) be the  term s( r l ,  . . . ,r,). Then con- 
ditions (1)-(3) of the  theorem hold. 

Case (3): Suppose j is defined from g by bounded existential quantification (i.e. P B 3 ) .  
T h a t  is t o  say, 

{ 1 if (3u55)(g(u,39+0) 
I(') )= 0 otherwise 

Suppose also t h a t  g is ~cb_~-def inable  by 27l-l with the  defining condition 

where A g  is a CL1-formula. Let A(?,z) be 
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Then for all values of 2 ,  A(Z,j(2)) is true. Also A is clearly A;. Let t(B) be the constant term 
1. Then conditions (1)-(3) are satisfied. 

Case (4): Suppose j is defined by limited iteration from g and h with time bound p 
and space bound q .  Also suppose g and h are c:-defined by 5': by the defining conditions 

Define B(w,u) t o  be the formula 

So B(w,u)  asserts t ha t  w codes the first u s teps of the computation of j from g and h ,  where we 
are adopting the convention tha t  if the next iteration step would violate the  space bound q, 
then the computation of j is aborted. I t  is not hard t o  see tha t  

Note tha t  B is a c;-formula since the quantifier (Vi<u)  is equivalent t o  a sharply bounded 
quantifier. S o  by c/-PIND , 

Also, 5': proves tha t  this sequence w is unique by the use of c/-LIND on the  length of w. S o  
let A(3,y)  be the formula 

Let t(2) be 2'l(PI). Then conditions (1)-(3) hold. 

Q.E.D. 

W e  have a similar theorem regarding the definability of A g  predicates in 5':. 

Theorem 2: Let  k >  1.  Let Q be an m-ary A{ predicate. Then there are formulae A and B in 
C /  and ll:, respectively, so  t h a t  

(1) 5':t (v2)(A(2)*B(2)) 
(2) For  all SEN m, A ( S ) e B ( ? i )  Q(S). 
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Proof.- Let f be the O{ function defined by 

Let t(2) be the constant term 1. Let Af be a xi-formula satisfying (1)-(3) of Theorem 1. 
Define A and B t o  be 

Then A E C ~  and  BE^: and the theorem is proved. 

Q.E.D. 

If we consider the case k=l ,  we get 

Corollary 3: Every polynomial time computable function and polynomial time computable predi- 
cate can be introduced in 5'; with a defined function or predicate symbol and used freely in 
induction formulae (if i> 1). 

Proof.- By Theorems 1 and 2 above and Theorems 2.2 and 2.4. 13 



Chapter 4 

First-Order Natural Deduction Systems 

This chapter introduces the use of natural deduction systems for first-order Bounded 
Arithmetic. Up t o  now we have not been specific about the syntax for our framework of first- 
order logic; but  in order t o  obtain further results we shall have to  make a precise definition of 
our first-order syntax and rules of deduction. The  system we adopt is a modified version of 
Gentzen's natural deduction calculus LK [13]. An excellent reference for this system is the first 
half of Takeuti [28]. Several of our proofs will refer to  details of proofs in Takeuti  1281. 

Natural deduction systems provide a very elegant framework for proof-theoretic argu- 
ments; they are especially advantageous for proofs which utilize Gentzen's cut elimination 
theorem. 

4.1. Syntax and Rules of Natural Deduction. 

Natural deduction uses the following types of symbols: 

(I) Constants; for example, 0.  

(2) Relations; for example, 5 and =. 
(3) Functions; for example, S , + , . , # , ~ ~ z ] ,  and 1x1. 

(4) Free variables; denoted by a,b ,c ,  . . . 
(5 )  Bound variables; denoted by z,y,z, . . . 
( 6 )  Propositional connectives; A,V,>,  and 1. 

(7) Bounded quantifiers; V 5  and 35. 
(8) Unbounded quantifiers; V and 3 .  
(9) Parentheses. 

(10) Sequent connective; 

(11) Comma. 

Terms are built up  from constants, free variables and functions. Formulae are defined 
as usual. An atomic formula is a formula which contains no quantifiers or  propositional connec- 
tives. An open formula is one which contains no quantifiers. A term or formula is closed iff it 
contains no free variables. 
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A series of formulae separated by commas is called a cedent. If r and A  are cedents 
then r + A  is a sequent. T h e  antecedent and succedent of r + A  are r and A respectively. 
T h e  intended meaning of r + A  is t h a t  the  conjunction of t he  formulae in r implies the  dis- 
junction of the  formulae in A.  Although their meanings are similar, 1 and -+ have very 
different syntactic roles. 

I t  should be noted there is a distinction between bound and free variables. T h e  set of 
variables which may appear free in a formula is disjoint from the  set of variables which may 
appear bound in a formula. Th i s  is different from the  usual conventions of first-order logic, but  
it does make the  syntax more elegant. We  use a,b,c, . . . and z,y,x, . . . both as variables and 
a s  metavariables. 

An inference is the  deduction of a sequent from a set  of sequents. An inference is 
denoted pictorially by 

which means t h a t  A is deduced from B or from B and C (each of A ,  B and C is a sequent). 

T h e  rules of natural  deduction are listed below. r', I l l  A and A  are used t o  denote 
(parts  of) cedents, A and B are arbitrary formulae and s and t are arbitrary terms. 

(3) (Con traction:left) 

(4) (Con tractionxight) 
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(9) (A:left) 

and 

(12) (v:right) 

and 
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(1 6) (V: righ t )  

where a is a free variable which may not appear in the lower sequent of the infer- 
ence. 

where a is a free variable which may not appear in the lower sequent of the infer- 
ence. 

where a is a free variable which may not appear in the lower sequent of the infer- 
ence. 
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where a is a free variable which may not appear in the lower sequent of the infer- 
ence. 

T h e  inferences (1)-(6) are called structural injerences. Rules (7)-(22) are the logical 
injerences: (7)-(14) are the  propositional injerences and (15)-(22) are the quantifier injerences. 
T h e  formula A in the cut  inference is called the cut jormula. T h e  variable a in inferences (16), 
(17), (20) and (21) is the eigenvariable of the inference. T h e  eigenvariable of an inference must 
appear only as indicated, or equivalently, must not  appear in the  conclusion of the inference. 

In inferences (7)-(22), the  lower sequent contains a newly formed formula which did not 
appear in the  upper sequent. This  new formula is called the principal jormula of the inference. 
T h e  principal formula of an inference is always formed by using one o r  more formulae from the 
upper sequent(s) and by using either a logical symbol o r  a quantifier. T h e  formula(e) in the 
upper sequent(s) from which the principal formula is constructed is (are) called the auxiliary 
jormula(e). For example, -A and (3x<s)A(x) are the principal formulae of inferences (7) and 
(22) respectively and their auxiliary formulae are A and A(t )  respectively. 

A logical aziom is a sequent of the form A-A where A must  be an  atomic formula. 
An equality axiom is a sequent of the form -+ t l=t l ,  

where the ti's and st's are arbitrary terms and j or p is any n-ary function or  predicate symbol. 

A proof is a tree of sequents written so tha t  the root of the tree is a t  the bottom. The  
leaves of the tree are called initial sequents and must be either equality axioms o r  logical 
axioms. Every other sequent in the tree together with the sequents immediately above it must 
form a valid inference. T h e  root of the tree is called the endsequent and i t  is the formula 
proved by the proof. 
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Definition: The  natural deduction described above is called LKB. (Gentzen's original system 
LK was defined similarly to  LKB except without equality axioms and without bounded 
quantifiers.) 

Definition: A bounded jormula is one which contains no unbounded quantifiers. A bounded 
sequent is a sequent which contains only bounded formulae. A bounded proojis  a proof which 
contains only bounded sequen ts. 

Proposition 1: LKB is consistent, sound and complete. 

Proof: T h e  soundness and consistency are obvious. We know tha t  LK is complete so it will 
suffice to  show that  all properties of bounded quantifiers are theorems of LKB. 

I t  is easy t o  show tha t  for all formulae A ,  LKB proves A + A .  So consider the fol- 
lowing two LKB -proofs: 

and 

a < t , a < t > A ( a ) + A ( a )  

a <  t,(Vz)(z< t>A(z))+A(a) 
(Vz)(z I t 3 A  (z)) + (Vz < t)A (z)  

So LKB proves (Vz)(z<t>A(z) )*(Vz<t)A(z) .  By similar proofs, LKB proves that  
( 3 x 5  t)A(z) is equivalent t o  (2z)(z< t ~ A ( z ) ) .  But now since LK is complete, so is LKB. 

Q.E.D. 

4.2. Bounded Arithmetic. 

We next define how systems of Bounded Arithmetic are handled by natural deduction. 
We must specify how axioms are treated and we must define additional rules of inference. 
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Definition: T h e  induction inferences are: 

( 1 )  c:-IND inference. 

where A is any c:-formula, t is any term and a is the eigenvariable and must  not 
appear in the lower sequent. 

(2) C;b-PIND inference. 

with the same provisos as above. 

(3) c:-LIND inference. 

r ,A(a )+  A(Sa) ,A 

rlA(o)-+A(ltl)lA 

where, again, the same provisos apply. 

If 9 is any set  of formulae, we define the W I N D ,  9-PIND and 9-LIND inference rules in 
the same manner. 

Definition: Let A(al ,  . . . , ak)  be a formula with all of A ' s  free variables as indicated. We say B 
is a substitution instance of A iff B=A(tl,  . . . , tk)  for some terms t,, . . . , tk .  

Definition: When working in a theory with axioms, we enlarge the notion of proof t o  allow ini- 
tial sequents of the form + A  where A is any substitution instance of an axiom. 

Definition: 
(a) S; is the  natural deduction theory with the BASIC axioms and the C i b - ~ I N D  induction 

inferences. 
(b) T ;  is the natural  deduction theory with the BASIC axioms and the Cib-IND induction 

inferences. 

Theorem 2: ( i20 ) .  T h e  c:-IND (respectively, c:-PIND , c:-LIND ) rule is equivalent t o  the 
c:-IND (respectively, c:-PIND , c:-LIND ) axioms. Hence the new definitions of S; and 
Tz) agree with the definitions given earlier in Chapter  2. 

Proofi I t  suffices t o  show tha t  the induction axioms are consequences of the corresponding 
induction rule (the converse is obvious). We show tha t  the c:-IND rule can derive the 
c:-IND axiom and leave the other cases to  the reader. 
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Let A be any  formula, and let a and b be any free variables not appearing in A .  
Then we can derive the IND axiom for A by: 

A(a)-+A(a) A(Sa)-+ A (Sa) 
A(a)>A(Sa),A(a)-+ A(Sa) 

(Vz) (A(z)>A(Sz) ) ,A(a) -+A(Sa)  
(Vz)(A(z)>A(Sz)) ,A(O)-+A(b)  
(Vz)(A (z)>A(Sz)),A(O)+ (Vz)A(z) 

A ( O ) A ( V ~ ) ( A ( ~ ) ~ A ( S ~ ) ) , A ( O ) - +  (Vz)A(z) 
A ( O ) , A ( O ) A ( V ~ ) ( A ( ~ ) > A ( S ~ ) ) +  (Vz)A(z) 

A(O)A(V~)(A(~)>A(S~)),A(O)A(V~)(A(~)>A(S~))-+ (Vz)A(z) 
A(O)A(V~)(A(X)>A(SX))-+ (Vz)A(z) 

-+ A(O)A(VZ)(A(X) >A (Sz))>(Vz)A(z) 

Q.E.D. 

As the above proof shows, natural deduction proofs often can be quite awkward t o  
write out  in complete detail. Generally, we shall find it easier t o  argue informally when we wish 
to  show t h a t  a statement is provable. 

However, the advantage of natural deduction is tha t  it provides an elegant framework 
for proof by induction on the  complexity of proofs. Generally speaking, natural deduction sys- 
tems are not a good system with which to  prove a theorem; but  they are very good for showing 
tha t  certain things are not provable. 

One extremely useful property of natural deduction systems is t ha t  proofs can always 
be pu t  in a normal form. T h e  most important normal form is Gentzen's Hauptsatz, the cut- 
elimination theorem, which is discussed in the next section. 

4.3. Cut Elimination. 

T h e  cut  elimination theorem is the most fundamental property of natural deduction 
systems. T h e  cut  elimination theorem was first proved by Gentzen [13] and is sometimes 
referred to  as Gentzen's Hauptsatz. 

Before we can s ta te  the cu t  elimination theorem in its most general form, we need 
some more definitions: 

Definition: Suppose C is a formula which appears in a given sequent in a proof. T h e  successor 
of C is a formula in the  sequent directly below the sequent C appears in. T h e  successor of C 
is defined according t o  the following cases: 

(1) If C is in the endsequent of the proof or  if C is the cut  formula of a cu t  inference, then 
C has no successor. 
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(2) If C is the auxiliary formula of an inference, then the principal formula of the inference 
is the successor of C. 

(3) If C is one of the formulae A o r  B in an exchange inference, the successor of C is the 
formula denoted by the same letter in the lower sequent of the  inference. 

(4) If C is the k-th formula in a sub-cedent r, A ,  II or  A of the upper sequent of an infer- 
ence, then the successor of C is the k-th formula in the corresponding sub-cedent of 
the lower sequent of the inference. 

(5) If C is the  auxiliary formula on the right o r  left side of an induction inference, then the 
successor of C is the principal formula on the right o r  left side respectively. 

Definition: Let C and D be occurrences of formulae appearing in a proof. Then C is an ances- 
tor of D if there are occurrences C1, . . . ,C, of formulae in the proof such tha t  C1 is C ,  each 
Ci+l is the successor of Ci and D is the successor of C,. 

We say tha t  C is the direct ancestor of D iff C is an ancestor of D and C and D are 
occurrences of the same formula. This  means tha t  in the sequence of successors linking C t o  
D l  the formulae are never modified by an inference. 

If C is an ancestor of D l  then we call D a descendant of C. If C is a direct ancestor 
of D then D is a direct descendant of C. 

Definition: A formula C appearing in a proof is free iff i t  is not the case tha t  C has a direct 
ancestor which either is a principal formula of an induction inference o r  is in an initial 
sequent. 

A cut  inference is free iff both of the cut  formulae in the upper sequents are free. 

Remark: We have defined ('free cut" somewhat differently from the way Takeuti  [28] does. 
However, the effect of our definition is the same since we required the logical axioms t o  be 
atomic. T h e  advantage of our definition is t ha t  it allows us t o  discuss theories which have 
non-logical axioms which are not  open. We shall discuss such theories briefly in Chapter  8. 

We are now ready to  state the cut  elimination theorem: 

Theorem 8: (Gentzen) Suppose I'+ A is provable in S; or T; by a proof P .  Then there is a 

proof P* of I ' j  A in the same theory such tha t  P* does not have any free cuts. Further- 
more each principal formula of an induction inference in P* is a substitution instance of a 
principal formula of an induction inference in P .  

Proofi This  is proved by exactly the same proof as in Takeuti  1281, pp. 22-29, 111-112. All tha t  
is needed is t o  add additional cases for the bounded quantifier inferences. This  is straightfor- 
ward and we omit it .  
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Corollary 4: (Gentzen) Suppose r + A  is provable in LKB. Then l?+A is provable by a 
proof P such tha t  every cut  formula in P is atomic. 

Definition: A proof is cut free iff no  cut  inferences appear in the  proof. A proof is free cut free 
iff i t  has no  free cuts. 

T h e  proof of Theorem 3 is constructive and gives an effective method of finding P* 
from P. In fact, the algorithm which accepts P as input  and constructs P* is primitive recur- 
sive. However, it is not  elementary recursive. 

Corollary 5: Let i 2 0 .  Let r and A  be cedents of c;- and nib-formulae and suppose r + A  is 
provable in S; or  Ti. Then there is a proof P of l?+A in S; or  T; (respectively) such 
t h a t  every formula in P is in CtUlIib.  

Proof: We pick P t o  be a free cu t  free proof of r + A .  Suppose C is a formula in P and tha t  
CeCibuIIib. Then C can not  have been either the principal formula of an induction inference or 
a direct descendant of a formula in an  initial segment. Hence C is free and all of the descen- 
dan t s  of C must  be free. Since P is free cut  free, some descendant of C must  appear in the 
endsequent. However no descendant of C can be in C t u l I i b  and  this contradicts the hypotheses 
of the  theorem. T h u s  all formulae in P must be in Cibunib.  

Definition: A cu t  inference is inessential iff i ts  cut  formula is atomic. 

W e  shall sometimes use an inessential cu t  in the  construction of a free cu t  free proof. 
This  is always permissible since the  cut  formula is atomic and any atomic formula in a proof 
must  be  introduced either by an axiom or by a (Weak:left) o r  a (Weakxight) inference. In the 
first case the  inessential cut  is a free cut.  In the  second case the  inessential cu t  is superfluous in 
tha t  the  proof can be simplified by removing the  inessential cut; this is done by deleting the 
Weak inferences which introduced the cut  formula and then replacing the  inessential cu t  by 
Weak inferences. 

Hence we can, without loss of generality, allow arbitrary inessential cu ts  t o  appear in 
free cu t  free proofs. 

4.4. Further Normal Forms for Proofs. 

W e  define some more syntactic properties of proofs. 

Definition: Let P be a proof with endsequent r + A .  T h e  free variables in r + A  are called 
the  parameter variables of P. 

W e  say t h a t  P is in weak free variable normal form iff for each free variable a in P 
there is an elimination inference such tha t  

( 1 )  a is in t he  upper sequent(s) of i ts  elimination inference, 
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(2) a appears in P only above its elimination inference, and 

(3) if a appears in a sequent S of P ,  then a appears in every sequent between S and a's 
elimination inference, 

with the  exception tha t  if a is a parameter variable, then we think of the  elimination infer- 
ence for a as being an imaginary inference directly below the  endsequent of P .  

An alternative, equivalent definition is t ha t  P is in weak free variable normal form iff 
for each free variable a in P ,  the  inferences of P which contain a in an  upper sequent form a 
connected subtree of P .  

Proposition 6: Let P be a proof in weak free variable normal form and let a be a free variable in 
P which is not  a parameter variable. Then the  elimination inference of a must  be a (b':right), 
(b'<:right), @:left), (3<:left), (V:left), (3:right), or  Cut inference. 

Prooj: This  is immediate from the syntax of the  inferences for Bounded Arithmetic. 

In fact,  we can further require t h a t  the elimination inference is not  a (b':left), (3:right)) 
or Cut inference: 

Proposition 7: Let P be a proof in weak free variable normal form. Suppose a is a free variable 
in P and the  elimination inference for a is a C u t ,  (V:left) or  (3:right) inference. Then if we 
replace every occurrence of the  free variable a in P by the constant symbol 0 (zero), we still 
have a valid proof of the same endsequent. 

Proofi Examination of the syntax of the inference rules shows t h a t  when we carry ou t  the 
replacement of a by 0, the  altered proof is still a valid proof. 

Definition: A proof P is in free variable normal form iff P is in weak free variable normal form 
and for every free variable a appearing in P ,  the  elimination inference for a is not  a C u t ,  
(V:left) or (3:right) inference. 

Proposition 8: 

(a)  Suppose P is a proof of r + A .  Then there is a proof P* of r + A  such t h a t  P* is in 
free variable normal form. 

(a)  Suppose P is a proof of r + A .  Then there is a proof P* of r + A  such t h a t  P* is in 
free variable normal form and P* is free cu t  free. 

Prooj: 
(a) P can be transformed t o  the desired P* by renaming free variables and using Proposition 

7. 
(b) First use the  cu t  elimination theorem t o  obtain a free cu t  free proof Q of r+ A. Then 

obtain P* by renaming free variables and using Proposition 7. 

Q.E.D. 
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4.5. Restricting by Parameter Variables. 

T h e  results of this section are somewhat technical in nature. They will be used only in 

the two sections of Chapter 4 immediately following. 

Definition: Let P be a proof. We say tha t  an induction inference in P is restricted b y  parameter 
variables iff i t  has the form 

where the  only free variables in the term t are parameter variables of P. 
W e  say P is restricted b y  parameter variables iff every induction inference in P is 

restricted by parameter variables. 

Theorem 9: Let r + A  be a bounded sequent which is provable in one of the theories S2 or T2. 
Then  there is a bounded proof of r + A  in the same theory which has no free cuts, is in free 
variable normal form and is restricted by parameter variables. 

Before proving Theorem 9, we introduce a new metafunction a which lets the proof 
apply t o  slightly more general theories. As a bonus, the use of a may make the proof somewhat 
easier t o  understand. 

Let R be any theory of arithmetic. W e  define a metafunction a which maps terms of 
the language of R t o  terms. Suppoee t l ,  . . . ,tk are terms with variables a l ,  . . . ,a,. Then 
a [ t l ,  . . . ,tk] is a term with the same variables. Furthermore, if l < i < k ,  

must be provable from the axioms of R without the use of any induction inferences. 

Obviously the metafunction a depends on the theory R, and indeed, for a given theory 
R there are many a's satisfying the above conditions. T h e  exact choice for a is not  too impor- 
tant ,  but  a should be as simple and as constructive as possible. 

If R is one of the theories S2 or T2, we have a particularly simple definition for a. 
Define 
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a [ t ]  = t 

This  definition works since each function symbol of Bounded Arithmetic is nondecreasing in 
each of i t s  variables. 

If we enlarge S2 o r  T2 t o  include function symbols for polynomial hierarchy functions, 
we can still define a.  T h e  defining equation for a function of t he  polynomial hierarchy must 
include an  explicit bound on  the size of the  function. These bounds can be used to  define a. 

Theorem 9 is s tated only for S2 and T2; however our  use of the  o metafunction means 
the  proof holds for theories with a larger language. 

Proof: of Theorem 9. 

We  shall give the  proof for t he  theory S2. Minor modifications are all t h a t  is needed t o  
handle T2 and we leave them t o  the  reader. 

By Proposition 8, there is a proof P of I'+A with no free cu ts  and  in free variable 
normal form. We shall modify P t o  be restricted by parameter variables. 

Let t he  parameter variables of P be c l ,  . . . , c p .  Let bl ,  . . . ,bn be the  other  free vari- 
ables in P. Since P is in free variable normal form, each bi has  a unique elimination inference; 
we assume without loss of generality t h a t  if the  elimination inference for bi is below the  elimina- 
tion inference for bj  then i < j  (if not,  reorder the hi's), Note t h a t  two variables can not  have 
the same elimination inference since we are assuming P is in free variable normal form. 

W e  define u l ,  . . . ,un t o  be terms s o  t h a t  the  free variables of ui are the  parameter 
variables t. We define ui by induction on i according t o  the following two cases. 

(1) Suppose the  elimination inference Ji of bi is (V<:right) o r  @<:left). T h a t  is, Ji is either 

where the term s i  may contain the  free variables bl ,  . . . ,bi-l and may also contain the 
parameter variables c l ,  . . . , c p .  Then define ui = a [ s i ] ( u l ,  . . . , u ~ - ~ ) .  
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(2) Suppose the  elimination inference Ji of b i  is an induction inference. S o  Ji is 

Again, define u i  = u[s i ] (u l ,  . . . ,uiM1). 

P will be modified t o  obtain a proof P *  with the  same endsequent which is restricted 
by parameter variables. We  will d o  this in two steps: first we form P' by changing each sequent 

in P ;  however, P' may not  be a valid proof so  we fix up  the  illegal inferences in P' t o  get P* .  

P' will have exactly the same structure as P and each sequent in P' is built from the 
corresponding sequent in P. Let n + A  be a sequent in P. Let bil, . . . ,bim be the  free vari- 

ables of P which have elimination inference below n+A.  Let B be the  cedent 

T h e  sequent in P' corresponding to  n-+A is E,n+A. So P' is formed from P by adding 
bi<ui t o  every sequent above the  elimination inference of bi, for i=l, . . . ,m. T h u s  the  endse- 
quent of P' is the  same as the  endsequent of P. 

W e  now modify P' t o  obtain a valid proof P* .  I t  is easy t o  verify t h a t  there are 
exactly five ways in which P' fails t o  be a proof: 

(I*) T h e  initial sequents of P' are not  valid initial sequents. An initial sequent of P' has the 
form 

where n + A  is a valid initial sequent. In P * ,  this initial sequent is replaced by the  ini- 
tial sequent l l+A and m (Weak:left) inferences. 

(2*) Let I be a cut  inference in P. T h e  corresponding inference P in P' will be of the  form 

Unless B is the  empty cedent, this is not  a valid inference. In P *  th is  inference is 
replaced by I*: 
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where the double bar  denotes a sequence of (Exchange:left) and (Contraction:left) infer- 
ences. 

(3*) Let b i  be a free variable in P with a (V<:right) elimination inference J;. T h e  correspond- 
ing inference J f  in P' is 

where 5; is the  cedent containing the  formulae b j<uj  for all bj with elimination inference 

below J; in P. Clearly, J f  is not  a valid inference. In P *  we replace Ji by J:: 

T h e  first inference is a Cut inference. T h e  sequent B;,b;<s;-+ b iLu i  is provable by the 
definition of the  a metafunction. T h e  double bar between the  second and third sequents 
indicates a sequence of inferences; in this case, a sequence of contraction and exchange 
inferences. 

Since the cut inference is inessential it may be assumed without loss of general- 
ity t o  be free (since if not, it could be eliminated from the  proof). 

(4*) Suppose b; is a free variable in P with a (]<:left) inference as i ts  elimination inference J i .  

We  construct Jf as the  corresponding inference in P *  by a construction similar t o  Case 

(3*). 

(5 * )  Let bi be a free variable in P with an induction inference J; as  its elimination inference. 
T h e  corresponding inference J f  in P' is: 

Clearly this is not a valid inference and in P *  we replace it by Jf: 
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where d i  is a new free variable and the sequents (P), (r) ,  and (6) used in the  Cut infer- 
ences are: 

Note t h a t  these cuts  are free since the cut  formula is a direct descendent of an  induction 
inference o r  of a formula appearing in an initial sequent. Also note t h a t  the PIND 
induction in P* is restricted by parameter variables since the only free variables in ui are 
C1, . . . , C p .  

This completes the construction of the desired proof P*.  

Q.E.D. 

I t  is not  a t  all obvious tha t  Theorem 9 holds for the theories S; and T; instead of S2 
and T2. In fact, i t  almost certainly does not hold for S: and T:. However, it does hold for S; 
and T; when i l l .  The  author surmises (without proof) t ha t  it holds for S: and T i ,  bu t  t o  
prove this seems t o  require a more careful treatment of the foundations of Bounded Arithmetic 
than we gave in Chapter  2. A t  any rate, Theorem 9 as stated above suffices for our  purposes in 
Chapter  7. 
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4.6. Polynomial Size, Induction Free Proofs. 

This  section establishes the following result: Suppose A(Z) is a bounded formula prov- 
able in S2 where Z indicates all the free variables of A .  Then there is a deterministic po lyne  
mial time algorithm P such tha t  for all 3 € N P ,  P ( 3 )  is the Godel number of a proof of 
( I  . . . , Inp),  w e e  the proof P ( t )  is bounded and contains no induction inferences. T o  

restate this informally, we can say t h a t  if A is bounded and if S2 t  (VZ)A(Z) then for each n 
there is a "short," bounded, induction free proof of A@). 

T h e  results of this section are interesting in their own right; however, we wish t o  apply 
them in Chapter  7 t o  Godel incompleteness theorems. Accordingly, it is important t o  note tha t  
all the proof theoretic arguments below are constructive and part  of these arguments can be for- 
malized in s;. 

Theorem 10: Let I'+A be a bounded sequent provable in S2. Let al,  . . . , ap  be the free vari- 
ables in r + A .  Then there is a p-ary polynomial time function j such tha t  for all 3eNPJ 
j(X) is the Godel number of an So-proof of F(In1, .  . . , Inp)+A(Inl ,  . . . , Inp)  which is 

bounded, does not contain any induction inferences and is in free variable normal form. 

Recall t ha t  I, is a term with value n such tha t  the  length of I, is proportional t o  In[. 
T h e  theorem would certainly be false if ~ ( " b  were used instead of I, since the length of ~("10 is 
exponential in the length of n .  

Proof: By Theorem 9 there is a bounded proof P of I'+A which is restricted by parameter 
variables and is in free variable normal form. The  idea behind the theorem is tha t  given values 
nl,  . . . , np  for al l  . . . ,ap,  we can expand each induction inference in P into a series of cuts. 

The  proof of Theorem 10 is by induction on the number of inferences of P. T h e  only 
interesting case t o  consider is when the final inference of P is an induction inference; so  let the 
final inference in P have the form 

where the only free variables in t are the d. We eliminate the induction inference by replacing 
i t  with 2.lt(?i)l.-l Cut inferences. Specifically, if m is the value of t ( t ) ,  form the Inal+l terms 
I,, . . . ,IMSp(,,i), . . . ,Im. By the induction hypothesis, there is a deterministic polynomial time 
function h(d,b) which computes the Gijdel number for an induction free, bounded proof in free 
variable normal form of r , A  ( L ~ I b ] ) - 3 A ( I b ) , A .  By invoking h repeatedly we can obtain proofs 

of each of the sequents 

I t  is also easy t o  construct a proof of A(IMsp(m,i+l))-+=A(L~IMsp(m,i)J) for a11 i .  Then we join 
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these sequents together with 2 . ( m ( l l  cuts  (and a lot of exchanges and contractions) t o  obtain a 
proof of I',A(O)-A(Im),A. Since for every term t there is a polynomial p t  such tha t  
pr(lZl)21t(Z)l for a11 Z ,  this procedure is a polynomial time procedure. 

I t  is also important t o  see tha t  if t is any term, then there is a deterministic polyno- 
mial time function g t  such tha t  gt(?t) is the G d e l  number of an induction free proof of 
Im=t(Inl ,  . . . ,Inp). W e  shall prove this last sentence as part  of Lemma 7.5. Thus  there is a 

polynomial time procedure which produces an induction free proof of 

We combine this with the proof of I',A(O)-A(I,),A obtained above. This  yields an  induction 
free, bounded proof of I',A(O)-A(t(Inl, . . . ,Inp)),A. By renaming free variables we can ensure 

tha t  the proof is in free variable normal form. 

Q.E.D. 

4.7. Parikh's Theorem. 

T h e  next theorem is originally due t o  Parikh [20]. Parikh gave a proof-theoretic proof 
and, later, a simpler model-theoretic proof was found. However, we present a proof theoretic 
proof here since we have already developed most of the necessary machinery anyway. 

If a theory proves (Vz)(3y)A(z1y) we regard this as a proof tha t  there is a total func- 
tion j such tha t  for all z ,  A ( z  f(z))  holds. Parikh's theorem states tha t  a function defined in 
this way can be bounded by a term of Bounded Arithmetic, provided tha t  A is a bounded for- 
mula. 

Theorem 11: (Parikh) Let i>O.  Suppose tha t  A is a bounded formula and tha t  S; or T ;  
proves ( '~5?)(3y)A(Z',~). Then there is a term r(Z') such tha t  the same theory proves 

( V a g Y  5r (Z) )A(21~) .  

