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ABSTRACT OF THE DISSERTATION

Noncommutative Computer Algebra in Linear Algebra and Control

Theory

by

Frank Dell Kronewitter III

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor J. William Helton, Chair

We will show how noncommutative computer algebra can be quite useful in

solving problems in linear algebra and linear control theory. Such problems are

highly noncommutative, since they typically involve block matrices. Conventional

(commutative) computer algebra systems cannot handle such problems and the

noncommutative computer algebra algorithms are not yet well understood. Indeed,

the Gr�obner basis algorithm, which plays a central role in many computer algebra

computations, is only about thirteen years old in the noncommutative case.

We will demonstrate the e�ectiveness of our algorithms by investigating the

partially prescribed matrix inverse completion problem and computations involv-

ing singularly perturbed dynamic systems. On both of these sorts of problems

our methods proved to be quite e�ective. Our investigations into the partially

prescribed matrix completion problem resulted in formulas which solve all 3x3

problems with eleven known and seven unknown blocks. One might even say that

these formulas represent 31,824 new theorems. Our singular perturbation e�orts

focus on both the standard singular perturbed dynamic system and the informa-

tion state equation. Our methods easily perform the sort of calculations needed

to �nd solutions for the standard singular perturbation problem and in fact we

are able to carry the standard expansion out one term further than has been done

xiii



previously. We are also able to generate (new) formulas for the solution to the

singularly perturbed information state equation.

After demonstrating how useful our methods are, we will pursue the formal

analysis of our techniques which are generally refered to as Strategies. The formal

de�nition of a strategy allows some human intervention and therefore is not as

rigid as an algorithm. Still, a surprising amount of rigorous analysis can be done

especially when one adds some simple hypotheses as we will. In particular, we will

introduce the notion of a good polynomial and the gap of a polynomial ideal which

will prove useful in our formal analysis. We will show how successful strategies

correspond to low gap ideals. Also introduced is the strategy+, which allows the

user a bit more freedom than a strategy.

The lion's share of our noncommutative computer algebra investigations have

been in the �eld of linear system theory. We will describe our accomplishments

and demonstrate the strategy technique with some highly algebraic theorems on

positive real transfer functions.

Finally, we will turn to controllability and observability operators which play

an important role in linear system theory and are expressed symbolically as in�nite

sequences. We will o�er �nite algebraic characterizations of these operators, and

use these characterizations to derive the state space isomorphism theorem.
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Chapter 1

Introduction

This dissertation investigates the use of noncommutative computer algebra

algorithms in solving problems in linear algebra and the analysis and control of

linear dynamic systems. Many problems in linear algebra can be formulated as

matrix equations and therefore handled with noncommutative symbolic algebra.

Indeed, most algebraic calculations which one sees in linear systems theory, for

example in the IEEE Transactions in Automatic Control, involve block matrices

and so are highly noncommutative. Thus conventional commutative computer

algebra packages, such as Mathematica and Maple, do not address them. This

dissertation shows how these noncommutative algebraic calculations may be done

with a computer.

Before delving into the proving of new theorems and the analysis of old theo-

rems we will review some of the theory behind our computer algebra techniques.

In particular we shall describe the (noncommutative) Gr�obner basis algorithm,

polynomial reduction, and some results from elimination theory.

We shall investigate the partially prescribed matrix inverse completion problem.

In particular we will investigate a certain class of inverse block matrix completion

problems where eleven of the blocks are known and seven are unknown, thereby

proving 31,824 new theorems. We also demonstrate the use of noncommutative

computer algebra in computing an optimal controller for the standard singularly

1
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perturbed dynamic system. The expansion of a near-optimal controller is car-

ried out one term further than had previously been done. We shall illustrate the

same technique by analyzing another singularly perturbed problem, the informa-

tion state equation.

The research in this thesis did not only result in the generation of new for-

mulas, but also resulted in some new results in terms of elimination ideals on a

methodology called a strategy, for solving highly algebraic problems. This thesis

gives a more rigorous analysis of the strategy than has previously appeared.

We will report on how basic properties of positive real matrix functions may

be developed easily with noncommutative computer algebra. We will demonstrate

our techniques by presenting some computer algebra proofs of some basic theorems

in linear dynamic systems which exhibit a large amount of algebra. We will in fact

show how these computer algebra proofs �t into the formalized classi�cations of

pre-strategies and strategies as introduced in [11].

We shall conclude with an analysis of some basic properties of discrete linear

systems. This analysis requires an algebraic interpretation of controllability and

observability operators which are typically expressed symbolically as in�nite se-

quences. This in�niteness brings these problems out of the realm of the standard

computer algebra proof. We will present some purely algebraic relations which

capture some of the properties of controllability and observability operators. We

will demonstrate the power of these relations by giving computer algebra proofs

of the Youla-Tissi state space isomorphism theorem and the discrete Grammian

equation.

1.1 One use of Gr�obner bases

Gr�obner bases are a useful tool in the manipulation and analysis of polyno-

mials. The Gr�obner basis is dependent on an order placed on the indeterminates

which make up the polynomials. An important property is that the Gr�obner basis

methods may be used to transform a set of equations fpj = 0 : 1 � j � k1g into



3

an equivalent set with a \triangular" form shown below.

q1(x1) = 0 (1.1)

q2(x1; x2) = 0 (1.2)

q3(x1; x2) = 0 (1.3)

q4(x1; x2; x3) = 0 (1.4)

...

qk2(x1; : : : ; xn) = 0 : (1.5)

Here, the set of solutions to the collection of polynomial equations fqj = 0 :

1 � j � k2g equals the set of solutions to the collection of polynomial equations

fpj = 0 : 1 � j � k1g. This canonical form greatly simpli�es the task of solving

the collection of polynomial equations by facilitating back-solving for xj in terms

of x1; : : : ; xj�1.

1.1.1 Equations in one unknown

If an unknown (perhaps matrix) variable x satis�es an equation p(x; a1; : : : ; an) =

0 which contains only known variables a1; : : : ; an and x a person could typically

regard the variable x as known. For example, if p is a Riccati equation one could

use the Matlab Riccati solver to determine a set of x's, matrices with numerical en-

tries, which satisfy p if given speci�c matrices (with numerical entries) a1; : : : ; an.

A recurrent goal throughout this thesis will be transforming complicated sets of

equations into equations in one unknown.

1.2 Some applications of noncommutative com-

puter algebra and new results

To demonstrate the e�ectiveness of noncommutative computer algebra we have

used it to solve some problems which exhibit a large amount of tedious noncom-
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mutative algebra. We will outline the methods we used to solve certain problems

and present some new results. Types of problems we researched included the �elds

of matrix completion, singular perturbation, and standard linear system theory.

1.2.1 Matrix completion

In Chapter 4 we investigate the use of noncommutativeGr�obner bases in solving

partially prescribed matrix inverse completion problems. The type of problems

considered here are similar to those in [2]. There the authors, among other things,

gave necessary and su�cient conditions for the solution of a two by two block

matrix completion problem. Our approach is exceedingly di�erent from theirs and

relies on symbolic computer algebra.

Here we describe a general method by which all block matrix completion prob-

lems of this type may be analyzed with su�cient computational power. We also

demonstrate our method with an analysis of all three by three block matrix inverse

completion problems with eleven known blocks and seven unknown. We discover

that the solutions to all such problems are of a relatively simple form.

We then do a more detailed analysis of what can be considered the \central

problem" of the 31,824 three by three block matrix completion problems with

eleven known blocks and seven unknown. A solution to this problem of the form

derived in [2] is presented.

Not only do we give a proof of our detailed result, but we describe the method

used in discovering our theorem and proof, since it is somewhat unusual for these

types of problems.

Chapter 4 closely follows the paper [19] which has been submitted to a linear

algebra journal.

1.2.2 Singular perturbation of linear dynamic systems

In Chapter 5 we investigate the usefulness of noncommutative computer algebra

in a particular area of control theory{singularly perturbed dynamic systems{where
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working with the noncommutative polynomials involved is especially tedious. Our

conclusion is that they have considerable potential for helping practitioners with

such computations.

Indeed we shall see that they are useful in manipulating the messy sets of

noncommutative polynomial equations which arise in singular perturbation calcu-

lations. We will demonstrate our approach on two di�erent singularly perturbed

problems. We illustrate the method on the classical state feedback optimal control

problem, see [18], where we obtain one more (very long) term than was done previ-

ously. Then we use it to derive singular perturbation expansions for the relatively

new (linear) information state equation.

Chapter 5 closely follows the conference paper [14] which appears in the 1999

IEEE Conference on Decision and Control and the longer journal article [13] which

has been submitted to the International Journal of Robust and Nonlinear Control.

1.3 Some research on strategy theory

In [28] a formal methodology was developed for \discovering" highly algebraic

theorems. Since this methodology allows for some human intervention it cannot

be refered to as an algorithm. The method is called a strategy.

In the original formulation of a strategy the user was allowed to select any

polynomial. Still, a surprising amount of formal analysis was developed. In the

pursuit of rigor we will require selected polynomials to satisfy certain criteria. Such

polynomials will be simply called good.

An important part of this more rigorous strategy is elimination ideals which will

be developed below in noncommutative algebras. In fact, the strategy formalism

allows one to classify certain algebraic theorems as n-Strategies or n-prestrategies.

We will use this strategy concept to classify purely algebraic problems. This is

done in Chapter 7.
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1.3.1 Standard linear system theory with computer alge-

bra

This research began with the study of computer algebra proofs of known theo-

rems of linear systems. Many of the theorems in [28] exhibit a signi�cant amount

of algebra which was done with our methods. We have seen instances where three

pages of published algebra were performed with a three minute computer run. We

will describe our linear system theory accomplishments and present a couple of

examples in Part IV.

1.4 In�nite sequences and computer algebra

Certain objects called controllability and observability operators which are im-

portant in linear system theory are in�nite sequences of operators. Thus they are

not directly amenable to computer algebra methods. A purely algebraic character-

ization of them requires more care than the standard computer proof. In Part V

(Chapter 12) we o�er inherently �nite de�nitions of controllability and observabil-

ity operators which require the introduction of new symbols, such as shifts S and

projections P. We illustrate the use and strength of our formalism by deriving the

state space isomorphism theorem, a central fact in control theory.



Part I

Background
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Chapter 2

Some Necessary Concepts

Here we present some concepts which are essential to a thorough understanding

of the research done in this thesis. An impatient reader may wish to skip this

chapter and return when directed to do so by the index.

2.1 Enough NCAlgebra to get by

Although the analysis done in this document could be done using any noncom-

mutative Gr�obner basis software (e.g. [17]) here we use the software NCGB, [10].

This software runs under Mathematica [27] and may be used concurrently with

the package NCAlgebra [9] which assists in the manipulation of noncommutative

expressions.

Here we describe enough of the NCGB commands to read this document and

understand the computer runs which provide the proofs to the problems addressed

here. Since NCGB runs within Mathematica, the syntax should be somewhat

familiar to those versed in Mathematica.

** { Noncommutative multiply.

SetNonCommutative[ ] { This command takes as an argument a list of

indeterminants and sets them to be noncommutative.

8
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MatMult[ ] { This command takes as an argument a set of compatibly

dimensionedmatrices of noncommuting elements and returns the matrix consisting

of the product of the inputs.

SetMonomialOrder[ ] { This command sets the monomial order to be used

by Gr�obner Basis computations and noncommutative polynomial reduction com-

putations.

NCAutomaticOrder[ ] { This command takes as input a set of relations and

a list of indeterminates. The list of indeterminates implies a monomial order.

Indeed, if all of the indeterminates in the input set of relations can be found in the

list of indeterminates, then this command is equivalent to SetMonomialOrder[].

The remaining indeterminates in the relations which are not in the given monomial

order are placed in some \appropriate" place in the order based upon suggestions

given by the supplied variables. For example, if XT is found in the relations and

X has been placed in the order, then NCAutomaticOrder[] will place XT in the

order directly above X. Then the relation X == XT will correspond to the rule

XT
! X, rather than X ! XT .

NCMakeGB[ ] { This command creates a noncommutative Gr�obner Basis us-

ing the order speci�ed in SetMonomialOrder[]. It takes as arguments a set of

polynomials and a maximal number of iterations.

NCProcess[ ] { The general goal of NCProcess is to take a set of noncom-

mutative polynomials and return an equivalent set of noncommutative polynomials

which is as \useful" as possible.

This command makes heavy use of NCMakeGB[]. It creates a Gr�obner basis, and

then sorts the output based on the unknown variables present in the polynomials.

It is somewhat unfortunate that at this point the criteria for \unknownness" is

directly determined by the monomial order. The unknowns are declared to be the

indeterminates which lie above the �rst� in the order. That is if one is searching

for an expression for xj which does not contain the variables a1 and a2 the order

must be speci�ed as : : : � xj < a1 < a2 < : : : and this categorizing process will
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be done as if the a1 and a2 are unknowns.

NCMakeRelations[ ] { This command creates relations such as invertibility

relations. Note that, since our method is using ideal relations in a free algebra, to

imply an indeterminant X is invertible we create a new indeterminant X�1 and

add the relations XX�1
� 1 and X�1X � 1 to our generating set.

SmallBasis[ ] { This command takes an ordered list of polynomials and

attempts to return a small basis for the ideal generated by them. We iteratively

include successive elements of our basis, create a partial Gr�obner Basis from them,

and try to reduce the other polynomials with each partial Gr�obner Basis. As the

generating set grows if the excluded relations are elements of the ideal generated

from the included relations at some iteration of the algorithm our goal has been

achieved. Obviously, the sequence in which relations are presented to the small

basis algorithm is important. The small basis algorithm acting on (x3; x2; x; 1)

returns the unenlightening (x3; x2; x; 1), but when presented with (1; x; x2; x3) the

algorithm returns (1). (Computational di�culties prevent some idealized imple-

mentation which would consider all permutations of our relations.)

NCReduction[ ] { This command takes as input two lists of polynomials

and attempts to reduce each polynomial in the �rst list with the set consisting of

the second polynomials.

NCAddTranspose[ ] { This command takes as input a set of relations and

adds the transposed equivalent of them. This is useful in an algebra with involution

where the user would rather not enter both aTb == c and bTa == cT .

2.2 System theory basics

The central object in our studies is the �nite dimensional linear dynamic sys-

tem. This system may be written as

_x(t) = Ax(t) +Bu(t)
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y(t) = Cx(t) +Du(t)

where A, B, C, and D are matrices and u, x, and y are time varying functions

of t. u is said to be an input vector, x, a state vector, and y, an output vector.

A is refered to as the state transition matrix; B, the input matrix; C, the output

matrix; and D, the throughput matrix.

We may take the Laplace transform of this system to study the characteristics

of a system in the frequency domain. The resulting system is

~y = (C(sI �A)�1B +D)~u: (2.1)

We write this transfer function as 2
4 A B

C D

3
5

Pictorially we have Figure 2.1.

B

D

A

C
uy

Figure 2.1: A general system

A matrixM(s) whose entries are rational functions of s 2 C is said to be stable

if all of the poles of M(s) have a negative real value. We will denote the portion

of C with real part strictly less than 0, the open left half-plane, as C .

It can easily be shown that if the spectrum (eigenvalues) of A are in the open left

half plane the transfer function of a linear dynamical system with state transition

matrix A will be stable. Letting � return the spectrum of a matrix we have

�(A) � C !

2
4 A B

C D

3
5 is analytic in the right half plane:
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We will refer to a constant matrix A whose spectrum lies in C as stable.

It is a common problem in linear control theory to take an unstable linear

dynamic system and \move" the poles of it's associated transfer function into the

left half plane by designing some controller. Typically the controller has access

to a subset of the components of y and is able to control a subset of the input

components u. In Chapter 5, we present a method for designing controllers for a

certain type of linear dynamic system. Such a controller is refered to as a feedback

control law.

For those who are totally disoriented, it might help to remember that entries

like A, B, C, and D are typically matrices. Objects denoted P , K, and G are

most likely transfer functions, that is matrix valued functions, with entries, say,

1+s
1+4s�s2

. In this purely symbolic framework it is easy to get confused if the reader

doesn't have the background.

2.3 Some useful algebraic identities

The symbolic methods we use are purely algebraic and therefore a task which

is central to our computer algebra investigations is mapping general hypotheses

into pure algebra equations.

An example of this is the invertibility of some indeterminate. To imply an

indeterminant X is invertible we create a new indeterminant X�1 and add the

relations XX�1
� 1 = 0 and X�1X � 1 = 0 to our generating set.

An equation, which often appears in system theory computations, is the Sylvester

Equation in X,

AX +XB = C: (2.2)

This equation can equivalently be written as

�
BT

�A
�
V ec(X) = V ec(C) (2.3)
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where X � Y , the Kronecker sum, is de�ned to be (X 
 I) + (I 
 Y ) and 
 is

the usual Kronecker (tensor) product. V ec(X) is simply the vectorization of the

matrix X.

The spectrum of (BT
�A) is �i + �j where �i 2 �(BT ) and �j 2 �(A).

De�nition 2.3.1 If �(B)\�(�A) = ; we call the equation AX+XB = C a full

rank Sylvester equation and if we have C = 0 we call this a full rank null

Sylvester equation.

It follows that if we have a full rank null Sylvester equation in X,

AX +XB = 0 where �(B) \ �(�A) = 0;

X = 0. This fact will be used many times in our automatic theorem proving.

2.4 Tricks of the trade

There are certain nuances in the use of the noncommutative software, NCGB.

Some are brie
y described here. In particular there are a few rules of thumb which

should be followed, especially when one encounters computational di�culties. The

reader who is only interested in seeing the results of these computations may wish

to skip this section. On the other hand it may help to clarify the Mathematica

input.

2.4.1 Commutative indeterminates

Presently NCGB cannot handle commutative indeterminates, that is indeter-

minates in the center of the algebra, without adding all of the n relations which

would imply this in the free algebra. (cxj � xjc for all indeterminates, xj.) This

adds considerable computational complexity to the problem.

This problem is encountered quite often in noncommutative computations, for

example in the case where one has scalars in a problem with matrix relations.
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This problemmay be avoided by substituting a prime number for the commutative

indeterminate. Making the substitution z ! 7 the output of the Gr�obner Basis

Algorithm may then contain a 49 which the user would recognize as z2 or a 14

which the user would recognize as 2z. Making the substitution z ! 3 would be

more likely to present a problem since a 3x could be interpreted as a 3x or a zx.



Chapter 3

Ideals and Gr�obner Bases

The research in this thesis involves �nding algebraic formulas. We have found it

useful to distinguish between known variables which we will label ai and unknown

variables which we will label xi. Throughout this thesis we will denote an arbitrary

�eld of characteristic 0 by K. The corresponding algebra K[a1; : : : ; am; x1; : : : ; xn]

consists of polynomials which are sums of terms, for example 4a1x2a1 +
1
6
x1a2.

A term is made up of a coe�cient in K and a product of variables{a monomial,

for example 5a1x2a2. A subset of K[a1; : : : ; am; x1; : : : ; xn], I, is called an ideal if

f; g 2 I implies that lffrf + lggrg 2 I for lf ; rf ; lg and rg arbitrary elements of

K[a1; : : : ; am; x1; : : : ; xn]. The smallest ideal which contains fp1; : : : ; psg is called

the ideal generated by fp1; : : : ; psg and is denoted hp1; : : : ; psi. For terms m and

n, we say that m divides n and write m j n if there exist monomials L and R and

a nonzero coe�cient c 2 K such that n = cLmR.

Given an ideal I any set of polynomials B is said to be a basis of I if B generates

I. We will be especially interested in a certain basis (which is unique under certain

conditions) called the Gr�obner basis.

15
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3.1 Polynomials and equations

When studying a system of linear equations an equivalent system of linear

equations in reduced echelon form can be constructed via Gaussian elimination.

Many properties of the set of solutions of the linear system can be derived from

this reduced echelon form including a full parameterization in terms of the free

variables. Here we study solutions to a set of polynomial equations in more than

one variable and propose the use of elimination ideals and a notion analogous to

free variables. We will consider the case when the polynomials involve variables

which commute and when they involve variables which do not commute. (That

is, some of the results apply for members of the free abelian algebra generated by

the variables x1; : : : ; xn, (K[x1; : : : ; xn]), and some apply to the free (nonabelian)

algebra generated by the variables fx1; : : : ; xng over some �eld K.)

3.2 Gr�obner bases

When applying Gaussian elimination to a system of linear equations one could

de�ne a total order on the variables. For example, when considering the system

2x+ 3y + 4z = 9

2y + z = 8

we could write x > y > z, since x appears to the left of y and y appears to the left

of z. It is common to insist that any linear equation is written with the variables

occuring in decreasing order. For example, one would not want to express the

second equation above as z + 2y = 8 while performing Gaussian elimination.

In the case of polynomials, rather than linear expressions, we need to order all of

the monic monomials and consider a \leading term" of a nonzero polynomial. After

de�ning leading term, we consider replacement rules. Theory related to Gr�obner

bases is often developed without reference to any notion similar to replacement

rules and we could have developed this theory without refering to replacement
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rules. We feel, however, that the theory is more accessible to those nonspecialists

who have problems which Gr�obner theory applies to (e.g. engineers).

3.2.1 Monomial orders

Essential to the creation of Gr�obner bases is the consideration of a monomial

order which is a total order on the monic monomials of the polynomial algebra

under consideration which satis�es certain properties, [5], [22]. We assume the

reader is familiar with the concept of monomial orders. We now discuss the con-

cepts of leading coe�cient, leading monomial and leading term, which depend on

the monomial order under consideration, for a nonzero polynomial p.

For a polynomial p, let support(p) be the smallest set of monic monomials

such that p lies in the k-span of support(p). For example, support(x2y + 3yx +

z) = fx2y; yx; zg. For a nonzero polynomial p and any particular monomial, some

element of support(p) will be greater than the others. This monomial is called the

leading monomial and is denoted LM(p). Exactly one term of p, called the leading

term of p and denoted LT(p) will have the form LT(p) = LC(p) LM(p) for some

scalar LC(p). LC(p) is called the leading coe�cient of p. For example, under any

monomial order with x3 < x2 < x1 and p = x1�x2x3+9x21, we have LT(p) = 9x21,

LM(p) = x21 and LC(p) = 9.

For any monomial order, the leading term of a product is the product of the

leading terms. That is, for nonzero polynomials p and q,

LT(pq) = LT(p)LT(q):

We will often use monomial orders which exhibit the following property.

De�nition 3.2.1 Let j and n be natural numbers such that 1 � j � n. A monon-

ial order is of j-th elimination type provided that any monic monomial involving

xj; : : : ; xn is greater than any monic monomial of K[x1; : : : ; xj�1].