Prooj: By Proposition 8 there must be a free cut  free proof P in free variable normal form of 
the sequent + (3y)A(Tly). I t  is easily seen tha t  every formula in P is either (3y)A(Zly) or  is 
bounded. Furthermore, every occurrence of (3y)A(Z,y) is in the antecedent. T h u s  the only 
inferences in P involving unbounded quantifiers are (3:right) inferences which introduce the for- 

mula (3Y)A(t,Y). 
W e  modify the proof P as follows: 

Step (1): First,  we will mimic the proof of Theorem 9 t o  obtain a proof P". Let all notation be 
as in the proof of Theorem 9. T h e  construction of P' can be carried ou t  on P since the 
only unbounded quantifier inferences of P are @:right) inferences and since P is in free 

variable normal form. P" is obtained from P' in much the same way as P* is. Recall tha t  
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P *  was defined by the Cases (I*)-(5*). P" is defined from P' by Cases (1")-(5"). Cases 

(1")-(4") are the  same as (I*)-(4*). T h e  fifth case is: 

(5") Suppose the  inference Ji in P' is: 

Clearly this  is not a valid inference and in P" we replace i t  by Ji ' :  

where (7) is the  sequent A i(O)+ L+o] 5 u i>A i(L+O]) and (6) represents 

I t  is easy t o  verify t h a t  P" is free cu t  free and in free variable normal form and t h a t  the 
endsequent of P" is the  same as the  endsequent of P. 

Step (2): Wherever a (3:right) inference occurs in P", of t he  form 

W e  replace this inference with: 

E,r+ A , A ( ~ ,  t(g)) 
E- t($)<a [t] (2) t(a)<a [ t ] ( g ) . ~ , r ~ ~ , ( 3 y < ~ [ t ] ( i i ) ) ~ ( ~ , y )  

S,B,I'+ A,(3y<a [t] (?f))A(t,y) 

B,r+ A1(3y<a [t] (g))A(Z, y) 
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We also replace all the descendants of (3y)A(t ,y)  in P" by (3y<a[ t ] (J ) )A(t1y)  as far down 
as possible: which means all the descendants either down to  the end of P" or down t o  a 
contraction inference with (3y)A(Z,y) as principal formula. 

Step (3): After doing Step (2) as often as possible, we handle contractions. Suppose the 

modified proof contains 

We replace this by first deriving 

and 

We now use two cuts and a contraction to get: 

We now replace the descendants of the original formula (3y)A(t1y) as far down as possible 
in the proof, just as we did in Step (2). 

We iterate Step (3) as often as possible. 

The  end result of the above construction is a proof of (gy<r)A(Z,y) for some term r .  

Q.E.D. 

The  restriction in Parikh's theorem that  A be a bounded formula is necessary as the 
following counterexample shows. Let A be the formula 

Then LKB proves (Vz)(3y)A(zly). But there is no term r of Bounded Arithmetic such that  
(Vx)(3y< r)A(x,y) is true. 



Chapter 5 

Computational Complexity of Definable Functions 

This chapter  is concerned with establishing the  converse t o  Theorem 3.1, which stated 
t h a t  any function in O/=PTC(C,P_l) can be xib-defined in s;. Theorem 3.1 was proved by a 
straightforward construction of t he  c:-formula from the  definition of a 0:-function. T h e  con- 
verse is a deeper result and  i ts  proof depends strongly on the cut-elimination theorem. 

Th i s  chapter  deals only with first order theories of arithmetic. Second order theories of 
arithmetic are treated in Chapters  9 and 10. 

Theorem 1: (The Main Theorem). Let i2l. Suppose S ~ ~ ( V Z ' ) ( ~ ~ ) A ( Z ' , ~ )  where A(Z',y) is a 
xi)--formula and Z' and y are t he  only free variables of A .  Then there is a term t(3), a 
c:-formula B and a function g in 0: so  tha t  

(1) sit (~Z')(~Y)(B(Z',Y)~A(Z',Y)) 
(2) sit (W)(~Y)(V~. ) (B(~,Y)AB(~,~ . )~  y=t.) 

(3) sit ( v 3 ) ( 3 ~ 1 t ) ~ ( d , Y )  
(4) Fo r  all 3 ,  N + B(S,g(?i)). 

Corollary 8: Suppose j is a function zib-definable by s;. Then j is a 0:-function 

Corollary 2 is an immediate consequence of Theorem 1. T h e  proof of Theorem 1 is the 
rest of this chapter.  

5.1. Witnessing a Bounded Formula. 

Before we can prove Theorem 1, we need some preliminary definitions. 

Definition: Suppose i2l and A is a ~ i ) - fo rmula  and d is a vector of free variables which 
includes all t he  variables free in A .  We  define below a formula witness%'(w,d) which is A: 
with respect t o  SL T h e  definition is by induction on the complexity of A .  

b (1) If A is a or  a nibl-formula, then we define 
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( 2 )  If A is BA C, then we define 

witness;.'( w , ~ )  w witnessj '(~1,  W) ,Z )A  witnessg'(p(2, w ) , ~ )  

(3) If A is BvC, then we define 

Witness;.'(w ,a) WitnessJ'(p(1, W ) , X ) V  Witness jZ(/3(2, w),X) 

6 (4) If A is not in c ~ - ~ u I I ~ ~ ~  and A(d) is (Vz< (s(d)l)B(X,z), then we define 

Witness f"(w,d) Seq(w)ALen(w)=ls(d)l+lA 

n(Vz< ls(d)l) ~itness,$$,:)(p(z+l, w),d,z) 

T h u s  w witnesses A(d)  iff w=<wo, . . . ,wlel> and each wi witnesses B(d,i). 

(5) If A is not  in c ~ ! ~ u I I ~ ~ ~  and A is (3x<t(d))B(d,x), then we define 

witnessJz(w,a) ,L". Seq(w)hLen(w)=2Ap(l , w)< t(3)A 

A ~itness,.@:)(~(2, w ) , d . ~ ( l ,  w)) 

So w witnesses A iff w=< n,v> where n<t and v witnesses B(d,n). 

(6) If A is not in E~!~uII~!~ and A is -B, then we define witness;.' by using logical 
prenex operations to transform A so tha t  i t  can be handled by cases (1)-(5).  
Specifically, if A is -(-B),  -(BAC ), -(BvC), -(Vz< t)B or  -(3z< t)B then let A* be 
B, (-B)v(-C), ( ~ B ) A ( -  C),  (3x5  t)(-B) or  (Vz< t)(-B) respectively. Then 

T h e  idea behind defining witnessi' is t ha t  having a w such tha t  ~l tnes s~~ ' (w ,d )  is a 

canonical way of verifying tha t  A(2)  is true. I t  is not difficult to see tha t  (3w) Witness ft'(w,Z) 
is equivalent t o  A(d)  when A E C ; ~ .  Indeed, this is provable by s ~ ~ :  

Proposition 3: Let i>l .  Let A be any c:-formula with free variables among 3. Then: 

(a) S: F Witnessj'(w,d) >A (3) 

(b) There is a term tA such tha t  
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(c) Furthermore, there is a OI-function g~ which is C/-definable in S: such tha t  

Proof.. 
(a) Th i s  is easy t o  show by induction on the complexity of A .  
(b) This  is also proved by induction on the complexity of A .  Cases (1)-(3) and (6) of the 

definition of Witnessi' are easily handled. T h e  other two cases are as follows: 

Case (5): A@CibluIIibl and A is (3z<t)B(d,z) .  W e  argue informally in S; Suppose 
B(d,z)  holds with z < t .  By the induction hypothesis, we know t h a t  there exists a . + 

v such t h a t  ~ i t n e s s ~ ~ ~ , : ~ ( v , a , z ) .  S o  let w=<z,v>.  Then W i t n e ~ s ~ ~ ( w , Z )  holds. 
We can define 

and we are guaranteed tha t  w l  tA(3). 

Case (4): A$CibluIIibl and A is (VZ<(S(Z)()B(~,Z).  T h e  induction hypothesis is tha t  

Since the CP-replacement axioms are theorems of S; (by Theorem 2.14)) i t  follows 
tha t  

sit- A (a')> (3w 5 SQB~(O [tB] ( a ,  ls(),s)) ~itncssi'(w,Z'). 

(c) This  is easily proved by induction on the complexity of A .  T h e  essential idea is tha t  
sequences can be coded efficiently. 

Q.E.D. 

Another crucial property of Witness is tha t  i t  is relatively easy t o  tell whether 
~ i t n e s s ~ ~ w , ~ )  holds for arbitrary w and 2. This  is formalized by the next proposition. 

Proposition 4: Let i> l  and A(z)Ec~~.  Let p be the predicate defined by 
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Then p is a At-predicate (of the polynomial hierarchy). 

Pro08 This  is easily proved by induction on the complexity of A .  

In particular, when i=l p(w, t )  is a polynomial time predicate. This  should not be 
surprising since if A is a fixed Clb-formula i t  is certainly reasonable tha t  a polynomial time algm 
rithm can check whether w and t code an instantiation for A which satisfies A .  Of course, this 
polynomial time algorithm depends on A .  

If r is a cedent we write AI' (respectively, \Sllr) t o  denote the conjunction (respectively, 

disjunction) of the formulae in r. W e  adopt  the  convention tha t  conjunction and disjunction 
associate from right t o  left. Thus ,  if r is A , B , C  then Ar means AA(BAC).  W e  use the nota- 

tion 

t o  denote < a l , < a 2 , .  . . ,<an- l ,an> ' . a >>. 
These conventions allow us t o  conveniently discuss witnessing a cedent. For example, 

suppose r is Al, . . . , A n  and tha t  w=<<wl, . . . ,ton>>. Then ~ i t n e s s g ( i ( w , ~ )  holds iff 

~ i t n e s s k ! ( w ~ , ~ )  holds for each positive j<  n .  

5.2. The Main Proof. 

W e  shall prove Theorem 1 by proving a more general theorem: 

Theorem 5: Let i2l. Suppose S ~ F I ' , I ~ ~ A , A  and tha t  each formula in FUA is a c?-formula 
and each formula in IlUA is a Il?-formula. Let c l ,  . . . ,c, be the free variables in 
r , I l  j A , A .  Let G and H be the xi)-formulae 

and 

Then there is a function j which is c?-definable in S; such t h a t  

(1) j is a 0,"-function, and 

(2) S; F witness $7 w , t ) >  witnessA2(j(w , t ) , - ~ ) .  
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Proof: of Theorem 1 from 5: 
T h e  hypothesis of Theorem 1 is tha t  s;'+ ( 3 y ) ~ ( Z ,  y). Hence, by Theorem 4.11 there is 

a term t ( t )  such tha t  s i t ( 3 y < t ) ~ ( t , y ) .  We now apply Theorem 5 by letting A be 

(3y <t)A(Z, y) and letting r=II=A=B. Theorem 5 asserts t ha t  there is an  j satisfying ( I )  and 
(2). Furthermore this j is c(-definable in S; by j(Z)=d A f ( t , d )  for some AEC; such 

tha t  

We need t o  find B and g satisfying (1)-(4) of Theorem 1. We define 

and 

I t  now follows immediately from the definition of Witness and Proposition 3 that  g 
and B satisfy the conclusions of Theorem 1. Note tha t  g is a 0:-function since j is. 

Q.E.D. 

Prooj: of Theorem 5. 

By Proposition 4.8, there is an Si-proof P of r , I I+A,A such tha t  P is free cut free 
and in free variable normal form. In particular, since every formula in the endsequent of P is in 
c;IJII(, so  is every formula appearing anywhere in P .  Since all induction inferences in P are 
c?-PIND inferences, the principal formula of each cut inference in P is a  for formula. 

T o  simplify notation and terminology we shall henceforth assume tha t  II and A are the 
empty cedent. W e  can always fulfill this requirement by using (-:left) and (-:right) inferences 
t o  move formulae from side t o  side. Furthermore, no essential cases are ignored under this 
assumption since each inference has a dual; for example, (3s: lef t)  is dual t o  (V5:right) and 
 fo right) is dual t o  (v:left). 

T h e  proof of Theorem 5 is by induction on the number of inferences in the proof P of 
r-i+ A where P is assumed to  be free cut  free and in free variable normal form. 

T o  begin, consider the case where P has no inferences and consists of a single sequent. 
Then r-i+A must be either a BASIC axiom, a logical axiom or an equality axiom. In either 
case every formula in r-i+A is open. The  definition of Witness was tha t  

whenever A is open. Thus,  conditions (1) and (2) of Theorem 5 are satisfied if we choose j t o  be 
the constant zero function. 
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T h e  argument for the induction s tep  splits into thirteen cases depending on what  the 
last inference of P is: 

Case (1): Suppose the  last inference of P is (1:left) or  (-:right). These are "cosmetic" infer- 
ences: see the discussion above about  assuming tha t  II and A are empty.  

Case (2): (A:left). Suppose the last inference of P is 

Let D be the  formula B A ( ~ * )  and let E be ( B A C ) A ( ~ * ) .  T h e  induction hypothesis is 

t ha t  there is a Up-function g such tha t  g is c!-definable by s~~ and 

Let h be the  function defined by 

Then h ~ O f  and 

follows immediately from the definition of Witness. S o  define j ( w , t )  t o  be g(h(w),Z). Then 
jeO,J', j is c:-definable and 

s;' F Witness k'( w , t )  1 Wit nessGz( j (  w ,z),T) 

which is what  we needed t o  show. 

Case (3): (v:left). Suppose the last inference of P is 

Let D be the formula B A ( ~ * ) ,  let E be c ~ ( A r * )  and let F be ( B v C ) n ( m * ) .  By 

the  induction hypothesis, there are &'-definable functions g and h in 0,J'such t h a t  
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and 

We  define j as 

g (<f l l1P( l1  w))A2,w)> K )  if ~itness~~(P(l.P(l~w))~~) 
j (w73) = h(<P(2,P(l1 w)),P(2,w)> , t )  otherwise 

T h e  idea is t h a t  if w witnesses (Bvc)A(&'*) then either P(1,/3(l1w)) witnesses B or 

,B(2,,B(llw)) witnesses C. In the  former case, g is used t o  find a witness for V A ;  in the 

lat ter  case, h is used. Th i s  can easily be formalized in Sal so 

Now j is a 0:-function since g and h are and by Proposition 4. Also, j is c:-definable by . + 

s;' since g and h are and  since WitnessJc is a A:-predicate. 

Case (4): @<:left). Suppose the last inference of P is 

Of course, a is an  eigenvariable and must  not  appear in the lower sequent. Let D be the 
formula a < t h ( ~ ( a ) A ( m * ) ) ,  and let E be ( 3 z < t ) B ( z ) ~ ( m * ) .  By the  induction hypothesis, 

there is a c:-definable function g ~ 0 :  such t h a t  

(Note tha t  we can omit  the  variable a f rom the superscript on  the  righthand side of the 
implication since a does not  appear free in A.) 

First consider the  case where ( 3 z < t ) B  is not  in c&~.  Define the  function h by 

By the  definition of Witness we have 
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S: c ~ i t n e s s ~ ~ ( w , t ) ~  Witnesspa(h(w)f,/3(1 , ~ ( l ,  w))). 

S o d e f i n e f b y  

T h u s  f is a 0:-function, f is cP-definable by S; and 

T h e  case where ( ~ x < ~ ) B € c ~ ! ,  is even easier. We now let 

and 

Note f€O,J' since ( p z l t ) B ( z )  can be computed either by using a binary search or, when 
( 3 x s t )  is a sharply bounded quantifier, by an exhaustive search. 

Case (5): (V5:left). Suppose the last inference of P is 

We shall assume tha t  s<_ t  is in I' (a similar argument works for s s t  in n.) Let D 
be the formula B ( s ) A ( ~ * ) ,  and let E be s<t~(Vx<t)B(z)h(AI '*) .  T h e  induction 

hypothesis is tha t  there is a c:-definable function g in 0: such tha t  

First consider the case where (Vzs t )B(z )  is not in Then ( V z s t )  must 
be a sharply bounded quantifier with t=(rl  for some term r .  Define the function h by 

By the  definition of Witness, we have 

So  define f(w,Z)=g(h(w,t),Z). I t  is straightforward t o  see tha t  f satisfies the desired condi- 
tions of Theorem 5. 
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T h e  case where ( ' ~ x ~ ~ ) B ( x ) E c ~ ! ~ u ~ ~  is easier. W e  now set  h(w,i?) equal t o  
<O1/3(2,/3(2,w))> and otherwise proceed as before. 

Case (6): (>:left) and (>:right). We omit  these cases: see (v:left) and (v:right). 

Case (7): (v:right). Suppose the last inference of P is 

Let D be the  formula B V ( ~ A * ) .  By the induction hypothesis, there is a 

c;-definable function g in 0;such tha t  

Define h by 

h(w) = < <P(l,w),O> ,/3(2,w)> 

and let f(w,Z)=h(g(w,c)). Then it is easy t o  see tha t  f satisfies all the desired conditions. 

Case (8): (h:right). Suppose the last inference of P is 

Let D be the formula B V ( ~ A * ) ,  let E be C V ( ~ A * )  and let F be ( B A C ) V ( ~ A * ) .  
T h e  induction hypothesis is t h a t  there are 0;-functions g and h which are c;-definable by 
S; such tha t  

W e  define the function k as 

v if ~ i t n e s s $ i , ( v , ~ )  

w otherwise 
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. + 

By Proposition 4, k is a 0,"-function; also, k is C;-definable by S; since  witness^^* is a 

A;-formula. Now define j by 

Clearly j is &*-definable by S; and is in Of ,  since g, h,  and k are. Also, i t  is easy t o  see 
tha t  

Case (9): (35:right).  Suppose the  last inference of P is 

We  shall assume t h a t  s s t  is in r (a  similar argument works for s s t  in ll). Let D 
be the formula B ( s ) v ( ~ A * ) ,  let E be s_<t~(&'*) and let F be ( ~ X ~ ~ ) B ( X ) V ( ~ A * ) .  T h e  

induction hypothesis is tha t  there is a 0:-function g which is c;-definable in S; such t h a t  

By the  definition of Witness, 

S o  define j t o  be 

Then j is c;-definable by s;, j is a 0:-function and 

Case (10): (t/<:right). Suppose the  last inference of P is 

where a is the eigenvariable and  does not appear free in the lower sequent. Let D be the  
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formula a < _ t h ( k ) ,  let E be B(a)v(VA*) and let F(Z,d) be ( V X < _ ~ ) B ( X ) V ( ~ A * ) .  T h e  

induction hypothesis is tha t  there is a 17;-function g such tha t  

First,  consider the case where (Vx<t)B(x) is not in c ~ ! ~ u I I ~ ~ _ ~ .  So ( V X ~  t) is shar- 
ply bounded with t=lrl for some term r .  W e  define the function k by 

W e  define f by the following limited iteration scheme: 

By Proposition 4, k~17; and hence j€U;. I t  is straightforward t o  see tha t  

I t  follows by xi)-LIND t ha t  

Hence, 

sit witnessg(w,i?)> ~ i t n e s s ~ $ , ~ ~ ( j ( w , t ) , i ? )  

which is wha t  we needed t o  show. 

Second, consider the case where (Vx<t)B(x) is in C{,&JIIi". If A ( t , a )  is any one 
of the formulae a i t ,  B (a )  or  (b'x<t)B(x) then W i t n e ~ s ~ ~ ~ ' ~ ( w , t , a )  is defined t o  be 
equivalent t o  A(i?,a) itself. Let h (w , t )  be the 17:-function ( p x i t ) B ( x )  and let 
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j (w,t)=g(<O,w>,t ,h(w,t)) .  Then j satisfies the  desired conditions. 

Case (11): (Cut  ). Suppose the last inference of P is 

Since P is free cut  free, B must be a Ct-formula. Let D be the formula BV(WA) and let E 
be BA(AI'). T h e  induction hypothesis is t ha t  there are CI;P-functions g and h which are 

c:-defined by S; such tha t  

and 

We define the function j as 

. + 

By Proposition 4, j€CI,J', and since Witness$: is A: with respect t o  s;, j is c:-defined by 

s ~ ~ .  Also, i t  is easy t o  see tha t  

Case (12): (c:-PIND ). Suppose the last inference of P is 

where a is an eigenvariable and must  not appear in the lower sequent. We shall only con- 
sider the case where B(0) is in I' and B ( t )  is in A .  (If this is not the case, then 
BEC~!,UII~!, and the argument is much simpler.) 

T h e  general idea of the argument for Case (12) is t o  t rea t  the c:-PIND inference 
as if i t  were Itl.-l cuts. So, in effect, Case (12) is handled by iterating the method of Case 

(11). 
Let D be the formula ~(Ljal)h(AI'*), let E be B ( ~ ) v ( ~ A * ) ,  let F be B(o)A(AI'*) 

and let A ( t , d )  be B ( ~ ) V ( ~ A * ) .  T h e  induction hypothesis is t ha t  there is a O;P-function g 
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such tha t  

We define Ot-functions k and h by 

. + 

v if W i t n e s s ~ ~ , ( v , t )  
k(v,w,t)  = w otherwise 

By Proposition 3(c) there is a term tA and a Up-function q which is c/-definable in S; 
such tha t  

Now define j* by the  following limited iteration scheme: 

This  is a valid limited iteration definition since the use of the function q gives a provable 

polynomial space bound on p; namely, p (w, t ,m)<a[ tA] ( t , t ) .  T h u s  j* is a Ut-function 
which is c:-definable in s;. 

Now i t  is easy to  see tha t  

sit witness$'(w,t)> ~ i t n e s s ~ ~ ~ ( j * ( w , t , 0 ) , t , 0 )  

and 
i zd  * sit ~ i t n e s S j ' ( w , t ) ~  WitnessA. ( j  ( w , t , ~ j u  J),Z,MSP(~,I (1; ~ ~ t u  J I ) ) ~  

3 ~ i t n e s s ~ ~ ~ ~ ( j * ( w , ~ , u ~ ) ~ t ~ ~ ~ ~ ( t , ~ t  1; lul)). 

So by c:-PIND with respect t o  u, 
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S o  define j(w,t)=j*(w,t,t) and we are done. 

Case (13): (Structural inference). T h e  cases where the  last inference of P is a weak inference, 
an  exchange inference or  a contraction inference are all trivial and we omit their proofs. 

Q.E.D. 

5.3. The Main Theorem for First Order Bounded Arithmetic. 

Combining Theorem 1 with Theorem 3.1 we get: 

Theorem 6: Let i2 1. Suppose A is a c:-formula and tha t  sit (V??)(3y)~(~,y) .  Then there is a 
term t ,  a c:-formula B and a function j€CI,P such t h a t  

( 1 )  sit ( V Z ) ( ~ Y ~  ~)B(z ,Y)  
( 2 )  sit (V~)(~Y)(B(~,Y)>A(Z',Y)) 
(3) s,' t (v?)(vY )(v2)(B(Z1 Y ) ~ B ( z ~ 2 ) 3  Y = Z )  

(4) For all X ,  N F B(X,j(X)) 

Conversely, if j ~ 0 / ,  then there is a term t  and a c:-formula B such t h a t  ( I ) ,  (3)  and (4) 
hold. 

Corollary 7: Let i21. A function j  is c:-definable in 5'2 iff j60,P. 

For the  special case i=l, we have 

Corollary 8: T h e  c:-definable functions of S: are precisely the  polynomial time computable 
functions. 

W e  can restate Theorem 6 in terms of predicates instead of functions as follows: 

Theorem 9: Let 1 Suppose A is a c:-formula, B is a nib-formula and tha t  
s ~ ~ A ( x ) * B ( ~ ) .  Then there is a predicate QEA! such t h a t  for all it, 
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Conversely, if QEA?, then there are formulae A and B so  t h a t  all of the above 
holds. 

Prooj: This  is an immediate consequence of Theorem 6. I t  is proved by noting tha t  the function 

0 if A(2)  
1 otherwise 

is c?-definable in s2' by the equation 

Thus  fEOf and hence A represents a predicate in P. 

Recall t ha t  in Chapter  1 we characterized the NP predicates as those expressible by 
c/-formulae and the  co-NP predicates as those expressible by ll?-formulae. Hence in the 
case i= l ,  Theorem 9 becomes: 

Corollary 10: Let A(3)  be a formula such t h a t  S: proves A is equivalent t o  a c/- and t o  a 
ll:-formula (i.e., S i  proves tha t  A E N P ~ c O - N P ) .  Then A(d)  is a polynomial time predi- 
cate (i.e., A is in P ) .  

So  any predicate which is ~ i - ~ r o v a b l ~  in N P n c o - N P  is in P. 

5.4. Relativization. 

T h e  results proved above can be relativized by introducing oracles. For this two things 
must be done: firstly, enlarge the language of Bounded Arithmetic t o  include new function sym- 
bols for oracles, and secondly, use oracle Turing machines for computations. 

We relativize the theories S; in the following way: 

Definition: Let k > l  and let p(nl ,  . . . ,nk) be a suitable polynomial. For  each j 20 ,  q l k  is a k- 
ary function symbol. T h e  bounding aziorn for qLk is 

P Definition: Let qj,,i1, . . . ,1),I>% be a sequence of function symbols. We write if as an abbrevib 

tion for tha t  sequence. T h e  theory si(if) is defined t o  be the theory with the language of 
P Bounded Arithmetic plus the symbols t)ilj,, . . . ,ql)kn and with the  following axioms: 
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(1) the BASIC axioms 

(2) for each 15 t <  n ,  the bounding axiom: ~ q ~ ~ k ~ ~ ) ~ < p t ( ~ ~ ~ )  

(3) the c;~($)-PIND axioms. 

Recall tha t  in Chapter 1 w{ was defined to  be the set of k-ary functions with growth 
rate bounded by the polynomial p .  

Definition: If q,Pk is a function symbol then the junction space associated with q,Pk is w{ 

We can relativize Theorem 1 as follows: 

P Theorem 11: Let if be a vector of function symbols and let 3=wr11, . . . ,win be the vector of 

function spaces associated with the q's. Let i>l  be fixed. 

Suppose ~~($)~(VZ') (3y)A(zt ,y)  where A is a xib(if)-formula and Z' and y are the 
only free variables in A(Z',y). Then there is a term t(Z'), a x;b($)-formula B and a functional 
g in Cl,J'(Sj) so that  

(1) ~zi(if) t (v-i')(~Y)(B(-j',~)>~(-j'lY)) 

(2) Szi(?i) t ( ~ ~ ) ( ~ Y ) ( \ J Y ) ( B ( ~ , Y ) A B ( Z " ~ . ) >  y=a) 

(3) ~ 2 ~ ( $ ) t -  ( ~ Z ) ( ~ Y L  ~ ( ~ ) ) B ( Z , Y )  

(4) For all SEN" and all oracles Rl, . . . ,an with Cli~u{' for all l < i < n ,  

Proof: The  entire proof of Theorem 1 including Theorem 5 can be relativized. This  yields a 
proof of Theorem 11. 

Corollary 12: Suppose A and B are A:-formulae with respect t o  5'2, q is a suitable polynomial 
and tha t  

Then there is a functional g~Of ' (uf)  such tha t  whenever  RE^ f ,  
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Recall t ha t  the  condition tha t  g€OP(wj) means tha t  g can be computed by a deter- 
ministic, polynomial-time, oracle Turing machine M, where the  function oracle f l  used by M, is 
required t o  satisfy Ifl(x)l<q(lxI) for a11 x. 

Prooj: By the  hypothesis of the corollary, 

Then,  by Theorem 11 there is a g€OP(wf) such tha t ,  for all x and all f l€wj ,  g(x,fl) is equal t o  
either a y such t h a t  A(x,y)  holds o r  a y such t h a t  B(y,fl(y)) fails. 

Q.E.D. 

Definition: Let j be a unary function symbol. Then P H P ( j )  is an abbreviation for the  formula 

af O W Y  < 2 a ) ( j ( y ) < a ) > ( 3 ~  <2a  ) ( 3 ~ < 2 a  ) ( j ( y ) = j ( a ) ~ y #  a).  

S o  P H P ( j )  expresses a pigeon hole principle s tat ing tha t  2.a pigeons can not sit  in a holes. 
Note t h a t  a appears as a free variable in PHP( j ) .  

Corollary 13: S i (  j )  I+ PHP( j ) .  

Of course, ~ ; ( j )  means the  theory extending S; with the new function symbol j and 
the ~:(j)-PIND axioms. 

Prooj: Suppose the corollary is false, then let q be the  polynomial q(n)=n.  Then 

Hence, 

So  by Theorem 11 there is an j€Of'(wj) such tha t  for all a € N  and all oracles f l ~ w f ,  
j (a , f l )=<y,a> where y and a satisfy the above condition. 

Bu t  this is absurd. f is computed by a polynomial time, oracle Turing machine Mf,  so 
Mf(x,fl) has  run time <p(lxl) for all z and some polynomial p .  Choose zo large enough so  tha t  
zo>p(lxoJ)+2. Then  define flo so  tha t  the  following conditions hold: 
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If Mf(xo,Ro) first queries its oracle for the value of Ro(m) on the n-th step where 
m<2.zo,  then set  Ro(m) t o  be equal t o  the greatest number j<min(m,zo-3) 
such tha t  no earlier oracle query of Mf(xo,RO) yielded the answer j .  Such a j 
will always exist. 

If M/(xo,Ro)=<yo,zo> and if Ro(yo) and/or RO(zO) have not yet been defined, set  
Ro(yo)=xO-1 and/or set  Ro(zo)=xo-2. 

For  all other  values of m ,  set  Ro(m)=O. 

Q.E.D. 

Corollary 13 states  t ha t  S;(j) can not prove the pigeon hole principle PHP( j ) .  On the 
other hand,  Alex Wilkie [30] showed tha t  Sz(j)  can prove PHP( j ) .  Examining Wilkie's proof 
closely yields the  following theorem: 

Theorem 14: (Wilkie [30]). T;(~)I- PHP( j ) .  

Combining Wilkie's theorem and Corollary 13  gives 

Corollary 15: T;(j) is not equivalent t o  s;(j). 

I t  is an  open question whether S; is equivalent t o  T; or  even if S; is equivalent t o  S2. 



Chapter 6 

Cook's Equational Theory PV 

P V  is an equational theory of polynomial time functions introduced by Cook [6]. P V  
contains a schema which allows function symbols t o  be introduced for each polynomial time 
function and an induction schema which is essentially equivalent t o  t he  P I N D  axioms applied 
t o  open formulae of P V .  

O u r  earlier results have shown t h a t  s2' can Clb-define precisely the polynomial time 
functions. T h u s  i t  is not  too surprising tha t  S2' and P V  are closely related. W e  shall see below 
tha t ,  after making allowances for the fact t h a t  they have different languages, S; and P V  have 
the same CP-formulae as theorems. 

8.1. Preliminaries for PV and PV1. 

Like S;, the universe of P V  is the nonnegative integers. P V  codes integers by dyadic 
coding, as used by Smullyan [25]. An integer n is represented by the  string dkdk-l . . do where 

k 
n= C 2'.di and each di is either 1 or 2. 

i 4  

P V  has  two unary functions 81 and $2 which are helpful for handling dyadic notation. 
They are defined by 

i.e., si(z)=2z+i. 

P V  has  other  initial function symbols in addition t o  sl and s2, see [6] for details. P V  
can also introduce new function symbols by a schema which Cook calls limated recursion on 
notation, but  in the terminology of this dissertation is more appropriately called limited itera- 
tion on notation. Suppose g, hl, h2, kl and k2 have already been introduced as PV-function 
symbols. Then we can define a new PV-function symbol f by 

provided t h a t  P V  proves 
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for i=1,2. Here we are introducing Jxld as  a function whose value is equal t o  the  length of the 
dyadic code for x, namely Ixld=Llogz(x+l)J. T h e  fact  t h a t  this inequality is expressible in P V  is 
proved by Cook [6]. 

I t  is clear t ha t  limited iteration on notation as defined above is similar t o  the  limited 
iteration defined in Chapter  1. Hence, by Cobham [5], a function symbol for each polynomial 
time function can be introduced in P V .  

P V  has  only one predicate symbol, namely = (equality). However, we shall follow the 
convention tha t  a function symbol can be interpreted as a predicate by letting a nonzero value 
denote True and a zero value denote False. For example, Cook [61 defines the function 
P R O O F  so  tha t  

1 if m is the  Gijdel number of an equation and 
P R O O F  (m,n )  = n is the Gijdel number of a PV-proof of m .  

0 otherwise 

In [6] i t  is asserted tha t  many function symbols can be introduced in P V .  In addition 
t o  the  function symbols defined there, P V  has symbols for the  functions S ,  +, a ,  #, 1x1 and LixJ 

as well as functions for handling sequences; namely, P(i ,w) ,  the  pairing function 

and the  sequence extension function * 

(Our 
from 
ular, 

definition for * conflicts with the  notation in (61. O u r  function * is completely distinct 
Cook's.) Furthermore, P V  can prove all the simple properties of these functions; in partic- 
P V  can prove all the  BASIC axioms. 

T h e  syntax of P V  can be expanded t o  allow quantifier free logical formulae instead of 
just equations. Cook [6] gives a detailed description of how this may be done and he calls the 
enlarged theory P V 1 .  W e  shall not  distinguish between P V  and P V 1  notationally and we 
shall continue t o  refer t o  the  enlarged system as P V .  

W e  also enlarge the syntax of P V  to  allow the'predicate symbol 5. Of course this is 
just an extension by definitions: x s y  denotes the formula LE(z ,y ) f0  where LE is the 
PV-function symbol defined in [6] so  t h a t  LE(z,y)=l  if XI y and otherwise LE(x,y)=o. 

In addition t o  the binary length function lxl, P V  can define the  dyadic length function 
lxld by limited iteration on  notation: 
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P V  can prove the simple properties of length functions including the formulae 
1x1<1~1~+1, and 1x+11=1~1~+1. 

P V  defines function symbols corresponding to  the logical operators: 

0 if z=Oor y=O 

otherwise 

We can, in effect, use sharply bounded quantifiers in P V  by introducing new function 
symbols which have a similar effect: 

Definition: Let P(z ,3)  and F(3)  be PV-function symbols. Then 

is a PV-function symbol so  that  

if (\Jz< IF(3)l)(0#P(z13)) 
otherwise 

Q(3) is defined by the following limited iteration on notation scheme: 

- 
Also, (3z<IF(Z')I)P(z,Z') is defined to  be the PV-function symbol 

NOT((V~I I F ( ~ ) J ) N O T ( P ( ~ , ~ ) ) ) .  
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Proposition I: Let G(3,y) be any PV-function symbol. Then there is a PV-function symbol 
F(3,y)  so  tha t  

Proposition 1 states tha t  P V  satisfies an analogue of the A/-replacement property, in 
tha t  the value of F(Zly) is <G(3,0), . . . ,G(Z,lyl)>. 

Proofi Let H(Z,y,z) be the PV-function symbol defined by the following limited iteration on 
notation: 

Now set  F(Zly)=H(3,y,sl(y)). 

0.2. S: and the Language of PV. 

In order to  s ta te  the conservation results concerning S; and P V ,  we must enlarge the 
language of S: t o  include the language of P V .  First we note: 

Proposition 2: S; can cp-define all the functions of P V .  

Proof: Th i s  is proved just like Theorem 3.1. Indeed, there is no substantive difference between 
limited iteration and limited iteration on notation. 

Definition: LpV is the set  of non-logical symbols of P V .  Let S ; ( L ~ ~ )  be the theory containing 
S; and the  language LPV. In addition, for each function symbol F in LpV, S$(LPV) has a 
cP-defining axiom for F which defines F in terms of its limited iteration definition. 

In other words, s i ( L p V )  is s2' plus symbols for the  cP-defined functions of P V .  
Proposition 2 guarantees tha t  s;(LpV) can be so defined. 

I t  is immediately obvious tha t  s;(LpV) is a stronger theory than P V .  Th i s  is because 
the axioms of P V  are all theorems of S ~ ~ ( L ~ ~ ) .  In particular, the induction on notation axioms 
of P V  are A:-PIND axioms of S ; ( L ~ ~ ) .  

W e  shall need the following axiomatization of s i (LpV) :  
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Definition: S ~ ( P V )  is the  theory with the same language as S$(LpV) and with the following 
axioms: 

(1) T h e  open BASIC axioms of s;, 

(2) T h e  C;(L~~)-PIND axioms, 

(3) T h e  following axioms defining the initial function symbols of P V  (compare with 

s1(z)=2z+l 
s2(z)=2z+2 
TR(O)=O 
TR(s  i(z))=z 
zceO=z 
Z@ si(y)=s i ( z ~  y) 
z@O=O 
z @ ~ i ( ~ ) = z e ( z @ ~ )  
LESS (z,O)=z 
LESS (z,si(y))= TR(LESS (z ,  y)) 

where i=1,2 and where we are using e t o  denote Cook's function * since * 
has already been used for other purposes. 

(4) Whenever j is a defined function symbol of P V ,  introduced by equations (2.2)- 
(2.4) of Cook [6], S i ( P V )  includes the axioms 

Proposition 3: S;(Lpv) and S ~ ( P V )  are equivalent theories. 

Proof: It  is clear t h a t  Si(LpV) is stronger than s~(Pv) .  For the converse, it is necessary to  
show tha t  s ~ ( P V )  proves tha t  every j€LpV satisfies the c:-defining axiom j ( Z ) = y e A  f(Z, y) 
by which j is defined in s2'(LpV). This  is easily shown as follows: we can introduce a new func- 
tion jr in s$(PV) by defining f r  t o  satisfy the c:-defining axiom j'(?)=y-Af(3?, y). Then 
this theory s i ( P V , j  3 is a conservative extension of S i ( P V ) .  I t  is now easy t o  prove by PIND 
tha t  (K?)(j(3)=j'(3)), and hence j satisfies the defining equation for j'. 

We next s ta te  the main theorem of this chapter. (This theorem was independently 
conjectured by Stephen Cook.) 
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Theorem /: Let t=u  be any equation of P V .  Then S2'(PV) t t=u iff P V t  t=u.  

One direction of this theorem is immediate from our  remark above tha t  S:(Lpv) is 
stronger than P V .  T o  prove the  converse we shall show below t h a t  the  results of Chapter  5 can 
be partially formalized in P V .  

6.3. Witnessing a c:- orm mu la. 
For the sake of avoiding excessive subscripts, we use C:(PV) and ~ I ~ ( P v )  as 

synonyms for C:(Lpv) and  I l ~ ( L p V )  from now on.  

In order t o  handle c~(Pv)-formulae in the  theory P V ,  we need a way for P V  t o  
assert t h a t  a given c~(Pv)-formula is true. 

Definition: Let A be a c/(Pv)-formula and d be a vector of k free variables containing all the 
free variables of A .   WITNESS^ is a (k+l)-ary function symbol of P V  defined by induction 
on  the  complexity of A as follows: 

(1) If A is atomic, 

(4) If A is (Vz<Itl)B(x17t) where B ( ~ , ~ ) E c ~ ~ ( P v ) ,  then 

(5) If A is (3x<t)B(x ,d)  where BEC!(PV), then 

(6) If A is -B then we transform A by logical operations so  t h a t  Cases (1)-(5) apply. 
Specifically, if A is -(-B), -(BvC), -(BAC), -(Vx<t)B or  - (3x<t)B,  then let 

A*  be B ,  (-B)A(-C), ( -B)v( lC) ,  (3x<t)(-B) or (Vx<t)(-B) respectively. 
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Then 

Definition: Let A (3) be a c/(Pv)-formula. We say that  P V  essentially proves (VZ)A(?i') iff 
there is a PV-function symbol F such that  

We shall see below that  if AEC/(PV) and s ~ ( P v ) ~  (w)A(Z) then P V  essentially 
proves (VZ)A (3). 

Proposition 5: Let A(b,d) be a C;(PV)-formula and let B(d) be A(t(d),d)  for some term t .  
Then P V  proves 

ProoJ by induction on the complexity of A .  

Propoeition 6: Let A be a Clb(PV)-formula and let d be a vector of free variables containing all 
the free variables of A .  Then there are functions MINWIT~ and WIT SIZE,^ definable by 
P V  such that  

PVF MINWIT~(V)~  WIT SIZE^(^) 
and 

PVF  WITNESS^( w,a)#o 3 WITNESS~(MINWIT~(~)~~)+O. 

So MINWIT~ maps any witness for A(d)  to  a minimal witness; the Giidel number of 
the minimal witness is bounded uniformly by WIT SIZE^((^). 

The  proof of Proposition 6 is by induction on the complexity of A .  T h e  crucial point 
of the proof is to  show that  sequences can be coded efficiently. For example, any sequence 
<nl ,  . .  . ,n,> has some Gijdel number less than tm(nl, . .  . ,n,) for some fixed term t,. 
Although we have not specified the details of PV's  P function, for any reasonable definition of 
the p function Proposition 6 is valid. 
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6.4. The Main Proof, revisited. 

We next s ta te  and prove a slightly stronger version of Theorem 5.5. All the conven- 
tions of 55.2 apply here; in particular, S$(PV) is a natural deduction theory. 

Theorem 7: Suppose S$(PV) proves the sequent r,ll-+A,A and tha t  each formula in r U A  is a 
c:(Pv)-formula and each formula in llUA is a ll:(Pv)-formula. Let c,, . . . ,c, be the  free 
variables in r , l l+A,A.  Let X and Y be the formulae 

Then there is a PV-function symbol F such tha t  

I t  is immediately obvious tha t  Theorem 4 follows from Theorem 7, since when A is 
atomic, 

Proofi of Theorem 7. 

By Proposition 4.8, there is a free cut  free ~ ~ ~ ( P V ) - ~ r o o f  P of r , l l + h , A  which is in 
free variable normal form. Every formula of P is in c:(Pv)u~~/(Pv) and each cu t  formula of 
P is a c/(Pv)-formula. As in the proof of Theorem 5.5, we assume without loss of generality 
tha t  ll and A are empty. T h e  proof is by induction on the  number of inferences in P. 

T o  begin the  proof, suppose P has no  inferences. Then P contains a single sequent 
which must  be either (a) an equality axiom, (b) a BASIC axiom, o r  (c) one of the axioms of 
s2'(PV) defining an initial or  defined function symbol of P V .  Since all of these axioms are open 
and are theorems of P V ,  i t  is easy t o  see tha t  the theorem holds in this case. 

Now suppose tha t  Theorem 7 holds for proofs with I n  inferences and tha t  P has n+l 
inferences. T h e  argument splits into many cases depending on the last inference of P .  We shall 
number the  cases as in the proof of Theorem 5.5. Since the proof parallels closely the proof of 
Theorem 5.5 we shall omit a lot of the cases. 

Case (I): (-:left) and (1:right). These are "cosmetic" inferences. 
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Case (2): (A:left). Suppose the last inference of P is: 

Let D be the formula B A ( ~ ' * )  and let E be ( B A C ) A ( ~ * ) .  T h e  induction 

hypothesis is t ha t  for some PV-function symbol G ,  

Let H be the  PV-function symbol defined so  tha t  H(w)=<P( l ,P ( l ,w) ) ,P (2 ,w)>  and let 
F(w,Z)=G(H(w),i?). Then 

P v WITNESS:( w ,i?)#o 3 WITNESS;(H( w),z)#o 
and 

P V  k  WITNESS^( w B)#o> WITNESS&(F(W ,Z) ) , ~ ) # 0  

which is what  we wanted to  show. 

Cases (5)-(7): Omitted. 

Case (8):   right). Suppose the last inference of P is: 

Let D be the  formula B V ( ~ A * ) ,  let E be C V ( ~ A * )  and let F be (BAC)V(VA*) .  
T h e  induction hypothesis is t ha t  there are PV-functions G and H such t h a t  

PV k WITNESS,$( , ~ ) # 0 3  WITNESS;( G( w,z ) l i? )#~ 
and 

P v k WITNESS&( w,Z)#O> WITNESS~(H(  W , Z ) , Z ) # O .  

Define the PV-function K so  tha t  

v if W I T N E S S ~ ~ . ( ~ , ~ ) # O  
K(v,w,Z)  = w otherwise 
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and F so that  

I t  is easy to  see tha t  

Case (9): (3s:r ight) .  Omitted. 

Case (lo): (V<:right). Suppose the last inference of P is: 

where a is the eigenvariable and must not appear in the lower sequent. Let D be the for- 

mula a < l r l ~ ( n I ' ) ,  let E be B(a)v(VA*) and let C be (Vz<l r l )B(z )v (V~*) .  By the induc- 

tion hypothesis there is a PV-function G so that  

By Proposition 1, there is a PV-function H such tha t  P V  proves 

We define the PV-function symbol J as follows by limited iteration on notation: 

J ( w , ~ , z )  if WITNESS&.( J( w , t , z ) , t ) j c ~  
J(w,2,si(z)) = 

/?(2,G(w,Z,Is;(z)ld)) otherwise 

Then define F ( w , 2 ) = < H ( w l t ) , J ( w , t , s l ( r ( ~ ) ) ) > .  P V  can use an induction on notation 
argument t o  prove 
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Case (11): (Cut ). Omitted. 

Case (12): (cP-PIND ). Suppose the last inference of P is 

B(L+aj),I'*+ B(a),A* 

where the eigenvariable a must not appear in the lower sequent. We only consider the case 
where B(0) is in I' and B(t )  is in A. 

Let D be the formula ~ ( L f a j ) ~ ( m * ) ,  let E be B ( ~ ) v ( ~ A * ) ,  let C be B ( o ) A ( ~ * )  

and let A be ~ ( t ) v ( v A * ) .  By the induction hypothesis, there is a PV-function G such 

that  

Let T R M  be the PV-function satisfying TRM(z,i)=MSP(z,lzl-.d). Let 
J(v ,w)=</3(1 ,~) , /3 (2 ,v )> .  Let H be the PV-function defined by the following limited 
iteration on notation: 

\ otherwise 

This is a valid limited iteration on notation definition since 

because MINWIT,$" was used in the definition of H. By using induction on notation, P V  
can prove 

So define F(w,Z)=H(w,t,sl(t(Z))) and then 
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Q.E.D. 

Corollary 8: Let A(2) be a ~ ~ ~ ( P ~ ) - f o r m u l a .  If s ~ ] - ( P v ) ~ ( V ~ ) A ( ~ )  then P V  essentially proves 
(V3)A (2). 

Proof: This is immediate from the definition of "essentially proves" and Theorem 7. 



Chapter 7 

Giidel Incompleteness Theorems 

We next take up the subject of Godel incompleteness results. We shall see that  the 
first and second incompleteness theorems hold for S i .  We shall also prove strengthened versions 
of the incompleteness theorems which apply to  the consistency of bounded proofs and of free 
cut free proofs. 

Before proving incompleteness results, we must show that  the syntax of 
metamathematics can be coded in Si. Of course, it is well known tha t  the syntax of first-order 
logic can be recognized and manipulated by polynomial time algorithms and as we showed ear- 
lier, S; can c/-define any polynomial time algorithm. This might appear to  be an a priori 
argument tha t  the arithmetization of metamathematics can be carried out  in S;. However, as 
Feferman [9] emphasizes, the arithmetization of metamathematics must be carried out  in an 
intensional manner and this does not follow from our a priori argument. 

We begin by giving a general framework for making inductive definitions in s2' and 
using this framework to  outline how the arithmetization of metamathematics in Si can be car- 
ried out  intensionally. 

7.1. Trees. 

As a preliminary we need to give a method for coding trees in s;. Trees will be coded 
by sequences. An example of a tree and its coding are given in Figure 2. A tree is coded by a 
sequence with two special symbols "[" and "1" for denoting the structure of the tree. 

Following the notations and conventions of 52.42.5 we define the following 
c/-definable functions and A/-predicates of s;. 

(a) RBracket = 0 
LBracket = 1 
Node(%) 2 2 2  

(b) Balanced (w) 
[(#j< Len(w))(LBracket=P(Sj, w)) = (# j< Len(w))(RBracket=P(Sj,w))] A 

A (Vi<Len(w)) [ ( # j ~ i ) ( R B r a c k e t = P ( S j , w ) )  5 (#j<i)(LBracket=P(Sj,w))]  

Note tha t  the counting operations are all equivalent to  length bounded count- 
ing and hence by Theorem 2.7, Balanced is a A:-definable predicate. We shall use 
length bounded counting freely without comment from now on. 
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i j k  

A tree is coded by a sequence which enumerates the tree in depth first 
order. T w o  special symbols, "[" and "I" are used t o  denote movement down and 
up  the tree. T h e  tree shown has two roots, labeled a and b. 

Figure 2 

(d) MultiTree(w) Seq(w)~Len(w)#O~Balanced ( w ) ~ L B r a c k e t # P ( l , w ) ~  

~ ( t l i <  Len(w))(LBracket=P(i+l,w)> Node(P(i+2, w))) 

MultiTree(w) is t rue iff w codes a tree, which may have more than one root. 

(e) Tree(w) M u l t i T r e e ( w ) ~ ~ ( ~ i < L e n ( w ) ) ( ~ > O ~ N o d e ( P ( S 3 ~ w ) = O )  

(f) Leaj(i,w) MultiTree(w)~Node(P(i,w))~LBracket#P(Si,w) 

So  Leaf(i,w) is true iff P(i,w) codes a leaf of the tree w. T h e  father of a node 
is the node directly above it; the sons of a node are the nodes directly below it. We 
define Father and Son so tha t  if Father(i,w)=k then the node P(k,w) is the father  of 
the node P(i,w), and so  tha t  Son(n j ,w)= i  iff P(i,w) is the n-th son of the node p(j,w). 

( p j <  ;)Balanced (Subseq(wlj+2,i)) if Node(;, w) 
(g) Father(i,w) = otherwise 

W e  use Len(w)+l as the alternative value for the  function Father since Len(w)+l is 
never a node and hence never a valid father. 

if Father(;, w)#j 
(h) SonPos ( i j ,w)  = 

(#z< i.- j )  [Father(j+z,w)= j] otherwise 
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Note tha t  the father of a root of a multitree is 0 and tha t  the roots of a multitree are 
the  sons of an imaginary node a t  the zeroth position of the sequence coding the multi- 
tree. 

(i) Valence (j,w) = (#z<Len(w))(Father(z ,w)=j)  

(j)  SonP(k,j,w) = P(Son(k1jlw),w)-2 

FatherB(i,w) = P(Father(i,  w) ,w) l2  

We subtract  2 so tha t  the values of the node labels are distinct from the codes for 
brackets, namely 0 and 1 for "[" and "I". 

(k) W e  also define a function for extracting subtrees of trees: 

SubTree(i,w) = Subseq( i ,max{j~Len(w)+l  : Tree(Subseq(i,j,w))),w). 

T h e  above encoding of trees is intensional in the sense of Feferman [9]. T h e  skeptical 
reader may verify tha t ,  for instance, S: can prove 

Mul t iTree (w)~  Node(P(j,w))>(Leaf(j, w)* Valence ( j ,  w)=O) 

Mul t iTree (w)~  Node(P(i,w))> Depth(Father(i,w),w)=Depth(i,w).- 1 

MultiTree(w)~Node(i ,w)> Tree(SubTree(i,w)). 

7.2. Inductive Definitions. 

W e  show in this section tha t  S: is capable of defining predicates and functions by 
inductive definitions, provided tha t  the inductive definitions give a straightforward deterministic 
polynomial time algorithm for expanding the inductive definition. Theorem 2 shows tha t  such 
an inductive definition is intensional and allows proofs in S: t o  be carried out  by induction on 
the complexity of an  inductive definition. We later use the constructions of this section t o  
argue tha t  can arithmetize metamathematics. 
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Definition: T h e  n predicates Po, . . . ,Pn-l are defined by a p-inductive definition iff they are 
defined by the  following: 

(a) k is a non-negative integer, 

(b) For each s <k  there is a number i,>O and a formula Q,: 

where the following conditions hold: 

(i) each RUj is Pi or  -Pi for some i < n ,  

(ii) each j, is a 8:-definable function of s:, 

(iii) for each j s i , ,  sit z#O>VUj(z)l<lzl, 

(iv) Si  t Ife,o(z)l+ . +Vu,i,(z)l~ 1x1. 

(c) For each i < n  there is a function gi which is 8:-definable in S: such tha t  

sit (vz)(gi(z)sk).  

(d) For each i < n ,  either Pi(0) or -Pi(0) is true by explicit definition. 

(e) For each i < n ,  Pi is inductively defined by 

Because of the decreasing length condition of (b.iii) above, a p-inductive definition 
uniquely defines the value of P i (z)  for all i and z. In fact, a p-inductive definition gives a poly- 
nomial time deterministic algorithm for checking whether Pi (z)  holds. T h a t  this algorithm can 
be formalized in S: is the content of the next theorem. 

Theorem I :  Let Po, . . . ,Pn-, be defined as in the p-inductive definition above. Then each 
predicate Pi is A:-definable in s:. 

Proof.- In order to  A:-define the predicates Pi in S: we must ( a t  least implicitly) specify an 
algorithm for determining when Pi (z)  holds. This  is done by constructing a tree which demon- 
strates tha t  either P i ( z )  or -Pi(z) holds. Each node of the tree will be labeled as < P m , y >  or 
<-Pm,y> which denote the  assertions tha t  Pm(y)  or -Pm(y) holds, respectively. T h e  sons of 
such a node must provide evidence tha t  Pm(y)  o r  -Pm(y) (respectively) is valid. For example, if 
gm(y)=s, then the  sons of < P m , y >  must be l+i, nodes labeled <RUj ,juj(y)> for j<i,. T h e  
leaves of the tree must be labeled either <Pm,O> o r  <-Pm,O> as allowed by clause (c) of the 
p-inductive definition. T h e  root of the tree will be labeled either < P i , z >  o r  < lPi ,z>.  

W e  begin by writing ou t  a formal definition for a "demonstration tree" for Pi(z) .  Let 
CUj, c u d ,  Bej, and D i  be fixed terms defined by: 
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BUj  = Ii where R,; is -Pi or  Pi 

(Recall t ha t  Ij is a term with value j . )  T h e  leaves of a "demonstration tree" must  satisfy the 
leaf condition: 

or, in words, a leaf must be labeled <Di,O> for some i. T h e  non-leaf nodes of the  "demonstr* 
tion tree" must satisfy the following condition: 

DTNC2(u1w) P(l,NodeP(u, w))<2n~P(2,NodeP(u,  w))#OA 
k n-1 

A A A [Rem(P(11N~deP(u,w)),n)=i~gi(P(2,NodeP(u,w)))=s > 
8 4  i=O 

i s  

Valence (u ,  w)=i,+lA A j, j(/3(2,Node/3(u, w)))=/3(2,~on~(~j,u,w))~ 
i-0 

i s  

~ ( o ( 1 ,  NodeP(u, w))> n v CUj=P(1 , ~ o n P ( ~ j , u ,  w)))] . 
i=O 

We combine both these requirements in 

So a "demonstration tree" which proves Pi (z)  o r  -Pi(z) must satisfy 

We will introduce Pi in S: as a alb-defined predicate symbol by: 
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Thus  it will suffice to establish that  s2' proves 

and 
~ e m o ~ r e e ~ ( w , z ) ~ ~ e m o T r e e  j ( v l z )>P ( l lRootP (~ ) )=P ( l ,RootP (v ) ) .  

Since it is easier, we first show that  S i  proves the uniqueness condition. We argue 
informally inside the theory s;. Suppose w and v  are DemoTree's for P i ( z )  and/or - P i ( z ) .  
Let A ( w , v , b )  be the formula 

I t  follows from the definition of DemoTree tha t  A ( w , v , b ) > A ( w , v , S b ) .  Hence, by c:-LIND, 
A(w,v ,Len(v ) )  and A(w,v ,Len(w) )  and hence Len(w)=Len(v).  Now let B ( w , v , b )  be the formula 

Now it follows that  B ( w , v , b ) ~ B ( w , v , S b )  so by g-LIND, B(w,v ,Len(w)) .  But this immedi- 
ately tells us tha t  

This completes the ~ ~ l - ~ r o o f  of the uniqueness condition. 

T h e  rest of the proof of Theorem 1 is devoted to  establishing the existence condition 
for DemoTreei. I t  is tempting to  just argue by induction on the length of z tha t  a DemoTreei 
exists. Unfortunately, this argument would use IT/-PIND and we can not carry this out  in S i .  
Instead we must use a more sophisticated argument to construct the DemoTree. What  we will 
do is formalize a breadth first algorithm which constructs the demonstration tree and then 
labels the nodes appropriately. We first define: 

PD TNC2(u , w )  P(1, NodeP(u , w ) )  < nA@(2,Nodep(u ,w))# O A  
k n-1 

A A A [P(l ,NodeP(u,  w))= iAg i (P (2 ,NodeP(u1w) ) )=s3  
8 4  i=O 

i a  

3 Valence (u,w)=i,+lA j,  j (~(2 ,Node/3(u,  w ) ) ) = P ( 2 , ~ o n P ( S j ,  u , w ) ) ~  
j+ 
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where we explain SizeBounds below. So  PDTi(w ,x ,b )  asserts t ha t  w is a tree containing the 
first b+l levels of the construction of a demonstration tree. T h e  SizeBounds is a formula 
which bounds the size of w .  What  we wish t o  show is 

for some term t ;  the SizeBound.9 formula must contain enough information t o  do  this. We 
argue informally how t ( z , b )  may be found. First, we count the non-leaf nodes u,  which are 
labeled < i , y >  with y#O. T h e  number of bits used to  code such a node can be required t o  be 
not more than  2(2.li1+2.(y)+4)+2 which is <4.(n1+4-ly1+10. We add on an adjustment allow- 
ing for the bits needed t o  code two brackets and conclude tha t  each node can be coded by 
<4-ln(+18+4.)y(  bits. Consider the non-leaf nodes which are of depth c< b ;  there are a t  most 
1x1 of them and their total  length is 5 ) ~ ) .  Hence the total number of bits used t o  code the 
nodes a t  depth c is bounded by 

Since the tree has depth  b,  the total number of bits required t o  code the non-leaf nodes of the 
tree is <(b+l).lzl,(4.ln1+22). 

W e  must  also consider the nodes labeled <i,O>. Let i,, be max{i, : s=O, . . . ,k). 
There are < b-1x1 non-leaf nodes on the first b levels of the tree and below them are 
<l+b- lz ( . ( i , ,+ l )  leaf nodes. (The extra 1 is for the case z=0) .  Since a label <i,O> and its 
surrounding brackets can be coded by <4.ln)+18 bits, the total  number of bits used t o  code 
these nodes is bounded by 

So the length )wl of w is bounded by 

Since b will be restricted t o  be 51x1 we can define the term t ( z , b )  t o  be equal t o  2'('pb). This  is 
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the  desired bound on  w. 
T h e  formula SizeBounds should be a formula containing all of t he  information used 

above in establishing the  bound on Iwl. I t  is rather complicated t o  actually write ou t  
SizeBounds, so  we leave it as an exercise for the  skeptical reader. Given t h a t  SizeBounds is 
properly formulated, i t  is now straightforward for S: t o  prove 

So by c:-LIND , ~ z ] . t ( 3 w ~ t ( z , l z l ) ) ~ ~ ~ ~ ( w , z , l z l ) .  Finally, we need t o  show t h a t  

So  let C(w,v,b) be  the  formula 

I t  is quite easy t o  see t h a t  P D T ~ ( W , X , ~ ~ ~ ) > ( ~ V <  W)C(W,V,O) and 

Hence, by c:-LIND , 

~ z ] .  t ~ ~ T ~ ( w , z , l z J ) > ( 3 v ~  ~ . 2 ~ ' l " I ' ~ ~ " ( " )  )C(w,v,Len(w)) 

from which S ~ F  (3v)DemoTreei(v,z) is immediate. 

Q.E.D. 

Theorem 1 s ta tes  t h a t  sz]. can A:-define predicates which have p-inductive definitions. 
We also wan t  S; to  be able t o  prove theorems involving p-inductively defined predicates. 
Accordingly we need t o  know t h a t  certain kinds of inductive proofs can be formalized in Sz].. 

Definition: Let Po, . . . ,Pn-l be defined p-inductively as above. We say t h a t  the  2 n  formulae 
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have a p-inductive proof iff the following hold: 

(a) Each Bi and Ci  is alb with respect to  s;. 
(b) For O<s<k, O < j < i 8 ,  RUj is as in clause (b) of the p-inductive definition for 

Po, . . . ,Pn-l. Let Q, be the formula Bi if RUj=Pi or the formula Ci  if RUj=-Pi. 

Define g8 dually to  be Bi if R,  ,j=-Pi and to  be C i  if R ,  j=Pi. 

(c) For i=O, . . . ,n-1, and O<s<k, S; proves 

Theorem 8: Given (a), (b), (c) as above, sz]. proves 

for O<i<n.  

Proofi Let A(w,a,b) be the formula 

n-1 

A A [P(l,NodeP(Su ,w))=i+n> Ci(P(2,NodeP(Su, w)))] ). 
i4 

Clearly, s ;~A(w,~ ,o ) .  Also, because of clause (c) of the p-inductive proof, sz]. proves 
A(w,a,b)>A(w,a,Sb). Hence, by c/-LIND , ~ i t ~ ( w , a , ~ e n ( w ) ) .  By Theorem 1, 
~ ; t ( 3 w ) ~ e r n o T r e e ~ ( w , a )  and since the root node of such a demonstration tree must be <;,a> 
or < i+n , a>  we have the desired result. 

Q.E.D. 
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Definition: T h e  function F is defined by a p-inductive definition iff F is defined by the following: 

(a) k is a fixed nonnegative integer. 

(b) For each s s k  there is an is-ary function G, and i, unary functions f , ,~ ,  . . . ,f,,i8 satisfy- 

ing 

(i) G, and each f S j  are c:-definable functions of s:. 
(ii) ~ ~ t z f O > ~ , ~ ( z ) l < l z l  for all jsi,. 

(iii) sit Vs,l(z)l+ . . +Vs,ijz)l<IzI. 

(c) There is a function g C:-definable by S: so tha t  ~ i t ( V z ) ( ~ ( x ) < k ) .  

(d) F ( z )  is defined inductively by 

(e) There is a term t(z) (which will bound F(z))  so tha t  for all s < k ,  

Theorem 3: Let F be defined by the p-inductive definition above. Then F is c:-definable in 
5'2. Furthermore, the definition of F in S; is intensionally correct in tha t  properties of F can 
be proved in S; by the use of induction. 

Proof: This  is proved in a manner very similar t o  the proofs of Theorems 1 and 2, and we omit 
the proof. 

7.3. The hithmetization of Metamathematics. 

In order t o  establish the  G d e l  incompleteness theorems for Bounded Arithmetic, we 
need t o  introduce c:-defined function symbols and A:-defined predicate symbols for handling 
G d e l  numberings for metamathematical concepts such as "formula", "proof', etc. With the  aid 
of p-inductive definitions we demonstrate such an  arithmetization below. 