With the above de�nitions we can introduce replacement rules.
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3.2.2 Gr�obner rules

A replacement rule is m! q (that is, m followed by an arrow pointing to the

right followed by q) for monic monomials m and polynomials q. The left hand

side of a rule m ! q is m and the right hand side is q. Every polynomial p

corresponds to a replacement rule �(p) where the left hand side of the rule is the

leading monomial of the polynomial and the right hand side is the negative of the

sum of the remaining terms in the polynomial divided by the coe�cient of the

leading term.

Example 3.2.2 If we have x1 > x2 > x3 and p = 4x1 � 8x2x3 + 2x21, then

�(p) is x21 ! 4x2x3 � 2x1:

We can apply a replacement rule to a polynomial in the following fashion.

Example 3.2.3 To the polynomial

x1x1x2x1 + x2x3x1 + x2

we may apply

fx21 ! x2x3 � x1g

to get

(x2x3 � x1)x2x1 + x2x3x1 + x2 = x2x3x2x1 � x1x2x1 + x2x3x1 + x2:

3.2.3 Reduction

De�nition 3.2.4 Given a monomial order, let P = ff1; : : : ; fkg be a set of poly-

nomials. Now let p be any polynomial. We say that p is reducible to g with

respect to P if there exists fi 2 P such that g = p� c u fi v where c is a constant

and u, v are monomials chosen so that the leading term of c u fi v coincides with

one of the terms of p.
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The e�ect of the reduction is to replace a term of the polynomial p with terms

of lower order. A polynomial p may be reduced to a simpler form with a set

of polynomials P by using the replacement rules �(P ). Reducing a polynomial

by a set of polynomials is similar to the Euclidean division algorithm one might

use to �nd the remainder of, say, x3+3x2+x+1
x2+2

. For our problems, the Euclidean

division algorithm doesn't apply, since there is more than one indeterminate. In

this scenario it is common to view reduction as replacing a polynomial with a

\simpler" polynomial.

Example 3.2.5 The polynomial x2x1x2x1+x2 may be reduced by the polynomial

x1x2 + 3.

The Euclidean division algorithm yields

(x2x1x2x1 + x2)� x2(x1x2 + 3)x1 = �3x2x1 + x2

and if we use replacement rules we have that x2x1x2x1+x2 reduces to �3x2x1+x2

by applying �(x1x2 + 3) which is x1x2 ! �3.

If repeated application of these types of rules to a polynomial transforms the

equation to 0, then we have shown that the polynomial under consideration is an

element of the (two-sided) ideal generated by the relations used to create the rules.

Given a polynomial p, one may apply a set of rules F repeatedly until no further

reduction can occur. At this stage m - u for all terms u in our reduced p and all

left hand sides m in the set F . We call this a normal form of p with respect to F .

This normal form is denoted

NForm(p; F )

and is not unique in general. In the next section we will give conditions on F

which make NForm(p; F ) unique.
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3.2.4 Gr�obner bases

De�nition 3.2.6 Given a polynomial ideal I we call a set of polynomials G, a

Gr�obner Basis for I if f is in I if and only if f may be reduced to 0 with

repeated application of all rules �(G).

If the repeated application of the rules �(G) does not reduce a polynomial p to

0, then there is still some profound information provided about p's relationship to

the ideal hGi as the following theorem attests.

Theorem 1 ([7], pg.186) If G is a Gr�obner basis for an ideal I, then any polyno-

mial p has a unique normal form with respect to �(G). That is the normal form of

p is invariant under the order in which the rules, �(G), are applied. The resulting

irreducible polynomial is denoted NForm(p;G).

If the indeterminates commute, then the Gr�obner basis is always a �nite set of

polynomials. Buchberger developed an algorithm which �nds this set when given

a generating set of relations for the ideal. In the non-commuting case the Gr�obner

basis for an ideal may be in�nite, for example a Gr�obner basis associated with the

ideal hxyxy + yxyxi.

Nevertheless there exists a similar algorithm due to F. Mora [22] which iter-

atively �nds a Gr�obner basis and terminates if the Gr�obner basis is �nite. In

practice even this �nite Gr�obner basis may be incomputable when computer re-

sources are taken into account and one stops the algorithm after a speci�ed number

of iterations. The result is some �nite approximation to a Gr�obner basis, a partial

Gr�obner basis.

This �nite approximation, though not exhibiting the powers of a Gr�obner basis,

is often useful in reduction as shown below in Section 4.4.6 and transparently

throughout the document. For example, successful applications of the small basis

algorithm introduced in Section 3.3.1 are dependent on the reduction properties

of partial Gr�obner bases.
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These �nite approximations generated by Mora's algorithm are made up of

elements of the ideal generated by the original relations. There are few available

software implementations of this non-commutative algorithm (NCGB, [10] and

Opal, [17]). For our computations, we used the package NCGB.

3.2.5 Buchberger's algorithm

Buchberger's algorithm generates a (commutative) Gr�obner basis. It takes as

input a set of generators (polynomials in commuting indeterminates) for an ideal

and returns the Gr�obner basis for the ideal. To describe the noncommutative

analogue (Mora's algorithm) we need to introduce the correct notion of a common

multiple.

Let S be the free semigroup generated by a �nite alphabet A (i.e., the collection

of words in the letters of A). Let (m1;m2) be an ordered pair of elements of S. By

a match of (m1;m2) we mean a 4-tuple (l1; r1; l2; r2) of elements of S which satisfy

one of the following conditions:

(1) l1 = r1 = 1, m1 = l2m2r2.

(2) l2 = r2 = 1, m2 = l1m1r1.

(3) l1 = r2 = 1, l2 6= 1, r1 6= 1, there is a w 6= 1 with m1 = l2w, m2 = wr1.

(4) l2 = r1 = 1, l1 6= 1, r2 6= 1, there is a w 6= 1 with m1 = wr2, m2 = l1w.

These conditions make l1 m1 r1 = l2 m2 r2. This is a common multiple of m1 and

m2 which is minimal in some sense.

In the commutative case, the Basis Algorithm makes use of a kind of resolvent

of two polynomials called the S-Polynomial. S-Pol(f; g) = c2u1f1 � c1u2f2 where

ci = LC(fi) and where ui is chosen so that uiLM(fi) is the least common multiple

of LM(f1) and LM(f2) for i = 1; 2. In the noncommutative case, there are several
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such resolvents|one for each match. If M is a 6-tuple (f1; f2; l1; r1; l2; r2) where

(l1; r1; l2; r2) is a match for (LM(f1);LM(f2)) and ci = LC(fi), then we set

S-Pol(M) = c2l1f1r1 � c1l2f2r2 :

Example:

Consider the polynomials

f1 = aaba+ ab f2 = abaa+ ba :

There are four matches for (f1; f2):

1. (aba; 1; 1; aba). In this case the S-Polynomial is

(aba)(f1)� (f2)(aba) = �baaba+ abaab :

2. (ab; 1; 1; ba). In this case the S-polynomial is

(ab)(f1)� (f2)(ba) = �baba+ abab :

3. (1; baa; aab; 1). In this case the S-Polynomial is

(f1)(baa)� (aab)(f2) = abbaa� aabba :

4. (1; a; a; 1). In this case the S-Polynomial is

(f1)(a)� (a)(f2) = 0 :

The algorithm is iterative and starts with a �nite set of polynomials G1. The k-th

step has available to it a set Gk such that the ideal generated by G1 equals the

ideal generated by Gk. The k-th step of the algorithm creates a set Gk+1 by setting

it equal to the union of Gk and the set of all nonzero reductions of S-Polynomials

for all pairs in Gk. The process repeats as long as there are S-Polynomials with

nonzero reductions. In other words, the process repeats until Gk = Gk+1.
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As noted above this algorithm may not terminate in the noncommutative

case and may even be intractible in the commutative setting. We call the map

which generates a true Gr�obner basis (possibly in�nite) idealGBA. We call the

map which returns the l-th iteration, Gl, in the algorithm described above as the

partialGBAl.

3.3 Removing redundant relations

There is another part of our algorithms which is so important it deserves some

discussion. A Gr�obner basis or even a partial Gr�obner basis contains many poly-

nomials, a few of which are important, since they contain few unknowns. However,

they also contain many, many polynomials which are long and uninteresting. Two

of the techniques we use to remove these redundant polynomials are the small basis

algorithm and remove redundant.

3.3.1 The small basis algorithm

Often what a human wishes to �nd is not a set of relations with the reduction

properties described in Section 3.2.4, but a small set of relations which describes

the solution set, a small basis. Such a goal may be accomplished by iteratively

including the �rst k elements of our basis B in a set Bk, creating a partial Gr�obner

basis GBk
from Bk, and trying to reduce the other polynomials, BnBk, with this

partial Gr�obner basis GBk
. When Bk has the property that the excluded relations,

BnBk, are elements of the ideal generated by the included relations Bk our goal

has been achieved. All of our relations lie in the polynomial ideal generated by Bk.

We call such an algorithm the small basis algorithm.

Obviously the sequence in which relations are presented to the small basis al-

gorithm is important. The small basis algorithm acting on (x3; x2; x; 1) returns the

unenlightening (x3; x2; x; 1), but when presented with (1; x; x2; x3) the algorithm

returns (1). (The computer time required descourages some idealized implemen-
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tation which would consider all permutations of a set of polynomials)

3.3.2 Remove redundant

A particularly fast method of eliminating unnecessary polynomials is the Re-

move Redundant command. Brie
y, it records the history of the production of the

Gr�obner basis as a tree and then throws away all polynomials which correspond

to nodes which are not seminal nodes.

3.4 Elimination theory

In this section we will introduce and analyze elimination ideals which are central

to our analysis of the solvability properties of systems of polynomial equations.

3.4.1 Multigraded lexicographic order

Recall the de�nitions of pure lexicographic and length (graded) lexicographic

monomial orders on commutativemonomials as discussed in [5]. The non-commutative

versions are essentially similar, but to ensure a well de�ned total order a monomial

may1 be parsed from left to right in the tie breaking length lexicographic order

criteria.

We will �nd useful a combination of these two types of orders. It lets one de�ne

sequential subsets of indeterminates such that each subset is ordered with graded

lexicographic ordering within the subset, but indeterminates of a higher set are

lexicographically higher than indeterminates of a lower set. That is a monomial

consisting of one element in a higher set will sit higher in the monomial ordering

than a monomial consisting of the product of any number of elements in lower

sets. We use the� symbol to discern the subset breakpoints discussed above. For

example, when we write x1 < x2 < x3 � x4 we get that x1x2 < x2x1, x3x2x1 < x4,

and x3 < x1x2. We call such an ordering multigraded lexicographic.

1In fact this is the scheme used in the NCGB computations.
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3.4.2 Elimination ideals

As promised above we now motivate the multigraded lexicographic order with

a central concept in elimination theory.

De�nition 3.4.1 Let j and n be natural numbers such that 1 � j � n. A mono-

mial order is of j-th elimination type provided that any monic monomial con-

taining one of fxj; : : : ; xng is greater than a monomial in

K[a1; : : : ; am; x1; : : : ; xj�1]:

If we have a multigraded lexicographic monomial order on the monomials in

K[a1; : : : ; am; x1; : : : ; xn] which is of j-th elimination type for 1 � j � n, then we

have, in the notation introduced in Section 3.4.1, xi�1 � xi for 1 � i � n and

am � x1.

A Gr�obner basis G for an ideal I created under an order of j-th elimination

type exhibits the following property.

G \ K[a1; : : : ; am; x1; : : : ; xj�1]

is a Gr�obner basis for I \ K[a1; : : : ; am; x1; : : : ; xj�1] (3.1)

and therefore

hG \ K[a1; : : : ; am; x1; : : : ; xj�1]i = hI \ K[a1; : : : ; am; x1; : : : ; xj�1]i:

This property, well known in the commutative case, was extended recently to non-

commutative algebras in [11], Theorem 11.3.

3.4.3 Complexity concerns

For commutative Gr�obner bases, it has been observed that the Gr�obner basis

algorithm often �nishes more quickly when one uses a graded lexicographic order

rather than a lexicographic order. We have also observed this phenomenon in the
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noncommutative case, but have not put much e�ort into its analysis. For this

reason we typically try to use orders which contain the least amount of �'s.

For a detailed analysis of the computational di�culties involved in solving a

particular set of noncommutative problems see the Ph.D. thesis of Ben Keller, [16].



Part II

New Formulas Derived With

Computer Algebra

27



Chapter 4

Partially Prescribed Matrix

Inverse Completion Problems

4.1 The problem

In this chapter we consider block matrix completion problems similar to that

in [2]. Here we take two partially prescribed, square matrices, A and B, and

describe conditions which make it possible to complete the matrices so that they

are inverses of each other. That is, we wish the completed matrices to satisfy

AB = I and BA = I: (4.1)

4.1.1 A sample problem

An example of such a problem is, given matrices k1, k2, k3, and k4, is it possible

to �nd matrices, u1, u2, u3, and u4, such that equation (4.1) is satis�ed where

A =

 
k1 u2

u1 k2

!
; B =

 
u3 k4

k3 u4

!
(4.2)

Thus, A and B are 2x2 block matrices. The answer to this question, due to [2],

is given in Section 4.2.4. We now describe our problem in detail.

28



29

4.1.2 The general block matrix inverse completion problem

Begin by partitioning two matrices, A and B, whose entries are elements in the

�eld F, conformally for matrix multiplication into n by n block matrices. Next,

choose l of these blocks to be known and 2n2 � l to be unknown. Give some

conditions on the known matrices, which may be expressed algebraically, such as

invertibility or self-adjointness. Our problem has then been de�ned.

We ask if it is possible to �ll in the 2n2 � l unknown blocks so that equation

(4.1) is satis�ed and seek to derive formulas for these matrices in terms of the

prescribed blocks. To be more speci�c, we might even call this problem the purely

algebraic partially prescribed matrix inverse completion problem.

The solution to such a problem will be a set of matrix equations in the known

and unknown submatrices.

4.2 What a solution means

In general it is not known how to solve a system of matrix equations where

several of the matrices are unknown. Unknown matrices can appear in matrix

equations in several ways of which some are more computationally acceptable than

others. We will analyze these forms and classify certain solution sets.
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4.2.1 A good, triangular solution

It is generally a tractable problem to solve a triangular system of matrix equa-

tions of the form

q1(k1; : : : ; kl) = 0 (4.3)

q2(k1; : : : ; kl) = 0 (4.4)

...

qm(k1; : : : ; kl) = 0 (4.5)

qm+1(k1; : : : ; kl;u�(1)) = 0 (4.6)

qm+2(k1; : : : ; kl; u�(1);u�(2)) = 0 (4.7)

qm+3(k1; : : : ; kl; u�(1);u�(2)) = 0 (4.8)

qm+4(k1; : : : ; kl; u�(1); u�(2);u�(3)) = 0 (4.9)

...

qs2(k1; : : : ; kl; u�(1); : : : ;u�(2n2�l)) = 0 (4.10)

One can �rst verify that a completion is possible by verifying equations (4.3-4.5)

with the given (known) matrices. We refer to these equations as compatibility con-

ditions. Then, solve for the (possibly non-unique) u�(1) with equation (4.6), use this

to next solve for u�(2) with equations (4.7-4.8), etcetera. The de�ning characteris-

tic of equations (4.3-4.10) is that for every polynomial q(k1; : : : ; kl; u�(1); : : : ; u�(k))

there exists ~q(k1; : : : ; kl; u�(1); : : : ; u�(k�1)).

De�nition 4.2.1 We will call a system of polynomial equations, fpj = 0 : 1 �

j � s1g, formally backsolvable if there exists a set of equations, fqj = 0 : 1 �

j � s2g, in the form of (4.3-4.10) whose solution set is equal to the solution set of

the fpjg.
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4.2.2 A better, essentially decoupled solution

An even more computationally useful set of matrix equations will have the

essentially decoupled form

q1(k1; : : : ; kl) = 0 (4.11)

q2(k1; : : : ; kl) = 0 (4.12)

...

qm(k1; : : : ; kl) = 0 (4.13)

qm+1(k1; : : : ; kl;u�(1)) = 0 (4.14)

qm+2(k1; : : : ; kl;u�(1)) = 0 (4.15)

...

qm+sp(k1; : : : ; kl;u�(p)) = 0 (4.16)

u�(p+1) = qm+sp+1(k1; : : : ; kl; u�(1); : : : ; u�(p)) (4.17)

...

u�(n2�l) = qs2(k1; : : : ; kl; u�(1); : : : ; u�(p)) (4.18)

qs2+1(k1; : : : ; kl; u1; : : : ; un) = 0 (4.19)

...

qs3(k1; : : : ; kl; u1; : : : ; un) = 0 (4.20)

A solution of this type is made up of compatibility conditions, equations (4.11-

4.13) and (4.19-4.20); equations in one unknown, equations (4.14-4.16); and equa-

tions (4.17-4.20) we call singletons which are described in more detail below.

Given such an essentially decoupled set of equations one can use equations

(4.14-4.16), qm+1; : : : ; qm+sp , to solve for potential u�(1); : : : ; u�(p) simultaneously.

It is then a simple matter to �nd matrices u�(p+1); : : : ; u�(n2�l) by evaluating
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polynomials qm+sp+1; : : : ; qs2 . Finally, one must check that the solutions derived,

u�(p+1); : : : ; u�(n2�l), are acceptable by validating equations (4.19-4.20).

Equations of the form (4.17-4.18) will be refered to as singletons. This type of

equation is characterized by the fact that there is a single instance of an unknown

variable which does not occur in equations (4.14-4.16). This unknown variable

appears in the singleton equation as a monomial consisting of only itself. The

singleton variable is the left hand side of equations (4.17-4.20).

The singleton equation has a very attractive form for a human who wishes to

�nd polynomials in few unknowns. Given an equation in knowns and unknowns,

E, it allows one to eliminate the unknown singleton variable, say u�(p+1), from E

by replacing instances of the unknown indeterminant with its equivalent polyno-

mial representation, say qm+sp+1. After this substitution has been performed the

equation E will not contain the singleton unknown.

Since all unknown variables in equations (4.11-4.20) which are not singleton

unknowns appear in equations without any other unknown variables, we think

of these as essentially decoupled, but not totally decoupled due to the coupling

equations (4.19-4.20).

De�nition 4.2.2 We will call a system of polynomial equations, fpj = 0 : 1 �

j � s1g, essentially decoupled if there exists a set of equations, fqj = 0 : 1 �

j � s2g, in the form of (4.11-4.20) whose solution set is equal to the solution set

of the fpjg.
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4.2.3 The best, formally decoupled solution

An even more computationally useful set of matrix equations will have the

following formally decoupled form which is similar to an essentially decoupled

solution (4.11-4.20), but doesn't contain coupling conditions on the solutions (4.19-

4.20).

q1(k1; : : : ; kl) = 0 (4.21)

q2(k1; : : : ; kl) = 0 (4.22)

...

qm(k1; : : : ; kl) = 0 (4.23)

qm+1(k1; : : : ; kl;u�(1)) = 0 (4.24)

qm+2(k1; : : : ; kl;u�(1)) = 0 (4.25)

...

qm+sp(k1; : : : ; kl;u�(p)) = 0 (4.26)

u�(p+1) = qm+sp+1(k1; : : : ; kl; u�(1); : : : ; u�(p)) (4.27)

...

u�(n2�l) = qs2(k1; : : : ; kl; u�(1); : : : ; u�(p)) (4.28)

A solution of this type is made up of compatibility conditions, equations (4.21-

4.23); equations in one unknown, equations (4.24-4.26); and singletons (4.27-4.28).

Given such a decoupled set of equations one can use equations (4.24-4.26),

qm+1; : : : ; qm+sp, to solve for u�(1); : : : ; u�(p) simultaneously. It is then a simple

matter to �nd matrices u�(p+1); : : : ; u�(n2�l) by evaluating polynomials

qm+sp+1; : : : ; qs2 :

Since all unknown variables in equations (4.21-4.28) which are not singleton

unknowns appear in equations without any other unknown variables, we think of
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these as decoupled. This is obviously a better form of solution than equations (4.11-

4.20), since any solutions for u�(1); : : : ; u�(p) will do. The coupling compatibility

equations are absent.

De�nition 4.2.3 We will call a system of polynomial equations, fpj = 0 : 1 � j �

s1g, formally decoupled if there exists a set of equations, fqj = 0 : 1 � j � s2g,

in the form of (4.21-4.28) whose solution set is equal to the solution set of the

fpjg.

4.2.4 A sample answer

This formally decoupled form is the type of solution to the problem in Sec-

tion 4.1.1 derived in [2]. There it was shown that, for invertible ki, the matrices

A and B de�ned in (4.2) satisfy (4.1) if and only if the unknown submatrix u4

satis�es the following relation

u4k2u4 = u4 + k3k1k4: (4.29)

Then, the other unknown submatrices are given in terms of u4:

u1 = k�14 � k2u4k
�1
4 (4.30)

u2 = k�13 � k�13 u4k2 (4.31)

u3 = k4k3u4k
�1
4 k�11 (4.32)

This answer contains no compatibility conditions. Equation (4.29) is an equation

in one unknown u4. The remaining equations (4.30-4.32) are singletons.

In addition to the original results presented in this chapter, this theorem was

also proven using our noncommutative Gr�obner methods, see [11] or

http://math.ucsd.edu/~ncalg.
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4.3 Main results on 3x3 matrix inverse comple-

tion problems

We have performed extensive analysis of the 3x3 block matrix inverse comple-

tion problem. In particular, the problem described in Section 4.1.2 where n is three

and l is eleven. We have assumed in our detailed analysis that all eleven known

blocks are invertible. First, we will de�ne a property certain matrix completion

problems have. We have done no analysis of matrix completion problems with this

property.

Assume that the pair of block matrices, A and B, are partitioned into known

and unknown blocks compatible for matrix multiplication.

De�nition 4.3.1 A and B are said to be strongly undetermined if there exists

an entry of the block matrices AB or BA which is a polynomial consisting entirely

of unknown blocks.

Notice that A and B being strongly undetermined is equivalent to the existence

of both an entire row (column) of unknown blocks in A and an entire column (row)

of unknown blocks in B. For example, the following con�guration of known and

unknown blocks is strongly undetermined.