We begin by introducing G d e l  numbers for all the syntactic symbols of Bounded 
Arithmetic. Each symbol is assigned a number as listed below. 
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Logical Symbols 

v - 0  v - 5  
3 - 1  ( - 6  
7 - 2 ) - 7  
3 - 3  1 - 8  
A - 4  + - 9  

Non-logical symbols 

Constants: 0 - 16 
Unary Functions: S - 20, 1x1 - 24, LfzJ - 28 
Binary Functions: + - 32, - 36, # - 40 
Binary Relations: = - 18, - < - 22 

Free Variables Bound Variables 
a l  - 19 2 1  - 17 
02  - 23 2 2  - 21 
a ,  - 27 z3 - 25 

Corresponding t o  this assignment of G d e l  numbers we introduce the following predi- 
cate symbols in 

AQuant(z) 
EQuant(z) 
Not(%) 
Implies(z) 
And(z) 

04 4 
LParen(z) 
RParen(z) 
Sep ar ( z )  
Arrow(z) 

Quant(z) AQuant(z)vEQuant(z) 
Conn 2(z)  Impl ies(z)~And(z)~Or(z)  
Funcl(z) Succ(z)~Log&(z)~Div&(z) 
Func&(z) Plus(z)v Times(z)vSmash(z) 
Rel&(z) Equals(z)vLE(z) 
FVar(z) z>16~Rem(z,4)=3 
BVar(z) z>16~Rem(z,4)=1 
Var(z) FVar(z)vBVar(z) 

(Note t h a t  we used "Separ" since "Comma" has already been used.) We will abbreviate con- 

s t an t s  by using a bar over the name of the constant. For  example, AQuant denotes the 
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constant 0, LParen  denotes 6, and denotes 22. 

Definition: Semiterm and Term are unary predicates which are A:-defined in Si by the follow- 
ing inductive definition: 

(a) iSemiterm(0) 

(b) If Seq(w) and Len(w)=l and V a r ( ~ ( l , w ) ) v Z e r o ( P ( l , w ) )  then Semiterm(w). 

(c) If Semiterm(w) and Func l (z )  then Semiterm((O*LParen*z)**(w*RParen)). 

(d) If Semiterm(w), Semiterm(v) and Func,!?(z) then 

(e) Anything which is not required t o  be a semiterm by the above conditions is not a 
semiterm. 

I t  is easy t o  see tha t  the definition of semiterm can be formulated as a p-inductive 
definition. 

A term is defined t o  be a semiterm without any bound variables: 

We next define semiformulae and formulae. We shall adopt  conventions on free and 
bound variables which are slightly unusual but  which make the  inductive definitions more 
manageable. We first define atomic formulae and atomic semiformulae by: 

We also define what  i t  means for a bound variable t o  appear bound in a semiformula: 

Because of the way we have defined Bound and Free  we will not allow semiformulae in which a 



128 Gijdel Incompleteness Theorems 

bound variable is both bound and free. For example, (Vz)(z#O)>z#O is not a valid semifor- 
mula. 

W e  define SemiFmla (w) by the following inductive definition: 

(a) If ASemiFmla(w) then SemiFmla (w). 
- 

(b) If SemiFmla (v) then SemiFmla ((O*LParen*Not)**(v*RParen)). 

(c) If SemiFmla (vl), SemiFmla (v2) and Conn 2(z) and if Compat(vl,v2) then 

SemiFmla ((O*LParen)**(vl*z)**(v 2* RParen)) .  

(d) If SemiFmla (vl), Quant(z), BVar(y), Semiterm(v2), Free(y,vl) and Compat(vl,v2) 
and (Vu < Len(v2))(/3(Su,v2)#y) then 

SemiFmla ( ( ~ * ~ + ~ * z * ~ * ~ ) * * ( v ~ * ~ ~ a r e n ) * * ( v ~ * ~ ) )  

and 
SemiFmla ( ( ~ * L P a r e n * L P a r e n * ~ * ~ * ~ ) * * ( v ~ * ~ ~ a r e n ) ) .  

(e) SemiFmla (w) is true only as required by the above clauses. 

We define Fmla(w) t o  mean tha t  w codes a formula; tha t  is t o  say, w is a semiformula and no 
bound variable appears free in w: 

Fmla(w) SemiFmla (w)h(Vu<Len(w))(BVar(/3(Sulw))>Bound(P(Su ,w),w)) 

W e  next define how to  count the alternation of bounded quantifiers in a formula. This  
allows S: t o  recognize c!-formulae. We first must  be able t o  distinguish sharply bounded 
from non-sharply bounded quantifiers. We define LTerm (z) t o  be true iff z codes a term of the 
form It/: 

L Term (z)  Semitern?(z)~Len(z)> lhLog!?(/3(2,z)). 

QCount(w) is a function classifying the formula w by i ts  alternation of quantifiers. 
QCount(w)=<O,i> means WEE:, QCount(w)=< 1 , i >  means w~ll:, and QCount(w)=<2,i> 
means w~C:nll:. QCount is defined by the following p-inductive definition: 

(a) If 1SemiFmla (w) then QCount(w)=O. 

(b) If ASemiFmla(w) then QCount(w)=<2,0>. 

(c) If w = ( ~ * L P a r e n * ~ ) * * ( v * R P a r e n )  then 
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<O,i> if QCount(v)=< l,i> 

<l,i> if QCount(v)=<O,i> 
Q C o u n t ( ~ )  = if QCount(v)=<2,i> 

otherwise 

(d) Suppose w=(0*LParen)**(vl*z)**(v2*RParen), where Conn 2(z) ,  SemiFmla ( v l ) ,  
SemjFmla (v2)  and Compat(vl,v2). If QCount(vl)=O or QCount(v2)=0 then 
QCount(w)=O. Otherwise, define 

QImp(~1) = < 1~/3(1,Q~0~nt(~~)),/3(2,&C0~nt(v~))> 1 otherwise 

and let il1jl,i2,j2 be SO that QImp(vl)=<il,jl> and QCount(v2)=<i2,j2>. 
Then 

( <2,il+l> otherwise 

(e) Suppose SemiFmla (w) ,  Semiterm(v2), SemiFmla ( v l ) ,  Quant(z) and BVar(y) where 

w = ( ~ * ~ * L P a r e n * z * ~ * ~ ) * * ( v ~ * R P a r e n ) * * ( v ~ * R P a r e n ) .  If QCount(vl)=O 
then QCount(w)=O. Otherwise define 

QCount ( v l )  if L Term (v2)~ /3 ( l ,QCount (v1) )=QType(z )  

< Q Ty~e(z) ,P(2 ,  QCount(v1)) > 
QCount(w) = if 1LTerm (v2)A/3(1,&Count(vl))=2 

< QType(z),l+P(2, QCount(vl))> 
otherwise 

if z=EQuant 
where QType(z) = otherwise 

-- 
(f) If w=(~*LParen*LParen*z*y*RParen)**(v~RParen) where Quant(z), BVar(y), and 

SemiFmla ( v l ) ,  then QCount(w)=O. 

That completes the definition of QCount. 
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Another important operation we need t o  c/-define in S$ is the substitution of a term 
into a formula o r  term. First define 

We define Sub(w,x,v) t o  be the function satisfying: 

so Sub(w,x,v) is the  result of substituting the term v for the variable x in w. We leave t o  the 
reader the  proof tha t  Sub is a c/-defined function of S$ (the existence and uniqueness condi- 
tions for the above defining equation must be proved in S2'.) W e  also claim tha t  

This  is proved by a p-inductive proof. 

In addition t o  the  Sub function, we need a function for performing the simultaneous 
substitution of a vector of terms for a vector of variables. W e  define 

So VSubOK(w,x,v) is true iff x is a vector of distinct variables, v is a vector of semiterms, no 
variable in x appears in any of the semiterms in v and if there are no bound variable conflicts 
which arise when the semiterms of v are substituted for the variables of x in w. W e  can now 
define VSub by: 
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z=VSU~(W,Z,V) (~VSU~OK(W,X,U)AZ=O)V 

V( VSU~OK(W,X,U)A Uniqseq (Z)A 

~ ( 3 ~ 5  SqBd(w#u,z)) [Seq(y)~Len(y)=Len(z)+l  A 

~(Vi<Len(z))(P(i+2,y)=Sub(P(i+l,y),P(i+l,z),P(i+l,u)))~ 

hP( l  ,y )=w~z=P(Len(z)+1,~)]  ) 

We will omit  proving the  existence and uniqueness conditions for VSub, since the  proof is 
straightforward with the  machinery developed above and in Chapter  2. 

We define cedents by the  following p-inductive definition: 

(a) Cedent(0) (this is t he  empty cedent). 

(b) If Fmla(w) then Cedent(w). 

(c) If Fmla(v,), Cedent(u2) and u2#0 then Cedent((ul*Separ)**v2). 

(d) Cedent(w) holds only as required by clauses (a)-(c). 

Next we define a couple of functions for manipulating cedents: 

if Len( w)=O 
CedentLen(w) = l+(#i<Len(w))Separ(P(Si ,w))  otherwise 

S o  CedentP(a,w) is equal t o  the a-th formula of the  cedent w, unless a=O in which case it is 
equal t o  t he  number of formulae in w. Sequents are defined by 

if -Sequent(w) 
Antecedent(w) = otherwise 

if iSequent(w) 
Succedent(w) = otherwise 
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W e  define QClass and QBded as a function and predicate which count the number of 
alternations of quantifiers in sequents (and later in proofs). They are defined p-inductively by: 

(a) If Fmla(w) then 

QClass( w) = p(2, QCount(w)) 

(b) If Cedent(w) and w=(vl*Separ)**v2, then 

(c) If Sequent(w) then 

So QBded(w) is true iff w includes no unbounded quantifiers. QClass(w) is equal t o  the  least i 
such tha t  every formula in w is either a c:- or  a ll:-formula. 

W e  are now ready t o  metamathematically define what  a proof is. A Godel number of a 
proof codes a tree of sequents labeled precisely as t o  how the rules of inference are applied. 
Each node of the tree is labeled by an  ordered pair <z ,w> where w is a formula and z codes 
the rule of inference used t o  deduce w from the sons of w (the sons of w are the  sequents 
directly above w in the  proof tree). 

First,  we define what  the initial sequents of a proof may be. Let LAziom(v) be a predi- 
cate defined t o  be true iff v=<O,w> where w is a logical axiom of one of the following forms: 

(a) A j A where A is an atomic formula. 

(b) -+- t= t  where t is any term. 

(c) t = s j  j ( t )=j(s)  where s and t are terms and j is one of the functions S ,  LizJ, or 

1x1. 

(d) t l = s l , t 2 = s 2 j  j(tllt2)=j(s1,s2) where each si and ti  is a term and j is one of the 
functions +, -, or #. 

(e) tl=sl,t2=s2,p(tl,t2)--+p(s1,~2) where each si and t i  is a term and p is one of the 
relations 5 or =. 

Let cu be any unary c:-definable function of Sh We use a t o  enumerate a list of non-logical 
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axioms and define NLAziorn,(v) to  be true iff (1) v=<<vo,vl,v2,v3>,v4>, (2) either v3 is the 
Gijdel number of one of the finite number of BASIC axioms or a(v2)=v3 and (3) the following 
four conditions hold: (a) vO=<zl,. . . , zn>  and vl=<yl , .  . . ,y,>, (b) for l s i l n ,  BVar(zi) 
and Term(yi), (c) ~ ~ = V S u b ( ~ ~ , v ~ , v ~ ) ,  and (d) Frnla(v4). Thus  the non-logical axioms are 
instances of formulae from BASIC axioms or formulae in the range of a. Note there is no 
conflict of variables in (c) since all variables in yi are free variables and each z; is a bound vari- 
able. 

We are using a for additional generality; since every recursively enumerable set is the 
range of a polynomial time function, we can have any recursively enumerable set which includes 
the BASIC axioms as the set of axioms. 

We now informally describe how proofs are arithmetized. A proof P is coded by a tree 
w. The  root of w corresponds to  the endsequent of P. T h e  leaves of w correspond to  the initial 
sequents of P. Each node of w corresponds to  a sequent I',+A, of P. The  sons of a node n 
of w correspond to  the upper sequents of the inference in P which yielded I',+A,. Accord- 
ingly, the valence of each node of w is not greater than two. The  label on each node of w is 
<z,,v,> where u, is a G a e l  number of the sequent r,+A, and z, is a code detailing the 
inference used t o  derive that  sequent. We already explained in detail what z, is for initial 
sequents. For non-initial sequents, it suffices to  take 2,523 to  be equal to  the number of the 
inference as described in Chapter 4 or zn=24 for a PIND inference. 

T o  define proofs as metamathematical objects in s;, we shall of course use a p 
inductive definition. This  is done by simultaneously defining the following predicates p 
inductively. 

Proof,(w) e++ "w codes a proof with non-logical axioms specified by NLAziorn, 
and all inductions in w are A:-PIND 's." 

ProofFCF,(w) "Proof,(w) and there are no free cuts in w." 

QBded(w) e "All quantifiers in w are bounded." 

QClass(w) e "i is the least number such that  all formulae in w are in CibulTib." 

FreeForrn(w,O,i) "the i-th formula of the antecedent of the endsequent of w is 
a free formula." 

FreeForm(w,l,i) ++ "the i-th formula of the succedent of the endsequent of w is a 
free formula." 

i=INDType(w) "i2l is the least number such tha t  all induction inferences in 
w are C~!~-PIND inferences, or i=O and there are no 
induction inferences in w." 

These can all be defined in a long but straightforward way by a p-inductive definition. Since it 
would not be very interesting to  write out  the definitions precisely, we omit them. 
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Some further useful predicates are: 

P ~ O O ~ B Q ~  Proof8(w)h QClass(w)<ih IND Type(w)<i+l 
P ~ O O ~ B Q ;  - Prooj,(w)h QClass (w) i  i A  INDType(w)<i+l 
ProojBD1(w) - ProojO(w)h QBded(w)hIND Type(w)< i+l 
~ r o o j ~ ~ j ( w )  Prooj,(w)h QBded(w)hINDType(w)< i+l 
p r o o j ~ ~ ~ ' ( w )  ProojFCFO(w)~IND Type(w)< i f 1  
P ~ O O ~ F C F ~ ( W )  ProojFCF,(w)~INDType(w)<i+l 

When we use 8 as a subscript, i t  denotes any function with range contained in the  se t  of Godel 
numbers of BASIC axioms. T h u s  ~ r o o j ~ ~ ' ( w ) ,  ProojBQi(w) and P ~ O O ~ F C F ' ( W )  each imply 
tha t  w is a proof in the  theory ~ 1 .  Also, ~ r o o J B ~ ( ' ' ) ( w ) ,  ~ r o o j ~ ~ ( - l ) ( w )  and ~ r o o j ~ ~ ~ ( - l ) ( w )  
mean t h a t  w has no  induction inferences a t  all. T h e  difference between P ~ O O ~ B D ~  and P ~ O O ~ B Q '  
is t h a t  P ~ O O ~ B D ' ( W )  means t h a t  w codes a bounded ~ i - ~ r o o f  whereas ~ r o o j B Q ' ( w )  means tha t  
w codes a bounded  roof and t h a t  all the  formulae in w are xib- or nib-formulae. 

Define the  function Endsequent ( w )  t o  be /3(2,Root/3(w)). Also define P r j  as 

Prj(w,a)  a=EndSequent (w)~(O*Arrow)**a=EndSequent ( w ) .  

So Prj(w,a)  is t rue  iff a is the  Gijdel number of the  sequent or  formula proved by the  proof w.  
We further define: 

T h e  last nine predicates are definitely not alb with respect t o  S! because of the  unbounded 
quantifier ( 3 w ) .  Hence they can not  be used in principal formulae of induction inferences. 
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7.4. When Truth Implies Provability . 
The  main point of this section is to establish a crucial lemma for the Godel incomplete- 

ness theorems. 

Definition: Num(z) is a function Ct-defined in S; so that  Num(z) is the Godel number of the 
term I,. We know tha t  Num(z) can be cP-defined in 5'; since it is easy to  give a p-inductive 
definition for Num. 

From now on we will use rX1 to  denote the Gijdel number of a term, formula, sequent, 

or prmf X. If n c N  then r n l  denotes r1.1 or  Num(n). 

We will write F s u b ( r ~ l , r a l , t )  to  mean ~ u b ( r ~ l , r a l , ~ u m ( t ) ) ;  in other words, 

F S u b ( r A 7 , m 1 t )  is the formula obtained by replacing all occurrences of the free variable a in 
the formula A by the term I f .  If d is an n-tuple of free variables and d is an n-tuple of terms 
then we write 

~ g u b  ( r A 1  rid 3) 
as an abbreviation for 

T o  improve readability, we shall frequently use FSub implicitly in the following way. 

Let A ( a l . . . ,  a )  be a formula. Then A 8 1 . . . ,  1 8 )  is an abbreviation for 

&ub(rA(d)l1rdl,3). For example, we shall write 

as an abbreviation for 

The  next theorem is very important for establishing the Godel incompleteness 
theorems. 

Theorem /: 
(a) Let A be any c:-formula in the language of Bounded Arithmetic. Let al, . . . ,a, be all 

the free variables of A .  Then there is a term tA(d) such that  
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(b) Let A be of the form (3x)B(Z,x) where B is a c/-formula in the language of Bounded 
Arithmetic. Let al ,  . . . , ap  be all the free variables of A .  Then 

S o  Theorem 4 asserts t ha t  for any CP-formula A(Z), S i  proves t h a t  for all values it 
such tha t  A(Z)  is t rue there is an induction free, free cut  free proof of A(Inl ,  . . . , Int) .  

T h e  proof of Theorem 4 is, of course, by induction on the complexity of A .  T h e  single 
hardest par t  t o  prove is Lemma 5: 

Lemma 5: Let t be any term with free variables al ,  . . . ,ak. Then 

Proofi by induction on the complexity of t 

(a) Suppose t is the constant term 0.  Then S i t  T ~ ~ F c F ( - ~ ) ( ~ o = o ~ )  is immediate from the 
equality axioms. 

(b) Suppose t is a variable symbol a .  Then sit T ~ ~ F c F ( - ' ) ( ~ I ~ = I ~ ~ )  is immediate from the 
equality axioms. 

(c) Suppose t is S(r) .  By the induction hypothesis, Si  proves tha t  for all S there exists a proof 
tha t  r(Inl ,  . . . ,In,)=I,(t). So  i t  suffices t o  show t h a t  

This  is proved by c/-PIND with respect t o  6. Since there is a proof of S(Io)=Il, it is 
clearly true for 6=O. T o  deal with the induction step, we argue informally inside s;. T h e  
induction hypothesis is tha t  there is a free cut  free ~ J - l ) - ~ r o o f  of S(Il~bl)=Is(l;bJ). We 

divide the argument into two cases. First, suppose 6 is even. Then s2(-l) proves immedi- 
ately tha t  S(Ib)=Ib+SO and since I b + S O  is identical t o  Is, this case is done. Second, sup- 
pose 6 is odd. Then sJ-') proves immediately tha t  S(Ib)=2'IlLb1+2=2'(S(ILLbJ)) and by 

2 2 

combining tha t  proof with the proof of S ( I  l b J )=I s l~bJ  we obtain, by an inessential cut, a 
1, 2 

proof of S(Ib)=Isb. 

T o  apply c/-PIND we must find a uniform bound ts so  tha t  the proof of 
S(Ib)=Isb is coded by a Gadel number s t s (6) .  This  is readily done, since in either case of 
the argument for the induction step, the difference in size of the  proof of S(Ib)=Isb over the 
size of the  proof of S ( I l ;b~)=Is ( l~ r~)  is bounded by an amount proportional t o  the size 16) of 

2 

6.  T h u s  the size of the free cut  free ~z(- ' ) -~roof of S(Ib)=Isb is quadratic in the size of 6. 
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(d) Suppose t is r+e .  As in (c), i t  will suffice t o  show t h a t  

Let b, and c, abbreviate MSP(b,u) and MSP(c,u) respectively. Let D(u)  be the Godel 
number of the formula 

We will show tha t  

and 
s,' t ThmFCF(-')(D(u))> T ~ ~ F c F ( - ' ) ( D ( ~ ~ -  I)). 

Then s,' can use g-LIND to conclude T~~FCF(-')(D(o)), which is what  we need to  
show, as bo=b and co=c. 

We argue informally inside s,'. Let v=min(lcl,lbl); we want  t o  show tha t  sJ-') 
proves D(v). Suppose without loss of generality tha t  v=lcl. Then c,=O, s o  D(0) is 

~ I ~ ~ + ~ = I ~ ~ + ~ ~ ,  and this is easily proved in ~ 2 ( - ' )  by an  equality axiom as Ibv and Ibv+o are 
the same term. We next argue the induction step. T h e  induction hypothesis is t ha t  there 
is a free cu t  free  roof of Ib,+IC,=Ib,+,, and tha t  u>O. We want t o  show tha t  there 
is an ~d- ' ) -~ roof  of Ib8-l+Ic,-l=Ib .-I Note tha t  bu=L+bu-J and cU=~$cu-J .  There are 
two cases t o  consider. First suppose tha t  one of b,-' and c,-1 is even and thus  there is no 
carry from the rightmost bit position when they are added together. Then i t  is easy t o  add 
a small &mount t o  the proof of Ib,+Ie,=Ib,+,, to  get a proof of Ib,-l+Ic,-l=Ib,-l+C,-l. 
Second, suppose tha t  both b,-' and c,-' are odd. Then Sd-') can prove immediately from 
the BASIC axioms t h a t  I b 8 ~ l + I c , ~ l = 2 ~ ( I b , + I c , + l ) .  We combine tha t  with the  ~2(- ')-~roof 
of I~,+I,,=I~,+,, using an inessential cu t  t o  get an ~ J - l ) - ~ r o o f  of I, .-I +I, ,-I =2.(1~,+,,+1). 

By (c), there is an  ~ J - l ) - ~ r o o f  of Ib8+c,+1=Ib,+,,+1. From this we can use another inessen- 

tial cu t  t o  obtain an ~2(- ' )-~roof of Ib,-l+Ic,-l=2~Ib,+c,+l. Now we are done, since 

2'1b,+c,+1 and Ib,-l+c8-l are the same term. 

To apply c:-LIND to  conclude tha t  T~~FCF(-')(D(o)) we must find a term t+  

which bounds the size of the ~z(- ')-~roofs constructed above. Because of the size bound 
established in (c), we know tha t  the increase in size of the proof of D(u1-1) over the size of 
the proof of D(u)  is bounded by an amount quadratic in the size of b,+c,. Hence the size 
of the free cu t  free ~2(-')-~roof of Ib+I,=Ib+, is bounded by a cubic polynomial of the sizes 
Ibl and I c I  of b and c .  
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(e) Suppose t is r . 8 .  As before, i t  suffices t o  show t h a t  S: proves 

We shall prove this by using c:-PIND with respect t o  t he  variable b .  

W e  argue informally inside S;. First we consider the  case b=O; we want  t o  show 
t h a t  sJ-'1 proves Io.Ic=Io. Th i s  is easily proved in ~1-l) from the  BASIC axioms, with a 
free cu t  free proof with size proportional t o  the size Icl of c .  W e  next d o  the  induction 
step.  T h e  induction hypothesis is t h a t  there is an  ~d- ' ) -~ roof  of IILbl-Ic=IlLbI., and we 

2 2 

want  t o  show t h a t  there is an sJ-') proof of Ib.Ic=Ib.c. There  are two cases. First,  if b is 
even then I, is 12.L~bl and Ib., is 12.Libl.c. Hence the  proof of IL~bl~Ic=IL~bl.c is easily 

2 

extended t o  a proof of Ib.IC=Ib.,. Second, if b is odd then 2 . l :b  J+l= b and ~ 2 ( - ' )  can prove 

from the  BASIC axioms t h a t  Ib ' Ic=2 ' I  lbl.Ic+Ic. W e  combine this  with the  proof of 15 
I ~ ~ ~ . I , =  I ~ ~ ~ ~ . ~  using an inessential cut t o  get an ~. j- ' ) -~roof of 12.1Lbl.c+Ic=Ib'Ic. BY (dl, 

there is a free cut  free ~2(-lLproof of 12.11b].cfI,'lb.c and we can use this and  an inessen- 

tial cu t  t o  get t he  desired ~d- ' ) -~ roof  of Ib+Ic=Ib .c ,  which completes t he  induction step. 

Since we used (d) in the  induction step argument, t he  size of t he  free cu t  free 
~J - ' ) -~ roof  of Ib- IC=Ib . ,  constructed above is bounded by a quartic polynomial of the sizes 
(bl  and Icl of b and c .  

(f) Suppose t is r#s .  I t  suffices t o  show t h a t  S2' proves 

First,  it is clear t h a t  if b=O there is an Sd-')-proof of this using the  BASIC axioms. We 
shall prove the case b>O in two parts.  First,  we show by c:-PIND with respect t o  c tha t  
there is a free cut free  roof of I1#IC=Il#, for all c; second, we use c:-PIND with 
respect t o  b t o  prove t h a t  there is a free cu t  free ~2(- ')-~roof of Ib#IC=Ibxc for all b and c .  
We shall argue informally inside s:. 

First,  it is clear tha t  there is an ~d- ' ) -~ roof  of 11#11=12 (since 1#1=2). S o  sup- 
pose there is a free cut free ~J - ' ) -~ roof  of 11#111 =IIXL~cJ where c > l .  From the  BASIC 

2 2 

axioms, ~ 2 ( - ' )  proves Il#Ic=2.11#l~cJ, thus  there is a free cu t  free ~2(- ' ) -~roof of 

Il#Ic=2.11Xl~cl.  B u t  2-11#l;c1 is the  same term as IIXc and we are done. 
2 

Second, suppose there is a free cu t  free ~ i " ) - ~ r o o f  of Il~b]#Ic=IL~b]#c and b t 2 .  

From the BASIC axioms, ~ 2 ( - ' )  proves I b # I c = ( I L ~ b I # I c ) ~ ( ~ # I c ) .  T h u s  ~ 2 ( - ' )  proves 

Ib#Ic=IL;bl#c-Il#c. Hence, by (e), there is a free cut  free ~J - ' ) -~ roof  of Ib#IC=Ib#,.  

T h e  size of the  free cu t  free Sa-')-proof constructed above is bounded by a fifth- 
order polynomial of the  lengths Ibl and Icl of b and c .  
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(g) Suppose t is LisJ or  t is Is( .  I t  suffices t o  show tha t  

and 

These are easily proved by using c/-PIND with respect t o  b .  W e  omit  the details. 

Q.E.D. 

W e  are now prepared t o  prove Theorem 4. 

Proof: of Theorem 4 is by induction on the complexity of the formula A .  We use separate cases 
depending on the  outermost connective of A .  

(a) Suppose A is an  atomic formula o r  the negation of an  atomic formula. A must be t=s,  
+=s, t < s ,  or - t < s .  By Lemma 5, s,' proves tha t  t(Ial,  . . . ,Ia,)=It(al, .,,,I and 

s(Ial) . - - )Iat)=I~(al , .  . . ,at). So  i t  will suffice t o  show t h a t  Si proves the following four for- 
mulae: 

b=c T ~ ~ F C F ( - ' ) ( ~ I ~ = I , ~ )  

These are readily proved by induction on the lengths of b and c .  T h e  sizes of the free cut  
free ~z(- ')-~roofs are bounded by a quadratic polynomial of the  lengths 161 and Icl of b and 
C .  

(b) Suppose A is B(d)vC(Ti) and tha t  Theorem 4 has already been established for B and C. 
Thus,  

S,' k B ( ~ ) I I  ( 3  w < t B ) ~ r j ~ ~ ~ ( - l ) ( w  ,F.'%b(r~l, rdl ,a))  

and 

S,'k C(d)11(3v< tC)~rj~~~(-')(v,~~ub(rCl,r~)). 

But  i t  is easy for S2' t o  prove tha t ,  given such a proof v o r  w, adding an (v:right) inference 
gives a  roof of A(Iol,  . . . ,I,,). T h e  bounding term tA is easily obtained from tB and 

t c.  
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(c) Suppose A is BA C. The  argument for this case is similar t o  the argument for (b). 

(d) Suppose A is ('dx<lsl)B(a,x). By the induction hypothesis, S: proves 

We let t(d)=a[tB](d,pl). Then by use of C~~-LIND with respect t o  u, S: proves 

where r ( d , ~ ) = 2 ~ # ( 7 . t ) ,  where 7 is a suitable constant. This is because the proofs of 
B(Ial ,  . . . ,I,,,Ib) for b < u  can be put  together via inessential cut inferences t o  obtain a free 

cut free ~ , ( - ' ) -~ rmf  of b< I,+ B(Ia1, . . . ,I,,, b). 

By Lemma 5, S; proves 

By using a ('d5:right) inference and another inessential cut, we can combine the proofs of 
II,I=ls(I,l, . . . ,I,J1 and of b~I1 , l+B(I , l ,  . . . ,I,,,b) to  get a free cut free  roof of 

A(Ial, . . . ,I,,). T h e  bounding term tA is easily obtained from r and t,. 

(e) Suppose A is ( 3 x ~ s ) B ( d , x ) .  By the induction hypothesis, S: proves 

T h u s  S; proves 

We argue informally in Si. Suppose A@). Then we have just shown that  there are an 
x j s  and a w so that  w codes a free cut free ~A-')-~roof of B(Ia1, . . . ,Iak,I,). By Case (a), 

there is a free cut free ~2(- ' ) -~rmf of Iz<s(Ia l ,  . . . , I )  We can combine these two proofs 

using an inessential cut and a @<:right) inference to  get a free cut free ~.J- ')-~roof of 

which is what we needed t o  show. 

(f) Suppose A is (3x)B(d,x). The  proof for this case is similar t o  and slightly simpler than the 
proof for (e). 

Q.E.D. 
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I t  is important t o  recall t ha t  all formulae we are using in our arithmetization of 
metamathematics only use the original seven nonlogical symbols of Bounded Arithmetic; they d o  
not contain any new g -de f ined  functions o r  A/-defined predicates. But  of course any 

A:-formula A which may include c:-defined function symbols and &:-defined predicate sym- 
bols is equivalent, provably in s,', t o  two formulae A' and A" where A' and A" are in C/ and 
n/ respectively and contain only the original seven nonlogical symbols of Bounded Arithmetic. 
This  gives the following corollary t o  Theorem 4: 

Corollary 6: 
(a) Let A be any A/-formula of S$ T h a t  is, there are c:-formulae A l  and A 2  such tha t  

s 2 t A * A 1  and S 2 t A * 1 A 2 .  Then,  

S; t 1 A  (a )  3 ThrnF~F(-')(Fgub ( r 1 A  J, rZl ,Z)) . 

(b) Let A be any A:-formula of S2'. Then 

Note t h a t  in (b), ThmBD1 is used instead of T~~FcF(- ' ) .  Unlike Theorem 4 and 
Lemma 5, Corollary 6(b) would still hold if we enlarged the  syntax of our metamathematics t o  
include symbols for C/-defined functions and A/-defined predicates. 

Corollarjr 7: Let A (b) be one of the formulae Thm ,(b), T h m B ~ i ( b ) ,  ThmBD '(b), Thml?Di(b), 
etc. Then 

7.5. GGdel Incompleteneee Theorems. 

Now t h a t  we have arithmetized the  syntarx of Bounded Arithmetic and, in particular, 
have proved Corollary 7, it will be straightforward t o  establish the Godel incompleteness 
theorem. Wha t  we prove is somewhat stronger than the usual s tatements of the incompleteness 
results since we use ThmFCF instead of Thm; tha t  is, we shall consider the consistency of free 
cut  free proofs only, rather than of general proofs. 



142 Gijdel Incompleteness Theorems 

Lemma 8: (Godel Diagonalization Lemma). Let $(a) be any formula with one free variable a .  
Then there is a sentence such tha t  

sit- 4-flr47). 

Furthermore, if 1C, is a ll:-formula, then so is 4. If 1C, is provably equivalent to  a c:-formula 
(resp. nib-formula) then so is 4. 