A =

0
BB@

u1 u2 u3

k1 k2 k3

k4 k5 k6

1
CCA and B =

0
BB@

k7 k8 u4

k9 u5 u6

k10 k11 u7

1
CCA (4.33)

The product of these two matrices, AB, has the following form.0
BB@

u1k7 + u2k9 + u3k10 u1k8 + u2u5 + u3k11 u1u4 + u2u6 + u3u7

k1k7 + k2k9 + k3k10 k1k8 + k2u5 + k3k11 k1u4 + k2u6 + k3u7

k4k7 + k5k9 + k6k10 k4k8 + k5u5 + k6k11 k4u4 + k5u6 + k6u7

1
CCA

Since the upper right entry (in boldface) is a polynomial made up entirely of

unknown blocks, con�guration (4.33) is strongly undetermined.
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4.3.1 A class of 31,834 3x3 matrix inverse completion prob-

lems

In our investigations we have analyzed (via computer) a certain collection of

3x3 matrix completion problems. Two 3x3 block matrices have a total of 18 entries.

We have analyzed those which have seven unknown and 11 known blocks and do

not have the strongly undetermined property. We have chosen to put e�orts into

this ratio of known to unknown blocks because we believe Theorem 2, the initial

subject of our research, to be surprising and yet lack the computational resources

to study all 3x3 matrix completion problems or even one 4x4 matrix completion

problem. Section 4.4.3 describes how the motivated researcher with unlimited

computational power can go about analyzing any block matrix problem of any size

of the type addressed in this chapter.

The following theorem shows that all of our seven unknown, 11 known block

matrix completion problems (which are not strongly undetermined) have a partic-

ularly nice solution.

Theorem 1 Let A and B be three by three block matrices such that 11 of the 18

blocks are known and seven are unknown. Let the known blocks be invertible. The

corresponding partially prescribed inverse completion problems may be classi�ed as

follows.

1. If the con�guration of unknown blocks is not strongly undetermined, then the

partially prescribed inverse completion problem is formally backsolvable, in

the sense of De�nition 4.2.1.

2. If the con�guration of unknown blocks is not strongly undetermined and is

not of the form given in (4.34) or a permutation of such con�guration then

the partially prescribed inverse completion problem is essentially decoupled,

in the sense of De�nition 4.2.2.

These answers satisfy a technical non-redundancy condition, 3-non-degeneracy,

which will be de�ned in Section 4.2.2 once we have built up our Gr�obner machinery.
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A =

0
BB@

k1 k2 k3

k4 k5 k6

u1 u2 u3

1
CCA and B =

0
BB@

k7 k8 u4

k9 u5 k10

k11 u6 u7

1
CCA (4.34)

The proof of this theorem, which requires noncommutative symbolic software,

will be given in Section 4.4.4. Answers to the individual problems, which consist

of sets of polynomials similar to that found in equations (4.29-4.32), can be found

on the internet at http://math.ucsd.edu/~ncalg.

4.3.2 Detailed analysis of a particular 3x3 matrix inverse

completion problem

Now we give a closer analysis, than that given in the last section, of a particular

matrix inverse completion problem which satis�es the assumptions of Theorem 1.

We show how someone interested in a particular matrix completion problem might

arrive at a �ner analysis of the problem, instead of the rather terse conclusion

given in Theorem 1. Our goal in this section is to present a short, computationally

simple set of formulas which give the solution to a particular partially prescribed

inverse matrix completion problem. Our conclusions will have the same 
avor as

those presented in [2].

We will analyze the \central problem" of those addressed in Theorem 1, the

known/unknown con�guration:

A =

0
BB@

a t b

u c v

d w e

1
CCA and B =

0
BB@

x f g

h y i

j k z

1
CCA (4.35)

or the equivalent permuted form,

A =

0
BB@

a b t

d e w

u v c

1
CCA and B =

0
BB@

x g f

j z k

h i y

1
CCA (4.36)
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where a through k are known and invertible block matrices and the underlined t

through z are unknown block matrices.

Theorem 2 Given A and B as in (4.35) with invertible knowns a,b,c,d,e,f ,g,h,i,j,

and k, as well as the invertibility of the matrix made up of the outer known blocks

of A in (4.35),

 
a b

d e

!
; (4.37)

then AB = I and BA = I if and only if the knowns satisfy the following compati-

bility conditions :

~p(da�1 � eb�1) = (a�1b� d�1e)~q (4.38)

(da�1 � eb�1)�1~q = (da�1 � eb�1)�1~qe(da�1 � eb�1)�1~q (4.39)

+(da�1 � eb�1)�1~qdg + jb(da�1 � eb�1)�1~q � kci+ jag

~p(a�1b� d�1e)�1 = ~p(a�1b� d�1e)�1e~p(a�1b� d�1e)�1 (4.40)

+~p(a�1b� d�1e)�1dg + jb~p(a�1b� d�1e)�1 � kci+ jag

where

~p = (�a�1h�1i+ a�1bjh�1i� d�1 � d�1ejh�1) (4.41)

~q = (�kf�1a�1 + kf�1gda�1 � b�1 � kf�1geb�1): (4.42)

The unknown matrices can then be given as:

z = (�kf�1a�1 + kf�1gda�1 � b�1 � kf�1geb�1)(da�1 � eb�1)�1

= ~q(da�1 � eb�1)�1 (4.43)

or equivalently

z = (a�1b� d�1e)�1(�a�1h�1i+ a�1bjh�1i� d�1 � d�1ejh�1)

= (a�1b� d�1e)�1~p (4.44)
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and then

t = �agi�1 � bzi�1 (4.45)

u = �k�1ja� k�1zd (4.46)

v = k�1 � k�1jb� k�1ze (4.47)

w = i�1 � dgi�1 � ezi�1 (4.48)

x = a�1 + fk�1j � gda�1 + fk�1zda�1 (4.49)

y = c�1k�1jaf + c�1k�1jbk + c�1k�1zdf + c�1k�1zek (4.50)

The proof of this theorem will be given in Section 4.4.5.

This answer consists of three compatibility conditions (4.38-4.40), an equation

in one unknown (4.43) or (4.44), and singletons (4.45-4.50) and is therefore formally

decoupled.

More e�ort has gone into this problem than the mechanical process of verifying

a solution form as done in Theorem 1. In Theorem 2 degenerate equations (in a

sense to be made precise in Section 4.4.2) have been eliminated in a more careful

manner. Furthermore, the mild assumption of the invertibility of (4.37) was added

when we observed that this gave the solution a simpler form. This invertibility

assumption is discussed further in Section 4.4.6.

Solutions to all of the problems (con�gurations) addressed in Theorem 1 can be

found via the internet at http://math.ucsd.edu/~ncalg/. These solutions are a

formatted list of equations in both LATEX and Mathematica form.

4.4 Solving the purely algebraic inverse matrix

completion problem

We will next describe a method for solving general matrix completion problems

of the type described above. The main tool we will use for our solution of the

problem is the Gr�obner basis.



40

4.4.1 A pure algebra interpretation of the purely algebraic

partially prescribed inverse matrix completion

This section describes our matrix completion problem in the language of an

algebraist. The reader may skip this section, if so desired, with no loss of continuity

to the chapter.

Labeling the known blocks as ki, we may consider the free algebra, F[k1 ; : : : ; kl],

over the �eld under consideration, F, modulo some presupposed conditions (e.g.

the invertibility of a known submatrix, ki, which is expressed in ideal theoretic

notation as hkik
�1
i � 1; k�1i ki � 1i )

S =
F[k1; : : : ; kl]

h conditions on the knowns i
: (4.51)

Let the size of the submatrices be m. Picking the known block matrices consists

of de�ning a map,

� : S !Mm(F):

De�ning

T = S[u1; : : : ; u2n2�l]; (4.52)

completing the matrices A and B may be viewed as a map

� : T !Mm(F)

such that

�jS= �:

Here we are interested in a special completion, �, so that our matrices satisfy (4.1).

If we let Flatten be the operation which takes a set of matrices and makes their

components into an unordered list and J be the ideal generated by relations (4.1),

J = hFlatten(AB� I;BA� I)i; (4.53)

our goal is achieved when J lies in the kernel of �.
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The ideal J\S can be regarded as a set of compatibility conditions on the known

submatrices, conditions which must hold if we are to form an inverse completion.

If the known submatrices satisfy a set of relations which form a generating set

for J \ S the unprescribed blocks may be de�ned so that the completed matrices

satisfy

AB = I and BA = I:

Given G a generating set for J so that

hGi = J;

our compatibility conditions may be described as G\S, equations (4.3-4.5) in the

backsolvable case or (4.11-4.13) in the decoupled case. The completion relations

are G \ (J n S), equations (4.6-4.10) in the backsolvable case or (4.14-4.20) in the

decoupled case. Notice that all of the relations making up G\ (J nS) will contain

at least one ui.

4.4.2 Nondegenerate solutions

On closer analysis of the backsolvable form described in equations (4.3-4.10),

the existence of q1 implies the existence of qm+1; : : : ; qs2 . Simply multiply q1 by

the appropriate ui. A more interesting set of relations has the following property.

De�nition 4.4.1 A set of relations, fpj = 0 : 1 � j � sg, will be called non-

degenerate if

pi 62 hfpjgj 6=ii: (4.54)

Due to the in�niteness of the noncommutative Gr�obner basis, condition (4.54)

cannot in general be veri�ed. A condition which can be veri�ed computationally

is the following.

De�nition 4.4.2 A set of relations, fpj = 0 : 1 � j � sg, will be called k-non-

degenerate if

pi 62 hfpjgj 6=iik: (4.55)
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where hfpjgj 6=iik is the k iteration partial Gr�obner basis created from fpjgj 6=i

Recall that all of the solutions to the problems addressed in Theorem 1 were shown

to be formally backsolvable and 3-non-degenerate.

The special case of nondegenerate decoupled solutions

In the formally decoupled case, the notion of nondegeneracy is somewhat sim-

pler. For a set of equations of the form (4.11-4.20) to be nondegenerate we merely

require that

qm+j 62 hfq1; : : : ; qmgi for j = 1; : : : ; p: (4.56)

That is, the relations which de�ne the u�(i) for i = 1; : : : ; p are not trivial,

and merely consequences of the compatibility conditions (4.11-4.13). The relations

associated with equations (4.17-4.20), those which de�ne u�(i) for i = p+1; : : : ; n2�

l, are obviously not trivial.

We also have the computational analogue.

De�nition 4.4.3 We will call a system of equations in the form of (4.11-4.20)

k-non-degenerate if qm+j; j = 1; : : : ; p, is not reduced by the Gr�obner rules as-

sociated with the k iteration partial Gr�obner basis of fq1; : : : ; qmg; hq1; : : : ; qmik.

Beware that this de�nition is algorithm dependent. This form of non-redundancy

was used to verify 3-non-degeneracy for all the problems in Theorem 1 which were

formally decoupled. All but 36 were of this form.

4.4.3 A recipe for solving the general block matrix inverse

completion problem

We are given matrices A and B partitioned conformally for matrix multiplica-

tion into n2 blocks each and a con�guration of l prescribed (known) and 2n2 � l

unknown blocks. We may also be given conditions on these matrices which are
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expressed algebraically (e.g. invertibility, aa�1 � 1 = 0 and a�1a � 1 = 0). We

look to discover compatibility conditions on the known matrices and formulas for

the unknown matrices to solve our problem, that is ensure (4.1) is satis�ed. This

goal may often be achieved by following the steps below.

I Fill in the known blocks of A and B with symbolic, noncommuting indeter-

minates, k1; : : : ; kl.

II Fill in the unknown blocks of A and B with symbolic, noncommuting inde-

terminates, u1; : : : ; u2n2�l.

III Create the noncommutative polynomials resulting from the operations AB�I

and BA� I.

IV Create a (noncommutative, partial) Gr�obner basis for the polynomials de-

rived in step III and any assumed algebraic conditions on the matrices under

the order:

k1 < k2 < � � � < kl � u1 � u2 � � � � � u2n2�l (4.57)

V Check the result is decoupled, of the form described in Section 4.2.2, (4.11-

4.20), or at least in the form given in Section 4.2.1, (4.3-4.10).

VI Verify that the relations de�ning unknown matrices are not merely conse-

quences of the other relations by using the Small Basis Algorithm, or some

variant of it.

4.4.4 Proof of seven unknown, 11 known theorem

We created aMathematica procedure which iteratively searches through all per-

mutations of seven unknown blocks and 11 known blocks and performs the sort of

analysis described in Section 4.4.3. For a given con�guration (i.e. permutation) of

knowns and unknowns one may apply permutation matrices, � and 	, to A and B,
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to get ��1A	 and 	�1B�, and obtain at most 36 other equivalent con�gurations.

This property was exploited to reduce the computations needed from 31,824 cases

to about 1,500 cases. Only one matrix inverse completion problem was analyzed

from each equivalence class.

First, we will describe the procedures followed for a particular con�guration.

Then, we will list the pseudo-code which performed the necessary analysis for the

entire problem. Our proof will be completed with a discussion of the results of our

Mathematica procedure.

A particular con�guration

We created a two iteration partial Gr�obner basis from the polynomial matrix

equations resulting from AB and BA along with the invertibility relations of the

knowns.

The order we used to create the Gr�obner basis was the following

k1 < k2 < k3 < k4 < k5 < k6 < k7 < k8 < k9 < k10 < k11

� u1 � u2 � u3 � u4 � u5 � u6 � u7 (4.58)

where the kj represents the j
th known block and ui represents the i

th unknown

block. Inverses have been suppressed in our lists of knowns for clarity. Any listing

of known variables should be accompanied by their inverses. These inverses are

placed directly above and in the same group as the original variable. So our order

truly begins k1 < k�11 < k2 < k�12 < : : : .

The output of the Gr�obner basis algorithm in virtually all cases was of the form

described in Section 4.2.2, equations (4.11-4.20).

To establish non-redundancy we used the output of the Gr�obner basis algorithm

which consisted solely of known indeterminates, equations (4.11-4.13) or G \ S

in the language of Section 4.4.1. We ran the Gr�obner basis algorithm for one

more iteration on these known relations, creating a three iteration Gr�obner basis.

We used this Gr�obner basis to attempt to reduce the relations which contain the

unknown indeterminates.
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After applying the Gr�obner rules associated with this Gr�obner basis to the

set of relations containing unknown indeterminates our set of relations still had

the form given in equations (4.11-4.20). That is we veri�ed 3-non-redundancy,

condition (4.54). This veri�cation was done by computer.

This shows that the problem associated with this particular con�guration is

formally decoupled.

Pseudo-code

Here we give some pseudo-code with a Mathematica slant which performs

the sort of analysis described in the above section for all seven unknown and 11

known con�gurations. An essential part of the algorithm is the function NCMake-

GroebnerBasis[ polys, k] which creates a k iteration partial Gr�obner basis

from polys.

inverses = NCMakeRelations[{Inv, k1,k2,k3,k4,k5,k6,k7,k8,

k9,k10,k11}]

SetMonomialOrder[ k1<k2<k3<k4<k5<k6<k7<k8<k9<k10<k11

<<u1<<u2<<u3<<u4<<u5<<u6<<u7 ]

permList = Permutations[ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1} ]

For[ i = 1, i++, i <= Length[ permList ],

If[ MemberQ[ alreadyDoneList, permList[[i]] ]

Continue[]

]

AppendTo[ alreadyDoneList,

MakeTransformations[ permList[[i]] ] ]

{A,B} = MakeSymbolicMatrices[ permList[[i]] ]

relations = Union[ inverses, Flatten[

MatrixMultiply[ A,B ] - IdentityMatrix[3],

MatrixMultiply[ B,A ] - IdentityMatrix[3] ] ]
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output = NCMakeGroebnerBasis[ relations, 2 ]

polysInKnowns = FindPolysInOnlyTheVariables[ output,

{k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11}]

reductionSet = NCMakeGroebnerBasis[ knownPolys, 1 ]

output = NCReduction[ output, PolyToRule[ reductionSet ] ]

determinedIndeterminates =

PolysInOneUnknown[ output,{u1,u2,u3,u4,u5,u6,u7} ]

singleIndeterminates =

PolysExplicit[output,{u1,u2,u3,u4,u5,u6,u7}]

If[Union[determinedIndeterminates,singleIndeterminates]

=={u1,u2,u3,u4,u5,u6,u7},

Print["SUCCESSFUL"]

]

Else[

Print["UNSUCCESSFUL"]

]

] (* End of For[] loop *)

End game

The problems which were strongly undetermined did not have the formally

backsolvable form. Of the problems which were not strongly undetermined, there

were six cases in which the output of the two iteration partial Gr�obner basis did

not have the form of equations (4.11-4.20). For these six cases we performed the

same analysis, but created a three iteration partial Gr�obner basis instead of halting

the algorithm after two iterations, as done originally. In all six of these cases the

three iteration partial bases had the form of equations (4.11-4.20) and were shown

to be 3-non-redundant. Therefore, the result stated in the theorem follows.

The Mathematica code associated with the pseudo-code given above ran for
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approximately 3 days on a Sun Ultra II with two 166Mhz processors and 1Gb

of RAM. The computer was a departmental machine and therefore the processes

associated with these computations were only given a portion of the total compu-

tational resources available. The computations on a similar machine dedicated to

this problem might take half the time. 2

4.4.5 Proof of particular theorem in Section 4.3.2

We shall need the following lemma for our proof:

Lemma 1 (Schur) If x1;1; x1;2; x2;1; x2;2 are invertible block matrices of the same

size  
x1;1 x1;2

x2;1 x2;2

!

is invertible if and only if �x2;1x
�1
1;1x1;2+ x2;2 is invertible.

Proof: 
I 0

x2;1x
�1
1;1 I

! 
x1;1 0

0 �x2;1x
�1
1;1x1;2 + x2;2

! 
I x�11;1x1;2

0 I

!
=

 
x1;1 x1;2

x2;1 x2;2

!

2

Proof: [Of Theorem]

)

Creating a three iteration partial Gr�obner basis with the relations

AB = I;BA = I; and the invertibility of the knowns (4.59)
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using the NCGB command NCProcess1 yields a set of polynomials which includes

relations

z = zez + zdg + jbz � kci+ jag (4.60)

a�1h�1 � a�1bjh�1 + a�1bzi�1 = �d�1i�1 � d�1ejh�1 + d�1ezi�1 (4.61)

f�1a�1 � f�1gda�1 + k�1zda�1 = �k�1b�1 � f�1geb�1 + k�1zeb�1 (4.62)

and relations (4.45-4.50). See Appendix 2 pages 7-9. The order used is given on

page 49, order (4.63). Since polynomials created through the Gr�obner basis algo-

rithm are in the polynomial ideal generated by the original relations, the validity

of relations (4.60-4.62) and (4.45-4.50) is a consequence of relations (4.59).

For us to write the relations (4.60-4.62) in the form (4.38-4.44) we require the

invertibility of (da�1 � eb�1) and (a�1b � d�1e). These invertibility relations are

provided by the Schur lemma given above, since the outer matrix (4.37) consisting

of a,b,d, and e, all knowns, is assumed to be invertible. With this we can solve for

z explicitly in equations (4.61-4.62) and write the relations (4.43-4.44) de�ning z.

Furthermore we may use these de�nitions of z to write the relations (4.60-4.62) as

(4.38-4.40).

(

The converse is again approached with a Gr�obner basis method. As above the

Schur complement formulas give the invertibility of (da�1�eb�1) and (a�1b�d�1e)

which shows that relations (4.60-4.62) follow from (4.38-4.44). The question then

becomes whether or not relations (4.59) are in the ideal generated by polynomials

(4.45-4.50) and (4.60-4.62). We create a seven iteration partial Gr�obner basis,

G7, from the polynomials (4.45-4.50) and (4.60-4.62) with the NCGB command

NCMakeGB under the graded (length) lexicographic monomial order. One can

verify that the original equations (4.59) reduce to 0 with respect to G7. This shows

that the relations AB = I and BA = I are elements of the non-commutative

polynomial ideal generated by the relations (4.45-4.50) and (4.60-4.62) and the

1Appendix 2 page 6 contains the input to the NCProcess command, the \unraveled" equations

(4.59).
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invertibility of the knowns. The result follows.

2

4.4.6 Discovering Theorem 2 and its proof

The process of discovering our particular theorem, Theorem 2, follows the for-

mal notion of a strategy rigorously developed in [11] and reviewed in Chapter 7.

In particular this discovery uses a bit di�erent application of Gr�obner bases, elim-

ination theory, which was described in Section 3.4.

Addressing our problem

In light of our goal, creating polynomials in few unknowns, we used this mono-

mial order2

a < b < c < d < e < f < g < h < i < j < k � z � u� v� w� x� y (4.63)

and ran the Gr�obner basis algorithm with an iteration limit of three.

The output of this Gr�obner basis computation included relations (4.45-4.50) as

well as (4.60-4.62). (See Appendix 2 pages 7-9 for the entire output of the GBA.)

Thus these relations are a consequence of the original relations. The necessity part

of the proof is complete modulo a bit of Schur complement beauti�cation done in

Section 4.4.6.

Converse : a smaller basis

It is true that the original relations (4.59) are members of the ideal generated

by the long and ugly relations taking up pages 7-9 of Appendix 2. (The partiality

of a Gr�obner basis at some iteration is only in respect to its reduction properties

2Inverses have been suppressed in our lists of knowns for clarity. Any listing of known variables

should be accompanied by their inverses. These inverses are placed directly above and in the

same group as the original variable. So our order truly begins a < a�1 < b < b�1 < : : : .
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and not the ideal generated by these relations.) We could have written these down

instead of equations (4.38-4.40), our �nal conclusion, and stopped, but we would

prefer to have a more concise set of relations which imply the original relations.

In other words, we would like to have a smaller basis for this ideal.

Although the computer commands in NCGB have the ability to simplify the

basis in the manner above in the same step as generating it, by setting certain

options, we did not have the computing power, or perhaps the patience, to isolate

the few relations on z given above (4.60-4.62) using this method under the original

order. To this end, the monomial order was changed to graded lexicographic. In

NCGB notation we replaced all of the �'s with <'s. The purely graded lexico-

graphic order computations are often of much less computational complexity, since

monomials usually must be merely checked for number of elements. When our orig-

inal order was imposed on the small basis algorithm the two iteration application

did not complete after several days running on a Sun SPARCstation-4 computer,

while under the purely graded order the algorithm �nished in a few minutes.

We tried several di�erent sequences of which most gave unsatisfactory results.

The bases found were not small enough in these cases. An acceptable small ba-

sis obtained through this procedure consisted of the invertibility relations on the

knowns, the relations which give the unknowns other than z in terms of z (4.45-

4.50), and relations concerning z and the knowns (4.60-4.62). The computer work

associated with this is given in Appendix 3.

Con�rmation

To con�rm that these relations (4.60-4.62, 4.45-4.50, and invertibility of the

knowns) imply the original relations we created a non-commutative partial Gr�obner

basis from these relations and reduced the original relations with this partial

Gr�obner basis. The original relations all reduced to 0. Thus it was shown that the

original relations were elements of the ideal generated by the relations given above.

Interestingly enough a �ve iteration partial Gr�obner basis did not reduce the orig-
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inal relations (4.59) although a seven iteration Gr�obner basis did. (See Appendix

4.) The order used for this computation was again the graded lexicographic.

Beauti�cation with Schur Complements

Equations (4.61-4.62) are especially appreciated because they are linear in one

unknown variable z. A more satisfying situation, though, would be to have an

expression for z entirely in terms of the knowns. This may be accomplished by

assuming the invertibility of

(a�1b� d�1e) and (da�1 � eb�1); (4.64)

in equations (4.61-4.62). By the Schur Lemma 1, this is equivalent to the invertibil-

ity of the outer matrix

 
a b

d e

!
; since all entries of this matrix are themselves

invertible. At the outset of our investigations we had no reason to assume this

more restrictive condition. It was only after realizing the utility of this assumption

that it was added to our conditions.

With this, z is given explicitly by the equations (4.43-4.44) and each of these

must satisfy the quadratic (4.60). Hence the equations (4.38-4.40) on the knowns

are a necessary and su�cient set of conditions for AB = I and BA = I.

4.5 Matrix completion conclusion

In this chapter we have investigated the use of noncommutative symbolic al-

gebra software in the analysis of partially prescribed inverse matrix completion

problems. We described a method for solving such problems with a computer. We

have shown that the solutions to all 3x3 block inverse matrix completion prob-

lems with seven unknown and 11 known blocks are of a relatively simple form.

We presented one particular theorem and showed how it can be massaged into a

more palatable form by making some mild assumptions on the prescribed (known)

blocks.
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4.6 Matrix completion appendices

Appendices for the matrix completion results found in Chapter 4 may be found at

http://math.ucsd.edu/~ncalg.



Chapter 5

Singularly Perturbed Control

Systems

5.1 Singular perturbation vs computer algebra

Singular perturbation is a commonly used technique in the analysis of systems

whose dynamics consist of two pieces. One piece might be slow, the other fast, or

one might be known where the other is somewhat uncertain. Extensive analysis

has been done of this type of plant for the LQR and H1 control problems, for

example [18], [23], [24].

Typically one has an equation where some coe�cients depend on a parameter

1
"
. To solve this equation, one postulates an expansion in " for the solutions x" to

the equation, then

(a) substitutes x" into the equation,

(b) sorts the equation according to powers of ", and

(c) �nds simple equations for successive terms in the expansion of x".

The sorting in (b) can be tedious and the business of solving (c) can be very

involved.

This chapter concerns methods we are developing for doing these steps auto-

53
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matically. As we shall illustrate, NCAlgebra constructions and commands easily

handle steps (a) and (b), thereby producing the (long) list of equations which

must be solved. This is straightforward and saves considerable calculation time

for those engaged in singular perturbation calculations. Step (c) involves solving

complicated systems of equations and this is always tricky business. Thus there is

no way of knowing in advance if noncommutative Gr�obner basis methods will be

e�ective for (reducing to a simple form) the equations found in large classes of sin-

gular perturbation problems. This is the focus of experiments (using the package

NCGB which runs under NCAlgebra) we have been conducting and on which we

report here.

Most of this chapter shows how one can treat the most classic of all singular

perturbation problems using computer algebra. Ultimately, we see that Mora's

Gr�obner basis algorithms are very e�ective on the equations which result. Indeed

our method carries out the expansion one step further than has previously been

done, see Section 5.3.3. Then we sketch another newer H1 estimation problem

called the \cheap sensor" problem (see [12]). On this our computer techniques

proved e�ective.

5.1.1 Hardware

Computer computations for Section 5.3 were performed with NCGB on a Sun

Ultra I with one 166 MHz processor and 192MB of RAM. The computations done

in Section 5.4 were performed with NCGB on a Sun Ultra II with two 166MHz

processors and 1Gb of RAM. The Sun Ultra II was a departmental machine and

therefore equivalent computations on a dedicated computer might take less than

half of the times reported here.
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5.2 The standard state feedback singular pertur-

bation problem

The standard singularly perturbed linear time-invariant model consists of a

di�erential state equation; which depends on some perturbation parameter �; and

an output equation. The general control problem is to design some feedback law

which speci�es the input as a function of the state so that the controlled system

will satisfy some given performance objective.

5.2.1 The system

Here we study the two time scale dynamic system previously analyzed in [18]:

"
dx

dt

�dz
dt

#
=

"
A11 A12

A21 A22

#"
x

z

#
+

"
B1

B2

#
u (5.1)

y =
h
M1 M2

i " x

z

#
(5.2)

where x 2 Rn, z 2 Rm, u 2 Rp, and y 2 Rq. Here, m, n, p and q are integers, A11

is an n� n matrix, A12 is a n�m matrix, A21 is a m� n matrix, A22 is a m�m

matrix, B1 is a n� p matrix, B2 is a m� p matrix,M11 is a q�n matrix, and M22

is a q �m matrix.

5.2.2 The near-optimal LQR problem

The in�nite-time optimal linear regulator problem is to �nd a control, u(t); t 2

[0;1] which minimizes the quadratic cost

J =

Z
1

0

(yTy + uTRu) dt (5.3)
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where R is a positive de�nite weighting matrix. It is well known that the solution

to this problem is of the form

u� = �R�1BTK(�)

"
x

z

#
= G(�)

"
x

z

#
(5.4)

where K(�) is a solution to the Algebraic Riccati Equation (ARE)

KA+ATK �KBR�1BTK +MTM = 0 (5.5)

with

A =

"
A11 A12

A21

�

A22

�

#
; B =

"
B1

B2

�

#
; and M =

h
M1 M2

i
(5.6)

K(�) = K0 + �K1 + �2K2 + : : : (5.7)

If K is the solution to this optimal state feedback control problem, then it also

may be used to express the optimal cost as a function of the initial state of the

system as

J� =
h
xT (0) zT (0)

i
K

"
x(0)

z(0)

#
: (5.8)

Notice that the solution J� as presented involves solving equation (5.5) which

is a Riccati equation of size n +m by n +m. Since the structures present in the

system (5.1) are partitioned, it seems likely that we might decompose the problem

and signi�cantly reduce the sizes of the matrices while deriving an only slightly

sub-optimal controller. Indeed, it is standard to divide the problem of solving

the n+m dimensional Riccati, (5.5), into solving two smaller decoupled Riccatis,

one which is n dimensional, the other which is m dimensional, and then use these

solutions to obtain a control law which gives a performance J nearly equal to the

optimal performance J�. This regulator is known as the near-optimal regulator.

In the next two subsections we review this decomposition of the state space into

slow and fast parts. This is mostly a matter of setting our notation, which in fact is
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the same notation as [18]. The noncommutative Gr�obner computer algebra which

is the subject of our investigations is well suited for manipulating polynomials into

a triangular or even decoupled form.

5.2.3 Decomposing the problem

Here, we decompose our two time scale system into its fast parts and slow

parts. We will assume throughout that A22 is invertible.

The slow system

The dynamics of the slow system can be found by setting � to zero in equation

(5.1) obtaining what is often called the quasi-steady state of the system. This

transforms the equation involving � in system (5.1) into an algebraic equation

rather than a di�erential equation,

zs(t) = �A�122 (A21xs(t) +B2us(t)); (5.9)

and then substitution of this zs into the top equation in (5.1) yields

dxs

dt
= A0xs(t) +B0us(t); xs(t0) = x0 (5.10)

where

A0 , A11 �A12A
�1
22A21; B0 , B1 �A12A

�1
22B2:

Here the subscript s indicates that the vectors in equations (5.10)-(5.9) are the

slow parts of the vectors in (5.1).

The fast system

The fast system has dynamics

dzf

dt
= A22zf(t) +B2uf (t); zf(t0) = z0 � zs(t0) (5.11)
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where

zf = z � zs and uf = u� us: (5.12)

Here the subscript f indicates that the vectors in equations (5.11)-(5.12) are the

fast parts of the vectors in (5.1).

5.2.4 Decomposing the measurement

We may then also decompose (5.2) into its slow and fast parts

y = M1x+M2z

= M1[xs +O(�)] +M2[�A
�1
22 (A21xs +B2us) + zf +O(�)]

= ys(t) + yf (t) +O(�)

where

ys =M0xs +N0us and yf =M2zf

and

M0 ,M1 �M2A
�1
22A21 and N0 , �M2A

�1
22B2:

5.3 Computer algebra vs. the standard singular

perturbation problem

The matrix K(�) in (5.7) must be partitioned compatibly with the states, x

and z, and is the limit of the power series which is conventionally written

KN (�) =

NX
i=0

�i

"
k(1;i) �k(2;i)

�kT(2;i) �k(3;i)

#
(5.13)

where k(j;i) are appropriately sized matrices (see (5.1)). We shall use kji syn-

onymously with k(j;i), since this saves space and actually corresponds to the TEX

output of NCAlgebra.
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The remainder of this section will be devoted to �nding formulas for the k(j;i)

for j 2 f1; 2; 3g and i � 0.

5.3.1 The zero-th order term of the Riccati equation (con-

stant (i.e., �
0) coe�cients)

We begin our investigations of the perturbed control problem by searching for

the �rst term of the series (5.13) consisting of matrices, k(1;0), k(2;0), and k(3;0).

We substitute K0(�) into (5.5) and take only the zero-th order terms in � of the

resulting equations. This is problem (b) mentioned in the introduction. In the

next section, Section 5.3.1, we will show how this may be done with the assistance

of a computer.

This �nally brings us to the subject of our investigations, the manipulation of

matrix polynomials with computer algebra methods.

Computer algebra �nds the basic equations

We begin by using computer algebra to assist in �nding the zero-th order terms

in � of the equations given in (5.5).

First, using NCAlgebra, we de�ne the block matrices in (5.6). The matrix,"
a b

c d

#
, is represented in Mathematica by ffa,bg,fc,dgg. The su�x, [[j; i]],

extracts the element in the j-th row and the i-th column from a given matrix.

In NCAlgebra, MatMult performs the matrix multiplication operation, tpMat per-

forms the symbolic transpose operation, and ** indicates noncommutative multi-

plication.

A = ffA11,A12g,f1/ep A21,1/ep A22gg;

B = ffB1g,f1/ep B2gg; M = ffM1,M2gg; (5.14)

We also de�ne a K0.

K0 = ffk10,ep k20g, fep tp[k20],ep k30gg;

The following Mathematica function takes as an argument a matrix K and gener-
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ates the Riccati (5.5).

Riccati[K ] := MatMult[K,A] + MatMult[tpMat[A],K] -

MatMult[K,B,Inv[R],tpMat[B],K] + MatMult[tpMat[M],M] (5.15)

We next use the NCAlgebra command NCTermsOfDegree1. The following Mathe-

matica commands will extract the 0-th order terms in �, creating the polynomials

in (5.18), (5.19), and (5.20).

Ep10 = NCTermsOfDegree[ Riccati[K0][[1,1]] , fepg,f0g]

Ep20 = NCTermsOfDegree[ Riccati[K0][[1,2]] , fepg,f0g]

Ep30 = NCTermsOfDegree[ Riccati[K0][[2,2]] , fepg,f0g] (5.16)

The output

Input (5.16) creates three polynomials, the third of which is

k30**A22+tp[A22]**k30+tp[M2]**M2

-k30**B2**Inv[R]**tp[B2]**k30. (5.17)

When all three are output in TEX, which is done easily by NCAlgebra, we get that

Riccati[K0] = 0 corresponds to the equations

0 = k10A11 +AT
11 k10 + k20A21 +AT

21 k
T
20 +MT

1 M1 � k10B1R
�1BT

1 k10

� k20B2R
�1BT

1 k10 � k10B1R
�1BT

2 k
T
20 + k20B2R

�1BT
2 k

T
20 (5.18)

0 = k20A22 � k20B2R
�1BT

2 k30 + k10A12

+ AT
21 k30 +MT

1 M2 � k10B1R
�1BT

2 k30 (5.19)

0 = k30A22 +AT
22 k30 +MT

2 M2 � k30B2R
�1BT

2 k30 (5.20)

Simple analysis of the basic equations

Notice that (5.20), the TEX form of (5.17), contains only one unknown k30 and has

the form of a Riccati equation. Thus k30 is uniquely determined by this equation

if we assume it is the \stabilizing solution". That is A22 � B2R
�1BT

2 k30 has all

1NCTermsOfDegree takes 3 arguments: a (noncommutative) polynomial, a list of variables,

and a set of indices. The command returns an expression such that each term is homogeneous

with degree given by the indices. For example, the call NCTermsOfDegree[ A**B + B**C**C +

B**A**C + C**D, fCg, f1g ] returns B**A**C + C**D.
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eigenvalues in the strict left half plane and is therefore invertible. We have found in

our computer experiments that it is best to make heavy invertibility assumptions,

especially at the outset. For computer algebra the key property here is invertibility

of A22 �B2R
�1BT

2 k30.

We may also motivate the invertibility of A22�B2R
�1BT

2 k30 by purely algebraic

arguments as follows. Equation (5.18) contains two unknowns, k10 and k20, and

equation (5.19) contains all three unknowns, k10, k20, and k30. To solve for k20

we use equation (5.19) and call NCCollect[ Ep20, k20 ] to get the following

relation

k20**(A22-B2**Inv[R]**tp[B2]**k30)+tp[A21]**k30 + tp[M1]**M2 -

k10**B1**Inv[R]**tp[B2]**k30 + k10**A12 (5.21)

Upon examination of (5.21) it is immediate that we may give k20 explicitly in terms

of k10 and k30 by assuming the invertibility of the parenthesized expression in the

above relation, A22 �B2R
�1BT

2 k30. We have

k20 = [�k10A12 + k10B1R
�1BT

2 k30 �AT
21k30 �MT

1 M2]

� (A22 �B2R
�1BT

2 k30)
�1: (5.22)

We use this expression for k20 to change (5.18) into an equation involving k10

and k30. The unknown matrices ki0 could then be found by �rst using (5.20)

to solve for k30, then using our transformed (5.18) to solve for k10, and �nally

using (5.22) to obtain k20. A better situation would be to have some decoupling

of the unknown matrices so that certain unknown matrices could be computed

concurrently rather than sequentially. Our next objective is to �nd decoupled

equations which determine the unknown matrices.

Heavy analysis of the basic equations

We will show how (5.18) which involves two unknowns may be replaced by an

equation involving only one unknown, k10, so that k30 and k10 may be computed

using two independent Riccati equations. We will use the bulk of our Gr�obner

basis machinery here.
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All algebraic identities which hold

As described in Section 3.2.5, the GBA takes as input a set of polynomials and

an order on the variables involved. It outputs a (generally) more desirable set of

equations. It is not necessary to know which polynomials are needed to derive a

certain relation. It is only necessary that all needed polynomials are present in

the input. For this reason one generally gives as input to the GBA all polynomial

relations known to hold. There is no harm in having super
uous (but true) relations

in the input. Now we will list the input to our computer algebra program which

will generate all polynomial relations known to hold.

First the basic relations we wish to study were produced in the previous section,

Ep10, Ep20 and Ep30; equations (5.18), (5.19), and (5.20).

In light of the slow system terminology introduced above in Sections 5.2.3 and

5.2.4 we make the following abbreviations.

Abbreviations = f N0 == - M2**Inv[A22]**B2,

M0 == M1 - M2**Inv[A22]**A21, A0 == A11 - A12 ** Inv[A22]**A21,

B0 == B1 - A12**Inv[A22]**B2, R0 == R + tp[N0]**N0 g (5.23)

We add the abbreviation R0 for convenience as done in [18], although it is not

essential. Inv[R] is the NCAlgebra representation of R�1. Since = denotes assign-

ment, Mathematica uses == to denote equality (for equations).

Several of the matrices or matrix polynomials in our problem are assumed to be

invertible. It is common to take the matrices Aii to be of full rank, since otherwise

a transformation could be applied to the original system to reduce the size of the

state. The matrix A22 � B2R
�1BT

2 k30 has already been assumed to be invertible

to facilitate the de�nition of k20 in (5.22). The matrices R and R0 are positive

de�nite and so must be invertible.

We generate the relations which result from these observations with the follow-

ing command,

Inverses = NCMakeRelations[fInv, R, R0, A0, A11, A22,

(A22 - B2**Inv[R]**tp[B2]**k30) g] (5.24)
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Several of the matrices are known to be self adjoint, and therefore the following

relations must hold:

SelfAdjoints = f k10 == tp[k10], k30 == tp[k30],

R == tp[R], R0 == tp[R0], Inv[R] == tp[Inv[R]],

Inv[R0] == tp[Inv[R0]] g (5.25)

We combine all of our relations with

Relations = Union[Ep10, Ep20, Ep30, Abbreviations,

SelfAdjoints, Inverses] (5.26)

If p == 0 is a true equation, then tp[p] == 0 is also. We add these \trans-

posed" equations:

AllRelations = NCAddTranspose[Relations] (5.27)

Orders

In order to �nd a polynomial in k10, A0, B0, M0, N0, R0, and other variables with

a minimal number of occurrences of k10, we should create a Gr�obner basis for all

polynomial relations known to hold under the following order.

N0 < M0 < R0 < A0 < B0 � k10 � other variables� k20 (5.28)

The order mentioned in (5.28) is speci�ed using the NCAlgebra command

NCAutomaticOrder[ ffN0,M0,R0,A0,B0g,fk10g, fB1,B2,M1,M2,R,A11,A12,

A21,A22, Inv[A22- B2**Inv[R]**tp[B2]**k30],

tp[Inv[A22-B2**Inv[R]**tp[B2]**k30]]g fk30g,fk20gg,

AllRelations ] (5.29)

This command scans AllRelations for unassigned letters and places them in

the order compatibly with the order given in the �rst argument.
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Finally, the call to make the Gr�obner basis is made. This call will create a four

iteration partial Gr�obner basis from the polynomials included in AllRelations

and the output will be stored in the �le, \FindK10".

NCProcess[AllRelations,4,"FindK10",SBByCat->False ] (5.30)

The \option" SBByCat, which removes large numbers of \redundant" equations,

can be ignored by the reader, since in fact we have turned it o� to save time.

The output

The output of the command (5.30) is a set of polynomials which make up the

partial Gr�obner basis to which RemoveRedundant has been applied created from

the polynomials in AllRelations under the order speci�ed in (5.29). The software

we use actually does more than just create a partial Gr�obner basis. NCProcess

removes redundant relations and categorizes the output depending on how many

unknowns lie in each relation. Then it automatically sets them in TEX, TEX's the

�le, and opens a window displaying them using `xdvi'. In this case a category was

found which consisted of a single relation in the one unknown k10 which we will

refer to as k10rel. NCProcess automatically performs NCCollect[k10rel,k10]

and displays

The expressions with unknown variables fk10g

and knowns fA0; B0; M0; N0; A
T
0 ; B

T
0 ; M

T
0 ; N

T
0 ; R

�1
0 g

k10
�
A0 �B0R

�1
0 NT

0 M0

�
+

�
AT
0 �MT

0 N0R
�1
0 BT

0

�
k10 + MT

0 M0 �

k10B0R
�1
0 BT

0 k10 �MT
0 N0R

�1
0 NT

0 M0 (5.31)

This gives us a desirable decoupled form for the unknown variables k10 and

k30. There exist independent Riccati equations for k10 (see (5.31)), and k30 (see

(5.20)) and it is easy to see from the full output that no equations coupling k10

and k30 exist. After solving these two equations for k10 and k20, we may �nd k20



65

by substituting k10 and k30 into (5.22).

The calculation which computes (5.31) is no easy feat by hand, as the sub-

stitutions and non-standard notation on pages 116-117 of [18] will attest. The

answer we found with Gr�obner computer algebra is the same as derived there by

hand. After the commands were typed into a �le, this computation took less than

3 minutes.

The zero-th order term of the controller

The optimal controller (5.4) has �rst term in � equal to

G = �R�1
h
BT
1

BT
2

�

i " k(1;0) �k(2;0)

�kT(2;0) �k(3;0)

#
: (5.32)

and the previous section tells how to compute the kj0.

Note that in many cases it may be advantageous to have an � independent

controller. Such a goal may be achieved by setting the upper right entry of K to

zero. This gives us

G

"
x

z

#
=
h
G10 G20

i " x

z

#
(5.33)

= �R�1(BT
1 k(1;0)x+BT

2 k
T
(2;0))x+BT

2 k(3;0)z)

where k(i;0) is de�ned by equations (5.31), (5.22), and (5.20) for i equal to 1,2, and

3 respectively.

5.3.2 The order � term of the Riccati equation

In Section 5.3.1, a controller was presented which does not depend on the

parameter �. This is especially appropriate if � represents some very small unknown

parameter. In fact, there are many circumstances when the parameter �, while

small, is known. In such a case, even though the optimal controller is an in�nite

power series in � one can make an nth order approximation to G(�) in (5.4) and

arrive at a controller with enhanced performance.



66

A major obstruction to such an improved approach is the tedious computation

required to generate formulas for the coe�cients of higher powers of �. We did not

�nd references where anyone generated formulas for coe�cients of � higher than 1.

The methods in this thesis do, see Section 5.3.3.

As done in [18] we will now obtain decoupled formulas for the matrices k(1;1),

k(2;1), and k(3;1) described in (5.13). Our approach will require considerably less

work than doing it by hand.

Instead of truncating the series (5.13) to only one term as done in Section 5.3.1

(input (5.14)) here we de�ne symbolic entries for the second term of K as well.

K1 = ff k10, ep k20 g, fep tp[k20], ep k30 gg

+ ep ff k11, ep k21 g, fep tp[k21], ep k31 gg (5.34)

We also append the following abbreviations for the controller discussed above in

Section 5.3.1 and de�ned in equation (5.33). These formulas are standard, [18].