Proof: Since Sub and Num are c/-defined function symbols of s;, Theorem 2.2 states that  

there is a formula ~ ( a )  which is ~ i - ~ r o v a b l ~  equivalent to $ ( S ~ b ( a , r a l , N ~ m ( a ) ) )  such that  if 1C, 
is a xib- (respectively, nib- ) formula then so is X. Define 4 to be the sentence x(IrXl). So 

By the definition of 4 and the results of $7.4, we certainly have 

which shows that  s;I- 4- $(r41). 

The  fact that  the quantifier structure of 4 is the same as that  of t,b is immediate from 
the fact tha t  4 is a substitution instance of t,b and from Theorem 2.2. 

For added generality, we will work in theories stronger than s;. 

Definition: Let u be a unary c:-defined function of s:. We define s:, to  be the theory such 
that  

(a) T h e  language of S;, is the language of Bounded Arithmetic. 

(b) The  axioms of s;, are the BASIC axioms plus all formulae with Godel number 
in the range of a. 

(c) s;, has all the C&PIND inference rules. 

Ezample: Let P A  be Peano arithmetic. Define P by 

r a = a l  if n is not a Gijdel number of a PA-proof 
if n codes a PA-proof of the sequent with Godel number m 

Then S2,B is equivalent to  PA 
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Definition: Let a be as above and fix i> 1.  Since P~JFCF: is A: with respect t o  s:, we can 
choose some formula A E ~ :  such tha t  ~ ~ t - ~ ( w , a ) * ~ ~ r j ~ ~ ~ ~ ( w , a ) .  Now let $ be the for- 
mula (Vw)A(w,a). Define d,' t o  be the formula whose existence is guaranteed by Lemma 8 
such tha t  

Note tha t  4: is a l7:-formula of the  form (Vw)B where B is a l7,b-formula which is 
A: with respect t o  s:. Also, 

Theorem 9: ( G a e l ' s  First  Incompleteness Theorem). Let a, s;, and 4: be as above, with i2l. 
Suppose s;, is consistent. Then,  

Proof: (by contradiction). 

Suppose si,t-d&. Then by the cu t  elimination theorem (Theorem 4.3)' there is a free 
cu t  free ~ l , - ~ r o o f  of 4;. Hence, by Corollary 7, 

From the assumption tha t  sifftq5; and the definition of 4:, 

and since s~,_>s;, this contradicts the consistency of s;,. 

Q.E.D. 

Definition: T h e  following predicates assert the consistency of various natural  deduction proof 
systems: 

Con,' - T h r n & ( r - + l )  

CO~BQ; - ThrnB&:(r+l) 

C ~ ~ B Q '  - T h r n ~ Q ' ( r + l )  

CO~BD; - ~ h r n B D d ( r + l )  

ConBD, 7 ThrnBD,(r+l) 
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For example, CO~FCF' asserts that  there is no formula A  such that  both A  and i A  
have free cut free ~ : - ~ r o o f s .  I t  is necessary for our purposes that  we define ConFCF in this 
way; since Gentzen's cut elimination theorem can not be proved by Bounded Arithmetic, the 
fact tha t  A  and -A have free cut free proofs does not provably imply that  there is a free cut 
free proof of the empty sequent. Of course, a proof of the empty sequent is a proof of a con- 
tradiction, since the (Weak:right) inference may be used to infer anything from the empty 
sequent. 

Definifion: Let R be any axiomatizable theory of arithmetic. We write Con(R), BDCon(R), 
BQCon(R) and FCFCon(R) to denote formulae expressing various consistency properties of 
R .  Thus,  for example, we have: 

c o n  (5';) c o n i  
CO~(S;,) con: 
BQCO~(S;) w CO~BQ' 
BDCon(S2,,) ConBD? 
BDCon(Si) ConBD' 
FCFCon(S2,,) ConFCF, 
FCFCon(S$) CO~FCF' 

More generally, when R is any axiomatizable theory such that  R~S: ,  let cu be a 
c/-defined function of S: such that  the range of a is equal to  the set  of G d e l  numbers of 
theorems of R .  Then Con(R), BDCon(R) and FCFCon(R) are defined to  be Con(szf,), 
BDCO~(S~~, )  and FCFCO~(S~,), respectively . 

In addition, the formulae PrfRl  ThmR, PrfBDR and PrfFCFR will be used as alter- 
native names for the formulae Prj:, Thm:, P r j B ~ d  and PrjFcF;, respectively. 

Theorem 10: (Gde l ' s  Second Incompleteness Theorem). Let a, 4: and S& be as above, with 
i 2 l .  Then, 

and hence, if S& is consistent, 
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Proofi Because 4; is a lip-formula of the form (tlw)A where A is a ll:-formula which is A: 
with respect t o  s;, we have by Theorem 4 t h a t  

S i t  1462 T ~ ~ F c F ( - ' ) ( ~ ~ ~ J I ) .  

Also, by the definition of 4:, 

I t  is also immediate from the definitions tha t  

Put t ing  these three formulae together, we get,  from the definition of FCFCO~(S&), t ha t  

Thus ,  

By the First  Incompleteness Theorem, s;,+ d;, and hence 

Q.E.D. 

In Theorem 10 we only proved tha t  s ~ ~ c o ~ F c F ~ > ~ : ;  we did not  prove tha t  
sit ~~;>co~FcF:. In the s tandard treatments of G d e l ' s  incompleteness theorem, Con, is 
used instead of ConFCF,. Then if is defined using Thm; in the  same way tha t  4,' was 
defined from ThmFCF,', we have 

(see Theorem 5.6 of Feferman (91). However, the author doubts  t h a t  i t  is true t h a t  

since we are only considering free cut  free proofs. 
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Since a free cut  free proof with bounded initial sequents and bounded endsequent is a 
bounded proof, we have the following immediate corollary t o  the Second Incompleteness 
theorem. 

Corollary 11: ( i2 1). 

(a) S; v FCFCO~(S;) 

(b) S;V BDCO~(S,') 

( 4  s;,v  on(^,,.) 
(d) If all axioms of ~ 2 ,  are bounded, then s;, v BQCO~(S;,) 

(e) If all axioms of S& are bounded, then S;,K BDCO~(S;,~) 

Corollary 12: ( G d e l ) .  
(a) Let P A  be Peano arithmetic. Then P A  v Con(PA). 
(b) If R is an axiomatizable theory which is stronger than S i ,  then R v  Con(R). 

Prooj: First note (b) implies (a). Let a be a unary function CP-definable in S; such tha t  the 
range of a is equal t o  the set of G d e l  numbers of theorems of R .  Then szf, is equivalent t o  R .  
T h u s  (b) follows immediately from Corollary 11. 

7.6. Further Incompleteness Results. 

In the author's opinion, the most important open question concerning Bounded Arith- 
metic is whether the hierarchy s;,s~~, . . . of theories is proper. T h e  results of this  section were 
motivated by a desire t o  answer this question. 

Let P A k  denote the subsystem for Peano arithmetic (PA)  obtained by restricting 
induction t o  c:- and IIi-formulae. I t  is a classical result t ha t  PAk+lt- Con(PAk). This  can be 
proved by showing t h a t  PA1 can formalize the proof of the cut  elimination theorem and tha t  
PAk+'  can define a t ru th  valuation on c;- and IIt-formulae. Consequently, PAk+'t- Con(PAk). 
From this, it follows immediately t h a t  PAk+' is strictly stronger t h a t  P A k  since by the Godel 
incompleteness theorem, P A  kt/ Con(PA k). 

One way we might prove tha t  S; is not equivalent t o  s;+' would be t o  adapt  the 
proof tha t  P A k  is not equivalent t o  PAk+'. Now i t  is certainly false tha t  s;+'t- CO~(S;); 
indeed, Szv Con(&), where Q is Robinson's open, induction free subtheory of P A ,  (this is shown 
by Nelson [19] and Wilkie-Paris (311.) But  instead, we might try t o  show tha t  
s;+' t- BDCO~(S;) o r  s;+' t- FCFCO~(S;). This  would certainly suffice, since by Corollary 11, 
S; does not  prove either of these. However, as we show below, i t  is not t rue t h a t  for all i > l ,  
s;+'~-BDco~(s;). T h e  author does not know whether ~ ~ ~ + ' t -  FCFCO~(S;), but  he conjectures 
tha t  it is not the case. 
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Definition: In order t o  improve readability, we shall use the symbols p t o  denote "proves by 
bounded proof'. This  symbol will only be used metamathematically. For example, if V is a 
bounded formula, 

s;, F'V 

denotes the formula 

( 3  W ) P ~ ~ B D ~ ( W ,  r - 1 )  

which is a formula tha t  asserts t ha t  there is a bounded  roof of V.  

If V is not a bounded formula, we can still sometimes define a formula s ; , ~ V .  
Namely, if V is (Yz)A(z), let a be a new free variable. Then ~ i , p ( Y z ) ~ ( z )  is defined t o  be 
the formula 

where a is a new free variable not appearing in A .  If V is (3y)A(y) and A is a bounded for- 
mula then s ; , ~ Y  is defined t o  be the formula 

where b is a new free variable not appearing in A .  In particular, we shall frequently have 
V=(Yz)(jy)A(z,y) and in this case S ; , ,~V is the formula which asserts t ha t  there is a term 
t and a bounded ~ ; , - ~ r o o f  P such tha t  P is a proof of ( j y s t ( a ) ) A ( a , y ) ,  where a is a new 
free variable. 

Proposition 14: Let @(a) be any bounded formula. Suppose S2k (Yz)V(z). Then 

s; k (Yz) [ s J - l ) p V ( ~ ~ ) ]  . 

By our conventions for abbreviating formulae, the conclusion of Proposition 14 is an 
abbreviation for 

From now on,  we shall use such abbreviation without comment and let the reader supply the 
translations. 
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Proof: This is proved by formalizing the proof of Theorem 4.10 inside s;. We s tar t  with a 
bounded proof P with endsequent +@(a). By Theorem 4.9, P may be assumed to  be res- 
tricted by parameter variables. s2' can prove that ,  for any given value n for a ,  the induction 
inferences of P may be expanded to give an induction free proof of @(In). 

One subtle point to  notice is that  this procedure is not provably uniform. T h a t  is, Si 
does not prove "Given a proof P of (Vz)@(z) and given a number n ,  there is an induction free 
proof of @(I,)." Instead, given a proof P of (Vz)\Ir(z), S: proves "given a number n ,  there is 
an induction free proof of \Ir(In)." 

Q.E.D. 

Dcjinition: s:+BDc~~(s~-')) is the theory S: plus the bounded axiom i ~ r f B ~ ( - ' ) ( a , r - + l ) .  
Since s~+BDco~(s~(-')) is axiomatized by bounded formulae, it makes sense to  discuss 
bounded proofs of that  theory. We define 

to  be the formula expressing the bounded consistency of S ~ + B D C ~ ~ ( S ~ ( - ' ) ) .  

Theorem 15: If A(al, . . . ,ak) is a IIP-formula and if S 2 t A  then s~+BDco~(s~- '))~-A. 

Proofi We assume without loss of generality that  k= l .  Since A(a)  is a lllb-formula and 
S2t A(a),  Proposition 14 implies that  

On the other hand, by Theorem 4, 

s2 t [-A (a)  3 (S~-')-L,P~A (I.))] . 

Hence, 

Q.E.D. 

Corollary 16: s2 t+ BDCO~(S~+BDCO~(S~(-'I)). 

Proofi By G d e l ' s  Second Incompleteness Theorem, s~+BDco~(s~(-')) does not prove its own 
bounded consistency. Since B D C O ~ ( S ~ ' . + B D C ~ ~ ( S ~ ( - ' ) ) )  is ~ 2 - ~ r o v a b l ~  equivalent to  a 
lip-formula, Corollary 16 is an immediate consequence of Theorem 15. 

Q.E.D. 
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Corollary 17: Either S2'y BDCO~(S~(-')) or  S2 y BDCO~(S;). 

Proof: Suppose s~~~BDco~(s?( - ' ) ) .  Then S2F [s ;~BDc~~(s~(- ' ) ) ] ,  and thus  

So by Corollary 16, s 2 y  BDCO~(S;). 

Corollary 18: Let j be the least number (if any) such tha t  S ~ F  BDCO~(S?(-'1). Then 

(a) s l y  BDCO~(S[), for all I < j and all k .  

(b) S ~ W  B D C O ~ ( S ~ ) ,  for all i2 j . 

Proof: (a) is obvious. (b) is proved in the  same way as Corollary 17. 

Corollary 19: There is a t  most one i > O  such t h a t  sit- BDCO~(S;-'). 

As we remarked a t  the outset  of this section, these results were motivated by a desire 
t o  show tha t  S; and s;+' are distinct theories. From this viewpoint, Corollary 19 is a negative 
result in t ha t  i t  s tates  t h a t  the formula BDCO~(S;) can not  be used t o  separate the theories S; 
and s;+'. 

There are weaker formulae we could a t tempt  t o  use to  separate S; and s;+'. For 
example, it is an open question whether s;+' can prove BQCO~(S;) o r  FCFCO~(S;). T h e  
author conjectures t ha t  neither of BQC~~(S~( - ' ) )  and FCFCO~(S~(-')) is provable by S2. 



Chapter 8 

A Proof-Theoretic Statement Equivalent to NP=co-NP 

This chapter presents a reformulation of the NP=co-NP question in a proof- 
theoretic setting. I t  turns  out  tha t  NP=co-NP is equivalent t o  the existence of a theory of 
Bounded Arithmetic satisfying a certain "anti-reflection" property. 

Definition: Let &(a, b,c) be the formula 

Note t h a t  4 is a lit-formula, hence 4 represents a co-NP predicate. I t  is not difficult 
t o  see tha t  4 is co-NP complete. 

Definition: Suppose NP=co-NP. Let $J denote some fixed c:-formula so tha t  

Definition: Suppose N P = c o - N P .  Let 4 and $J be as above. Then W is the theory with the 
same language as S: and all the axioms of S; plus the  additional axioms: 

Strictly speaking, W depends on the choice of $J and a better notation for this theory 
might be W$. However, we shall keep $J fixed and suppress the subscript. 

Definition: Let 3 be a vector al, . . . ,a,. Then Iz denotes the vector Ial, . . . ,I,*. 

T h e  next proposition formalizes the claim tha t  4 is co-NP complete. 
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Proposition 1: Suppose NP=co-NP.  Let W  be as above. Then 

(a) W  is a consistent extension of s;. 
(b) For  every bounded formula A(Z), there is a z:-formula A x  and a Il:-formula 

A n  such tha t  

Proofi 
(a) Since all axioms of W  are true (under the  assumption t h a t  NP=co-NP)  W must be con- 

sistent. 

(b) Begin by supposing A E ~ / .  Since the Ct-replacement axioms are theorems of S: and by 
Corollary 2.15, there is a formula B which is A; with respect t o  Si and a term s(2)  such 
t h a t  

By Corollary 7.6(b), there are terms rl(d,b) and r2(d,b) such tha t  

s: t ~(~,b)>(3t.<rl)~rjB~'(r,r~(1, ,1b)1) 
and 

S: t -B(d1b)>(3z~r2)~rjB~'(z,r-B(1, ,1,fl). 

Since W  has an axiom asserting BDCO~(S;), we have 

Let t(d,b) be the term a [ r2 ] .  Then 

In other  words, 

Let C ( n  be the formula $(~(T,s(z)),~-B(I, .vfl,s(z)). Then CEC: and W t  A* C. This  
establishes (b) for the case A E H ~ .  
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If AEC;, apply the above construction t o  -A to  find CEC: such that  
W t A - 1 C .  So  (b) holds for AEC;. 

I t  is now easy t o  prove (b) for all bounded formulae A by induction on the 
quantifier complexity of A .  

Q.E.D. 

Corollary 2: Suppose N P = c o - N P  and let W be as above. Then for every bounded formula A ,  

Proofi Let A E  be as in Proposition 1. Then 

w t  [ W p ( A ( d ) * ~ c ( d ) ) ] .  

Also, since A ~ E C ;  and by Theorem 7.4, 

w t  [A 3 W P A  c(1,)I 

Hence, 

Q.E.D. 

Proposition 3: Suppose R is a consistent theory extending s;. Let A(d)  be any bounded for- 
mula in the  language of s:. If R t(K?)A(Z) then N p (K?)A(zt). 

Proof: Suppose Rt(V?)A(zt) but  N k - A ( 3 )  for some fixed vector of integers X .  Then 
s;~-A(Z) since -A@) is a closed, bounded, t rue formula. But since R is an extension of s;, 
R must be inconsistent and we have arrived a t  a contradiction! 0 

Corollary 4: Suppose R is a consistent extension of Si and R is axiomatized by bounded formu- 
lae. Then every theorem of R is true for N. 

Definition: R is a bounded theory iff R is axiomatized by bounded formulae. T h e  axioms of R 
may contain free variables. 

So  by Corollary 4, every bounded, consistent extension of S; has only true theorems. 
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Definition: Let R be a theory such t h a t  the  language of R includes the  language of Bounded 
Arithmetic. Then R is of polynomial growth rate  iff whenever A is a bounded formula and 
R t (W)(ily)A(-i',y) there is a term t(3) such t h a t  

and such t h a t  t is a term in the language of Bounded Arithmetic. 

Proposition 5: Let R be a bounded extension of s:. Then R is of polynomial growth rate. 

Proofi This  is an immediate consequence of Parikh's theorem. 

W e  are now ready t o  s t a t e  and prove the  main theorem of this chapter.  

Theorem 6: T h e  following are equivalent: 

(a) NP=co-NP.  

(b) There  is a bounded extension R of S: such t h a t  R is consistent and finitely axiomatized 
and such t h a t  for every bounded formula A ,  

(c) There  is a consistent, axiomatizable extension R of S2' which is of polynomial growth rate  
such t h a t  for every AEII;, 

R t ( v z ) [ A ( z )  3 R t A ( I , ) ] .  

(d) There  is a consistent extension R of S: such t h a t  for some polynomial p(nl,n2,n3), 

N [ + ( ~ , ~ , C ) ~ ( ~ ~ ~ ~ P ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ) P ~ ~ ~ ( ~ , ~ + ( I ~ , I ~ , I ~ ~ ) ] .  

Proofi 
(a)=+(b): Let R be the  theory W as in Corollary 2. 

(b)+ (c): Th i s  is immediate from Proposition 5. 

(c)+ (d): This  is easily proved by noting tha t  +€lIlb, using the  definition of polynomial growth 
rate  and applying Proposition 3. 

(d)+(a): Suppose (d) holds. Since +(a,b,c) is co-NP complete, i t  will suffice t o  show tha t  
+(a,b,c) is in NP. By Proposition 3, if R t  +(nl,n2,n3) then N F  +(nl,n2,n3). Hence 
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T h e  righthand side of this equivalence is a C/ formula and hence represents an NP predi- 
cate. T h u s  d(a,b,c) is in NP. 

Q.E.D. 

T h e  importance of Theorem 6 is tha t  i t  gives a reformulation of the N P = c o - N P  
question in purely proof theoretic terms. T h e  most striking equivalence is t ha t  of (a) and (b). 
T h e  property expressed in (b) is a kind of "anti-reflection)' property. So  N P = c o - N P  is 
equivalent t o  the  existence of a bounded theory with a certain "anti-reflection" property. 

Trying t o  prove o r  disprove the statement (b) is a possible approach to  resolving the 
NP vs. co-NP question. This  approach does not suffer from the relativization results of 
Baker-Gill-Solovay [2] for the following reason: Consider a function j of polynomial growth rate 
such tha t  NPf=co-NPf. If we have j as a new function symbol in R i t  may not be possible t o  
axiomatize R so tha t  there is a polynomial p such tha t  

Theorem 6 inspires us t o  try some sort of self-referential formula A(z) such tha t  A(z) 
is bounded and such tha t  the theory R does not  prove the existence of a proof o r  a disproof of 
A(z). A natural  choice for A is the formula ConR(z) which is defined as follows: 

Definition: Let R be any axiomatizable theory. Then ConR(z) is defined t o  be the formula 

If R is furthermore a bounded theory, then ConBDR(z) is defined t o  be 

T h e  question is whether there are "short" R-proofs of ConR(%) o r  conBDR(z)  for some 
bounded theory R .  For example, if we could show tha t  for all bounded, consistent, axiomatiz- 
able extensions R of S: there is no  term t(z) such tha t  

N ( W 3 Y  I t ) ~ r j ~ ~ R ( Y , r ~ o n R ( ~ ~ ) l )  

then we would have shown t h a t  NPf co-NP. Unfortunately, we have the following result: 
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Prqoaition 7: Let R be any bounded, consistent, axiomatizable extension of S;. Then there is a 
bounded, consistent, axiomatizable extension Q of R such tha t  

Proposition 7 soundly destroys any hope of proving N P f c o - N P  with the  formula 
ConQ since i t  is immediate tha t  

Proofi Let Qo,Q1,Q2, . . . be the  following theories: 

Let Q be the theory UQi. 
i 

I t  is important t o  analyze exactly how Qo,Q1,Q2, . . . are axiomatized. T h e  theory Qi 
is defined in a straightforward manner t o  have the axioms of R plus i additional axioms. Each 
miom Con(Qr) is a formula with G d e l  number Gi such tha t  22 i2~ i52* . i  for each i and some 
constant 6. For each i>O, S; can metamathematically discuss Q i  and S; can define formulae 
such as Con(Qi). 

sz]. can also metamathetically define the theory Q in a straightforward manner. In 
particular, there is a A:-predicate of S; which recognizes the axioms of Q. 

Since each theory Q,Qo,Ql, . . . contains R ,  they each admit  c:-PIND inferences. 

Now suppose we wish t o  find a Q-proof of ConQ(In) for some n E N .  Let j, be equal 
t o  the length of the length of n ,  i.e., jn=l(ln()J. Then for all m>j , ,  the  axiom Con(Qm) has 
G d e l  number G,>n. Hence, no axioms Con(Qm) where m > j ,  can appear in a Q-proof with 
GMel  number S n .  Thus ,  a Q-proof with G d e l  number < n  is in fact a Qjn-proof. S; can for- 

malize this argument and hence 

S: I- Con(Qin)> Con Q(n). 

But  now Q ~ S ;  and Q has Con(Qjm) as an axiom, so QI- ConQ(n). T h e  size of the ~ i - ~ r o o f  of 
Con(Qjn)>ConQ(n) is proportional t o  the  length In1 of n and the size IGjnl of the axiom 

Con(Qjn) is 526'jn<(l+~n1)6. Hence there is a polynomial, independent of n ,  such tha t  the 

G d e l  number of the Q-proof of ConQ(n) is less than ~ P ( I ~ I ) .  
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Furthermore, S: and hence Q can formalize the reasoning of the above paragraph. 
Thus  

Q.E.D. 

Regarding Proposition 7 it should be noted (see Pudlak [23])  t ha t  

However, the author doubts tha t  

Wha t  Proposition 7 asserts is t ha t  for eome bounded extension R of s;, 

There are lower bounds known for the length of any R-proof of ConR(x) .  They were 
originally proved by H. Friedman [ lo ]  and later by Pudlak [23].  Their  techniques can be 
extended t o  give a lower bound on the size of bounded R-proofs of ConBDR(x). Namely, we 
have: 

Proposition 8: Let R be a bounded, consistent extension of s:. Then for any term r there is a 
term q of the language of Bounded Arithmetic such t h a t  for all n c N  there is no bounded 
R-proof of C o d D R ( q ( I n ) )  with G a e l  number less than r ( n ) .  

Proofi by the  method of H. Friedman [ lo ]  and Pudlak [23].  

Unfortunately, the lower bound of Proposition 8 is not good enough t o  show that  
NPf co-NP and by Proposition 7 there is no way it can be improved significantly. 

Proposition 7 destroyed our hope of using A(x)=ConR(x)  t o  prove N P f c o - N P .  So  
what else can we try? Well, one possibility is t o  pick A ( x )  t o  be some co-NP complete predi- 
cate. However, this is somewhat unsatisfactory; i t  would be preferable t o  find an A ( x )  which is 
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true for all z ,  since such a formula might be easier t o  manipulate. 

Let PA and ZF denote the theories of Peano Arithmetic and Zermelo-Fraenkel set 
theory. H. Friedman has asked whether there are short PA-proofs of ConZF (x). In an at tempt 
to  generalize his question, consider the following definition: 

Definition: Let R be a consistent, bounded theory of arithmetic. Then the theory R', called the 
jump of R is defined so that  

(1) The  language of R' is the language of R plus a new predicate symbol T .  

(2) All the axioms of R are axioms of R'. 

(3) For every formula A(x,S) in the language of R,  the following is an axiom of R': 

(4) In addition, R' has the axiom 

It is clear that  R' is an  axiomatizable extension of R .  T h e  intended interpretation of 
the predicate T(a) is "a is the G d e l  number of a valid R-formula." As every axiom of R' is 
true for this interpretation, R' must be consistent. 

We now consider the possibility of using A(z)=Conff(z) t o  prove NP#co-NP.  In 
this case we d o  not have the difficulties that  arose in Proposition 7; namely, it is not the case 
that  

Indeed, it is not the case that  

This is because R' I- [(R Con ,p(I,))> ConRt(a)] and by Godel's second incompleteness theorem 
R' I+ (Vx)Con ff(z). 

This  inspires us to make the following conjecture: 

Conjecture: For every bounded, consistent, axiomatized extension R of s2', 

R I+ (Vx) [Con ,(z) R P Con ff(I,)]. 
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It  should be difficult t o  prove this conjecture as an affirmative resolution of the conjec- 
ture would be a proof tha t  NPfco-NP.  



Chapter 9 

Foundations of Second Order Bounded Arithmetic 

Second order arithmetic is an extension of the first order theories discussed so far. In 
second order logic, we enlarge the formal system of logic t o  allow discussing functions and predi- 
cates directly. New second order variables refer t o  functions and predicates and allow 
quantification over functions and predicates. 

Second order Bounded Arithmetic is different from the  usual systems of second order 
arithmetic. There are restrictions on the functions used by second order Bounded Arithmetic; 
namely, the functions must have a polynomial growth rate. Also, the axioms of second order 
Bounded Arithmetic are much weaker tha t  those of the usual second order theories of arith- 
metic. In particular, second order Bounded Arithmetic is not stronger than  Peano arithmetic. 

S o  why are we interested in such weak theories of Bounded Arithmetic? T h e  classical 
second order theories have been motivated partially by a desire t o  develop mathematics on a 
logical basis more secure than set theory. Likewise, it is an  interesting question how much of 
mathematics can be developed in second order Bounded Arithmetic; Nelson [19] and Hook [16] 
have worked on a closely related problem. However, we are interested in second order Bounded 
Arithmetic because we will establish results about  the definability of functions which are analo- 
gous t o  our earlier theorems for first order Bounded Arithmetic. W e  shall define second order 
theories V i  and U; such tha t  a function j is ~ t ~ ~ - d e f i n a b l e  in U i  iff j is computable by a 
polynomial space bounded Turing machine (i.e., j€PSPACE); similarly, j is ~ t ~ ~ - d e f i n a b l e  in 
v2' iff f is computable by an exponential time Turing machine (i.e., ~ E E X P T I M E ) .  

This  chapter defines the  syntax and axioms of second order Bounded Arithmetic. We 
examine the question of using predicates versus functions as second order objects. Comprehen- 
sion axioms and new induction axioms are introduced. Finally, the cut-elimination theorem is 
extended t o  second order theories of arithmetic. For  cut-elimination, we must use natural 
deduction systems and accordingly we will define comprehension and induction rules as well as 
axioms. 

In Chapter  10, the results relating second order Bounded Arithmetic t o  PSPACE and 
EXPTIME are obtained. 

9.1. The Syntax of Second Order Bounded Arithmetic. 

Although the reader should be somewhat familiar with second order logic, we shall 
review all the  necessary syntax and terminology. For the most part ,  we follow the  conventions 
of Chapter  3 of Takeuti  [28]. 
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T h e  language of second order Bounded Arithmetic includes the  first order language 
defined in Chapters  2 and 4. In addition, there are the  following second order variables: 

(1) Free and bound second order variables for predicates. For all i , j € N ,  cuj is a free j-ary 
second order predicate symbol and q5/' is a bound j-ary second order predicate symbol. 
W e  shall use cu,/3,7, . . . and q5,x1$, . . . as metavariables for free and bound predicate 
variables, respectively. 

(2) Free and bound second order variables for functions with polynomial growth rate. For  
every term t of the first order theory S2 and for all i j E N ,  4 is a free second order j- 
ary function variable and  A& is a bound second order j-ary function variable. W e  use 

1 1 1  ~ ,qL ,B1 ,  . . . and X ,p ,v , . . . as metavariables for free and bound second order function 
variables, respectively. These symbols range over functions j such t h a t  j is bounded 
by t; i.e., for all ~ E N J ,  j (2)<t(2) .  

Second order quantifiers are of t he  form (Vq5), (34), (VX') and  ( 3 ' ) .  First order 
quantifiers are t he  same as  before. T h e  adjectives sharply bounded, bounded and unbounded are 
used t o  describe first order quantifiers only. W e  shall occasionally not  adhere precisely t o  the 
distinction between bound and free variables. 

Definition: A first order formula is one with n o  second order quantifiers. Second order free vari- 
ables may appear in a first order formula. 

W e  classify second order formulae in a hierarchy of sets  c;", of formulae: 

Definition: A second order formula is bounded iff it contains n o  unbounded, first order 
quantifiers. T h e  following sets  of bounded second order formulae are defined inductively by: 

(1) cd'b = =;lb = A;)' is the set  of formulae which contain n o  second order quantifiers and 

no  unbounded quantifiers (i.e., t he  set  of bounded, first order formulae). 

(2) c:;! is t he  se t  of formulae such t h a t  

(a) n,'lb s cc,';; 
(b) If A is in ~i';!, so are (Vz<t)A, (3z< t )A ,  (3q5)A and ( 3 ~ 7 ~ .  

(c) If A and B are in c:;:, so  are A A B  and A v B .  

(d)  If AEC~';: and ~ ~ l l i l / : ,  then 1B  and B 3 A  are in c;;!. 

(3) ll,';! is the  set of formulae such t h a t  

(a) IIn,';! 

(b) If A is in II,';:, so are (Vz<t)A, ( 3 z < t ) A ,  (Vq5)A and (VX')A 

(c) If A and B are in ll;;!, so are A A B  and A v B .  

(d) If ~€ll:;: and BEC,~;:, then -B and B 3 A  are in lli;!. 
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(4) and I I ; ' p b  are the  smallest sets  satisfying (1)-(3). 

S o  zdjb is the  set  of bounded first order formulae which may contain second order free 
variables b u t  n o  second order quantifiers. ztpb and IIttb are defined by counting alternations of 
second order quantifiers ignoring first order bounded quantifiers. 

I t  will be convenient to sometimes work in a theory which does not  contain second 

order function variables. Accordingly, we define i d ' b ,  5 tpb and fit2b t o  be the subsets of A ; , ~ ,  
z:pb and IIr'b, respectively, containing just the  formulae which contain n o  free o r  bound second 
order function variables. 

In order t o  manipulate the second order variables and quantifiers in a natural deduc- 
tion system we need additional inference rules: 

(1) (second order V:left): 

and 

(2) (second order V:right): 

and 

where o! and { are the  eigenvariables of the inferences and must  not  appear in the 
lower sequent. 

(3) (second order 3:left): 
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and 

where a and ct are the eigenvariables of the inferences and must not appear in the 
lower sequent. 