Abbreviations = Union[ Abbreviations, f

G10 == -Inv[R]**(tp[B1]**k10 + tp[B2]**tp[k20]),

G20 == -Inv[R]**tp[B2]**k30 g ]. (5.35)

Since A22 +B2G20 = A22 �B2R
�1BT

2 k30 was previously assumed to be invertible,

we also add the invertibility relation,

Inverses = Union[ Inverses,

NCMakeRelations[fInv, (A22 + B2**G20)g] ]. (5.36)

Extracting the coe�cients of �1

The Riccati expression in K1, Riccati[K1], is an equation with linear and

quadratic terms in �. As done in the last section, the approach here is to equate

coe�cients of �. Of course, equating coe�cients of �2 is bogus, since the actual

power series (5.13) would have k(i;2) which have not been introduced in computer

input (5.34). We can extract the coe�cients of � in equation (5.5) with the follow-

ing commands.
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Ep11 = NCTermsOfDegree[ Riccati[K1][[1,1]] , fepg,f1g] (5.37)

creates the following polynomial

ep k11**A11+ep k21**A21+ep tp[A11]**k11+ep tp[A21]**tp[k21]-

ep k10**B1**Inv[R]**tp[B1]**k11-ep k10**B1**Inv[R]**tp[B2]**tp[k21]-

ep k20**B2**Inv[R]**tp[B1]**k11-ep k20**B2**Inv[R]**tp[B2]**tp[k21]-

ep k11**B1**Inv[R]**tp[B1]**k10-ep k11**B1**Inv[R]**tp[B2]**tp[k20]-

ep k21**B2**Inv[R]**tp[B1]**k10 -

ep k21**B2**Inv[R]**tp[B2]**tp[k20] (5.38)

and

Ep21 = NCTermsOfDegree[ Riccati[K1][[1,2]] , fepg,f1g] (5.39)

Ep31 = NCTermsOfDegree[ Riccati[K1][[2,2]] , fepg,f1g] (5.40)

give similar looking formulas.

Solving for the unknowns

These valid relations can now be added to all relations known to hold, (5.14),

(5.15), (5.23), (5.25), and (5.24), with the following command. Since the output of

the NCTermsOfDegree[ ] command includes the variable ep and we want just the

coe�cients of ep, we set the unwanted variable, ep, to 1. We do this by appending

the Mathematica su�x /.ep->1 to expressions involving ep.

AllRelations = Union[Ep11/.ep->1, Ep21/.ep->1,Ep31/.ep->1,

Ep10,Ep20,Ep30,

Abbreviations,SelfAdjoints,Inverses] (5.41)

Considering the analysis done in Section 5.3.1, k(1;0), k(2;0), and k(3;0) (k10, k20,

k30) can be regarded as known and we are now looking at the second term of the

series (5.13), which is made up of these and other knowns and unknowns k11,

k21, and k31 introduced above in (5.34). We wish to �nd simple formulas which

determine the unknowns.

With this distinction between known variables and unknown variables, the
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following order on the variables is appropriate

N0 < M0 < R < A0 < B0 < B1 < B2 < M1 < M2 <

R0 < A11 < A12 < A21 < A22 < G10 < G20 <

k30 < k20 < k10 � k11 � other variables (5.42)

This order is imposed with the command

NCAutomaticOrder[ ffN0,M0,R,A0,B0,

A11,A12,A21,A22,B1,B2,M1,M2,R0,G10,G20,

k30,k20,k10g,fk11g,fk31g,f

Inv[A22- B2**Inv[R]**tp[B2]**k30],

tp[Inv[A22- B2**Inv[R]**tp[B2]**k30]]

g,fk21gg, AllRelations ]; (5.43)

We next call NCProcess with an iteration count of 3. The computer input is

similar to (5.30). With this input, NCProcess took less than 7 minutes. The

output of this command contains a single relation with 24 terms involving the sin-

gle unknown matrix k(1;1), k11rel. Collecting around the k11 with the command

NCCollect[ k11rel, k11 ] gives us the following relation

�1 k11 (A0�B0R
�1
0 BT

0 k01�B0R
�1
0 NT

0 M0) + (k01B0R
�1
0 BT

0 +MT
0 N0R

�1
0 BT

0 �

AT
0 ) k11 + AT

0 k02A
�1
22 A21 + AT

21A
T�1
22 kT02A0 � k01B0R

�1
0 BT

0 k02A
�1
22 A21 �

k01B0R
�1
0 BT

2 A
T�1
22 kT02A0�A

T
0 k02A

�1
22 B2R

�1
0 BT

0 k01�A
T
0 k02A

�1
22 B2R

�1
0 NT

0 M0�

AT
21A

T�1
22 kT02B0R

�1
0 BT

0 k01 � AT
21A

T�1
22 kT02B0R

�1
0 NT

0 M0 �

MT
0 N0R

�1
0 BT

0 k02A
�1
22 A21 � MT

0 N0R
�1
0 BT

2 A
T�1
22 kT02A0 +

k01B0R
�1
0 BT

0 k02A
�1
22 B2R

�1
0 BT

0 k01 + k01B0R
�1
0 BT

0 k02A
�1
22 B2R

�1
0 NT

0 M0 +

k01B0R
�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 BT

0 k01 + k01B0R
�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 NT

0 M0 +

MT
0 N0R

�1
0 BT

0 k02A
�1
22 B2R

�1
0 BT

0 k01 + MT
0 N0R

�1
0 BT

0 k02A
�1
22 B2R

�1
0 NT

0 M0 +

MT
0 N0R

�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 BT

0 k01 +

MT
0 N0R

�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 NT

0 M0 (5.44)

The coe�cients of k(1;1) in equation (5.44), the polynomials in parentheses,
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suggest that we make the following abbreviation2

F0 == A0-B0**Inv[R0]**(tp[N0]**M0 + tp[B0]**k01) (5.45)

With computer input (5.45) appended to all relations known to hold, AllRelations,

we can put F0 low in the order and run NCProcess again, creating a new (partial)

Gr�obner basis. The output of this command contains the aesthetically pleasing

relation de�ning k(1;1)

�k11 F0� 1F T
0 k11+AT

21 (A22 +B2G20)
�T

kT20 F0+F T
0 k20 (A22 +B2G20)

�1
A21+

F T
0 k20 (A22 +B2G20)

�1
B2G10 +GT

10B
T
2 (A22 +B2G20)

�T
kT20 F0: (5.46)

This is a simple Lyapunov equation whose solution, k(1;1), is unique as long as

F0, is Hurwitz. We will therefore regard k(1;1) as known from this point forward.

Similar to the zero-th order case the equation de�ning k(3;1) is an immediate

consequence of (5.47) and takes the collected form

k31
�
A22 �B2R

�1BT
2 k30

�
+
�
AT
22 � k30B2R

�1BT
2

�
k31 + AT

12 k20 + kT02A12 �

k30B2R
�1BT

1 k20 � kT20B1R
�1BT

2 k30 (5.47)

Also similar to the zero-th order case we have an explicit formula for k(2;1) in

terms of k(1;1) and k(3;1). The following relatively simple formula was also in the

output of the NCProcess command which generated (5.46).

k21 ! �1 k11A12A
�1
22 � AT

11 k20 (A22 +B2G20)
�1
� AT

21 k31 (A22 +B2G20)
�1
�

GT
10B

T
1 k20 (A22 +B2G20)

�1
� GT

10B
T
2 k31 (A22 +B2G20)

�1 +

k11B0R
�1
0

�
NT

0 M2A
�1
22 �BT

2 A
T�1
22 k30

�
(5.48)

2More analytic methods can be used, [20], to show that this expression (5.45) is of the form

A0 + B0G0 where G0 is the optimal control for the slow part of the LQR optimal problem,

(5.10). The focus here is on the computer algebra and the expression F0 is discovered purely

algebraically.
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Here, and in the rest of this thesis, an arrow can be interpreted to mean equal sign.

Expressions equivalent to (5.46), (5.48), and (5.47) can be found in [18]. Notice

that a similar procedure could be done as described in Section 5.3.1 to derive an

order � controller.

5.3.3 The order �
2 term of the Riccati equation

At this point the tale is growing long and the weary reader can most likely

guess what will be done in this section from the title. For the sake of presenting

a formula which has not appeared before we create a three term approximation to

K(�),

K2 = ff k10, ep k20 g, fep tp[k20], ep k30 gg

+ ep ff k11, ep k21 g, fep tp[k21], ep k31 gg

+ ep^2 ff k21, ep k22 g, fep tp[k22], ep k32 gg, (5.49)

For this problem a three iteration partial Gr�obner basis was created and we ar-

rived at formulas de�ning k(1;2), k(2;2), and k(3;2). Even without running NCProcess

one sees that k(3;2) satis�es a Riccati equation. This is analogous to the lower order

cases.

We found one equation which expresses k(2;2) in terms of k(1;2) and k(3;2). We

found a Lyapunov equation in the unknown k(1;2) consisting of 150 lines in Mathe-

matica notation. There were also several equations in the unknowns k(1;2) and k(3;2).

In analogy with the lower order cases we expect that these \coupled" equations

are redundant and provided no additional information or contraints. Our algebraic

software in principle if given enough time can determine this but these algorithms

are more computer intensive and did not �nish when run on this problem.

We used a version of NCProcesswhich was specialized to display only equations

involving the unknowns; k(1;2) and k(2;2). This substantially speeds up run times.

Still, our rather formidable conclusion took 21.5 minutes. The formulas can be

found at
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http://math.ucsd.edu/~ncalg/SingularPerturbation.

It is gratifying that our Gr�obner equation processing techniques prevailed on

such a large problem. It leads us to think that many singular perturbation problems

are well within the scope of our computer algebra techniques.

5.4 Perturbing singular solutions of the Informa-

tion State Equation

We would also like to mention that the techniques illustrated on the previous

problem apply to other problems. In particular we mention a singular perturbation

analysis of an important entity in the output feedback H1 control problem, the

information state. It corresponds not to fast and slow time scales but to sensors

becoming increasingly accurate, for details see [12].

5.4.1 The general problem

Consider the system

dx

dt
= A(x) +B(x)v (5.50)

out = C(x) +D(x): (5.51)

An equation useful in estimation associated to this (details in [12]) is the informa-

tion state equation, ISE:

�
dp

dt
= (A(x) +B(x) � v(t))Trxpt(x)� (rxpt(x))

TQ(x)rxpt(x) (5.52)

� [C(x)�Dv(t)]TJ [C(x)�Dv(t)]

+
1

�2
(Lv(t)� x)TR(Lv(t)� x)

where J is self adjoint.
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5.4.2 The linear case

Assuming that the associated vector �eld is linear and � is �xed, it is known

that a solution exists of the form

pt(x) =
1

2
(x� x�)

TP�(x� x�) + ��(t); (5.53)

where P� is a symmetric matrix which does not depend on t, but x and x� do depend

on t. Then

rxp = P�(x� x�):

Noting that (Ax + Bv(t))Trp is scalar, we can symmetrize equation (5.52), the

information state equation, ISE, and arrive at

�
dp

dt
= [Ax+Bv(t)]TP�(x� x�) + (x� x�)

TP�[Ax+Bv(t)] (5.54)

� (x� x�)
TP�QP�(x� x�)� [Cx�Dv(t)]TJ [Cx�Dv(t)]

+
1

�2
(Lv(t)� x)TR(Lv(t)� x):

where R is positive semi-de�nite.

In seeking an asymptotic expansion one can try various possible forms for a

solution. We have found our computer algebra methods very e�ective in going

from a postulated form of an expansion to explicit formulas for their coe�cients.

Let us illustrate this with the following postulates for P� and x�. P� is a function

of � which has a series form

P� =
1

�
P�1 + P0 + �P1 + �2P2 + : : : (5.55)

and we expand x� as

x�(t) = x�;0(t) + �x�;1(t) + �2x�;2(t) + : : : (5.56)

The treatment of �� is less critical as we shall see.
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5.4.3 Finding the expansions of unknowns using computer

algebra

We now apply NCAlgebra methods very similar to the ones demonstrated in

Section 5.3 to the ISE singular perturbation problem. We do not give as much

detail, since now the idea should be clear. However, we state our expansions

precisely, since this must be done to set notation.

Setting the expansions of unknowns

We will begin by creating a symbolic entry for P�. This is done with the

following computer input

Pe = (1/ep) Pm1 + P0 + ep P1 + ep^2 P2 + ep^3 P3 ; (5.57)

where ep, the symbolic entry for �, is declared to be commutative and Pm1, P0,

P1, P2, and P3, symbolic entries for P�1, P0, P1, P2, and P3 respectively, are

declared to be noncommutative.

We do not need a formula for pt itself, since what we use is GP = rxpt(x). It

is

GP = Pe ** (x-xe) (5.58)

The x� described in (5.56) is de�ned next

xe = xe0 + ep xe1 + ep^2 xe2 + ep^3 xe3 (5.59)

We also need the derivative dx�
dt

and it has the expansion

dxe = dxe0 + ep dxe1 + ep^2 dxe2 + ep^3 dxe3. (5.60)

Since ��(t) introduced in equation (5.53) does not depend on x, its derivative

in t appears and that is on the left side of (5.54). This means that whatever we

�nd as an approximation to P� and x� can be put in the right side of the equation

�
d��(t)

dt
= �(Bv)TP�x� � xT� P�Bv + xT� P�QP�x�

+ (Dv)TJDv +
1

�2
(Lv)TRLv (5.61)
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which can be integrated to produce ��(t). Also we can expand d��(t)

dt
out a few

terms in � and obtain formulas for these terms in the series.

The equations

The ISE (5.52) is implemented next, and the command NCTermsOfDegree is

used to sort this by powers of � and x. This produced an equation from each

coe�cient of 1
�2
, 1
�
, �0, and x, xT and x and xT , to produce a set SE of equations.

We did not include terms without x and so no �'s will appear in SE. Details are

strictly analogous to what we just did in Section 5.3 so they will be omitted.

We will assume the matrix A is invertible, by de�ning its inverse:

inverses = fInv[A]**A - 1 == 0, A**Inv[A] - 1 == 0 g; (5.62)

Many of our matrices are known to be self adjoint, so the equations establishing

this are also included with SE and inverses to obtain the full set of equations

we put into our Gr�obner basis algorithm.

Applying the Gr�obner basis algorithm

We need to select a monomial order. A;B;C;D; J;Q;R; v; and L are known

and we certainly do not wish to solve for them, so we set them at the bottom of

the order. Since the P� and x�, are unknown and must be solved for, we set the

symbolic unknowns in their expansion above the knowns in the monomial order.

The order we choose on the unknowns puts P� at the bottom of the unknowns,

but still above the knowns which means that once they are solved for they can

be used in in formulas for x�. To implement this and automatically impose a

corresponding order on transposes and inverses of variables we use the command



75

NCAutomaticOrder and produce the following order

A < A�1 < AT < B < BT < Q < J < C < CT <

R < D < DT < v < vT < L < LT
�

Pm1 < P 0 < P 1 < P 2 < P 3 �

xe0 < xe0
T
� xe1 < xe1

T
� xe2 < xe2

T
� xe3 < xe3

T
�

dxe0 < dxe0
T
� dxe1 < dxe1

T
� dxe2 < dxe2

T
� dxe3 < dxe3

T

Finally a partial Gr�obner basis is created and \redundant equations" are removed

using the NCProcess[ ] command

NCProcess[AllRelations,3,"Answer"] ; (5.63)

5.4.4 The answer

The output of this command includes the following relations which will give us

formulas and di�erential equations which have been derived purely algebraically.

The computations took 3 minutes and 7 seconds.

Relations de�ning P�

The relations involving P� in the output of NCProcess are exactly

The expressions with unknown variables fPm1g

and knowns fQ; Rg

Pm1QPm1 ! R (5.64)

The expressions with unknown variables fP0; Pm1g

and knowns fA; Q; AT
g

P0QPm1 !
1
2
Pm1A+ 1

2
AT Pm1 � Pm1QP0 (5.65)
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The expressions with unknown variables fP1; P0; Pm1g

and knowns fA; C; J; Q; AT ; CT
g

P1QPm1 !
1
2
P0A+ 1

2
AT P0 � P0QP0 � Pm1QP1 � CT J C (5.66)

The expressions with unknown variables fP2; P1; P0; Pm1g

and knowns fA; Q; AT
g

P2QPm1 !
1
2
P1A+ 1

2
AT P1 � P0QP1 � P1QP0 � Pm1QP2 (5.67)

Indeed this TeX display is exactly what one sees on the screen. In view of the

above equations we have the following recursive formula for the matrices Pi. We

begin with the de�ning relation for P�1.

P�1QP�1 = R

Then we must also have that P0 satis�es the algebraic Lyapunov equation

P�1A+ATP�1 = 2

 h
P0Q P�1Q

i " P�1

P0

#!
(5.68)

and P1 satis�es

P0A+ATP0 = 2

0
BB@
h
P1Q P0Q P�1Q

i
2
664
P�1

P0

P1

3
775+ CTJC

1
CCA (5.69)

Inspection strongly suggests that the coe�cient matrices of higher powers of �

are given by the recursive formula

Pi�1A+ATPi�1 = 2

0
BBBBB@
h
P�1Q P0Q � � � PiQ

i
2
666664

Pi

...

P0

P�1

3
777775

1
CCCCCA (5.70)
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which alternatively may be written as

PiQP�1 + P�1QPi =
1

2
(Pi�1A+ATPi�1) (5.71)

� Pi�1QP0 � Pi�2QP1 � : : :� P1QPi�2 � P0QPi�1

In many cases we will have Q = BBT where B is an input matrix corresponding

to a dynamical system. Since we expectB to be a tall, skinny matrix we also expect

BBTP�1 to have a signi�cant number of eigenvalues equal to zero and hence have

a high degree of non uniqueness in the Pi solving equation (5.71).

Relations de�ning x�(t)

The entire output of NCProcess which involves x� is exactly the following plus

their transposes.

The expressions with unknown variables fxe0g

and knowns fL; R; vg

R (xe0 � Lv) == 0 (5.72)

The expressions with unknown variables fdxe0; xe1; xe0; Pm1g

and knowns fA; B; R; vg

Pm1 dxe0 ! 2Rxe1 + Pm1Axe0 + Pm1B v (5.73)

The expressions with unknown variables fdxe1; dxe0; xe2; xe1; xe0; P 0; Pm1g

and knowns fA; B; C; D; J; R; v; CT
g

Pm1 dxe1 ! �1P 0 dxe0+2R xe2+P 0Axe0+P 0B v+Pm1Axe1�2CT J C xe0+

2CT J D v (5.74)

The expressions with unknown variables fdxe2; dxe1; dxe0; xe3; xe2; xe1; xe0; P 1;

P 0; Pm1g

and knowns fA; B; C; J; R; v; CT
g
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Pm1 dxe2 ! �1P 0 dxe1 � P 1 dxe0 + 2Rxe3 + P 0Axe1 + P 1Axe0 + P 1B v +

Pm1Axe2 � 2CT J C xe1 (5.75)

These relations may be written quite succinctly in the following way.

We have the following relations governing the behavior of the terms of the

expansion of x� introduced in equation (5.56).

x�;0 = Lv on the subspace orthogonal to the kernel of R (5.76)

or in other words

R(x�;0 � Lv) = 0: (5.77)

The terms x�;0, x�;1, and x�;2 are governed by the pair of di�erential equations

P�1
dx�;0

dt
= P�1Ax�;0 + 2Rx�;1 (5.78)

P�1
dx�;1

dt
+ P0

dx�;0

dt
=

h
P�1A P0A

i " x�;1

x�;0

#

+ 2Rx�;2 � 2CTJCx�;0+ 2
�
CTJD + P0B

�
v (5.79)

and then the higher terms, x�;k for k � 2, satisfy

h
P�1 P0 � � � Pk�1

i
2
666664

dx�;k

dt

...
dx�;1

dt

dx�;0

dt

3
777775 =

h
P�1A P0A � � � Pk�1A

i
2
666664

x�;k
...

x�;1

x�;0

3
777775

�2CTJCx�;k�1 + 2Rx�;k+1 + Pk�1Bv (5.80)

Relations de�ning ��(t)

There are two ways to proceed for computing ��(t). An approximation to ��(t)

may be computed using the formula (5.61) along with the expansions just obtained.
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The longer method, which we do not reproduce here, is to give full expansions

for ��(t) in terms of ��l(t) where l � �2. We did this with our computer and found

rather long formulas for the �rst few terms. This was easy, but there is no point

in listing them here.



Part III

Strategy Theory (and Elimination

Ideals)

80



Chapter 6

Automated Theorem Proving

Our general goal in automated theorem proving is to use computers to assist

a human as much as possible in the discovering and proving of mathematical

theorems. Donald MacKenzie in his survey article on the history of automated

theorem proving [21] classi�es the subject into three categories

a. automatic theorem proving where the aim is to simulate human processes of

deduction;

b. automatic theorem proving where any resemblance to how humans deduce is

considered to be irrelevant; and

c. interactive theorem proving, where the proof is directly guided by a human

being.

Research in category (a) has ties to arti�cial intelligence. The investigation

done in this thesis and the geometric work described in the following sections falls

into category (b). Category (c) is typically done by those who are interested in

the validation of hardware designs.

The processes we seek to automate are those which contain a large amount

of noncommutative algebra, for example many of the theorems in linear system

theory and control. We will show how a computer may be used to perform some

81
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noncommutative computations typically done (at least for now) by hand. Since

we are not interested in Daniel MacKenzie's category (a) and the functioning of

the human mind the particular computations our computer may perform would

probably not be done by any sane human being.

In the next section we will brie
y mention one of the more successful applica-

tions of automatic theorem proving, Euclidean geometry. The computer methods

used for this research are closely related to the methods we use.

6.1 Automated geometric theorem proving

One of the more successful applications of automated theorem proving has been

to proving theorems about plane geometric objects. The basic idea is as follows.

Once cartesian coordinates are introduced into the Euclidean plane hypotheses and

conclusions about geometric objects may be expressed as polynomial equations in

symbolic indeterminates which represent coordinates. For example the hypothesis

that points B and C are the same distance from the pointA where the (normalized)

coordinates of the points A;B; and C are labeled as follows

A
r

(0,0)

r
B
(b1; b2)

�
�
�
�

@
@
@C

r

(c1; c2)

may be expressed as f1 = b21 + b22 � c21 � c22 = 0.

A suprising portion of geometric theorems may be proven automatically by

various methods of polynomial manipulation. Particularly useful is a reduction

method tailored to these geometric problems known as Wu's method.

This work began with Wu Wen-Ts�un in 1977 with [25], [26]. His hardware

in 1984 consisted of a computer with 512K of RAM. His successor, Shing-Chang
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Chou, was able to prove 256 theorems from high school geometry texts and various

other sources with a computer [4]. Gr�obner basis methods are sometimes used for

the polynomial manipulation in these geometric automated proofs.



Chapter 7

A Theory of Strategies

A strategy is a methodology for using a combination of computer assistance

and human intervention to to discover highly algebraic theorems. Considerable

testing has been done in matrix and linear systems engineering theory. Since the

reader is already familiar with the functionality of NCProcess we may describe the

pre-strategy (which is slightly less general than the strategy) without further ado.

The idea of a pre-strategy is:

S0. The input to the pre-strategy is a set of polynomials.

S1. Run NCProcess which creates a display of the output. Suppose that there is

an equation q which involves only one unknown x�.

S2. The user must now make a decision about equations in x� (e.g. q is a Riccati

equation so I shall not try to simplify it, but solve it using Matlab). Now

the user declares the unknown x� to be known. The user selects q.

S3. The process repeats.

S4. The prestrategy stops when \acceptable" equations have been discovered.

We say a theorem can be discovered by a 1-prestrategy. In fact the strategy

provides such structure that it allows one to classify certain theorems. A question

84
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one might ask is \What theorems can be proven using a 1-prestrategy?" In [11]

the strategy formalism was introduced and several theorems were proven using

pre-strategies or strategies. In Part IV we will o�er some new classi�cations of

theorems from linear system theory.

An integral part of our more rigorous Strategy analysis is elimination ideals.

This chapter will begin with some necessary de�nitions and basic lemmas of elim-

ination ideals and grading. We will then be able to classify polynomials as good.

The concept of a \good" polynomial to some extent formalizes the statement

the user selects in S2. The importance of such formal studies is that they guide us

to what can be automatically be implemented on the computer. Formal de�nitions

lead to rules which can be used to make pre-programed decisions.

We shall de�ne a useful measure of sets of polynomials called gap. Proposition 1

shows how there are several di�erent ways to measure this gap. This proposition

is quite essential to the theory developed in this chapter.

After de�ning gap we will show its relationship to computationally tractable

sets of polynomials. We will discuss how to compute the gap for a given order on

the indeterminates using Gr�obner basis methods. A more general notion of the

gap of an ideal is given which doesn't depend on a speci�c order and is, in fact,

the in�mum of the ordered gap over all orders.

With the notions of good and gap under our belt we will be able to give a more

rigorous analysis of the pre-strategy outlined above. We will show how a successful

1-prestrategy corresponds to a gapless order.

We introduce the strategy which requires the de�nition of motivated unknown.

We show how a slight modi�cation to the 1-prestrategy analysis allows one to

incorporate these motivated unknowns.

We also introduce the Strategy+ formalism which is new and is in fact even

more general than the Strategy, since it allows the user a bit more freedom in adding

algebraic hypotheses. This is the �rst time that the Strategy+ has appeared in

print.
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We give a more e�cient algorithm for �nding these successful 1-prestrategies,

if such an order exists. To prove the validity of the more e�cient algorithm we

introduce maps which are elimination �nding and singleton �nding in a sense which

will be made precise. These maps, in turn, provide greater insight to the strategy

process.

Finally the proof of the proposition mentioned above, Proposition 1, is pre-

sented.

7.1 Elimination ideals

Recall the de�nition and properties of elimination ideals introduced in Sec-

tion 3.4.2. We will make heavy use of elimination ideals in this chapter.

Here we must regrettably give a somewhat non-standard de�nition. Typically

in the literature the j-th elimination ideal for ideal I � K[a1; : : : ; am; x1; : : : ; xn]

is de�ned as

Ij = I \ K[a1; : : : ; am; x1; : : : ; xj�1]:

We, however, are interested in the relation between an elimination ideal and

some sub-elimination ideal contained in it. Notice that if

I \ K[a1; : : : ; am; x1; : : : ; xj] 6= f0g;

then

I \ K[a1; : : : ; am; x1; : : : ; xj�1] 6= I \ K[a1; : : : ; am; x1; : : : ; xj]: (7.1)

To see this take, p 2 I \ K[a1; : : : ; am; x1; : : : ; xj]. The polynomial xjp will be in

the ideal on the right side of (7.1), but not in the smaller ideal on the left side

of (7.1). Note that, for 1 � j � n, I \ K[a1; : : : ; am; x1; : : : ; xj�1] is an ideal of

K[a1; : : : ; am; x1; : : : ; xj�1], but is not an ideal of K[a1; : : : ; am; x1; : : : ; xn].

We will de�ne a bloated j-th elimination ideal to be the smallest ideal in

K[a1; : : : ; am; x1; : : : ; xn] which contains the traditional elimination ideal

I \ K[a1; : : : ; am; x1; : : : ; xj�1]
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of K[a1; : : : ; am; x1; : : : ; xj�1]. We will always write it in the unambiguous form

hI \ K[a1; : : : ; am; x1; : : : ; xj]i:

7.1.1 Grading

A monomial m in K[a1; : : : ; am; x1; : : : ; xn] is said to be of total degree k if

there exist k indeterminants inm counting multiplicities. For example, x21x2x3a2x1

is of total degree 6 and we write tdeg(x21x2x3a2x1) = 6. A monomial m in

K[a1; : : : ; am; x1; : : : ; xn] is said to be of xj-degree k if xj appears k times in

m. A polynomial in K[a1; : : : ; am; x1; : : : ; xn], p, is said to be xj homogenous of

xj-degree k if every monomial in p is of xj-degree k. To denote this we will write

degxj(p) = k:

For example, every term of x1x
2
3 + 5x3x2a1x3 + x3x

5
1x3x2 is of x3-degree 2 and so

this polynomial is x3 homogenous of x3-degree 2. Notice that the following identity

will hold for m 2 K[a1; : : : ; am; x1; : : : ; xn],

mX
j=1

degaj(m) +

nX
j=1

degxj(m) = tdeg(m):

Given an algebra R = K[a1; : : : ; am; x1; : : : ; xn] we may consider its grading by

total degree and write

R = R0 �R1 � � � � ;

where Rd is the vector space of homogenous polynomials of degree d. Given f 2 R,

f may be written uniquely as

f = f0 + f1 + � � � with fi 2 Ri:

Similarly, for an indeterminant xj, the grading by xj degree of the algebra

R = K[a1; : : : ; am; x1; : : : ; xn] is

R = R
xj
0 �R

xj
1 � � � � ;



88

where R
xj
d is the vector space of xj homogenous polynomials of xj-degree d.

For example, we may write the polynomial x1x2x
2
1x3 + 3x1x2x1 + 5x3 + 4x1 +

a1a2a1 + a2 as (5x3 + a1a2a1 + a2) + (4x1) + (3x1x2x1) + (x1x2x
2
1x3) where 5x3 +

a1a2a1 + a2 2 Rx1
0 , 4x1 2 Rx1

1 , 3x1x2x1 2 Rx1
2 and x1x2x

2
1x3 2 Rx1

3 .

Lemma 2 Let p 2 K[a1; : : : ; am; x1; : : : ; xn] be p = h0 + h1 + h2 + : : :+ hr where

hd 2 R
xj
d for some j 2 f1; : : : ; ng. If p = 0, then hd = 0 for all d � 0.

Proof: Suppose that hk 6= 0 for some k. Then

hk = �h0 � h1 � h2 � : : :� hk�1 � hk+1 � � � � � hr: (7.2)

Since the left side of (7.2) is xj homogenous of xj-degree k we must have

degxj(�h0 � h1 � h2 � : : :� hk�1 � hk+1 � � � � � hr) = k:

But this is impossible, since

�h0 � h1 � h2 � : : :� hk�1 � hk+1 � � � � � hr 2

 
1M
i=0

R
xj
i

!
nR

xj
k :

2

Lemma 3 Let p 2 K[a1; : : : ; am; x1; : : : ; xn] be p = h0+h1+h2+: : :+hr where hd 2

R
xj
d for some j 2 f1; : : : ; ng. Let A � K[a1; : : : ; am; x1; : : : ; xl]. Let NForm(p;A)

be with respect to a monomial order O which is of i-th elimination type for 1 �

i � n. Then NForm(hk; A) 2 R
xj
k [ f0g for all l < j.

Proof: Let mk
i be such that

hk = mk
1 +mk

2 + : : :+mk
rk
:

This implies that degxj(m
k
i ) = k for all i. Suppose that

NForm(hk; A) 62 R
xj
k [ f0g:
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This implies that there exists a rule �(q), q 2 A, and a monomial mk
t such that

mk
t

�(q)
�! w and w 62 Rk [ f0g. As described above in Section 3.2.2, the rule �(q) is

of the form

L! S1 + : : :+ Ss

where L and Si are monomials. Recall that degxj(m
k
t ) = k. If w 62 Rk [ f0g we

must have that

degxj(L) 6= degxj(Sa) for some a 2 f1; : : : ; sg:

But

degxj (L) = 0 and degxj(Si) = 0 for all i;

since q 2 K[a1; : : : ; am; x1; : : : ; xl] and l < j. We have found our contradiction

and therefore NForm(hk; A) 2 R
xj
k [ f0g. 2

7.2 Elimination ideal structure

With our triangularization goal described in Section 1.1 we might ask how a

set of elimination ideals is structured for a certain problem. What we wish to

investigate is the existence of non-trivial polynomials, good polynomials, which

determine xj provided x1; : : : ; xj�1 have already been determined.

We will begin by de�ning the following two properties, which will prove useful

in understanding the ideal structure, good and gap.

7.2.1 Good

First, we describe various criteria for distinguishing a \good" polynomial. Take

I and J to be ideals in the polynomial algebra K[a1; : : : ; am; x1; : : : ; xn].

De�nition 7.2.1 We will write I ( J to mean that I is a proper subset of J

and we say that an polynomial in their set theoretic di�erence, p 2 J n I, (which

necessarily exists) is a good polynomial for J with respect to I.
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7.2.2 Non-redundant

We are often interested in sets of good polynomials, that is polynomials which

are not merely \consequences" of others in the set. These are polynomials which

contain new information.

De�nition 7.2.2 Let X be a set of polynomials. Let us agree to say that X is

non-redundant if p 62 hX n fpgi for every p 2 X.

If X is a set of nonzero polynomials such that LM(p) 6= LM(q) for p; q 2 X; p 6=

q and no order on X is explicitly speci�ed, then we shall use the order � induced

by the monomial order which is de�ned by requiring q � p if and only if LM(p) <

LM(q) where `<' denotes the monomial order being considered.

De�nition 7.2.3 Let X be a set of polynomials ordered with respect to a ordering

�. X is order non-redundant if p 62 hfq : q � pgi for every p 2 X.

Notice that if the input to the idealized small basis algorithm is ordered, then

the output of the idealized small basis algorithm, introduced in Section 3.3.1, is

order non-redundant.

De�nition 7.2.4 Given an ordered set of polynomials P; fp1; p2; : : :g we call the

output of the small basis algorithm applied to P the sequentially reduced P ,

fpn1 ; pn2 ; : : : g. Since the idealized small basis algorithm is a deterministic algo-

rithm the output of the idealized small basis algorithm is unique.

Lemma 4 Let G � K[a1; : : : ; am; x1; : : : ; xn] be a reduced Gr�obner basis with re-

spect to a monomial order O. Let A and B be subsets of G such that hAi = hBi =

hGi. If A and B are both order non-redundant, then A = B.

Proof: Let X be the symmetric di�erence of A and B, X = (A nB)[ (B nA).

We wish to show that X is the empty set. Suppose for the sake of proof by

contradiction that X is not the empty set. Since a monomial order is a total order,

we may choose the polynomial p in X with the smallest leading monomial.
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Assume that there exists a q 2 A such that q � p. If q 62 B, then q 2 AnB � X

which contradicts the minimality of p. Therefore we have q 2 B.

An analogous argument shows that q 2 B, q � p implies that q 2 A.

Thus for all q � p we have q 2 A if and only if q 2 B. That is, for the p we

have taken in X with smallest leading monomial we have shown the equivalence

of the following two sets:

fq 2 B : LM(q) < LM(p)g = fq 2 A : LM(q) < LM(p)g: (7.3)

We will next contradict the existence of p. Since X = (A nB) [ (B nA) there

are two cases, p 2 A nB or p 2 B nA.

Case 1 p 2 A nB

Since p 2 A and A is order non-redundant

p 62 hfq 2 A : LM(q) < LM(p)gi:

But since p 2 G, we have, by (7.3),

p 62 hfq 2 B : LM(q) < LM(p)gi:

It must be the case that

p 2 B

which is a contradiction.

Case 2 p 2 B nA

Since p 2 B and B is order non-redundant

p 62 hfq 2 B : LM(q) < LM(p)gi:

But since p 2 G and we have, by (7.3),

p 62 hfq 2 A : LM(q) < LM(p)gi:

It must be the case that

p 2 A
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which is a contradiction.

We have therefore contradicted the existence of p. We must have X empty and

A = B:

2

Lemma 5 Let G � K[a1; : : : ; am; x1; : : : ; xn] be a reduced Gr�obner basis with re-

spect to a monomial order O and let ~G be the unique (see lemma 4) order non-

redundant subset of G such that hGi = h ~Gi: If O is of j-th elimination type1, then

hG \ K[a1; : : : ; am; x1; : : : ; xj�1]i = h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i: (7.4)

Proof: Since ~G � G,

h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i � hG \ K[a1; : : : ; am; x1; : : : ; xj�1]i (7.5)

which gives us one half of our set inclusion argument.

We next turn to the reverse inclusion

hG \ K[a1; : : : ; am; x1; : : : ; xj�1]i � h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i: (7.6)

We begin by taking an arbitrary element p of the ideal on the left side of (7.6),

p 2 hG \ K[a1; : : : ; am; x1; : : : ; xj�1]i: (7.7)

Since G is a Gr�obner basis under a monomial order O of j-th elimination type,

Theorem 11.3 in [11] implies that G\K[a1; : : : ; am; x1; : : : ; xj�1] is a Gr�obner basis

for

hG \ K[a1; : : : ; am; x1; : : : ; xj�1]i:

There must then exist ci 2 K, Li; Ri monomials in K[a1; : : : ; am; x1; : : : ; xn] and

polynomials qi 2 G \ K[a1; : : : ; am; x1; : : : ; xj�1] such that

p =

NX
i=1

ciLiqiRi: (7.8)

1See De�nition 3.2.1
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We wish to show that

qi 2 h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i (7.9)

for all i. Consider an arbitrary

qk 2 fqi : 1; : : : ; Ng:

We have two cases for qk.

Case 1:

qk 2 ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]

This, of course, implies that

qk 2 h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i:

Case 2:

qk 62 ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]

Recall that

qk 2 G \ K[a1; : : : ; am; x1; : : : ; xj�1]

and if qk has been removed from G in the creation of the non-redundant subset ~G,

then it was because

qk 2 hfg 2 ~G : g � qkgi:

Since qk 2 K[a1; : : : ; am; x1; : : : ; xj�1] and O is of j-th elimination type, taking

any g 2 K[a1; : : : ; am; x1; : : : ; xn] such that g � qk will imply

g 2 K[a1; : : : ; am; x1; : : : ; xj�1]:

Therefore, the following inclusion holds,

hfg 2 ~G : g � qkgi � h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i:

We must then have

qk 2 h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i:
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We have now shown that (7.9) holds, as desired. Equation (7.8) and the de�-

nition of ideal imply that

p 2 h ~G \ K[a1; : : : ; am; x1; : : : ; xj�1]i:

Equation (7.6) follows.

Equations (7.5) and (7.6) give us the sought for set equivalence, (7.4). 2

7.2.3 Gap

In describing the degree to which a set of equations may be triangularized

it will be useful to de�ne the notion of gap. Notice that the triangularization is

dependent on the existence of a non-trivial or \good" polynomial concept. A set of

polynomials can be triangularized with non-redundant polynomials to the extent

pictured in (1.1-1.5) if and only if there exists a good q2 with respect to I \ K[x1]

(in this case there are two), a good q4 with respect to I \ K[x1; x2], etcetera.

De�nition 7.2.5 Given a polynomial ideal I and order O we de�ne the Gap as

follows

Gap(I;O) = supi;
f
 : hI \ K[a1; : : : ; am; x1; : : : ; xi]i =

hI \ K[a1; : : : ; am; x1; : : : ; xi+
]ig (7.10)

We will show below that there are three other equivalent supremums which

could be used in the de�nition of Gap.

De�nition 7.2.6 We call a pair (ff1; : : : ; fsg;O) such that

Gap(hff1; : : : ; fsgi;O) = 0

gapless or of full elimination dimension.

Given a set of polynomials ff1; : : : ; fsg with fi 2 K[a1; : : : ; ak; x1; : : : ; xn], and

an order O on the unknown indeterminates xi � xi+1, and letting hf1; : : : ; fsi = I

we will show that four identities are equivalent.
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Four equivalent de�nitions

Proposition 1 Let I be an ideal of K[a1; : : : ; am; x1; : : : ; xn]. Let G be a reduced

Gr�obner basis for I with respect to a monomial orderO which is of j-th elimination

type for 1 � j � n. Let ~G be the order non-redundant subset of the ordered set G.

Let 1 � i � n and 1 � 
 � n � i. The following are equivalent.

1: There are no good polynomials in hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i

with respect to hI \ K[a1; : : : ; am; x1; : : : ; xi]i (7.11)

2: hI \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi+
 ]i (7.12)

3: ~G \ K[a1; : : : ; am; x1; : : : ; xi] = ~G \ K[a1; : : : ; am; x1; : : : ; xi+
] (7.13)

4: For all p 2 I \ K[a1; : : : ; am; x1; : : : ; xi; : : : ; xi+
]; for all j 2 fi+ 1; : : : ; i+ 
g

writing p = h
xj
0 + h

xj
1 + h

xj
2 + : : : (7.14)

where h
xj
d has degree d in the variable xj implies

h
xj
d 2 I \ K[a1; : : : ; am; x1; : : : ; xi]; for all d � 1:

The proof of Proposition 1 is given in Section 7.8.

With this proposition, we may restate the de�nition of Gap given above in a

more 
exible way.

De�nition 7.2.7 Given a polynomial ideal I and order O we de�ne the Gap as
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follows

Gap(I;O) = sup
i;


f
 : Equation (7.11) is satis�ed g

= sup
i;


f
 : Equation (7.12) is satis�ed g

= sup
i;


f
 : Equation (7.13) is satis�ed g

= sup
i;


f
 : Equation (7.14) is satis�ed g

Note that if Gap(I;O) = 


hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i+
�)]i = hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i)]i

implies that 
� � 
.

Remark 1 We �nd that De�nitions 7.13 and 7.14 are more useful for doing com-

putations, while De�nitions 7.12 and 7.11 illustrate the power of these computa-

tions.

7.3 Triangular collection of equations

The subject of this chapter is the conversion of systems of polynomial equations

to triangular form. This type of triangularization has already been mentioned in

Sections 1.1 and 4.2.1. In this section we will see how the notion of the Gap

introduced in the previous section, Section 7.2.3, helps re�ne what is meant by

triangularization.

If a pair

(hff1; : : : ; fsgi; x1 < � � � < xn)

is gapless, then there will exist a set of polynomials fqig whose solution set is
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equivalent to the ffig which has the following triangular form:

q1(a1; : : : ; am) = 0 (7.15)

q2(a1; : : : ; am) = 0 (7.16)

...

qr(a1; : : : ; am) = 0 (7.17)

qr+1(a1; : : : ; am;x1) = 0 (7.18)

qr+2(a1; : : : ; am; x1;x2) = 0 (7.19)

qr+3(a1; : : : ; am; x1;x2) = 0 (7.20)

qr+4(a1; : : : ; am; x1; x2;x3) = 0 (7.21)

...

qs2(a1; : : : ; am; x1; : : : ;xn) = 0 (7.22)

One can �rst verify that the solution set exists by verifying equations (7.15-7.17)

with the given (known) matrices. We refer to these equations as compatibility con-

ditions. Then, solve for the (possibly non-unique) x1 with equation (7.18), use this

to next solve for x2 with equations (7.19-7.20), etcetera. The de�ning character-

istic of equations (7.15-7.22) is that for every polynomial q(a1; : : : ; am; x1; : : : ; xk)

there exists ~q(a1; : : : ; am; x1; : : : ; xk�1).

In Section 7.9 we will introduce, for the sake of completeness, even more com-

putationally tractable solution forms which we refer to as decoupled.

7.4 The Gap of an ideal

The discussion in the previous section motivates an interest in orders which

correspond to a low Gap. With this in mind we may drop the speci�cation of an

order in our de�nition of Gap and de�ne the Gap of an ideal in the following way.



98

De�nition 7.4.1 We de�ne the Gap of an ideal I to be

Gap(I) = inf
O

Gap(I;O):

We now outline ideas which will let us compute Gap(I;O). One can use the

characterization of bloated elimination ideals (7.13) in the following way.

Given a set P of polynomials which generates the ideal I

1. Create a Gr�obner basis G for I using Buchberger's (Mora's) algorithm under

the monomial order O.

2. Use the small basis algorithm to �nd the sequentially reduced subset ~G of G.

3. Check the elements of ~G to determine Gap(I;O).

There exists an obvious method for computing Gap(I) from its de�nition. Be-

gin by taking all permutations of the indeterminants in O, fO1; : : : ;On!g. Com-

pute Gap(I;Oi) for all i using the steps given above. Then

Gap(I) = min
i

Gap(I;Oi):

This method requires n! Gr�obner basis computations (under a pure lexicographic-

�-order on the unknowns) and n! applications of the small basis algorithm, a

daunting computational task indeed.

Section 7.7 will be devoted to reducing the computational complexity required

in determining Gap(I). Indeed, this pursuit will give us a deeper understanding

of the strategy process.

7.5 Pre-Strategies

In this discussion, we present the major motivation for the research done in this

chapter. We brie
y present a structured method for problem solving. For an in-

depth introduction, development, and examples of classic theorems from operator,

matrix, and linear system engineering theory the reader is refered to [11].
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A strategy is a method for solving problems. Many problems contain some

algebra or, even if not obviously so, can be formulated to contain some algebra.

The strategy process utilizes the algebraic methods described above to add the

following variant to Occam's Razor principle.

If one can automate the algebraic portion of a proof, the \simpler" proof will

be the proof which requires less work by hand. In fact, it becomes unnecessary to

describe the speci�c algebra techniques used. In our case, we may simply specify

the order and cannonical algebraic manipulations (the Gr�obner basis algorithm)

derive the result. We have seen several instances where three pages of published

algebra can be performed in a two minute computer run.

With this tool it becomes reasonable to expend e�ort on converting a given

problem into a more algebraic one, in fact as algebraic as possible. It is di�cult to

guess a priori how successful one's pursuit of \algebraicness" will be when presented

with a problem. Should you climb the stairs or walk to the elevator?

7.5.1 Singletons

Singletons are perhaps the most appreciated type of relation for an algebraic

problem solver. The singleton gives an explicit description of an unknown inde-

terminant, although perhaps in terms of other unknowns. The formal de�nition

follows.

De�nition 7.5.1 For some set of polynomials F we call the members of the set

fq 2 F : tdeg(LMO(q)) = 1g for some multigraded lexicogaphic order O single-

tons. An x singleton is a singleton whose leading monomial consists of x.