(4) (second order ]:right): 

and 

Definition: Let A be a formula, bl, . . . ,bm be free first order variables and yl, . . . ,ym be 
bounded first order variables. Then {yl, . . . ,ym)A(yl, . . . ,ym) is a meta-expression called 
the abstract of A(bl, . . . ,bm). I t  is important to  note that  {?J)A(?J) is a meta-expression, so 
"{" and ")" are not symbols in the syntax of second order logic. 

The idea of an abstract is that  {?J)A(?J) specifies a predicate which is true for those ?J 
such tha t  A(3) holds. If F ( a )  is a formula containing the free second order predicate variable a, 
we use F({?J)A(?J)) to  denote the formula obtained by replacing every a(3)  in F by A(3). We 
will use metavariables V,U, . . . to  denote abstracts. T h e  formal definition of what F ( V )  means 
is as follows: 

Definition: If a is an n-ary predicate variable, F ( a )  is a formula and 
V={yl, . . . ,yn)A(yl, . . . ,yn) is an abstract, then F (  V) is the formula obtained by substitut- 
ing V into F for a. F ( V )  is defined by induction on the complexity of F: 

(1) If a does not appear in F then F ( V )  is F. 

(2) If F(a)=a(X), then F ( V )  is A(3). 

(3) If F is -B, BAC, B v C  or B 3 C .  Then F ( V )  is -B(V), B(V)AC(V), B(V)vC(V) or 
B( V) 3 C( V) respectively. 

(4) Suppose F ( a )  is (Vx)B(a) or (3x)B(a). If x appears in A ,  we obtain A' by renaming 
the variable x in A to  avoid conflict of variables. Then F(V)  is (tIx)B({J)A'(?J)) or 
(3x)B({?J)A' (?J)), respectively. 

(5) Suppose F ( a )  is (V4)B(a) or (34)B(a). If 4 appears in A ,  we obtain A' by renaming 
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the variable 4 in A to  avoid conflict of variables. Then F(V)  is (V+)B({$)A'($)) or 
(34)B({g)A' (g)), respectively . 

Proposition 1: Let F be a formula and U and V be abstracts. Any second order theory of arith- 
metic proves the sequent 

Proof.- This is Proposition 15.13 of Takeuti [28] and is easily proved by induction on the com- 
plexity of the formula F. 

Definition: Let V={jj)A(J) be an abstract. V is atomic iff A is atomic. 

9.2. Comprehension Axioms and Rules. 

The  comprehension axiom of second order logic is fundamentally different from the 
axioms we used for first order Bounded Arithmetic. We define below comprehension rules as 
well as comprehension axioms. 

Definition: Let 9 be a set of formulae. A +-abstract is one of the form {g)A($) where A is in 
9. 9 is closed under substitution iff for every formula A in 9 and every @-abstract V, A(V) 
is a formula in 9. 

We first define the comprehension axiom and rule for second order predicate symbols. 

Definition: Let 9 be a set of formulae closed under substitution. T h e  9 comprehension azioms, 
9-CA, are given by the axiom scheme: 

where A must be in 9 .  

Definition: Let 9 be a set of formulae closed under substitution. The  9 comprehension rules, 
9-CR,  are inferences of the forms: 
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(2) (a-CR;V:left) 

where in both (1) and (2), V must  be a @-abstract. V is called the principal abstract of the 
inference. 

Ezample: Let F ( a )  be the formula (3 y< a)(y.y=a)++ a(a) .  Then if A is ( 3  y< a)(y.y=a), F (A)  is 
the formula 

Since A E C ~ ~ ~ ,  we can use c:,~-cR t o  infer: 

T h a t  is t o  say, ~ d ~ ~ - c o m ~ r e h e n s i o n  implies tha t  there is a predicate 4 which is t rue precisely 
for the perfect squares. 

Propoeition 2: Let @ be a set  of formulae closed under substitution. Then the comprehension 
axioms @-CA are equivalent t o  the comprehension rules 4'-CR. 

Proof: This is Theorem 15.16 of Takeuti  (28). One direction is easy. T h e  example above pro- 
vides the hint on how to  prove the other  direction, which is also easy. 

W e  next define the comprehension axiom and rules for function symbols. 

Definition: Let be a set  of formulae closed under substitution. T h e  @ function comprehension 
azioms, a -FCA,  are given by the  following axiom scheme: 

where A is any formula in @ and t is any term. 

Definition: Let be a se t  of formulae closed under substitution. T h e  function comprehension 
rules, @-FCR, are inferences of the form: 
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where for both (1) and (2), t is any term, U must be an abstract of the form {~) (3z< t )A(z ,$ )  
and V must be the abstract {$)A(x'($),$), and A is required t o  be a formula in 3. V is 
called the principal abstract of the inference. 

Proposition 9: Let be a se t  of formulae closed under substitution. T h e  9-FCR rules are 
equivalent t o  the 9-FCA axioms. 

Proofi 
+ . First we show tha t  9-FCR+ 9-FCA. Let A€@. Using (9-FCR;3:right) we can infer 

From this, the first and second order (V:right) inferences give the a-FCA axiom for A .  

+. T h e  reverse implication is even easier. 

Q.E.D. 

9.3. Axiomatizations of Second Order Bounded Arithmetic. 

T h e  weakest second order theories of Bounded Arithmetic are obtained by enlarging 
the first order theories S; and T ;  t o  include second order variables. 

Definition: W e  define a hierarchy, ~:(cr,q) and llib(cr,q) of the second order formulae which con- 
tain no second order quantifiers. T h e  definition of Cib(cr,q) and llt(cr,q) is completely analo- 
gous t o  the definition of C: and ll: in $2.1, the only difference being tha t  free second order 
variables may appear without restriction in the formulae. T h e  sets g ( a )  and ll;(cr) contain 
those formulae of Ct(cr,q) and llt(cr,q), respectively, which have no second order function 
variables. 
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Definition: S;(cu,$) is the second order theory with second order function and predicate variables 
and the following axioms: 

(1) BASIC axioms, 
(2) For each function variable $ill the axiom (K?)(d(?2)<t(?2)), 
(3) T h e  c~(~~,$)-PIND axioms. 

S;(CY) is the second order theory with only second order predicate variables (but no 
second order function variables). T h e  axioms for S;(CY) are: 

(1) BASIC axioms, 
(2) T h e  C;(cu)-PIND axioms. 

S2(cu) is the union of the theories S;(cu) and S2(alq) is the union of the theories S;(CV,$). 

~/(cu,$), ~ i ( c u ) ,  T2(cu,$) and T2(cu) are defined similarly using the IND axioms 
instead of the PIND axioms. 

All of our earlier work on S; can be relativized to  ~;(cu,$). For example, the relativiza- 
tion of Theorem 2.6 holds and, for all i 2 1 ,  S;(cu,$) proves the c ~ ( ~ , ~ ) - L I N D  axioms. Another 
result which carries over is Theorem 2.7: by essentially the same proof as before we can show 
that  ~ ~ ' ( 0 )  can C:(cu)-define the function 

Also S;(cu,$) is an extension of the theories we used to  discuss the relativized polynomial hierar- 
chy in 55.4. In fact, i t  is now clear the function symbols qLk of 55.4 were syntactically 
equivalent t o  second order function variables. Thus  the theories ~;(cu) and ~ ; ( a , $ )  satisfy a 
relativized version of the Main Theorem 5.6. 

Definition: U; is the second order theory of Bounded Arithmetic which has second order predi- 
cate variables and function variables and which has the following axioms: 

(1) All axioms of S2(cu,$), 
(2) ~ d ~ ~ - c o m ~ r e h e n s i o n  axioms, ( c ~ ~ ~ - c A  and c ~ ~ ~ - F c A ) ,  
(3) C~*~-PIND axioms. 

U2 is the theory U U2). 
i 

Definition: @i is a second order theory of Bounded Arithmetic with predicate variables but  no 

function variables. The  axioms of 6; are 
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(1) All axioms of S2(a), - 
(2) g&b-comprehension axioms (c~ '~ -cA) ,  
(3) ~?Y~-PIND axioms. 

fi2 is the  theory ufi. 
i 

Definition: v., , V2 and p2 are defined exactly like u;, c i ,  U2 and fi2 (respectively) except 
tha t  IND axioms are used instead of PIND axioms. 

Proposition 4: ( i t  1). V ~ F  U; and ?;c c . .  

Proof: C:pb-IND + C:J~-LIND is trivial. C:'~-LIND + C ~ ~ ~ - P I N D  is readily established 
by using the method of the proof of Theorem 2.11. These implications show tha t  V ~ F  u;. 
7 . k  fi; is proved by the same argument. 

T h e  next theorem states tha t  we can dispense with second order function variables if 
desired and just work with second order predicate variables. 

- 
Theorem 5: U; is a conservative extension of fii. V; is a conservative extension of v.~. 

Theorem 5 is proved by a series of lemmas. T h e  most important one is Lemma 6: 

Lemma 6: Let A be a ~ t ~ ~ - f o r m u l a  with no free second order function variables. Then there is 
a Eftb-formula A * such t h a t  

Proof: T h e  idea is t ha t  function variables in A can be replaced by predicate variables which 
encode the value of the function variables. We define a metaformula G such tha t  (Vg)G(ct,a) 
asserts t h a t  the predicate a encodes the values of the function 4. When I' is k-ary, a must be 
(k+l)-ary and we define G ( t , a )  t o  be the formula 

So ( V g ) ~ ( t , a )  says tha t  for all z<lt(g)( ,  a(z13f) is true iff the z-th bi t  of the binary expression 
for t ( ~ )  is 1. Since t(g)f)lt($) for all 3 ,  a does indeed code the values of t. G is a metaformula 
rather than a formula since the definition of ~ ( ( , a )  depends on the  term t and on the arity of 

t - 
Note tha t  G ( t , a )  is a ~ d . ~ - f o r m u l a  (in fact, G ( t , n )  is a ~/(a,c)-formula.)  T h e  

c ~ ~ ~ - c A  axioms prove 
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hence, u:t (vXt)(34)(v3)G(X',4). 
Conversely, since s:(~,s)c u:, we can introduce a new C;(a,<)-defined function sym- 

bol j$ in U: satisfying 

By the C ~ * ~ - F C A  axioms, U: can prove 

Let ~ ( f  , a )  be the metaformula $t(a)=min(t(3f),j,'(3)). I t  is now immediate tha t  

and since U2't G(ct,a)> ~ ( f  ,a ) ,  

W e  are now ready t o  construct the desired formula A* equivalent t o  A .  For every 
t 

second order function variable Xi ' in A we use a new second order predicate variable l(lij. We 
t t 

replace each (VXj ') or  (3Xj1) by (Yl(lij) or  (31(lij), respectively. Let  h i j  be the  C;(a)-defined 
function such tha t  

Wherever X:'(?j) appears in A we replace it by hij($). After all these replacements have been 

carried o u t  we have the  formula A*. T h e  C:(a)-defined function symbols hid can be removed 
by replacing them by their defining formulae. 

I t  is clear t h a t  A* is a E:lb-formula and tha t  u.$A*A*. 

Q.E.D. 

Dejinition: $; is the  theory 6; extended t o  include second order function variables and 

~ , , l ~ ~ - c o m ~ r e h e n s i o n .  (However, 6. does not include all the C:vb-pIND axioms.) 

?; is the theory v; extended t o  include second order function variables and 
~ d ' ~ - c o m ~ r e h e n s i o n  (but  not all the C:~~-IND axioms.) 
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Lemma 7: 
A .  - 

(a) Ui  is a conservative extension of Ui. - 
(b) pi is a conservative extension of v.. 

Proof- By the proof of Lemma 6, for every formula A there is a formula A *  such tha t  

U ~ O F  A* A* (even if A is not  bounded). Furthermore, if A E C ~ ~ ~  then A * E E ~ I * .  We claim tha t  

for all formulae A ,  if 6 i k A  then filk A*. This  will suffice t o  prove Lemma 7 as A*  is equal t o  
A when A contains no second order function variables. 

A .  

T h e  claim is proved by induction on the number of inferences in a Ui-proof of A .  The  -. 
only nontrivial case t o  consider is the C ~ ~ ~ - F C R  comprehension rules. However, Ui  can emu- 
late C:*~-FCR by using the  c:~~-cR comprehension rule. W e  leave the details t o  the reader. 

Lemma 8: 
A 

(a) T h e  C:~~-PIND axioms are theorems of Ui.  
A 

(b) T h e  C?*~-IND axioms are theorems of v;. 

P r  oof- 
(a) This  is immediate from Lemma 6 and the fact t ha t  6. has the E;.~-PIND axioms. 
(b) is proved by the same argument. 

Prooj: of Theorem 5: 
A .  A .  

By Lemma 8, U i = U j  and v .=v~ .  Hence, by Lemma 7, U; is a conservative exten- - .  
sion of fi. and V j  is a conservative extension of Vi. 

Q.E.D. 

In addition t o  the theories defined above, there are two more theories, 82 and p i ,  
which are in some respects more natural choices for second order Bounded Arithmetic. 

Definition: Let R be a second order theory of Bounded Arithmetic and let A be any formula. 
Then A is with respect to the theory R iff there are formulae B E C ~ J ~  and d ~ l l l * ~  such 
tha t  R k A * B  and R k A -  C. 

When i t  is clear what theory is being discussed we shall merely say A is t o  
mean tha t  A is ailpb with respect t o  R .  

Definition: 8; is a second order theory of Bounded Arithmetic with second order predicate vari- 

ables bu t  no function variables. T h e  axioms of 8; are 

(1) All axioms of fi; 
(2) 6~*b-comprehension axioms (6;lb-CA). 
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B2 is the theory U 8.2. 
i 

Definition: 82 and B2 are defined analogously to  8.. and d2. SO 82 and 8 2  are the theories fi 
and f2 (respectively) plus the h:lb-C~ axioms. 

It  is an immediate consequence of Lemma 6 tha t  second order function variables may 

be added t o  the syntax of 8.; or 8; to  obtain a conservative extension. Of course when we add 
second order function variables we may also use the A{J~-CA axioms and the C~*~-PIND or 
the C ~ ~ ~ - I N D  (respectively) axioms. However, for our purposes in $10.5 and $10.6, it is more 

convenient to work with the theories 82 and without second order function variables. 

9.4. The Cut Elimination Theorem for Second Order Logic. 

We next prove tha t  Gentzen's cut  elimination theorem holds for fi2 and f2. We will 

show in $9.7 t h a t  8 2  and 8 2  also satisfy a version of Gentzen's cut  elimination theorem. 

Definition: Let A(a l ,  . . . ,ak,cul,. . . , an)  be a formula with all free variables as indicated. We 
say tha t  B is a substitution instance of A iff B is A(tl,  . . . ,tk,V1, . . . ,Vn)  where each ti  is an 
arbitrary term and each Vi is a ~ d ' ~ - a b s t r a c t .  

Lemma 9: ( i20 . )  
(a) If A is a C;lb- (IIfpb-) formula then every substitution instance of A is a c{"- (respec- 

tively, II,'tb-) formula. 

(b) Suppose P is a fi.-proof (respectively, a fi-proof) of r-+A and tha t  every principal 
formula of a free cut  inference in P is a first order formula. Then there is a free cut  free 
- .  
Ui-proof (respectively, v;-proof) P *  of I'-+ A .  

(c) Suppose P is a free cut free fii-proof (respectively, fi-proof) of r + A  and tha t  cu is a 
free variable appearing in r + A .  Further  suppose V is a ~,-,l'~-abstract. Let r ( V )  and 
A(V)  denote the cedents obtained by substituting V for every occurrence of cu in the for- 

mulae in r and A.  Then F(V)-+A(V) has a free cut  free fii-proof (respectively, - 
v.-proof). 

Proofi 

(a) is easily proved by induction of the complexity of A .  
(b) is proved by exactly the same proof as the free cut  elimination theorem for first 

order logic. We omit the proof here, the reader may refer t o  Takeut i  [28], pp. 22-29, 112. 

T o  prove (c), we may assume without loss of generality tha t  P is in free variable nor- 
mal form and t h a t  V has  no  bound variables in common with P. Let P ( V )  denote the proof 
obtained from P by substituting V for every occurrence of cu in formulae in P. It is easy to  see 

by examining the  allowable inferences tha t  every inference in P ( V )  is a valid inference of fii 
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(respectively, v . ) .  In particular, (a) guarantees t h a t  *"-PIND or  c ~ ' ~ - I N D ,  and C ~ ' ~ - C R  
inferences are still valid after the substitution of V for a. 

However, P ( V )  may fail t o  be a proof in t h a t  there may be initial sequents of P ( V )  of 
the form 

where V={Z')A(Z'). However, sequents of this form are easy t o  prove without free cuts. S o  we 
merely tack onto  P ( V )  free cut free proofs of these initial sequents and thus  obtain a proof Q of 
I'(V)+A(V). 

Q is not necessarily free cu t  free, as Q may contain free cu ts  with principal formula 
A(3). B u t  since V is a first order abstract,  every free cut  inference in Q has  a first order princi- 
pal formula. Hence, by (b), there is a free cut  free proof of I'(V)--+A(V). 

- 
Theorem 10: (Cut  Elimination Theorem). Let P be a firproof o r  a VTproof. Then there is a 

proof P *  in the  same theory such tha t  P *  has the  same endsequent as P and there are no  free 
cu ts  in P * .  Furthermore, each principal formula of an induction inference in P *  is a substitu- 
tion instance of a principal formula of an induction inference in P and each principal abstract 

of a comprehension inference in P *  is a substitution instance of a principal abstract of a 

comprehension inference in P. Hence, for all i 2 0 ,  if P is a fii- (or vi-) proof then so is P*.  

Proofi We shall modify Takeuti 's exposition on pages 22-29, 112, 143-144 of [28]. T h e  reader 
should have [28] available as he reads the  proof. 

Following [28], we define the grade of a formula A t o  be the number of logical symbols 
in A .  T h e  level of A is the  number of second order quantifiers in A .  

A mix inference with principal formula A is of the form 

where l l* and  A *  are obtained from rI and A by removing all occurrences of A .  A mix infer- 
ence is free iff all of the occurrences of A in A and II are free. Since a mix inference and a cut  
inference are so  similar, i t  suffices t o  prove Theorem 10 for proofs which use mix inferences 
instead of cu t  inferences. 

Suppose P is a proof whose last inference is a mix with principal formula A as shown 
above. Define the  distance of a sequent in P t o  be the number of inferences separating i t  from 
the endsequent of P. T h e  right rank of P is defined t o  be the maximum distance of a sequent 
containing a direct ancestor of an occurrence of A in the cedent ll. T h e  left rank of P is the 
maximum distance of a sequent containing a direct ancestor of an occurrence of A in the cedent 
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A .  T h e  rank of P is the  sum of the  right rank and left rank. 

I t  suffices t o  consider P with a single mix inference as the  last inference. T h e  proof is 
by ordinal induction on 

where level(P) and grade(P) are the level and grade of the  principal formula of t he  final mix of 
P, and w is the  first infinite ordinal. 

T h u s  it suffices t o  show tha t  if P is a proof with no free mixes except for the  final 
inference of P and if Theorem 10 is satisfied for all proofs P' with ord(P' )<ord(P) ,  then P 
satisfies Theorem 10. W e  modify the  proof of Lemma 5.4 of Takeut i  [28]: 

Case (1): rank(P)=2. 

Cases (1 .I)-(1.5. ii): Similar t o  pages 2 4 2 7  of [28]. 

Case (1.5.iii): Suppose A=(V+)B(q5) and the  last inferences of P are 

where V is a ~ d ~ ~ - a b s t r a c t ,  and  since rank(P)=f the  indicated occurrences of (V+)B(+) 
are the  only ones. By Lemma 9(c), we can obtain a free mix free proof of r- A,B( V) 
from the  free mix free proof of I'-+A,B(cr). T h u s  we have a proof Q such t h a t  the 
only free mix in Q is i ts  last inference: 

where II# and A# are II and A minus all occurrences of B(V).  

By the induction hypothesis, there is a free mix free proof Q*  of 
~,II#-A#,A since ord(Q)<ord(P). By adding weak inferences t o  the end of Q* we 

obtain the  desired proof P* .  

Case (1.5. i~) :  Suppose A=(34)B(4). This  case is very similar t o  Case (1.5.iii). 

Case (2): rank(P) >2.  

Case (2.1): T h e  right rank of P is >l. 

Cases (2.1.1)-(2.1.9. ii): Similar t o  1281. 
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Case (2.1.J.iii): Suppose A=(V4)B(4), V is a ~:p~-abstract  and the last inferences of P  
are: 

where now A and II, b u t  not  r ,  may contain occurrences of (Vc$)B(4). T h e  cedents TI* 
and A* are II and A minus all occurrences of (V+)B(c$). Modify the end of P  t o  obtain 
a proof P1 which ends as 

T h e  right rank of P1 is one less than the right rank of P  so by the induction 
hypothesis there is a free mix free proof Pg of the endsequent of P I .  Now consider the 
proof which ends 

T h e  right rank of this is one, so by the induction hypothesis and some exchanges and 

contractions we obtain a free mix free proof of r , n * +  A*,A. 

T h e  rest of the cases are similar. 

Q.E.D. 

9.5. C:yb-Defined Functions and A:yb-Defined Predicates. 

T h e  second order theories of Bounded Arithmetic are in many respects analogous t o  
the first order theories s~~ and T;. One of the most fundamental properties of second order 
Bounded Arithmetic is t ha t  new function and predicate symbols may be introduced into the 
language of Bounded Arithmetic; under certain conditions, these new function and predicate 
symbols may be used freely in the principal formulae of induction axioms and comprehension 
axioms. 



174 Foundations of Second Order Bounded Arithmetic 

Definition: Let R be a second order theory of Bounded Arithmetic. Suppose A(2,y)  is a 

 formula with all free variables indicated and tha t  

Then  we say t h a t  R can  define the  function j such t h a t  N t= ('d$)A(Z',j($)). 

T h e  ~ t ) ~ - d e f i n e d  function symbols and the Atpb-defined predicate symbols play the 
same role in the  second order theories of Bounded Arithmetic as the  C:-defined function sym- 
bols and the  A/-defined predicate symbols d o  in the  first order theories Si and T;'. In particu- 
lar, the  analogues of Theorems 2.2, 2.3 and 2.4 hold for second order Bounded Arithmetic. 

Definition: Let 7 and ji be new function and predicate symbols. T h e  sets C,'tb(7,ji) and 
ll,'*b(7,j?) are sets of bounded formulae in the language of second order Bounded Arithmetic 
plus the  symbols f' and ji. These sets  are defined by counting alternations of second order 
quantifiers ignoring the  first order, bounded quantifiers. 

Theorem 11: Let R be a second order theory of Bounded Arithmetic. Suppose R can 

C;lb-define each of the  functions f' and can  define each of the  predicates ji. Let R *  be 
the  theory obtained from R by adjoining the new symbols 7 and j3 and their defining axioms. 

Then,  if i > O  and B is a C;'lb(7,j?)- (or a Il,'lb@,j?)-) formula, then there is a formula B*Ec;'~~ 

(or II,'pb, respectively) such t h a t  R * t  B** B. 

T h e  proof of Theorem 11 is similar t o  the proofs of Theorems 2.2 and 2.4. 

Definition: Let R be a theory of Bounded Arithmetic and let 7 be a vector of defined function 
symbols of R and j3 be a vector of defined predicate symbols. Then ~(7, j i )  is the  conservative 
extension of R obtained by enlarging the  language t o  include 7 and 3 and including the 
defining axioms for these symbols. 

Corollary 12: ( i 2  1): 
(a)  Let f' be a vector of ~ t * ~ - d e f i n e d  function symbols of U; (respectively, v;) and  let ji be a 

vector of At*b-defined predicate symbol-. of u;' (respectively, v;'). Then U;@,j3) (respec- 
tively, vfl,j?) ) has as theorems the  E : ~ ~ ~ , ~ ~ ) - P I N D  axioms (respectively, the 
c,"~(~!,~~)-IND axioms). 

(b) Let 7 be a vector of C:rb-defined function symbols of fi; (respectively, F;') and let ji be a 

vector of A:.b-defined predicate symbols of 6; (respectively, ) Then fi;'(],j?) (respec- 

tively, ?i@,j?)) has as theorems the E:I*(~!,~I)-PIND axioms (respectively, the 

E,'P~@,~~)-IND axioms). 

(c) Let f' be a vector of C:lb-defined function symbols of 8; (respectively, 8;:) and let j? be a 

vector of A:rb-defined predicate symbols of 8; (respectively, ) Then 8i(],jI) 
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(respectively, ) has as theorems the  E:V~-PIND v , a )  axioms (respectively, the - 
c~'~~-IND (7,jJ) axioms) and  the  i :9b(7,$)-~~ axioms. 

Corollary 12 tells us t h a t  C:~~-defined function symbols and  a:1b-defined predicate 
symbols may be used freely in the  principal formulae of induction inferences. Furthermore, if 

we are working in the theory 82 or  82 we may use such function and predicate symbols freely 
in principal abstracts  of comprehension inferences. 

T h e  next two theorems give an application of ~ : ~ ~ - c o m ~ r e h e n s i o n  t o  show t h a t  82 
and 8: can define the  iteration of  defined predicates. I t  is an  open question whether these 
theorems hold for the theories U; and v;. 

Theorem 18: Let ~(a,i?,?) and ~ ( a ,  b,t,a:,q) be  formulae of 8:, where a: is a unary 
predicate variable. Let t (b , t )  be a term which contains only the  free variables b and t. Then 
the  predicate ~ ( a ,  b,i?,;) which satisfies 

if b=O and a < t ( b , t )  

~ ( a , b , t , < )  if a > t ( b , t )  

B ( ~ ,  b , t ,  {z}K(z, [ ;b  ~, t , ; j ) ,3  otherwise 

Proofi T h e  idea, of course, is t o  define K ( a , b , t , 3  by induction on the  length of b .  Let 
B*(a, b , t , c u ~ , ~ )  be the  formula 

and let D(u ,4)  be the formula 

I t  is easy t o  see t h a t  

and 

Hence, by C:~~-PIND , 821- (vz ) (~~)D(z , ) ) .  I t  is also not  difficult t o  use C:~~-PIND t o  prove 
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tha t  

Hence, 8: can A:vb-define K by 

and by the provably equivalent 

Q.E.D. 

Note tha t  i t  is important t o  the proof of Theorem 13 tha t  the support  of K was 
bounded by the requirement tha t  a < t ( b , t ) ;  otherwise the formula D(u,4) could not be bounded. 
Theorem 13 is false without this restriction. 

A similar use of ~ : ~ ~ - c o m ~ r e h e n s i o n  can be made by 8.: 

Theorem 14: Let A(a , t ,% and ~ ( a , b , 7 , a ~ , ~  be  formulae of 8: where n: is a unary 
predicate variable. Let t (b , t )  be a term with the free variables indicated. Then the predicate 
K(a,b,t,;;) which satisfies 

if b=O and a<t(b,Z) 

K(a,b,t,<) if a > t (b , t )  

~ ( a ,  b,t,{z)K(z,b.- l , i ? , ~ ) , ~  otherwise 

T h e   formulae are in some respects more akin t o  the Ad~~- fo rmulae  than to  the 
12:lb- and ll:'b-formulae. For  example, we have the following theorem: 

Theorem 15: 
(a) T h e  A:rb-IND axioms and the A:*~-MIN axioms are theorems of U; and v.. 
(b) T h e  A:~~-IND axioms and the  A:pb-MIN axioms are theorems of 8; and 8.. 
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Proof.- It is obvious that  the A/J~-IND axioms are theorems of V i .  The  fact that  the 

A/*~-IND axioms are theorems of U; is proved just like Theorem 2.22. 

Now we claim that  the A ~ ~ ~ - M I N  axioms follow from the A/lb-IND axioms. Indeed, 
the minimization axiom for a A/~~- fo rmula  A can be proved by using induction on the 
~ / ~ ~ - f o r r n u l a  ('d y< z)(-A( y)). This proves (a). 

(b) is proved similarly. 

Q.E.D. 

The   replacement axioms of second order Bounded Arithmetic are analogous to  
the c:-replacement axioms of first order Bounded Arithmetic. The  ~ f * ~ - r e ~ l a c e m e n t  axioms 
provide us with the ability to  interchange the order of second order quantifiers and first order 
bounded quantifiers. 

T o  state the definition of the ~ f ~ ~ - r e ~ l a c e r n e n t  axioms, we need first t o  define an 
analogue of the Gijdel beta function which operates on predicates. 

Definition: Let a be a second order unary predicate variable. We write f l (b ,a)  as an abbrevia- 
tion for the atomic abstract {z}a(<b,z>). 

The motivation behind this definition of fl is that  it can be used as a Gijdel beta func- 
tion operating on predicate variables. One simple application of fl is as a pairing function. 
Thus,  we can think of the predicate variable a coding the two predicates ~ = f l ( l , a )  and 
7=fl(2,a). Conversely, given two unary predicates variables P and 7,  the ~d~~-cornprehens ion  
axioms guarantee the existence of a predicate a such tha t  

if z = < l , y >  

if z=<2,y> 
otherwise 

and thus ~ = f l ( l , a )  and 7=fl(2,a). 

Definition: We write < P l y  > to  denote the predicate a defined as above. More precisely, 
< 71172 > is an abbreviation for the abstract 

{x} [(3%~~)((~=<1,%>~71(%))~(~=<2,t.>~7~~)))] . 
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As Theorem 16 below shows, f l  can be used for more sophisticated purposes than just 
as a pairing function. 

Definition: The ~ : * ~ - r e ~ l a c e m e n t  axioms are the formulae of the form 

where t is any term, 4 is a unary predicate variable, and A is any  formula. Other first 
and second order free variables may appear in A as parameters. 

Theorem 16: Let izl. Then ~ : * ~ - r e ~ l a c e m e n t  axioms are theorems of both U; and V; 

Proofi Let A(b ,a )  be a  re^l formula. Since V; is a stronger theory than U; (by Proposition 4), 
it will suffice to  show that  U; proves the replacement axiom for A .  

One direction is easy: 

The  other direction is more tricky. Let D be the formula (vz<t)(34)A(z14).  Let B(c)  be the 
formula 

Then it is obvious that  U~FD>B(O) .  Also it is straightforward to  prove that  
U ~ F  DAB(c)>B(c+~)  by use of the ~ o f ~ ~ - c o m ~ r e h e n s i o n  axioms. 

Since B is a   formula, u ;FD>B((~~)  follows from C:'~-LIND. Finally, it is clear 
that  

Hence the theorem is proved. 

Q.E.D. 

Two more mebpredicates  which are useful when used in conjunction with f l  are 
ARYk and DEARYk. 

Definition: Let cr be a second order unary predicate variable. We write ARYk(cr) as an abbrevi- 
ation for the abstract {zl, . . . ,zk)cr(<zl, . . . , zk>) .  

Let 7 be a k-ary predicate variable. We write DEARYk(7) for the abstract 
{z}dP(l7z), . . a ,P(k7z)). 



Hence AR Yk(DEAR Yk(r)) is the same predicate as 7. However, DEAR Yk(AR Yk(a)) is 
not in general the same as a. 

As an example of how ARYk and DEARYk can be used, consider the  following more 
general form of the ~ ~ ' ~ - r e ~ l a c e m e n t :  

where 4; and 4: are unary and k-ary, respectively. Of course this more general form of the 
~ , . l>~- re~ lace rnen t  axiom is a consequence of the less general form presented above. 

Corollary 17: Let i2l. If A is a ~ ~ ~ f ~ - f o r m u l a  then there is a formula B of the form (34)C  such 
t h a t  C is a IIi!f-formula and such tha t  U; and V; prove tha t  A is equivalent t o  B. 