Example 7.5.2 We have a singleton

x+ 5yzy2 + zy

for the order z � y � x, since

LeadTerm(x+ 5yzy2 + zy) = x:
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Notice that if an indeterminant x associated with a singleton is placed lex-

icographically in the order above the other indeterminants, then these singleton

indeterminants will only appear once in the output of the Gr�obner basis algorithm.

This appearance will be in the x-singleton. Any other instance of x will be im-

mediately removed via application of the x singleton replacement rule. A similar

situation occurs when a set of singleton indeterminants is placed lexicographically

highest in the order and we see that the order within the set is irrelevant to the

corresponding Gr�obner basis as long as there is a � below them.

7.5.2 An idealized pre-strategy

Here we describe an idealized 1-prestrategy. This process is idealized in the

sense that we make the assumption that each bloated elimination ideal is generated

by one extra polynomial. That is, we assume that

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i)]; p�(i)i =

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i+1)]i: (7.23)

We have found this to often be the case in practice, but have also generated

counter-examples. We will begin by describing the pre-strategy under this assump-

tion and then decribe the general pre-strategy. Notice that in both de�nitions Step

1 could be incorporated into Step 3 with a little more notational e�ort. We believe

that leaving Step 1 out of the loop makes these de�nitions clearer.

De�nition 7.5.3 Let F0 � K[a1; : : : ; am; x1; : : : ; xn], I = hF0i, and the initial

order be x1 < � � � < xn. A 1-prestrategy for F0 consists of the following algo-

rithm.

1. There exists \good"

q1 2 hI \ K[a1; : : : ; am; x�(1)]i
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with respect to

hI \ K[a1; : : : ; am]i

for some �(1) 2 f1; : : : ; ng. We then change the order to a1 < � � � < am �

x�(1) � x1 � � � � � x�(1)�1 � x�(1)+1 � � � � � xn:
2,

2. Set i to 2.

3. There exists \good"

qi 2 I \ K[a1; : : : ; am; x�(1); : : : ; x�(i)]

with respect to

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i�1)]i

for some �(i) 2 f1; : : : ; ng n f�(1); �(2); : : : ; �(i� 1)g. We then change the

order to a1 < � � � < am � x�(1) � x�(2) � � � � � x�(i) � x1 � � � � � xn

4. Set i to i+ 1. Repeat step 3.

5. The stopping criteria: On iteration `

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(`)] [ fq 2 F` : tdeg(LM(f)) = 1gi = hF0i

and we may place the indeterminates fx�g which are not in the image of �

(i.e. those associated with singletons) arbitrarily in the order above x�(`) so

that � will be a bijection (permutation)

� : f1; : : : ; ng ! f1; : : : ; ng:

The result is an order

O = a1 < � � � < am � x�(1) � � � � � x�(n):

2Yes, there's a small abuse of notation here. It's quite possible that 1 2 �'s.
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7.5.3 A nonidealized pre-strategy

Here we describe the pre-strategy where equation (7.23) need not hold.

De�nition 7.5.4 A 1-prestrategy for a set of polynomials

F0 � K[a1; : : : ; am; x1; : : : ; xn];

consists of the following algorithm. Set I = hF0i,

1. \Get" new set F1 such that hF1i = I and there exists good

q1 2 F1 \ K[a1; : : : ; am; x�(1)]

with respect to

hI \ K[a1; : : : ; am]i

for some �(1) 2 f1; : : : ; ng we then change the order to a1 < � � � < am �

x�(1) � x1 � � � � � x�(1)�1 � x�(1)+1 � � � � � xn.

2. Set i to 2.

3. \Get" new set Fi such that hFii = hFi�1i and there exists good

qi 2 Fi \ K[a1; : : : ; am; x�(1); : : : ; x�(i)]

with respect to

hI \ K[a1; : : : ; am]; x�(1); : : : ; x�(i�1)]i

for some �(i) 2 f1; : : : ; ng n f�(1); �(2); : : : ; �(i � 1)g we then change the

order to a1 < � � � < am � x�(1) � x�(2) � � � � � x�(i) � x1 � � � � � xn.

4. Set i to i+ 1. Repeat step 3.

5. The stopping criteria: On iteration `:

hF` \ K[a1; : : : ; am; x�(1); : : : ; x�(`)] [ fq 2 F` : tdeg(LM(f)) = 1gi = hF0i:
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We may place the indeterminate fx�g which are not in the image of � (i.e.

those associated with singletons) arbitrarily in the order above x�(`) so that

� will be a bijection (permutation)

� : f1; : : : ; ng ! f1; : : : ; ng:

The result is an order

O = a1 < � � � < am � x�(1) � � � � � x�(n):

Notice that the main di�erence between the two de�nitions, idealized prestrat-

egy and non-idealized prestrategy, is in steps 1 and 3. In the idealized prestrategy

we assume that

hI \K[a1; : : : ; am; x�(1); : : : ; x�(i)]i = hfqig[ (I \K [a1; : : : ; am; x�(1); : : : ; x�(i�1)]i;

while in the non-idealized pre-strategies it may take several polynomials qi;1; : : : ; qi;r

to generate the larger ideal, rather than just qi.

7.5.4 Gapless pre-strategies

In this section we will examine 1-prestrategies and show their relationship to

gapless orders.

Strategies without singletons

For the purpose of analysis it is useful to look at strategies with and without

singletons seperately. First we consider the strategy without singletons.

Lemma 2 A 1-prestrategy for ff1; : : : ; fsg resulting in order O with no singletons

is of full elimination dimension.

Proof:

By de�nition Gap(hf1; : : : ; fsi) � 0. Suppose, for the sake of contradiction, there
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exists a � and j such that

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i =

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j); : : : ; x�(j+
)]i for 
 � 1:

This implies

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i =

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j); : : : ; x�(j+1)]i:

This, however, contradicts our notion of pre-strategy, since by Step 3 we must have

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i 6= hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j+1)]i:

This is because when we relocated x�(j+1) in the order it was accomplished with a

qj+1 such that

qj+1 2 I \ K[a1; : : : ; am; x�(1); : : : ; x�(j+1)];

but

qj+1 62 hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i;

since qj+1 was assumed to be good. 2

Strategies with only singletons

Lemma 3 A 1-prestrategy for ff1; : : : ; fsg where

hf1; : : : ; fsi 6= K[a1; : : : ; am; x1; : : : ; xn]

resulting in order O with only singletons is of full elimination dimension.

Proof:

Suppose that the 1-prestrategy has resulted in order

fa1; : : : ; am; x�(1); : : : ; x�(n)g



105

where each x� has a singleton associated to it. Let I = hf1; : : : ; fsi.

Now for i � n, x�(i) did not need to be selected because a singleton was found

of the form

x�(i) + p(a1; : : : ; am; x�(1); : : : ; x�(i�1)):

Assume, for the sake of contradiction, that

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i)]i = hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i�1)]i:

Considering the singleton x�(i)+ p in its graded by x�(i) degree form (as developed

in Section 7.1.1), we have

p(a1; : : : ; am; x�(1); : : : ; x�(i�1)) = h
x�(i)
0 and x�(i) = h

x�(i)
1 :

Then, by Proposition 1, we must have

x�(i) 2 hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i�1)]i;

but if x�(i) is in an ideal which is generated by polynomials which do not contain

x�(i), then

1 2 hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i�1)]i:

This implies

I = K[a1; : : : ; am; x1; : : : ; xn]

which is contradicted by hypothesis. The lemma follows. 2

The general pre-strategy

Theorem 3 A 1-prestrategy for ff1; : : : ; fsg where

hff1; : : : ; fsgi 6= K[a1; : : : ; am; x1; : : : ; xn]

resulting in order O is of full elimination dimension.



106

Proof:

Suppose that the 1-pre-strategy has resulted in order

fa1; : : : ; am; x�(1); : : : ; x�(j); x�(1); : : : ; x�(l)g

where the x� were chosen by the \good" criteria and each x� has a singleton

associated to it. Parenthetically, this implies that l + j = n.

By lemma (2), (I; fa1; : : : ; am; x�(1); : : : ; x�(j)g) is of full elimination dimension.

By lemma (3), (I; fa1; : : : ; am; x�(1); : : : ; x�(j); x�(1); : : : ; x�(l)g) is of full elimina-

tion dimension. 2

Lemma 4 Conversely, any pair (ff1; : : : ; fsg;O) may be discovered with a 1-

prestrategy with no singletons, provided it is gap free.

Proof:

Since hI \ K[a1; : : : ; am; x1]i 6= hI \ K[a1; : : : ; am]i there exists some q1 2 (I \

K[a1; : : : ; am; x1]) n K[a1; : : : ; am]. We add q1 to the initially empty set, F1, in

the manner described in the pre-strategy process. The order generated by the

pre-strategy process is equal to O and so is very transparent.

Similarly there exists

qi 2 I \ K[a1; : : : ; am; x1; : : : ; xi] n hI \ K[a1; : : : ; am; x1; : : : ; xi�1]i

and xi is kept in it's place. After the nth step of this process we have isolated all

of the x's and the process terminates. 2

7.6 Strategies

Strategies are a slight generalization of pre-strategies and in fact every pre-

strategy is a strategy. The di�erence between the two methods is that a strategy
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can incorporate a change of variables through a concept which is described in the

next section.

7.6.1 Motivated unknowns

In a prestrategy \unknowns" refers to the original unknowns presented in the

problem. However, it is often the case that there will be some combination of

variables which is a \natural" unknown for the problem. In this section we will

de�ne a particular class of these new unknowns, called motivated unknowns.

Suppose that for a polynomial p(a1; : : : ; am; x1; : : : ; xn) there exist

L(a1; : : : ; am; x1; : : : ; xn) and R(a1; : : : ; am; x1; : : : ; xn)

such that

LpR = k(a1; : : : ; am; q(a1; : : : ; am; xs1; : : : ; xsns ))

so that k is a polynomial in one unknown. We will refer to the fxsg as being

subsumed. By the de�nition of an ideal, LpR is in the ideal represented by the

output of the spreadsheet. The polynomial LpR will not appear on the spreadsheet,

since p appears on the spreadsheet. Therefore, in practice, a person must recognize

the L and R.

Of course, from the perspective of �nding zeros of collections of commutative

polynomials, if p has a zero, then LpR has a zero and so k has a zero. Since k is

a polynomial in only one unknown variable, �nding the zeros of k is bound to be

easier than �nding the zeros of p.

7.6.2 Finding motivated unknowns in practice: Collect on

knowns

The concept of motivated unknowns is good in theory, but they are di�cult to

�nd in practice. However, the algorithm described in this section is often useful

in �nding motivated unknowns. The collected polynomial often has a form which
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can help the user see that a polynomial in many unknowns is truly a polynomial

in one motivated unknown.

NCCollectOnVariables is a command which collects products of knowns out of

expressions. For example, if A and B are known and X, Y , and Z are unknown

NCCollectOnVariables applied to

XABZ + Y ABZ +AX +AY

returns

(X + Y )ABZ +A(X + Y );

an expression in one motivated unknown X + Y and one unknown Z.

NCCollect de�ned formally

Given a polynomial p and a set of known variables V , NCCollect �rst writes

the polynomial p as a sum of polynomials which are V homogenous. For each

summand, NCCollect writes (to the extent possible) the polynomial into a \paren-

thesized" form using the rules

c1p1v + c2p1vp2 = p1v(c1 + c2p2)

c1p3vp2 = (c1p3 + c2)vp2

c1p1vp3 + c2p1vp2 = p1v(c1p3 + c2p2)

c1v + c2vp2 = v(c1 + c2p2)

c1p1vp3 + c2p1v = p1v(c1p3 + c2)

c1vp2 + c2p1vp2 = (c1 + c2p1)vp2

c1p3vp2 + c2p1vp2 = (c1p3 + c2p1)vp2

c1v + c2p1v = (c1 + c2p1)v

where v is a variable in V , c1 and c2 are scalars, and p1, p2, and p3 are polynomials.

If none of the above rules apply to a V -homogeneous polynomial, then we say

that its only collected form is trivial. If a polynomial is a sum of polynomials

whose only collected form is trivial, then we say that this sums only collected form

is trivial.

When given a polynomial p and a set of products of variables fq1; : : : ; qng (where

each qi is a product of variables), NCCollect begins by creating new variables

fv1; : : : ; vng, transforms p by replacing instances of the polynomial qj in p with vj,

performs NCCollectOnVariables as described above and then replaces vj with qj.
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NCCollectOnVariables

A key concept for NCCollectOnVariables is maximal products of knowns within

a monic monomial.

De�nition 7.6.1 vava+1 : : : vb is a maximal product of knowns in v1 : : : vn if

1. 1 � a � b � n

2. vj is a known for a � j � b

3. if a > 1, then va�1 is unknown

4. if b < n, then vb+1 is unknown

NCCollectOnVariables takes as input a polynomial p. On each term of p,

NCCollectOnVariables computes a list of maximal products of knowns. NCCollec-

tOnVariables then repeatedly applies NCCollect to transform p into parenthesized

expressions with respect to the maximal products of knowns. NCCollectOnVari-

ables uses the maximal products of knowns with the largest degree before using the

maximal products of knowns with lower degrees. For example, if A;B;C;D;E;F

and G are knowns and a; b; d; e and h are unknowns, then when NCCollectOnVa-

riables is applied to abABCd+De+ FGhAC, it returns �rst tries to collect with

respect to fABCg and then collect with respect to fFG;ACg and then collect

with respect to fDg.

7.6.3 The strategy de�ned informally

The idea of a strategy is the similar to that of a prestrategy, except that it

incorporates motivated unknowns. The idea of a strategy is :

The input to a strategy is a set of equations C.

1. Set C 0 = fg
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2. Run NCProcess which creates a display of the output containing polynomial

equations to which NCCollectOnVariables has been applied. Look at the list

of polynomials involving only one unknown or one motivated unknown (say

a particular equation only depends upon the motivated unknown).

3. The user must now make a decision about equations in the output (e.g., q42 is a

Ricatti equation so I shall not try to simplify it, but leave it for Matlab). Now

the user declares a new unknown y and adds the relation as a user creation.

The user would also select the equation as important. User selecting an

equation corresponds to adding it to the set C 0.

4. Either the theorem has been discovered or Go to Step 2.

The above listing is, in fact, a statement of a 1-strategy. Sometimes one needs

a 2-strategy in that the key is equations in 1 or 2 unknowns (motivated or not).

Typically, if a problem is solved with a 1-strategy, then the computer has done a

lot for you, while if the problem requires a 2-strategy, then it has done less, and

with a 3-strategy much less.

As with a prestrategy, the point is to isolate and to minimize what the user

must do. This is the crux of a strategy.

7.6.4 The formal strategy

Notice that the strategy begins with a set of polynomials

fp1; p2; : : : ; pmg (7.24)

and results in motivated unknowns

yi = ri(a1; : : : ; am; x� i1; : : : ; x� ini
) (7.25)

and the polynomial output

fq1; q2; : : : ; qk4g: (7.26)
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The sets de�ned in (7.24), (7.25), and (7.26) are in the polynomial algebra

K[a1; : : : ; am; x1; : : : ; xn; y1; : : : ; yl]:

They will satisfy the following ideal equality

hp1; p2; : : : ; pm; y1 � r1; : : : ; yl � rli = hq1; q2; : : : ; qk4 ; y1 � r1; : : : ; yl � rli: (7.27)

Following the formal strategy de�nition we will give an example of this highly

abstract concept. In the following de�nition we use ki to denote \known" variables.

These are not related to the ki introduced in Chapter 4. The ki will assume values

xj or yj.

De�nition 7.6.2 Let F0 � K[a1; : : : ; am; x1; : : : ; xn], I = hF0i, and the initial

order be x1 < � � � < xn: A 1-strategy for F0 consists of the following algorithm.

1. \Get" new set F1 such that either

a. there exists good

q1 2 F1 \ K[a1; : : : ; am; x�(1)]

with respect to

hI \ K[a1; : : : ; am]i

for some �(1) 2 f1; : : : ; ng. We then change the order to

a1 < � � � < am � x�(1) � x1 � � � � � x�(1)�1 � x�(1)+1 � � � � � xn:

Set k1 = x�(1).

b. or create a new \motivated unknown"

y1 2 K[a1; : : : ; am; xs(1); : : : ; xs(
)];

y1 = r1(a1; : : : ; am; xs(1); : : : ; xs(
)), such that there exists good

q1 2 K[a1; : : : ; am; y1]
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with respect to

hI \ K[a1; : : : ; am]i;

q1 2 F1, F1 � K[a1; : : : ; am; x1; : : : ; xn; y1], where hF1i = hF0 [ fy1 �

r1gi. Declare xs(1); : : : ; xs(
) as being subsumed. Declare y1 to be known.

Change the order to

a1 < � � � < am � y1 � x�(1) � � � � � x�(n�
) � xs(1) � � � � � xs(
)

where x� 62 fxs(1); : : : ; xs(
)g. Set k1 = y1.

2. Set i to 2.

3. \Get" new set Fi such that hFii = hFi�1i and either

a. there exists good

qi 2 Fi \ K[a1; : : : ; am; k1; : : : ; ki�1; x�(i)]

with respect to

hI \ K[a1; : : : ; am; k1; : : : ; ki�1]i

for some

x�(i) 62 fk1; : : : ; ki�1g [ fxsg [ fx�g:

We then set ki = x�(i) and change the order to

a1 < � � � < am � k1 � � � � � ki � x�(1) � � � � � x�(ni)

� xs1(1) � � � � � xs1(
1) � � � � � xsi(1) � � � � � xsi(
i)

where x� 62 fxsg (i.e. It is currently unknown).

b. or create a new \motivated unknown"

yi 2 K[a1; : : : ; am; x1; : : : ; xn; y1; : : : ; yny(i)]

yi = ri(a1; : : : ; am; xsi(1); : : : ; xsi(
i)); such that there exists good

qi 2 K[a1; : : : ; am; k1; : : : ; ki�1; y1]
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with respect to

hI \ K[a1; : : : ; am; k1; : : : ; ki�1]i;

qi 2 Fi;

Fi � K[a1; : : : ; am; k1; : : : ; ki�1; yi]

where hFii = hFi�1 [ fyi � rigi. Declare xsi(1); : : : ; xsi(
i) as being sub-

sumed. Declare yi to be known and set ki = yi. Change the order to

a1 < � � � < am � k1 � � � � � ki � x�(1) � � � � � x�(ni)

� xs1(1) � � � � � xs1(
1) � � � � � xsi(1) � � � � � xsi(
i)

� x�(1) � � � � � x�(n�)

4. Consider the set fq 2 Fi : tdeg(LM(q)) = 1g (the singletons) add LM(q) to

the set fx�g for all such q. Change the order to

a1 < � � � < am � k1 � � � � � ki � x�(1) � � � � � x�(ni)

� xs1(1) � � � � � xs1(
1) � � � � � xsi(1) � � � � � xsi(
i) � x�1 � � � � � x�i

where

x� 62 fxsg [ fx�g [ fk1; : : : ; kig

(i.e. It is currently unknown).

5. Set i to i+ 1. Repeat step 3.

6. The stopping criteria: On iteration `

hF`i = hF0 [ fy1 � r1; : : : ; yj` � rj`gi

and the set fx�g is empty.

What follows is a very simple example of a 1-strategy.

Example 7.6.3 Suppose that we have the following set which consists of one

relation

fp1 = AT (X + Y ) + (X + Y )A+ (X + Y )R(X + Y ) +Qg
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where X and Y are unknown and A, R, and Q are known. This set has a gap of

size 1 under order

A < R < Q� X � Y or A < R < Q� Y � X;

since we believe3 that the order non-redundant Gr�obner basis associated with either

order does not contain a polynomial in just X or Y . We can eliminate this gap by

creating a motivated unknown

y1 = X + Y:

Under the order

A < R < Q� y1 � X � Y

the order non-redundant result is an output set

fq1 = ATy1 + y1A+ y1Ry1 +Q; y1 � (X + Y )g

which has a gap of size 0 if we consider X and Y to subsumed.

Notice that (7.27) holds, since

hp1; y1 � (X + Y )i = hq1; y1 � (X + Y )i: (7.28)

Theorem 4 Given polynomials fp1; p2; : : : ; psg in knowns fa1; : : : ; amg and un-

knowns fx1; : : : ; xng. If polynomials fq1; : : : ; q`g in knowns and original and mo-

tivated unknowns, fy1; : : : ; ynyg, can be discovered with a 1-Strategy, then there

exists an order

a1 < � � � < am � k1 � � � � � knk � xs1 � � � � � xs
 � x�1 � � � � � x�n�

3Since the actual Gr�obner basis associated with either order is in�nite we don't known every

polynomial in the order non-redundant Gr�obner basis.
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where

ki 2 fx1; : : : ; xn; y1; : : : ; ynyg n fxs1; : : : ; xs
 ; x�1; : : : ; x�n�g;

xsi appears in a yj for some j, and

x�i appears as a singleton;

such that the gaps between

hI \ K[a1; : : : ; am; k1; : : : ; ki]i and hI \ K[a1; : : : ; am; k1; : : : ; ki�1]i

are of size 0 for i 2 f1; : : : ; nkg. Here I = hq1; : : : ; q`i.

Notice that since fx�g are singletons we also have gaps between

hI \ K[a1; : : : ; am; k1; : : : ; ki; xs1 ; : : : ; xs
 ; x�1; : : : ; x�i�1]i

and

hI \ K[a1; : : : ; am; k1; : : : ; ki; xs1; : : : ; xs
 ; x�1; : : : ; x�i]i

of size 0 for i 2 f1; : : : ; n�g.

Proof: Lemma 2 shows that the gaps between

hI \ K[a1; : : : ; am; k1; : : : ; ki]i and hI \ K[a1; : : : ; am; k1; : : : ; ki�1]i

are of size 0 for i 2 f1; : : : ; nkg. Unknown variables not included in fkig must

be either singletons or subsumed variables, since this is the criteria for stopping a

strategy. 2

7.6.5 The strategy+

A Strategy+ allows the user a little more freedom than the Strategy and there-

fore every Strategy is a Strategy+. Speci�cally, the Strategy+ allows the user to

add two di�erent sorts of polynomial hypotheses.
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1. Suppose that motivated unknown q appears as the only unknown in a poly-

nomial p(a; q). We allow the user to set the motivated unknown q to equal a

polynomial q = Q(a) provided q = Q(a) is a solution to

p(a;Q(a)) = 0

for all a. Usually this amounts to taking q = 0 or q = 1. Formalize the

notion by replacing the \user sets" with there exists.

2. If there are two polynomials, each in one unknown, say

p1(a; v1); p2(a; v2);

then any polynomial relating v1 and v2

r(v1; v2)

which holds for all a can be added to the list of relations known to hold (e.g.

if p1(a; v1) = 0 and p1(a; v2) = 0, then we can add r = v1 � v2).