- 
Proof: By Lemma 6 we may assume without loss of generality tha t  A is a ~ i ' l~ - fo r rnu la .  Now 
we may use prenex operations and the  ~ i ' ' ~ - r e ~ l a c e r n e n t  axioms to  transform A into the prov- 
ably equivalent form 

with DEII,.!~. T h e  n second order existential quantifiers may be combined by use of the f l  
function, giving B equal to  

Q.E.D. 

9.7. Cut Elimination in the Preaence of ~ : l ~ - ~ o m ~ r e h e n s i o n .  

In this section we investigate cut  elimination theorems for 8; and 8;. Although 
Gentzen's free cut  elimination theorem holds for these theories, the proof is quite difficult and 
non-constructive. For our purposes, i t  will be sufficient t o  show tha t  certain conservative exten- 

sions of 82 and 82 satisfy cut  elimination. 

One difficulty with proving the cut elimination theorem for 82 and is t ha t  it is pos- 
sible for A ( a )  t o  be a  re formula and U t o  be a   abstract and yet  A(U)  is not a 

Cf~~-forrnula .  T h u s  Lemma 9(c) is not readily provable for 8; and 8; when V is a 
 re f abstract. 

A second and more serious difficulty arises when we try t o  prove the cut  elimination 
theorem by induction on ord(P)  as in the proof of Theorem 10. In Case (1.5.iii) we transformed 
a mix inference with principal formula (Vb)B(b) t o  one with principal formula B(V). Now if V 
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is merely a ~ : l ~ - a b s t r a c t  i t  is quite likely t h a t  the level of B(V)  is not  less t han  the level of 

(V4)B(4). However, without decreasing the  level of t he  mix inference we can not  apply the 
induction hypothesis in the proof by induction on ord(P). 

T o  circumvent these difficulties we shall define below theories 8;(6) and ( 6 )  by 

enlarging the  languages of 8; and pi. I t  will turn ou t  t ha t  the constructive proof of the  cut 

elimination used above in 59.4 can be extended t o  these expanded theories 8;(6) and pj(6). 

Definition: A relational 6 is a predicate which acts  on integers and predicates. More precisely, a 
ko-ary relational 6 is a subset of 

where n 2 0  and each k i > l  and  w: denotes the  set of all k-ary predicates on the  natural 
numbers. 

Definition: Let R be a second order theory of Bounded Arithmetic. A relational 6 is introduced 
by a  definition in R iff the  following hold: 

(1) A(d ,8)  is a  formula, B(d,b)  is a ll:lb-formula and d and 8 indicate all of the 
free variables in A and B. 

(2) R k A (d,8)* B(d,8). 

(3) T h e  defining equation for 6 is 

W e  will say tha t  6 is  defined by R if the  above holds and we write R6 t o  denote the 
theory R enlarged t o  include the  new symbol 6 and its two defining equations: 

(a) S(d,b)--+ A (d ,b)  

(b) A (d13)--+ 6(d13) 

These two defining equations are valid initial sequents of the  natural deduction system for R6. 

Definition: T h e  theory 8 . ( 6 )  is the  following natural  deduction system: 

(1) T h e  BASIC axioms are initial sequents of 8;(6). Also, logical axioms and equality 

axioms are valid initial sequen t s  of 8;(6). 

(2) C:lb(6) and  Il/pb((6) are the sets  of formulae of the language of 8 . (6 )  defined in the 
usual way by counting alternations of bounded quantifiers, ignoring sharply bounded 
quantifiers. 
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(3) If A E C , ' ~ ~ ( ~ )  and BEII;~~(S) and RkA(d,6)*B(d,6) ,  then the relational 6 defined by 

is a symbol of the language of 8;'(6). T h e  two defining equations for 6 are initial 

sequents of the natural deduction system for 82(6). 

(4) T h e  c:*~((~)-PIND inferences are valid inferences of 82(6). 

(5) T h e  E ~ * ~ ( ~ ) - c R  comprehension inferences are valid inferences of 8;(6). 

82(6) is the theory U82(6). 
i 

Dejinition: @;(a) and P2(6) are defined similarly t o  0;(6) and 8 4 6 )  except using C:~~((I)-IND 
instead of c~'~~(G)-PIND. 

Dejinition: Let R be one of the theories 82(6), 82(6), @2(6) or @2(6). A formula A is A:lb(6) 
with respect t o  R iff there is a ~: '~(6)-formula B and a I I~~b(6)- formula  C such tha t  
R k A * B  and R k A o C .  

So, in effect, 8;'(6) and Pi(6)  are the same as the theories 82 and except tha t  all 
the ~;>~(S)-def ined relationals are included in the language and only c,-,~'~(~)-cR comprehension 
is allowed. 

Proposition 18: 

(a) 82(6) is a conservative extension of 8;. 
(b) Pi(6) is a conservative extension of Pi. 

Proofi 

(a) W e  begin by showing tha t  &(6) is an  extension of 8;. For  this it suffices t o  show 

tha t  ~ : ~ ~ - c o m ~ r e h e n s i o n  is a derived rule of 82(6). S o  suppose AEC:.~, BBE>:." and 

8 2 ( 6 ) k ~ * ~ .  Let V be the  abstract {P)A(P,~,B) where P,  6 and 6 indicate all the  free vari- 

ables of A and suppose tha t  8;(6) proves the sequent 

Let 6 be the relational of 8/(6) which is A:*b-defined by 
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Let V6 be the abstract {1)6(1,$,~). Then there is a &(6)-prmf which ends 

since V6 is a C;pb((6)-abstract (in fact, i t  is an atomic abstract). 

Hence 8 . (6 )  is an extension of 8;. T h e  fact t h a t  8 . (6 )  is conservative over 8. is 
proved just like Corollary 12(c). 

(b) is proved similarly to  (a). 

Q.E.D. 

Because of the way we have defined the languages of 8 . (6 )  and &(6) there will exist 
formulae F ( a )  such tha t  F ( V )  is not  defined for V an arbitrary abstract.  In particular, if F is 
6(a) for some relational 6, then 6(V) is not a formula and F ( V )  is not  defined. T h u s  we only 
allow c:'~((~)-cR comprehension to  be applied in those cases of the form 

where F ( a )  is a formula such tha t  F ( V )  is defined. Of course, F ( V )  is defined iff a is not an 
argument t o  any all'b-defined relational in F (a ) .  

W e  shall also need the capability to  substitute a ~ :p~-abs t r ac t  V for a in an arbitrary 
formula F (a ) .  Accordingly, we make the following definition: 

Definition: Let R be one of the theories 8.(4 or  vt(6). Let a be an  n-ary predicate variable, 
F ( a )  be a formula in the language of R ,  and V be the abstract {yl, . . . ,y,}A(~,$,p) where A 
is a C;pb(G)-formula of R .  Then F [V] is defined by induction on the complexity of F: 

(1) If a does not  appear in F ,  then F [V] is F. 

(2) If F ( a )  is a(3), then F [ V] is A (3,$,p). 

(3) If F ( a )  is 6c(i?,a,~) where C is a ~ , ' ~ ~ ( 6 ) - f o r m u l a  of the theory R and 6c is the rela- 
tional with defining axiom 

then F [ V ]  is 6(t,;) where 6 is the relational defined by 
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Here C [ V ]  is the result of substituting V for a in C. Notice tha t  since A is a 
~ d ' ~ ( 6 ) - f o r m u l a  and C is ~ 1 " ~ ( 6 )  with respect t o  R ,  so is C [V] . 

(4) Suppose F is TB, B A C ,  BvC or B > C .  Then F [ V ]  is -B[V] ,  B [ V ] A C [ V ] ,  
B [ V ] v C  [V] or  B [V] 3 C [V], respectively. 

(5) Suppose F ( a )  is ('dz)B(a) or (3z)B(a) .  If z appears in A ,  we obtain A' by renaming 
the variable z in A t o  avoid conflict of variables. Then F [V] is (Vz)B[{$)A'($)] or 
(3z )B  [{$)A' ($)I, respectively. 

(6) Suppose F ( a )  is (V+)B(a) or  (34)B(a).  Since A has no second order quantifiers, the 
bound variable 4 does not appear in A .  So F [ V ]  is (Vq5)B[{$)A($)] or 
(34 )B  [{$)A(?)], respectively. 

Definition: Let A(al ,  . . . ,a,,al, . . . , am)  be a formula where the a's and a's indicate all of the 
free variables in A .  B is a substitution instance of A iff B is of the form 
A [V1, . . . ,V,](tl, . . , , tm)  where each Vi is a ~ d l ~ ( b ) - a b s t r a c t  and is substituted in for ai 
and each t i  is a term substituted in for ai. 

T h e  next lemma is analogous t o  Lemma 9. I t  will be exactly what  we need to  carry 

out  the proof of the cut  elimination theorem for 82(6) and &(6). 

Lemma 19: Let id0 and let R be one of the theories 8 . (6 )  or  @.(6). 

(a) If B is a  formula (respectively, a lli'1b(6)-formula), then every substitution 
instance of B is a ~ ~ " ~ ( G ) - f o r m u l a  (respectively, a lli '~~(6)-formula). 

(b) Suppose P is an  R-proof of r j A  and tha t  every free cu t  in P has a first order formula 
as i ts  principal formula. Then there is a free cut  free R-proof of r j  A .  

(c) Suppose P is a free cut  free R-proof of r - + A  and tha t  a is a free variable appearing in 
A .  Further  suppose V is a Cdpb(6)-abstract. Let r [ V ]  and A [V] denote the 
cedents obtained by substituting V for every occurrence of a in the formulae in r and A .  
Then r [V] j A [V] has a free cut  free R-proof. 

(a) is easily proved by induction on the complexity of A .  

(b) is proved exactly like the free cut  elimination theorem for first order logic (Theorem 
4.3). Refer t o  Takeuti  [28], pp. 22-29, 112 for details. 

T o  prove (c), we may assume without loss of generality tha t  P is in free variable nor- 
mal form and t h a t  V has no bound variables in common with P. Let P [ V ]  denote the proof 
obtained from P by substituting V for every occurrence of a in formulae in P. I t  is easy t o  see 

by examining the allowable inferences tha t  every inference in P [ V ]  is a valid inference of 8 . (6)  

(respectively, @2(6)). In particular, (a) guarantees tha t  c ~ ~ ~ ( ~ ) - P I N D  or  c:J~((~-IND and 
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C ~ ) ~ ( G ) - C R  inferences are still valid after the substitution of V for a. 

If P contains any initial sequents which are defining axioms for some relational 6, say 

then in P [V] this initial sequent becomes 

where 6* is b [ V ] .  This  is a defining axiom for 6* and hence is a valid initial sequent. 

However, P [V] may fail t o  be a proof in tha t  there may be initial sequents of P [V] of 
the form 

where A is not  atomic. However, sequents of this form are easy t o  prove without  free cuts. So 
we merely tack onto  P [ V ]  free cu t  free proofs of these initial sequents and thus  obtain a proof 
Q of I'[V]--+A[V]. 

Q is  not necessarily free cu t  free since Q may contain free cu ts  with principal formulae 
of the  form B [ V ]  where B is atomic. But  each B [ V ]  is first order and so by (b) there is a free 
cut  free R-proof of I'[V] --+ A [V] . 

Theorem PO: Let R be one of the  theories 8:(6) o r  8:(6) where i t O .  Let P be an  R-proof. 
Then there is an  R-proof P *  such tha t  P *  has the same endsequent a s  P and there are no 
free cuts  in P* .  Furthermore, each principal formula of an induction inference in P *  is a sub- 
stitution instance of a principal formula of an  induction inference in P and each principal 
abstract of a comprehension inference in P *  is a substitution instance of a principal abstract 
of a comprehension inference in P .  

Proof.. T h e  proof follows the  proof of Theorem 10 (and Takeut i  [28]) almost exactly. We  define 
the  order ord(P) of P as before and proceed by induction on the  ord(P). T h e  only difference is 
tha t  in Case (1.5.iii) we use Lemma 19(c) instead of Lemma 9(c). 

Q.E.D. 

CoroUary PI: Let R be one of the  theories 8;(6) or  8;(6) where i t l .  Suppose R proves the 
sequent I'+A and t h a t  every formula in I'UA is a ~;"~(6)-forrnula or a II~'b(6)-formula. 
Then  there is an R-proof P of I'+A such tha t  every formula in P is in C!lb(6) o r  in 
lIillb(6). 
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Proof: By Theorem 20 there is a free c u t  free proof P of r + A .  If A is the  principal formula 
of a c u t  in P ,  then A must  be a direct descendant of either a principal formula of a n  induction 
inference o r  of a formula in an  initial sequent. In the  first case, A must  be a C:pb((S)-formula 
since only c:*~(S)-PIND (or c:~~(~)-IND ) inferences are allowed. In the  second case, we claim 
tha t  A is in C;pb(S). Th i s  is because each initial sequent must  either (a) be an  equality or  
BASIC axiom and contain only atomic formulae o r  (b) be a defining equation for a relational. 

Now i t  is clear t h a t  every formula in P must  be in C/tb(6) o r  ll/lb(6) since a formula 
can only be removed via  a c u t  inference and no  other  kind of inference can reduce the alterna- 
tions of second order quantifiers in a formula. In particular, note t h a t  since only c ~ ' ~ ( ~ ) - c R  
comprehension inferences are allowed, any comprehension inference of the  form 

will have A€c:~~(s) if ( 3 4 ) ~ ( 4 ) € ~ ; ~ ~ ( 6 ) .  

Q.E.D. 

Corollary 21 is exactly wha t  we need to prove the  main theorems of Chap te r  10. 



Chapter 10 

Definable Functions 
of 

Second Order Bounded Arithmetic 

This chapter investigates the question of what  functions are z:pb-definable in the 
second order theories U: and V: of Bounded Arithmetic. I t  turns  out  tha t  a function f with 

polynomial growth rate is z:lb-definable in U: (or in 8:) iff f is computable by a polynomial 
space bounded Turing machine, i.e., iff f is in PSPACE. In addition, f is c:'~-definable in V: 

(or in 8.) iff f is computable by an exponential time bounded Turing machine, i.e., iff f is in 
EXPTIME . 

10.1. EXPTIME functions are Zitb-definable in VZ. 

Definition: EXPTIME is the set of functions f of polynomial growth rate which can be com- 
puted by a Turing machine MI such tha t  there is a polynomial p ( 3 )  so  tha t  the runtime of 
M, on input P is always less than 2~(1'1). 

Our  definition of EXPTME differs from the usual definition used by computer scien- 
tists. Usually EXPTIME is taken t o  be a set  of predicates; however, we are using it as a set  of 
functions with polynomial growth rate. We shall also talk about predicates being in EXPTIME: 
if P is a predicate, then we define P is in EXPTIME t o  mean tha t  the characteristic function of 
P is in EXPTIME. 

W e  shall also need the concept of exponential time functionals, which are defined 
analogously t o  the polynomial hierarchy of functionals of Chapter  1. Recall t ha t  w,' is equal t o  
the set  of n-ary predicates on the natural numbers. 

Definition: Let bl ,  . . . ,q5, be predicate variables of a second order theory of Bounded Arith- 
metic, where each 4; is kt-ary. Then EXPTIME(q51, . . . ,4,) is the uniform set  of functionals f 
such tha t  the following hold: 

(1) f has polynomial growth rate. 

(2) For  some kf 2 1, f has domain 
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(3) There is an oracle Turing machine Mf with r oracles such t h a t  for l < i < r ,  the i- 
th  oracle is kt-ary and such tha t  for all R1, . . . ,Or with R;EW~,, 

where Mf(Z,Rl, . . . ,Or) denotes the value ou tpu t  by Mf on input  2 with oracles 
Rl, . . . ,Rr .  

(4) For  some polynomial p(il), the runtime of Mf(Z,Rl, . . . ,Or) is less than  P(M) for 
all 3 and all Rl, . . . ,Or. 

(5) For  all 3 and Rl, . . . ,Or, M,-(3!,Rl, . . . , a r )  uses no more than  p(I-i'l) tape squares 
on each of its oracle tapes. O r  equivalently, Mf(?,Rl, . . . ,Or) only queries its 
oracles about  Ri(3) for 3 < 2 ~ ( P ' ) .  

W e  will also denote EXPTIME(q51, . . . ,4,) by EXPTIME(U&, . . . ,wi,). 

Condition (5) in the definition above is somewhat unusual in tha t  it bounds the size of 
the oracle queries of Mf. This  is, however, actually a very natural condition since i t  means tha t  
if REEXPTIME and M(z  , ~ ) E E X P T I M E ( ~ )  then M(x,R)EEXPTIME. Without  condition (5) this 
would not  necessarily be true. 

Theorem 1: Let j be a function of polynomial growth rate in EXPTIME. Then j is 
C/pb-definable in v2'. 

Proofi Let us assume without loss of generality tha t  j is a unary function and M is a single tape 
Turing machine which runs in time less tha t  2q(P1) for each input z, where q is a suitable poly- 
nomial. Let the alphabet of M be I' where the cardinality II'l of I' is a t  least 3, and suppose 
tha t  the symbols "b" , 'Y)" and "1" are included in I'. Let the states of M be go, . . . ,qlv with 
go the initial state. W e  let $ be a new symbol not in I'. We assign arbitrarily Gijdel numbers t o  

the states qi, the symbols in I' and t o  '3" ; we denote these GGdel numbers by r q , l ,  r b l ,  r $ l ,  
etc. Let n be the maximum number used as a Gijdel number. 

An ID (instantaneous description) is an  encoding of a s ta te  of M and is a sequence 

where each vi is in I' and qi is the current s ta te  of M I  the  current tape head position is a t  rk+l ,  
and the  $ I s  denote the immovable ends of the tape. T o  encode ID'S of M in the  theory v;, we 
shall use a second order function symbol q" with values less than or  equal t o  n. 

Let NeztM(al,a2,as1a4,b) be a predicate which is t rue when al,a2,a3,a4 codes four con- 
secutive values of an ID for M and b is the value which replaces a 2  in the next ID of M. For 
example, b must  equal a 2  unless a l l  a%, o r  a3 is a Godel number of a s ta te  of M .  When 
al,a2,a3,a4 d o  not code valid consecutive values for an ID of M then NextM(al,a2,a3,a4,b) is true 
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iff b = r $ l .  I t  is easy t o  see t h a t  NextM is c/-definable in V; (in fact,  NextM is easily seen t o  
be c/-definable in s;.) 

Define r (z )  t o  be equal t o  2'(1'1)+121+2; then r(z)  is expressible by a term of Bounded 
Arithmetic. We can assume without loss of generality t ha t  on input  z ,  each ID of M is of 
length exactly r(z) .  We  code the  run of M on input z by the  function f s o  tha t  for all 
jIr(z)-2q(lzl), f ( j )  is equal t o  the (Rem(j,r(z))+l)-th number in the  (Ij/r(z)]+l)-th ID of the 
run of M on input z. 

Accordingly, we define a predicate InitM as: 

T h u s  InitM(f,z) asserts t h a t  the  values of (" for i < r ( z )  code the  ID 

where aj  is equal t o  0 or  1 depending on the  i-th bit  of the  binary representation of z. 
(Without loss of generality, we may assume the  input t o  M conforms t o  the  format expressed by 
InitM.) 

We  define RunM((,i,z) t o  mean tha t  (codes i steps of the running of M(z): 

I t  is easy t o  see, by use of c~].*~-FcA, t h a t  

Then,  by an  application of C~"~-IND, 
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Furthermore, the uniqueness condition is also provable, so  

W e  can easily Z/jb-define the functional ValueM such tha t  if f satisfies 
~unM(f ,2q( l~l ) ,x) ,  then ValueM(f,x) is equal t o  the output  of M which is coded in the last ID 
coded by f .  Value is in fact polynomial time (relative to  a function oracle for f )  and can be 
c:($)-defined. 

We are now ready to  give the desired formula AM(x,y) which defines the function j 
computed by M. T h e  formula AM(z,y) is defined by 

Because Value M is polynomial time, we can assume without loss of generality tha t  there is a 
term tM(x) such tha t  V i  proves tha t  (VXn)(Value M(Xn,x)<tM(x)). Then,  

We can now Z/lb-define j with the  defining axiom 

10.2. PSPACE functions are C:.b-definable in U:. 

Definition: PSPACE is the  set of functions j of polynomial growth rate which can be computed 
by a Turing machine M, such t h a t  there is a polynomial p(3) so t h a t  the total number of 
tape squares used by M, on input 3 is always less than p(ldt'J). 

Definition: Let . . . ,q5, be predicate variables of a second order theory of Bounded Arithmetic 
where each bi is k,-ary. Then PSPACE(q51,. . . ,q5,) is the uniform set  of functionals j such 
t h a t  the following hold: 

(1')-(3'): Conditions (1)-(3) of the definition of EXPTIME(q51, . . . ,q5,) hold, and 

(4') For  some polynomial p(Z), the total  tape space used by Mf(?i?,fll, . . . , a r )  is less 
than  p(1dt'J) for all d and all a l ,  . . . ,a,. 

PSPACE(U~~, . . . ,m i )  is another name for PSPACE(q51, . . . ,q5,). 
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There  is no  condition (5') in t he  definition above since condition (4') implies the condi- 
tion (5) of the  definition of EXPTIME(~). 

Before proving the  assertion made by the  title of this section we will give an illuminat- 
ing example. Recall t ha t  Theorem 2.7 showed t h a t  length bounded counting is cP-definable in 
s;. A more general concept is t h a t  of bounded counting: a function j is defined by bounded 
counting from A if j(y)=(#z<y)A(z). Clearly, if A is a PSPACE predicate, then j is a 
PSPACE function and thus  bounded counting should be definable in u;. 

W e  shall use the  following scheme to  express bounded counting: 8 will be a function 
variable satisfying 

8(2z, y)+8(2z+l, y) if z<2lY' 
if ~ ( z z  21'1) and  21'15 ~ < 2 1 ' l + ~  
otherwise 

Then 8(l ,y)  is equal t o  the number of z< y such t h a t  A ( z )  holds. 

Proposition 2: Let A be a Cdvb-formula and let t (z)  be any term. Then  the function 

Proof: First we define RDEF(<,z,y) t o  be the  formula asserting t h a t  d z , y )  satisfies a condition 
similar t o  the  definition of I9 above; namely, RDEF(<,z,y) is 

Define B( i ,z )  t o  be the  formula 

An easy application of C:.~-FCR shows tha t  U;t B(0,z). Similarly, u ; ~ B ( ~ , z ) ~ B ( s ~ , ~ ) .  By 
C,'>~-LIND , 

u i t  B(Itl+l,z).  

Thus ,  
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S: ('dy)(3v521tl)(3e"l) [ ~ = ~ ~ ' ~ ( l , y ) ~ ( V z  <21tlf ')RDEF(~~",x, y)] . 

This  partially proves Proposition 2. We leave i t  for the reader t o  show tha t  U: can prove tha t  
the y is unique, and tha t  the bound 21'1 on y can be sharpened t o  t .  

Q.E.D. 

T h e  general idea of the proof of Proposition 2 is a "divide and conquer" strategy. In 
order to  compute d l ) ,  the problem is divided into the two subproblems of computing 5(2) and 
d3). These subproblems are further divided into subproblems, etc. T h u s  to  find (#y<t)A(y) 
we first find (#y<21t1z1)~(y) and (#y<t~21tI")~(y+21tlA1) and compute the sum. This divide 
and conquer strategy can be generalized t o  the concept of limited recursion. 

Definition: Let g and h be functions with polynomial growth rate and let p and q be suitable 
polynomials. We say t h a t  f is defined by limited recursion from g and h with time bound p 

and space bound q iff the following holds. Let f*  be defined inductively by 

Then,  for all y and 2, we must have V*(Z'ly)J<_q(l?i?l) and f must satisfy the defining equation 

T h e  definition of limited recursion is somewhat similar t o  tha t  of limited iteration, 
however, the two concepts are substantially different. T h e  time bound p of limited recursion 
does not correspond to  the runtime of a conventional Turing machine. Instead, p is a measure 
of the  maximum depth of recursion. I t  will be seen tha t  limited recursion is similar t o  the 
action of an alternating Turing machine (ATM) and tha t  p is a measure similar t o  the runtime 
of an ATM. 

T h e  next theorem states tha t  limited recursion is definable in u:. 

Theorem 3: Suppose tha t  g and h are ,Edlb-definable in U; and tha t  p and q are suitable poly- 
nomials. Further  suppose tha t  f is defined by limited recursion from g and h with bounds p 
and q. Then f is ,E;~~-definable in u:. 

Proof: T h e  proof is similar t o  the proof of Proposition 2. We first define RDEF2($,2,y) t o  be 
the formula 
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S o  (V~<~P(PI))RDEF~(~,Z',~) asserts t h a t  the c function is equal t o  t he  j *  function of the 
definition of limited recursion. Note t h a t  the  min function is used in the  definition of RDEFZ 
t o  explicitly prevent the possibility of an overflow; t h a t  is t o  say, the  possibility t h a t  some value 

of j*(P,y) is too large. 

W e  used g and h as function variables in the  definition of RDEF2; since g and h are 
zipb-definable, RDEFZ is a zdb-formula.  Let s(Z) be the  term 2q(l'I) and define B(i,?i,c) t o  be 
the formula 

I t  is easy t o  see using ~ ~ ~ ~ - c o m ~ r e h e n s i o n  t h a t  

and 

So by C:~~-PIND , U ~ F  (3X")B(p(lZ'I),?i,X8). 

W e  also need t o  show t h a t  U: proves t h a t  the  X8 is unique; t h a t  is, we need t o  show 
t h a t  

For  this purpose, let C(i,Z',f,Oe) be the formula 

and let D(Z,<,08) be the  formula 

Then it is clear t h a t  

and 

from which the  desired uniqueness condition is obtained by an application of C~*~-PIND. 
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Let A(2,  y) be the  formula 

So U j t  ( ~ 2 ) ( 3 !  y< e(?!))~(2, y). Also, for all 2, A(2,  j(2)) is true. Since A is a C:~b-formula, j is 
by definition C:jb-definable. 

Q.E.D. 

W e  are now ready t o  prove tha t  all PSPACE functions can be  defined in u;. 

Theorem/: Let j be a function with polynomial growth rate in PSPACE. Then j is 
C:~~--definable in Uz].. 

Proof: Chandra,  Kozen and Stockmeyer [4] show tha t  the  PSPACE predicates are precisely the 
predicates which can be recognized by polynomial time alternating Turing machines. This  is 
also true for PSPACE functions with polynomial growth rate: if j is of polynomial growth rate 
then jEPSPACE iff there is a polynomial time alternating Turing machine (i.e., a transducer) 
which computes j. 

But polynomial time alternating Turing machines are easily defined by limited recur- 
sion from polynomial time functions g and h .  By Theorem 3.1, g and h are  definable in 
u;. Theorem 3 thus  implies tha t  every PSPACE function of polynomial growth rate can be 
C,'pb-defined in U;.  

Q.E.D. 

10.3. Deterministic PSPACE Turing machines. 

Theorem 4 established t h a t  Uz]. can  define the PSPACE functions; however, the 
proof of Theorem 4 used Chandra,  Kozen and Stockmeyer's [4] representation of PSPACE func- 
tions by alternating polynomial time Turing machines. An interesting question is whether U; 
can prove directly tha t  any polynomial space bounded, deterministic Turing machine will run t o  
completion. 

T h a t  is, let M be a PSPACE Turing machine for which there is a term r(x)=lt(x)l 
with r(x)_>lxl+3 for all x so tha t  M is constrained by tape markers t o  run in space r(x) on 
input x. Let RunM be defined exactly as in 510.1. Then our question is whether 

where q is any polynomial. T h e  answer t o  this question is affirmative: 
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Theorem 5: Let M be a deterministic Turing machine constrained by tape markers t o  run in 
space r(x)=lt(x)l on input x, as above. Then 

Proof: Let R u n M  and InitM be defined as in 510.1. We need the ability to  code a state by an 
integer, s o  we introduce the following functional: 

(Recall t ha t  n bounds the Gadel numbers of symbols used t o  code states.) T h u s  
S T A T E d c n , i , a )  is equal t o  a number which codes the i-th s ta te  of the run coded by f .  

Let PRunM be the formula 

So PRunM($,i,a) asserts t ha t  codes i+l states of a run of M except tha t  no conditions are put  
on the initial s ta te  coded by $. Compare the definition of PRunM with the definition of RunM. 

Let Dlw(c,a) be the formula 

D d c , a )  asserts tha t  for all possible initial s tates there is a f which codes c + l  s ta tes  of a run of 
M beginning with tha t  state. Note tha t  because M is polynomially space bounded, a first order 
bounded quantifier can be used t o  quantify over all possible initial s tates z. I t  is clear tha t  

Also, we claim t h a t  

T o  prove the claim we argue informally in u,'. Suppose D d L a c J )  is true and tha t  

codes a s ta te  for M. Then there exists a X: such tha t  z=STATEdX:,O,a) and such tha t  
PRunM(X,",LtcJ,a). So  let z2=STATElw(X,",L+cJ,a) and let XF be such tha t  
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x2=STATEM(A{,0,a) and such tha t  PRunM(A{,l$cJ,a). Define A n  by putting A: and A2n 

together so  tha t  x=STA TEM(An,O,a) and PRunM(An,2.1$c J,a). If c is even, we are done. If c is 

odd we easily add one more state t o  the end of the run coded by A n  t o  get the desired result. 
This  proves the claim. 

Since D M  is a   formula, we can use C~''~-PIND t o  deduce tha t  

From this Theorem 5 follows easily. 

Q.E.D. 

10.4. Witnessing a ~ : y ~ - ~ o r m u l a .  

Our next main goal is t o  prove the converses of Theorems 1 and 4; this will be accom- 
plished by a proof similar t o  the  proof of Theorem 5.5. This  section establishes some prelim- 
inary definitions and propositions needed for the proofs in $10.5 and 510.6. 

For the next three sections, we shall work exclusively in the  theories 8 . ( 4  and 82(6). 

We define Witness2 below analogously t o  the way Witness was defined in 55.1. When 
A is a ~ ~ l ~ ~ ( G ) - f o r m u l a  with free first order variables d and with free second order variables b ,  
we define ~ i t n c s s 2 ~ ~ ' ( ~ , ~ , b )  t o  be a c~*~((B)-formula which asserts t ha t  7 is a predicate which 
"witnesses" the t ru th  of A(d,b). 

Although WitnessZA could readily be defined for arbitrary bounded formulae A ,  we 
shall forsake the added generality and restrict A t o  be a c,"~(G)-formula. 

Definition: Suppose A is a ~:'~(G)-forrnula. Let the free first order variables of A be among d 
and the free second order (predicate) variables of A be among 5. T h e  Co].vb(G)-formula 

++ 

W i t n e ~ s 2 ~ ~ ~ ( 7 , d , & )  is defined below, where 7 is a unary predicate variable. T h e  definition is 
by induction on the complexity of A .  

(1) If A is a Co].vb(S)-formula, then define 

(2) If A is B A C ,  define 
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(3) If A is BvC, define 

(4) If A is (Vx<t)B(x), then define 

+ + 

~itnessZT'(-(,3,d) Y (Vx < t )  ~ i t n e s s 2 ~ ~ ~ ~ ~ ( f l x + l  ,7)ldl x ,d) 

(5) If A is (3z<t)B(z),  then define 

+ 4 

witness~T'(~,a,Z) (32 < t ) W i t n e ~ s 2 ~ ~ " ~ ( ~ , a ~  z ,d) 

( 6 )  If A is ( 3 4 k ) ~ ( 4 k )  where bk is a k-ary predicate variable, then define 

~ i t n e s s 2 ~ " ( ~ , a , d )  Y ~itness2,$~~(fl2,~),?i,Z,~ R yk(@(1 .?))) 

++ 

(7) If A is -B and A $ ! c ~ J ~ ( ~ ) ,  then define Witness2i9'by using prenex operations to  
transform A so  tha t  it can be handled by Cases (1)-(6).  Specifically, if A is -(-B), 
-(BAC), -(BvC), - (Vzst)B,  -(3x<t)B o r  -(V4)B; let A* be B, (-B)v(-C), (-B)A(-C), 
(3x5 t)(-B), (Vx< t)(-B) o r  (34)(-B). Then define 

Proposition 6: Let A(a,d) be any ~ :~~(6 ) - fo rmula .  Then 8:(6) and @(6) prove 

Proof: by induction on the complexity of A .  T h e  only nontrivial cases are (4) and ( 6 )  in the 
definition of Witness2. 

Case (4): Suppose A is (Vz<t)B(z). T h e  induction hypothesis is t ha t  8:(6) and @:(6) 
prove 

By ~ : > ~ - r e ~ l a c e m e n t  (Theorem 9.16), 82(6) and 8.(6)  prove 
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from which the desired result is immediate. 

Case (6): Suppose A is (34)B(4) and t h a t  82(6) and e2(6) prove 

where 4 is a k-ary predicate variable. From the definition of f l  and ARYk, we 

have immediately t h a t  &(6) and V..(6) prove 

and from this the desired result is immediate. 

Q.E.D. 

++ 

As we remarked above, Witness2i9" is a Cdpb(6)-formula whenever A is a 
- 4  

~)~~((S)- for rnula .  T h e  next proposition specifies the computational complexity of Witness2;~". 

++ 

Proposition 7: Let A@,$) be a ~ ) ~ ~ ( S ) - f o r m u l a .  Then Witness2i1"(rld,d) represents a predi- 
cate in PSPACE(7,Z). 

++ 

Proof: This  is an immediate consequence of the fact t ha t  Witness2i1" contains no second order 
quantifiers. 

Lemma 8: Let A(d,Z,P) be a ~ ~ ~ ~ ( G ) - f o r r n u l a  and let B(i?,d,Z) be a Xdtb(6)-formula, where the 
free variables of A and B are as indicated. Furthermore, P is a k-ary predicate variable and 
t is a vector of k first order variables. Let U be the abstract {3')B(2,d1Z) and let A*(Z,d) be 

the formula A(a f ,U) .  Then @(6) and P . ( 6 )  prove 

Proof: This  is easily proved by induction on the complexity of A .  EI 

T h e  final lemma of this  section is not directly concerned with the Witness2 metafor- 
mula, bu t  i t  will be useful in the  proofs of the theorems of 510.5 and $10.6. Intuitively, i t  s tates 
tha t  if A ( a )  is a bounded formula then the t ru th  value of A ( a )  does not depend on all of a's 
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values bu t  only on cu restricted to  some bounded domain. 

Lemma 9: Let A(cu,d,?) be a bounded formula with all free variables as indicated. For nota- 
tional simplicity, further suppose cu is a unary predicate variable. Then there is a term sA(d) 

such tha t  8:(6) and @..(6) prove 

Prooj: This  is readily proved by induction on the  complexity of A .  

As in Chapter 5, we adopt the convention that  conjunction and disjunction associate 
from right to  left. We also extend our use of the << . . - >> notation t o  apply to  predicates. 
So 

10.5. Only PSPACE is X:~~-definable in UZ. 

In this section, the converse to  Theorem 4 is proved. This establishes tha t  a function f 
of polynomial growth rate is c/J~-definable in U; iff j is computed by some polynomial space 
bounded (PSPACE) Turing machine. T h e  main theorem of this section is: 

Theorem 10: Suppose A(Z,d) is a ~ / ~ ~ ( 6 ) - f o r m u l a  where t and d are all the free variables of A .  

Also suppose 8 ~ ( 6 ) t ( E 1 ? ) ( 3 ~ ) ~ ( 2 , ~ ) .  Then there is a ~ : ~ ~ ( ( d - f o r m u l a  B ,  a term t and a func- 
tion f so that  

(1) 8:(6) t  ( ~ ~ ) ( V Y ) ( B ( ~ ~ Y ) ~ A ( ~ , Y ) )  

(2) f k ( 6 ) t  ( ~ 3 x 3 ~  5 t )B(3,~) 

(3) 8 ~ 6 ) ~  ( @ ) ( v Y ) ( v ~ ) ( B ( ~ ~ Y ) A B ( ~ ' ~ ~ ) ~  Y=Z) 

(4) For all ii, N k  B(Tf,f(ii)) 

(5) j is a PSPACE function 

Hence, j is a PSPACE function which is ~:~((s)-definable in 82(6) and for all 3, A ( 3  J(3)) is 
true. 
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T h e  converse of Theorem 4 is an immediate corollary of Theorem 10: 

Corollary 11: Suppose A(Z,d) is a C:vb-formula where Z and d are all the free variables of A .  
Also suppose u ~ ~ ( V Z ' ) ( ~ ~ ) A ( Z ' , ~ ) .  Then there is a PSPACE function j such tha t  for all 2, 
N k A (Zlj(7-9. 

Proof: of Corollary 11 from Theorem 10: 

By Lemma 9.6 and Theorem 9.5, we can assume without loss of generality that  A E ~ ; . ~  

and that  62;'~ (VZ)(3y)A(Z,y). But 8:(6) is an extension of 6;, so @(6) t- (VZ)(3y)A(Zl y) and 
Theorem 10 states tha t  the desired function j exists. 

We shall prove Theorem 10 by proving a more general theorem: 

Theorem 1% Suppose &(~)FI',II+A,A and each formula in I'UA is a ~ :~~(6) - fo rmula  and 
each formula in IIUA is a ll:*b(6)-formula. Let cl, . . . ,c, and 71, . . . , rq be the free variables 
in I',ll+A,A. Let X and Y be the  formulae 

and 
Y = ( W A ) V W { ~ C :  CEII). 

Then there is a PSPACE(~U,;;) predicate M so that  

(1) M is A:lb(6)-defined by 8:(6) and 

Proof: of Theorem 10 from Theorem 12: 

The  hypothesis of Theorem 10 is that  8 ~ ( 6 ) ~ ( ~ ) ( 3 y ) ~ ( , y ) .  By the extension of 
Parikh's theorem to  second order Bounded Arithmetic, there is a term t such that  

8 i ( 6 ) ~ ( b G ) ( 3 y j t ( Z ) ) ~ ( ~ , y ) .  We now apply Theorem 12 with A={(3yjt(t))A(Z1y)} and with 
I'=n=A=B. Theorem 12 asserts that  there is a PSPACE predicate M which is ~ :~~(6) -de f ined  

by 8:(6) so that  

By the definition of Witness2, this means that  
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Now define 

j ( t )  = ( r y )  witness2~$,,)({z)~(z~t),~~~) 

and 

Since ~i tness24$, , ) (a ,2 ,d)  is a PSPACE(a)  predicate and since {z)M(z,i?) is a PSPACE predi- 

cate, j is readily seen t o  be polynomial space computable. Also, since witness21i$,,) is a 

C~V'-formula and M is a a;lb(6)-defined predicate, B is a ~ ;*~(6 ) - fo rmula .  

I t  now follows from Theorem 9.15(b) tha t  conditions (1)-(5) of Theorem 10 hold. 

Q.E.D. 

Theorem 9.13 showed tha t  an inductive definition similar t o  b u t  stronger than limited 

recursion could be defined in 8:(6). Before we can prove Theorem 10, we need a lemma about 
the computational complexity of the inductive definition of Theorem 9.13. 

Lemma 18: Let A ( a , t 1 3  and ~ ( a , b , t , a , ; j )  be ~:~*(6)-forrnulae of 8:(6) where a is a unary 
predicate variable. Let t(b,-d) be a term. Let K(a,b,t,;) be defined from A and B as in 
Theorem 9.13 by 

if b=O and a < t ( b , t )  

K ( a , b , t , ~  if a > t ( b , t )  

~ ( a ,  b , t ,  {z}K(z,L$bJ,Z',~),~) otherwise 

Then K(a,b,i?,~) is ~ :~ ' ( l ) -def inable  by 82(6). Furthermore, if A is in PSPACE(;) and B is 
in P S P A C E ( ~ , ~ )  then K is a PSPACEG) predicate. 

Prod: T h e  fact  t ha t  K(a,b,~,;) is ~>'(6)-defined by 8:(6) is proved by the proof of Theorem 
9.13. So  we must  prove K is in PSPACE(:). T o  do this we specify an  algorithm t o  compute 

K(a,b,t,:). 
Suppose b#O and a < t ( b , t ) ,  then t o  compute K(a,b,t,;j) we begin by computing 

~ ( a , b , Z , a , ~ )  with a PSPACE machine ME with oracles for o. and ;. However, we modify ME so  
tha t  whenever MB would have queried the oracle of a(z) ,  instead ME saves its current s ta te  and 
begins t o  compute ~ ( x , L t b J , t , ~ ) .  This  process iterates until  we wish t o  compute K ( ~ , o , z , ~ )  for 

some z. Then we just compute A(z,i?,;) and return its value. 
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I t  is straightforward to verify that  this algorithm uses only polynomial space. 

Q.E.D. 

Proof- of Theorem 12: 

By Theorem 9.20 there is a &(6)-proof P of r ,n+A,A such that  P is free cut  free 
and in free variable normal form. Hence, by Corollary 9.21, every formula in P is in 
~ , ' ~ ~ ( s ) u n , ' ~ ~ ( s ) .  

The  proof P will generally contain a number of relational symbols 61, . . . ,Si. These 
relationals are introduced with defining equations Sj(3,6)*Aj(3,6) where A .EC:J~(~). Thus  the 
proof P requires auxiliary proofs PI, . . . ,Pi of equivalences A ~ ( x , ~ ) * B ~ ( x , ~ )  where each B, is a 
n:tb(6)-formula. These auxiliary proofs may themselves use further relational symbols and 
require their own auxiliary proofs. However, eventually this process must stop and there are 
proofs PI, . . . ,Pk such that  for every relational symbol bj appearing in any of PIP1, . . . ,PI 
which is defined by 6,(3,6)*Aj(3,6) there is a ll:*b(6)-formula Bj and there are two proofs 
among PI, . . . ,PI of Aj(X1p)+ Bj(X,P) and Bj(XJp)+~j(X,p).  In addition, we may assume 
that  each proof P,P1, . . . ,Pk is free cut  free and that  every formula appearing in P,P1, . . . ,Pk 
is in C:'~(S)U~:*~(G). 

T h e  proof of Theorem 12 is by induction on the total number of sequents in the proofs 
P,P1,  . . . ,Pk. The  argument splits into cases depending on the final inference of P. 

First consider the case where P has no inferences and P consists of a single initial 
sequent. The only difficult case is where P is a defining axiom for a relational, say P is the ini- 
tial sequent 

where r={6j(3,$} and A={Aj(3,;)). Then by assumption there is a proof Pj of 

where B ~ E ~ , ' J ~ ( ( ~ ) .  By the induction hypothesis, applied to  Pj, there is a PSPACE(~) predicate 

G which is A:pb(6)-defined by 8 . ( 6 )  such that  

Since 

and 8 . (6) t -  l B j > l A j ,  we have 
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So  set M t o  be the  PSPACE(<) predicate defined by M ( X , X , ~ , ~ ) =  ~ ( < l , z > , X , p ) .  Now 
since bj(3,<) is atomic, we have 

Th i s  proves the theorem for t he  case where P is a single initial sequent of the form 
$(3,3-+~~(3,<). T h e  other  cases for P a single sequent are similar or  easier. 

Note t h a t  the  argument above shows tha t ,  no  matter  how many inferences are in P ,  
every relational symbol b j (3 ,3  appearing in P is a PSPACE(<) predicate. 

Next we consider the case where P does contain one o r  more inferences. We  shall hen- 
ceforth make the  simplifying assumption tha t  ll and A are the  empty cedent. As in the  proof of 
Theorem 5.5 this involves no  loss of generality since (-:left) and (-:right) inferences can be used 
to  move formulae from side t o  side and since each inference has a dual.  T h e  argument splits 
into 16 cases depending on the  last inference of P. 

We shall number the  cases as in the  proof of Theorem 5.5. We  shall omit many of the 
cases since the  argument parallels t ha t  of Theorem 5.5 very closely. 

Cases (1)-(2): Omitted.  

Case (9): (v:left). Suppose the  last inference of P is 

Let D be the  formula BA(&'*), let E be en(&*) and let F be ( B v c ) ~ ( A r * ) .  

T h e  induction hypothesis is tha t  there are PSPACE(<) predicates G and H which are 

~ : r~(b) -def ined  by 82(6)  such t h a t  

Define M by 
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G(zlZ1 < P(l l~ l l f f ) ) lP(21ff )  > 1 3  

if ~ i tness2$; ( f l l ,p( l  ,a))f,;i) 
~(~,3,ff~;i) G+ 

~ ( z , t ,  < 8 ( 2 1 P ( 1 1 4 ) 1 P ( 2 1 ~ )  > 3) 
otherwise 

Clearly M is a PSPACE(~,:) predicate and is ~:*~((s)-definable by &(6) since G ,  H and 
+- 

Witness2ipr are. I t  is now easy t o  see tha t  

Cases (4)-(19): Omitted. 

Case (14): (second order 3:left). Suppose the last inference of P is 

where /3 and 4 are k-ary predicate variables and P is the eigenvariable and must not 
appear in the lower sequent. 

Let D be the formula B ( P ) A ( ~ * )  and let E be ( 3 4 ) B ( 4 ) ~ ( m * ) .  T h e  induction 

hypothesis is tha t  there is a PSPACE(~Y,/~,~) predicate G which is ~ /*~(S) -de f ined  by 

8:(6) such tha t  

Note we can omit p from the superscript on the lefthand side of this implication since /3 
does not  appear in A .  

Let M be the predicate ~ / '~(S)-def ined by 

Clearly, M is in P S P A C E ( ~ , ~ )  since G is in PSPACE(~Y,/~,~).  Furthermore it is easy t o  
see tha t  
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Case (15): (second order ]:right). Suppose the last inference of P is 

where is a k-ary predicate variable and V is the abstract {yl, . . . ,yk)A(yl, . . . , y k l ~ 1 3  
where A is a Co].tb(6)-formula. 

Let D be the formula B ( v ) v ( ~ A * )  and let E be ( 3 4 ) ~ ( 4 ) v ( V A * ) .  The  induc- 

tion hypothesis is tha t  there is a PSPACE(~,;) predicate G which is A;tb(6)-defined by 

f i ( 6 )  such that  

Let M be the predicate A:pb((mdefined in 8:(6) by 

if z=<2,z> 

~ ( z , ~ , ~ , ? )  if z = < l , < y l , .  . . ,yk>> 

otherwise 

In other words, {z )M is equal to  < DEARYk({$)A),{z)G >. It now follows from 
Lemma 8 that 

It remains to  show that M is a P S P A C E ( ~ , ~ )  predicate. Since G is a 
P S P A C E ( ~ , ~  predicate by the induction hypothesis, i t  suffices to  show that  A is a 
P S P A C E ( ~  predicate. But this follows from the fact tha t  A is in Cd"(6) and, as we 
remarked earlier, every relational appearing in A is a PSPACE(~) predicate. 

Case (16): (c;~~(~)-PIND ). Suppose the last inference of P is 

where B is a ~;*~(G)-forrnula and a is the eigenvariable and does not appear in the lower 
sequent. We shall assume that  B(0) is in r and B(t)  is in A.  The other cases are easier 
and are omitted. 
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Let D be the formula B(LfaJ)h(m*),  and let E ( l , a )  be B ( ~ ) V ( ~ A * ) ,  let F be 

B(o)A(AI'*) and let A be B ( ~ ) v ( ~ A * ) .  The induction hypothesis is tha t  there is a 

P S P A C E ( ~ , ~  predicate G such that  G is A:rb(6)-defined by 8:(6) and such that  

By Lemma 9, there is a term s(3,a)  such that  

8:(6)t ( v ~ ~ s ( 3 , a ) ) ( a ( 2 ) * ~ ( 2 ) ) 3  - - + - 
3 [ ~ i t n e s ~ 2 ~ ~ ' ~ ~ ( a , t ,  a13*  ~ i t n e s s 2 ~ ~ ' ~ ( ~ , 3 ,  a,?)] . 

By Lemma 13, there is a A:rb(6)-definable predicate K of 8:(6) which satisfies 

G(zltla7 < f l ( l l { z ) ~ ( z l t l L f  a J1~ ,3 ) ,P (2 ,c r )  > ,;;I 
otherwise 

Furthermore, by Lemma 13, K is in P S P A C E ( ~ , ~ ) .  From the definition of K it is readily 
seen tha t  

Hence it follows by c;'~(~)-PIND that  

So  we define ~ ( x , t , a , ~  by 
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and M satisfies the conditions of Theorem 12. 

Q.E.D. 

10.8. Only EXPTIME is Zitb-definable in V:. 

Theorem 1 asserted tha t  every EXPTIME function of polynomial growth rate is 
~: t~-def inable  by v;. T h e  converse is also true. Since the proof of the converse to  Theorem 1 

is very similar t o  the arguments in $10.5 concerning C:lb-definable functions of U i  and #i((6) 
we shall merely s ta te  the results without giving detailed proofs. 

Theorem 14: Suppcxe A(i?,d) is a ~;*~(G)-forrnula where i? and d are all the free variables of A .  

Also suppose 8;(4 t (~?i?)(3y)~(?i?,y) .  Then there is a ~ :~~( (6 ) - fo rmula  B ,  a term t and a func- 
tion f so tha t  

(1) Pi(6)t- ( ~ ~ ) ( ~ Y ) ( B ( ~ ~ Y ) > A ( ~ ~ Y ) )  

(2) 8 i ( s ) t - ( v 2 ) ( 3 y < t ) ~ ( f , y )  

(3) @:(w ( W ) ( ~ Y ) ( ~ ~ ) ( ~ ( ~ , Y ) A B ( ~ > ~ ) ~  y=z) 

(4) For all 3 ,  N k B(3,f(?i)) 

(5) f is an EXPTIME function 

Hence, f is an E W T I M E  function which is ~:.~((6)-definable in @(6) and for all i f ,  A(?flf(ii)) 
is true. 

T h e  converse t o  Theorem 1 is an immediate corollary of Theorem 14: 

Corollary 15: Suppose A ( t , d )  is a  formula where i? and d are all the free variables of A .  
Also suppose v ~ ~ ( B ) ( ~ ~ ) A ( P , ~ ) .  Then there is an EXPTIME function f such tha t  for all Z, 
N k A ( Z l f ( 3 ) .  

As before, the proof of Theorem 14 is based on a more complicated theorem: 

Theorem 16: Suppose @ ~ ( ~ ) c I ' , ~ + A , A  and each formula in I'UA is a ~ ~ ~ ~ ( ( s ) - f o r m u l a  and 
each formula in nUA is a n:3b((stformula. Let el ,  . . . ,c, and 71, . . . ,yq be the free variables 
in r,n-A,A. Let X and Y be the C:~~-forrnulae 
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and 
Y = (VA)vV{-c  : C€rI). 

Then  there is an EXPTIME(~U,~) predicate M so tha t  

(1) M is A:pb(6)-defined by Pi (6)  and 

(2) P i ( 6 ) ~  ~ i t n e a a 2 ~ ; ( a , t , 3 ~  ~itneas2~~~({z)~(z,t,rr,~,Z,~;). 

T h e  proof of Theorem 16 is almost exactly like the proof of Theorem 12. T h e  only 
substantive difference is in Case (16), where the last inference of P is a c:~~(~)-IND inference. 
In this case, instead of using Lemma 13 we use Lemma 17: 

Lemma 17: Let ~ ( a , t , 3  and ~ ( a , b , t , a , ~  be ~ : ~ ~ ( b ) - f o r m u l a e  of P i (6)  where rr is a unary 
predicate variable. Let t(b,7') be a term with only the free variables b and 7' as indicated. 
Let K(a ,b ,7 ' ,~)  be defined from A and B as in Theorem 9.14 by: 

if b=O and a < t ( b , t )  

K ( a , b , t , ~ )  if a > t ( b , t )  
+- - B ( a , b , ~ , { z ) K ( x , b ~  l , c , r ) , r )  otherwise 

Then ~ ( a , b , t , ~  is A:*b-definable by Pi(6). Furthermore, if A is in EXPTIME(;) and B is 
in EXPTIME(~~,;;) then K is in EXPTIME(;~). 

Prooj: T h e  proof of Theorem 9.14 shows t h a t  ~ ( a , b , t , ~  is A:rb(6)-defined by f?#(6). If A is 
EXPTIME(;) computable and B is EXPTIME(~,;) computable, then the straightforward algo- 
rithm for computing K(a,b,t,;) is an  E ~ ~ ~ I M E ( ; j ) - a l ~ o r i t h m .  

Q.E.D. 

10.7. A Corollary about NEXPTIMEn co-NEXPTIME. 

Definition: NEXPTIME is the set of predicates which are recognized by a non-deterministic 
exponential time Turing machine. T h e  set co-NEXPTIME is the set of predicates whose 
complements are in NEXPTIME. 
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Proposition 18: A predicate Q(2) is in NEXPTIME iff there is a formula AEC[J~ such t h a t  

Proof: By Corollary 9.17, every ~ : ~ ~ - f o r r n u l a  A(P) is equivalent t o  a formula of the  form 
(34)B(d,4)  where B E C ~ ~ ~ .  By Lemma 9, there is a term sB(z) so  tha t  t he  value of B(3!,4) only 
depends on the  values of +(y) for y<sB(3!). T h u s  a ~ ~ l ~ ~ - f o r m u l a  A(3 )  can be evaluated in non- 
deterministic exponential time by first guessing the  values of +(y) for all y<sB(Z') and then 
evaluating B(Z',4). 

Conversely, it follows from the  methods of $10.1 tha t  every NEXPTIME predicate 
Q(3) can be expressed by a C:~~-formula A(3).  If M is a nondeterministic Turing machine 
which computes Q(P) in time 2q(PI), let A(P) be (3Xn)~unM(Xn,2q(PI),P). 

Q.E.D. 

Corollary 19: 
(a)  If A(?) is any formula and 11; proves A(P) is equivalent t o  a c ~ ~ ' ~ -  and a I'I:*b-formula 

then A(Z') represents a predicate in PSPACE.  In other  words, if 11; proves A is in 
NEXF'TIMEnc*NEXPTIME then A EPSPACE. 

(b) If A(2)  is any formula and V; proves A(2)  is equivalent t o  a C:rb- and a n:~~-formula 
then A(P) represents a predicate in EXPTIME. In other  words, if V: proves A is in 
NEXF'TIMEnco-NEXPTIME then A EEXF'TIME. 

Proof: This  is just a restatement of Corollaries 11 and 15. T h e  proof is similar t o  t he  proof of 
Theorem 5.9 and Corollary 5.10. CI 

Corollary 19 also holds for t he  theories 8. and 8:. 

10.8. Variations, Complications and Open Queetions. 

Some questions concerning second order Bounded Arithmetic which have not  been 
resolved include: 

(1) Is V. equivalent t o  u:? 

(2) IS 6: equivalent t o  8;? IS i?; equivalent t o  P.1 

(3) Is U: or  V: a conservative extension of S2? 

(4) Is U: or  V; a conservative extension of s:? 

T h e  author conjectures t h a t  the  answers t o  questions (I) ,  (3) and (4) are "no". In particular, if 
(1) has  an affirmative answer, then PSPACE=EXPTUIE.  
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Corollary PO: If U:I V: then PSPACE=EXPTIME. Also, if @ ( 6 ) ~  8:(6) then 
PSPACE=EXPTIME. 

Proof- By Theorems 1, 4, 10 and 14. 

However, there seems t o  be no reason why U: could not be a conservative extension of 

There is no  evidence tha t  this  would imply P=PSPACE, for instance. 

A topic for further research would be t o  investigate the theories U; and v~~ for i> 1.  
It  would be nice t o  establish what  functions can be zflb-defined in these theories. I t  appears 
tha t  the   defined functions of V; are precisely the  functions a t  the i-th level of the 
exponential time hierarchy. T h a t  is, v~~ can  define precisely the  functions which can be 
computed by an  exponential time Tur ing  machine using an oracle for a NEXPTIMEcomplete 
predicate, etc. T h e  situation for U; is not quite as clear. First of all, computer scientists d o  
not  recognize a polynomial space hierarchy: a well known theorem of Savitch 1241 states  tha t  
PSPACE=NPSPACE. Instead we expect t ha t  u,' can zillb-defined precisely the  function 
which can be computed by a polynomial space bounded Tur ing  machine using an oracle from 
the i-th level of t he  exponential time hierarchy. For example, we expect t ha t  u~~ can 
C2'lb-define precisely the  functions which can be computed by a polynomial space bounded Tur-  
ing machine with an oracle for a NEXPTIME-complete predicate. 

A variation of second order Bounded Arithmetic is t o  restrict all predicate and function 
variables t o  have bounded domains. A predicate 4 has bounded domain iff there is a ,z such 
tha t  when x i > z  for some xi then 4(3) does not  hold. Likewise, a function c has bounded 
domain iff there is a z such t h a t  when some xi>z,  $(i)=0. 

We  change the  second order language so tha t  the  second order predicate variables are 
cr: and 4: and the second order function variables are cil' and X ~ J '  where s and t are arbitrary 
terms. Let Z' be a list of new variables not appearing in s. Then second order Bounded Arith- 
metic contains t he  new axioms 

(V3)(VX i ' * ' ) (X  i 'e8((z ' ) l  t ) .  

T h u s  the axioms force all predicate and function variables t o  range over bounded domain predi- 
cates and  functions. 

We  also change the comprehension axioms for bounded domains. T h e  bounded domain 
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comprehension axioms (the Cds6-BCA axioms) are 

where A E C ~ J ' .  The  C~~'-BFCA, the bounded domain function comprehension axioms are 
defined similarly. We leave it to  the reader t o  formulate the bounded domain comprehension 
inferences. 

Let U ~ ( B D )  and V~(BD) be the theories which use bounded domain predicate and 
function variables, have the C~~'-PIND and C~"'-IND (respectively) axioms, and have the 
c~J'-comprehension axioms. So U~(BD) and V~(BD)  are similar t o  U; and V; except they are 
restricted t o  using only bounded domain second order variables. I t  turns ou t  tha t  the same 
functions are C~"-definable in Ui(BD) and V ~ ( B D )  as in U i  and V i  respectively; namely the 
PSPACE and EXPTIME functions (respectively). This is true because the proofs of Theorems 1 
and 4 only used functions with bounded domain. 

T h e  theories @(BD) and ~;(BD) are defined to  be U;(BD) and v~(BD), respectively, 
restricted to  contain only second order predicate variables and no second order function vari- 
ables. Of course, the analogues of Theorem 9.5 and Lemma 9.6 hold, so  U~(BD) and V~(BD) 

are conservative extensions of C~(BD) and V~(BD), respectively. 

As a final topic we discuss the predicativity of second order Bounded Arithmetic. Ed 
Nelson 1191 defines a theory to  be predicative if it can be interpreted in R. Robinson's 
induction-free, open theory of arithmetic Q. Independently, A. Wilkie and E. Nelson have 
shown tha t  bounded induction is predicative; in particular, the theories S$ and S2 are predica- 
tive. 

Second order bounded domain Bounded Arithmetic is also predicative. T o  show this it 

suffices to  interpret C2(BD) in the first order theory S2. So  let M be a model of S2; we con- 

struct from M a model N for ~J-')(BD). N will consist of two parts  N1 and N2; both N1 and 
N2 are subsets of the universe of M and N1 is the first order part  of N and N2 is the second 
order elements of N. If a € N 2  and  EN^ then we interpret a(3)  in S2' as 

where <3> is the sequence coding zl, . . . ,z, and satisfies 

By the results of Chapter 2, i t  is clear that  for each n>O the map 2- <Z> is C,b-defined by 
Si. Hence the interpretation of a(z)  is well-defined. 

Next define I(z) t o  specify an initial segment of M satisfying 
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We  let I denote the  elements rn of M satisfying I(m).  S o  if M is closed under exponentiation 
I=M. Otherwise I is the initial segment of M containing all the  m such t h a t  22m exists in M. 
Since, 22't1=(22')2, I is inductive; t ha t  is, if m € I  then m + l € I .  Using techniques due  originally 
t o  R. Solovay and independently t o  E. Nelson, we can find another definable initial segment N1 
of M such t h a t  NIGI and N1 is closed under successor, addition, multiplication, and  smash (#). 
We let N,=M. 

W e  claim tha t  N=<N1,N2> is a model of fi.-')(BD). This  is because the  C ~ J ~ - B C A  
comprehension axioms can be proved using the  C~J~- IND axioms of S2. Since this is straight- 
forward, we omit the  proof. 

T h e  above shows tha t  fi.-')(BD) can be interpreted in S2.  I t  remains t o  show tha t  - 
U2(BD) is interpretable in fi$-')(BD). T h e  fact tha t  fi2(BD) can be locally interpreted in 

6.-')(BD) follows again by the techniques of Solovay and Nelson. (A theory H is locally inter- 
pretable in another theory G iff any subtheory generated by a finite subset of t he  axioms of H is 

interpretable in G.) T h e  fact t h a t  ~ ~ A B D )  can be globally interpreted in C~-')(BD) follows from 
a technique due t o  Wilkie, see Pudlak [22]. 

If M is not  closed under exponentiation, the above construction will actually yield a 

model N of f12. Hook [16] uses the assumption (3y)(Vz)(lzl< y) as a predicative assumption. 
Hence, if we accept Hook's axiom as predicative, t he  (unbounded domain) second order theories 
uzi of Bounded Arithmetic are predicative. 

As a corollary t o  the  above discussion we deduce tha t  the  PSPACE and EXPTIME 
functions can be predicatively defined. 





POSTSCRIPT 

Since the original version of this dissertation appeared, a year ago as of this writing, a 
number of further developments in Bounded Arithmetic have occurred. 

A. Wilkie in a handwritten manuscript titled "A model theoretic proof of Buss's char- 
acterization of the polynomial time computable functions" has given a model theoretic proof of 
a variant of the Main Theorem 5.2 for the case i=l. His method of proof readily extends to  all 
d >  1.  

J. P. Ressayre in a handwritten manuscript titled "A conservation result for systems of 
Bounded Arithmetic" has examined a strong form of the ~,b-replacement axioms and investi- 
gated its strength relative to  the axioms investigated in Chapter 2 above. 

In a paper "The polynomial hierarchy and intuitionistic Bounded Arithmetic" in Struc- 
ture in Complezity Theory, Springer-Verlag Lecture Notes in Computer Science #223, I have 
extended the Main Theorem of Chapter 5 to  intuitionistic theories. 

Peter Clote and Gaisi Takeuti in a paper titled "Exponential time and Bounded Arith- 
metic" in the same volume have extended the Theorems 10.1 and 10.14 to  functions which are 
n-fold exponential time computable. They utilized many-sorted theories of Bounded Arithmetic 
rather than higher order theories to  obtain a more elegant formulation. 

However, none of the major open problems concerning Bounded Arithmetic have been 
solved in the past year. I t  is hoped that  further research will be able t o  resolve some of them. 
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