In Section 9.2 we give an example of a 2-Strategy+ and discuss rami�cations

of our looser Strategy de�nitions to the speci�c example. The sort of polynomial

additions described in the Strategy+ formalism are somewhat mechanical and

the computer could easily o�er some assistance with these tasks, thereby further

automating the discovery process.

7.7 A more e�cient algorithm for �nding low

gap orders

This section is devoted to �nding better algorithms for computing Gap(I).

Obviously, one could compute the Gap for all orders as mentioned in Section 7.4.

Here, however, we will show how acceptable orders may be generated (and unac-

ceptable orders eliminated) by computing Gr�obner bases under orders which are
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only elimination orders for certain variables. That is the orders may not contain

� between every unknown variable.

The crux of the problem is �nding non-empty elimination ideals. We refer to

this in a general sense as elimination �nding. We primarily use the fact that an

idealized run of the Gr�obner basis algorithm under an elimination order implies

the existence or absence of good polynomials.

7.7.1 Elimination �nding

In this section we formally de�ne the sort of maps we seek. We will show how

the commonplace Gr�obner Basis Algorithm fails to satisfy our requirements.

Let X � K[a1; : : : ; am; x1; : : : ; xn], a set (not necessarily �nite) of polynomials.

De�nition 7.7.1 Let P be a function from the power set of K[a1; : : : ; am; x1; : : : ; xn]

into itself. We will say that P is ideal preserving if hP(X)i = hXi.

Example 7.7.2 Examples of ideal preserving maps are idealGBA() and

partialGBA`().

De�nition 7.7.3 Let P be an ideal preserving map. We say that P is j-elimination

�nding, if for every set X � K[a1; : : : ; am; x1; : : : ; xn], then either

(1) there exists a function � : f1; : : : ; jg ! f1; : : : ; ng which is injective such

that there is a polynomial which involves x�(1) through x�(j) which is in

P(X) That is, we found an equation in j (or fewer) unknowns.

(2) or for every function � : f1; : : : ; jg ! f1; : : : ; ng which is injective,

hfg 2 X : g 2 K[a1; : : : ; am; x�(1); : : : ; x�(j)]gi \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]

=

hXi \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]

There do not exist any equations in j unknowns.
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Remark 2 Here is an example of a situation where the idealized GBA under the

order a1 < a2 < � � � < an � x1 � � � � � xn is not j-elimination �nding.

Consider the polynomial set

fx2 x2 + a1 x2 a2;�x1 + a1 x2g

and let

I = hx2 x2 + a1 x2 a2;�x1 + a1 x2i:

Notice that

x2 x2 + a1 x2 2 I \ K[a1; a2; x2]:

The Gr�obner basis algorithm applied to these equations under the order a1 < a2 �

x1 � x2 results in

fa1 x2 � x1; x2 x2 + x1 a2g: (7.29)

So even though there exists a � such that there exists a p 2 I \ K[a1; a2; x�(1)]

where �(1) = 2 the GBA does not �nd it. Since the actual GBA stops this

calculation is equivalent to an idealized GBA calculation and the remark holds for

the idealized GBA as well.

7.7.2 An elimination �nding map

There does however exist j-th elimination �nding maps. (Well, modulo the

existence of the idealized GBA.) We present one now.

IdealizedElimFind is designed to be such an \elimination �nding function".

Basically we systematically go through all necessary orders with the Gr�obner basis

algorithm to �nd the sought for ideal.

De�nition 7.7.4 IdealizedElimFindj:

Given a set of polynomials, ff1; : : : ; fsg � K[a1; : : : ; am; x1; : : : ; xn]
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1. Let �i : f1; : : : ; ng ! f1; : : : ; ng for i 2 f1; : : : ; n!
(n�j)!j!

g be a set of permu-

tations such that f�r(1); : : : ; �r(j)g 6= f�s(1); : : : ; �s(j)g for r 6= s. That is

for any j-subset U of fx1; : : : ; xng there exists a k such that

fx�k(1); : : : ; x�k(j)g = U:

2. Set i to 1.

3. Run the GBA on ff1; : : : ; fsg under monomial order a1 < � � � < am � x�i(1) <

� � � < x�i(j) � x�i(j+1) < � � � < x�i(n)

4. If the output of the GBA contains a polynomial p 2 K[a1; : : : ; am; x1; : : : ; xj]n

K[a1; : : : ; am] STOP. Output p.

5. If i < n!
(n�j)!j!

set i to i+ 1 and repeat step 3. Otherwise go to step 6.

6. There does not exist a function � : f1; : : : ; jg ! f1; : : : ; ng which is injective

such that there is a polynomial, p 2 K[a1; : : : ; am; x�(1); : : : ; x�(j)]. That is,

there does not exist a new equation in j unknowns.

Lemma 5 IdealizedElimFindj is a j-th elimination �nding map.

Proof:

To show that IdealizedElimFindj is a j-th elimination �nding map we must show

that it satis�es conditions (1) and (2) of De�nition 7.7.3.

Condition 1:

What we need to prove is that the existence of a \good" p implies the existence

of a \good" Gr�obner basis element.

Suppose there exists a function � : f1; : : : ; jg ! f1; : : : ; ng which is injective

such that there is a good polynomial,

p 2 hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i n hI \ K[a1; : : : ; am]i:



120

By our de�nition of � there exists a �` such that

�`(�(i)) < j for i 2 f1; : : : ; jg:

Then the Gr�obner basis G created under the order

a1 < � � � < am � x�`(1) � � � � � x�`(n)

will satisfy the following set equality

hG \ K[a1; : : : ; am; x�`(1); : : : ; x�`(j)]i = hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i

by Lemma 11.2 of [11]. Letting G = fgi : i 2 Ng we may then write

p =

NX
i=1

LigiRi

where Li; Ri 2 K[a1; : : : ; am; x1; : : : ; xn].

We will next show that one of these gi must be good with respect to hI \

K[a1; : : : ; am]i. Assume, for the sake of contradiction, that all of the gi do not

contain any of the fx�(1); : : : ; x�(j)g. That is gi 2 I \ K[a1; : : : ; am] for all i. This

implies that p 2 hI \K[a1; : : : ; am]i which is a contradiction, since p was assumed

to be good.

We have shown that the existence of a \good" p implies the existence of a

\good" Gr�obner basis element.

Condition 2:

Suppose there does not exist such a polynomial in j unknowns. That is there does

not exist a function � : f1; : : : ; jg ! f1; : : : ; ng which is injective such that there

is a polynomial, p 2 I \ K[a1; : : : ; am; x�(1); : : : ; x�(j)] n K[a1; : : : ; am].

Since the set f�ig are simply permutations, the idealized Gr�obner basis algo-

rithm under orders f�ig

a1 < � � � < am � x�i(1) � � � � � x�i(n)
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will not generate any

p 2 I \ K[a1; : : : ; am; x�`(1); : : : ; x�`(j)] n hI \ K[a1; : : : ; am]i:

2

7.7.3 A better elimination �nding map

The de�nition of elimination �nding function is a bit too weak for our needs.

For example in the case of n linearly independent linear equations in n unknowns

n di�erent 1-elimination �nding maps could give n di�erent �(1)'s. This leads to

ambiguity in the strategy process which will be discussed below. What would be

more useful is a map which �nds all j good orders and not just the existence of

one.

De�nition 7.7.5 An unordered set, F � fx1; : : : ; xmg, will be called a j subset

if it contains exactly j distinct elements. Since the polynomial algebra

K[a1; : : : ; am; x�(1); : : : ; x�(n)] = K[a1; : : : ; am; x1; : : : ; xn]

for any permutation � we might write K[a1; : : : ; am; U ] where U is a j subset of

unknowns and our meaning should be clear.

De�nition 7.7.6 Let P be an ideal preserving map. We say that P is all j-

elimination �nding if for every set X � K[a1; : : : ; am; x1; : : : ; xn], P �nds all j

subsets of fx1; : : : ; xng, U�, such that

hX \ K[a1; : : : ; am; U�]i 6= hX \ K[a1; : : : ; am]i:

That is, we �nd all unordered sets f�(1); : : : ; �(j)g such that there exists a

new equation in these j unknowns.

Fortunately, all elimination �nding functions exist as well and we can obtain

one with a slight modi�cation to the function ElimFind given in De�nition 7.7.4.
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De�nition 7.7.7 IdealizedAllElimFindj:

Given a set of polynomials, ff1; : : : ; fsg � K[a1; : : : ; am; x1; : : : ; xn], follow the

same algorithm as described in IdealizedElimFindj, Section 7.7.4, but do not

stop when a polynomial p 2 K[a1; : : : ; am; x1; : : : ; xj] n K[a1; : : : ; am]. Instead add

that j-subset to a list of j-subsets and keep going. When the algorithm terminates

(by going through all j-subsets of our n unknowns) this list will be of the form

fU :jU j= j; I \ K[a1; : : : ; am; U ] 6= I \ K[a1; : : : ; am]g, a list of j-subsets.

Example 7.7.8

AllElimFindj(fx1 + x2 + x3 + x4 + a1a2a3g)

where the xi are unknown and the ai are known returns the following lists of

j-subsets for the corresponding j's:

fg for j = 1; 2; 3

and

ffx1; : : : ; x4gg for j = 4:

Example 7.7.9

AllElimFindj(fx1 + a1; x2 + a2; x3 + a1; x4 + a1a2g)

where the xi are unknown and the ai are known returns:

ffx1g; fx2g; fx3g; fx4gg for j = 1;

ffx1; x2g; fx1; x3g; fx1; x4g; fx2; x3g; fx2; x4g; fx3; x4gg for j = 2;

ffx1; x2; x3g; fx1; x2; x4g; fx1; x3; x4g; fx2; x3; x4gg for j = 3;

and

ffx1; x2; x3; x4gg for j = 4:
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Here is a somewhat trivial upper bound on the gap which is based on the

cardinality of the output from AllElimFind1.

Proposition 2 Gap(ff1; : : : ; fsg;O) � n� jAllElimFind1(ff1; : : : ; fsg) j for any

order on the unknowns, O and so of course we have

Gap(ff1; : : : ; fsg) � n� jAllElimFind1(ff1; : : : ; fsg) j :

Proof: Without loss of generality let ffx1g; : : : ; fxrgg be the output of

AllElimFind1. Then

hI \ K[a1; : : : ; am; xj]i 6= hI \ K[a1; : : : ; am]i for j = 1; : : : ; r: (7.30)

We will show that for any order O

Gap(ff1; : : : ; fsg;O) � n� jAllElimFind1(ff1; : : : ; fsg) j :

For a given order O, x�(1) � � � � � x�(n), the gap will be de�ned using the

following ideals,

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i for j = 1; : : : ; n:

Equation (7.30) implies that

hI \ K[a1; : : : ; am; x�(j)]i 6= hI \ K[a1; : : : ; am]i for j = 1; : : : ; r:

That is, there exists a good pj such that

pj 2 hI \ K[a1; : : : ; am; x�(j)]i n hI \ K[a1; : : : ; am]i

so, in fact,

pj 2 hI \ K[a1; : : : ; am; x�(j)]i n hI \ K[a1; : : : ; am; x�(j�1)]i:
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So we have

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i0)]i 6= hI \ K[a1; : : : ; am; x�(1); : : : ; x�(i0�1)]i

if �(i0) � r: (7.31)

Take the gap to be 
. Then there exists an l 2 f1; : : : ; n� 
g such that

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(l)]i = hI \ K[a1; : : : ; am; x�(1); : : : ; x�(l+1)]i = : : :

= hI \ K[a1; : : : ; am; x�(1); : : : ; x�(l+
)]i:

Assume, for the sake of contradiction, that

Gap(ff1; : : : ; fsg;O) > n� jAllElimFind1(ff1; : : : ; fsg) j

that is 
 > n� r. This implies that there exist n� r + 1 unknowns, fx�(j)g, such

that

hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j)]i = hI \ K[a1; : : : ; am; x�(1); : : : ; x�(j�1)]i;

but by the above equation (7.31) there exist r unknowns which do not have this

property. This brings the total number of unknowns to (n� r + 1) + (r) > n.

We have found our contradiction, and therefore 
 � n� r: 2

Generating j gap orders

If we �nd a good polynomial using, say, x�(1); then we can in some sense

consider x�(1) to be known at least in the sense of Section 1.1.1. We could then

regard x�(1) as known and use AllElimFind1 taking only fx1; : : : xn; g n x�(1) as

unknown. Continuing in this fashion we will eventually discover an order of full

elimination dimension if such an order exists. One might say that each run of

AllElimFind1 returns a set of acceptable steps to take. Similarly AllElimFind2

could be used to �nd 1 Gap orders.

A quicker algorithm will be given below.
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7.7.4 A singleton �nding map

Given a set of polynomials we would like to have an algorithm at hand to �nd

any singletons in the ideal generated by these polynomials if they exist. Here we

describe formally what we expect from such an algorithm and present an algorithm

with these qualities.

De�nition 7.7.10 Let P be an ideal preserving map. We say that P is singleton

�nding if for every set X � K[a1; : : : ; am; x1; : : : ; xn] there exists a singleton in

P(X) if there exists a singleton in hXi.

De�nition 7.7.11 SingletonF ind:

Given a set of polynomials, ff1; : : : ; fsg � K[a1; : : : ; am; x1; : : : ; xn]

1. Let �i : f1; : : : ; ng ! f1; : : : ; ng for i 2 f1; : : : ; ng be a set of permutations

such that �r(n) 6= �s(n) for r 6= s. (� could be, for example, the complete

set of cyclic permutations.)

2. Set i to 1.

3. Run the GBA on ff1; : : : ; fsg under monomial order a1 < � � � < am < x�i(1) <

� � � < x�i(n�1) � x�i(n)

4. If the output of the GBA contains an x�(n) singleton STOP. Output this

singleton.

5. If i < n set i to i+ 1 and repeat step 3. Otherwise go to step 6.

6. There does not exist a singleton for any order on the unknowns, O.

Proposition 3 SingletonF ind is a singleton �nding function.
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Proof: What we need to show is that the existence of a xn singleton in

hf1; : : : ; fsi implies the existence of a xn singleton Gr�obner basis element. Let

G be a Gr�obner basis for hf1; : : : ; fsi created under the order

x�(1) < � � � < x�(n�1) � xn (7.32)

where � : f1; : : : ; n� 1g ! f1; : : : ; n� 1g is a permutation map.

Let p be a xn singleton in the ideal hf1; : : : ; fsi,

p = xn + q(x1; : : : ; xn�1):

Since G is a Gr�obner basis

NForm(p;G) = 0:

Assume, for the sake of contradiction, that there are no xn singletons in G. That

is g is not a xn singleton for all g 2 G. This implies that either g does not

contain xn or terms involving xn are of the form cuxnv where u and v are not both

1. For any g 2 G the rule �(g) will not reduce the xn term of p. Considering

p� xn = q(x1; : : : ; xn�1) no xn will be introduced by applying a rule �(g) because

any xn would appear on the left hand side of a rule under the monomial order

described above (7.32) and q has no xn.

Since the xn term will never be eliminated by application of the rules �(G) this

implies

NForm(p;G) 6= 0;

a contradiction, which implies that a xn singleton must appear in G.

Alternatively, if there are no xn singletons in hf1; : : : ; fsi there will be no xn

singletons in G since G � hf1; : : : ; fsi. 2

7.7.5 The prestrategy in practice

The algorithm described above in Section 7.7.3 is nice conceptually, but we

are disregarding a lot of useful information. What happens in practice is that one
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would only use such exhaustive search techniques as ElimFind1 and SingletonFind

if necessary. A reasonable practitioner would run the Gr�obner basis algorithm for

some speci�ed number of iterations, under an order which \looks good", and parse

the output looking for polynomials in one unknown and singletons. Hopefully,

polynomials in each of these two categories would be found.

As mentioned above on page 99 singletons are, for the problem solver, the best

that can be hoped for. Unknowns associated with singletons are \taken out of the

mix" by placing them highest in the order. Polynomials involving these singleton

indeterminants can be instantly transformed into polynomials which do not involve

these indeterminants by applying the singleton rule. In the current section, we will

index the singletons with �'s.

The unknowns associated with polynomials in one unknown are appreciated

as well. These indeterminates we can regard as knowns and call them deter-

mined. Further analysis of our polynomial ideal would say that a polynomial

involving one unknown, determined unknowns, and knowns is really a polyno-

mial in one unknown. This is really a more verbose description of the backsolv-

ing/triangularization structure described on page 30 and pictured in equations

(4.3-4.10). We would place these determined unknowns low in the order with the

knowns. In the current section we will label these indeterminants with �.

The order will then be of the form

a1 < � � � < am < x�(1) < � � � < x�(m) � x�(1) < � � � < x�(l)

� x�(1) < � � � < x�(k) (7.33)

where the x�'s are currently unknown.

This process may now be continued by running the Gr�obner basis algorithm

again under the order speci�ed in (7.33). With luck, the practitioner will �nd

polynomials in one unknown and singletons for the x�. This will then increase the

size of the sets

fx�g and fx�g
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and decrease the size of the set

fx�g:

At some point the 1-prestrategy stops since we do not have a polynomial in one

current unknown. At this point we will have current unknowns, fx�(1); : : : ; x�(b)g.

If we use this set as the unknowns for ElimFind1 and get nothing, then there does

not exist a 1-prestrategy without singletons for this polynomial set.

Also take all of these current unknowns and put them above all the rest of the

indeterminates to look for singletons.

A concrete example of how this might be done is to cyclicly permute the un-

known set fx�g running the GBA under the order

a1 < � � � < am < x�(1) < � � � < x�(m) � x�(j) � x�(j+1) < � � � < x�(l) (7.34)

< x�(1) < � � � < x�(j�2) � x�(j�1) � x�(1) < � � � < x�(k):

If both of these procedures return nothing THEN there does not exist a 1-

prestrategy.

We have shown the following.

Theorem 5 Given that there exists a gap free order

a1 < � � � < am � x�(1) � � � � � x�(n)

for the polynomial set ff1; : : : ; fsg any order on the knowns will discover it as well

if the procedure presented in this section is used.

Notice that the procedure in this section may be implemented on a com-

puter. Indeed, we have created such a function, called NCXWholeProcess[ ].

NCXWholeProcess[ ] takes four arguments: a set of polynomials, an ordered list of

indeterminates, a �le name, and an iteration count. This function makes repeated

calls to NCProcess[], changing the order as described in this section, attempting

to �nd a gapless order. It creates a set of LATEX �les, each of which corresponds

to a Gr�obner basis created.
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7.8 Proof of Proposition 1

Next we turn to the proof of Proposition 1.

Proof:

This proof will be done in six parts, equation (7.12) implies equation (7.13), equa-

tion (7.13) implies equation (7.12), equation (7.12) implies equation (7.14), equa-

tion (7.14) implies equation (7.12), equation (7.12) implies equation (7.11), and

equation (7.11) implies equation (7.12).

Case (7.12) ! (7.13)

By the condition given in (7.12) we have

hI \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi+
 ]i: (7.35)

Assume, for the sake of contradiction, that there exists some g� 2 ~G such that

g� 2 K[a1; : : : ; am; x1; : : : ; xi; : : : ; xi+
] n K[a1; : : : ; am; x1; : : : ; xi]: (7.36)

By the elimination property of Gr�obner bases we have

hG \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi]i: (7.37)

Since ~G is an order non-redundant subset of G,

h ~G \ K[a1; : : : ; am; x1; : : : ; xi]i = hG \ K[a1; : : : ; am; x1; : : : ; xi]i

by Lemma 5. Since

g� 2 I \ K[a1; : : : ; am; x1; : : : ; xi+
] � hI \ K[a1; : : : ; am; x1; : : : ; xi]i (7.38)

by (7.35), by the previous two equations

g� 2 h ~G \ K[a1; : : : ; am; x1; : : : ; xi]i: (7.39)

It su�ces to show that g� � g for all g 2 ~G \ K[a1; : : : ; am; x1; : : : ; xi] which

contradicts the order non-redundancy of the set ~G.



130

We now show

g� � g for all g 2 ~G \ K[a1; : : : ; am; x1; : : : ; xi]:

Notice that g� must contain some xr for r 2 fi + 1; : : : ; i + 
g by (7.36). But g

cannot contain any xr for r > i, since g 2 K[a1; : : : ; am; x1; : : : ; xi]. Therefore we

have LeadMon(g�) > LeadMon(g) which by our de�nition of order on polynomials

implies that g� � g.

Case (7.13) ! (7.12)

By the condition given in (7.13)

~G \ K[a1; : : : ; am; x1; : : : ; xi] = ~G \ K[a1; : : : ; am; x1; : : : ; xi+
]: (7.40)

We wish to show that

hI \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi; : : : ; xi+
 ]i:

(7.41)

By the elimination property of Gr�obner bases we have

hI \ K[a1; : : : ; am; x1; : : : ; xi; : : : ; xi+
]i = hG \ K[a1; : : : ; am; x1; : : : ; xi+
]i:

But then by Lemma 5

hG \ K[a1; : : : ; am; x1; : : : ; xi+
 ]i = h ~G \ K[a1; : : : ; am; x1; : : : ; xi+
 ]i:

By equation (7.40) we have

h ~G \ K[a1; : : : ; am; x1; : : : ; xi+
]i = h ~G \ K[a1; : : : ; am; x1; : : : ; xi]i

and by Lemma 5 we get

h ~G \ K[a1; : : : ; am; x1; : : : ; xi]i = hG \ K[a1; : : : ; am; x1; : : : ; xi]i:

Finally we have, by the Gr�obner elimination ideal property, that

hG \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi]i: (7.42)
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The result is shown by following the ='s from (7.41) to (7.42).

Case (7.12) ! (7.14)

By condition (7.12) we have

hI \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i:

For i+ 1 � j � 
 we may consider the xj grading of our algebra,

K[a1; : : : ; am; x1; : : : ; xn] =

1M
d=0

R
xj
d

where

q 2 R
xj
d if and only if degxj (q) = d:

Then we may write an arbitrary

p 2 I \ K[a1; : : : ; am; x1; : : : ; xi+
]

as

p = h
xj
0 + h

xj
1 + h

xj
2 + : : :

where h
xj
d 2 R

xj
d . Since

hI \ K[a1; : : : ; am; x1; : : : ; xi]i = hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i;

we have

p 2 hI \ K[a1; : : : ; am; x1; : : : ; xi]i: (7.43)

Let Gi = G \K[a1; : : : ; am; x1; : : : ; xi], then by (7.43) and the property of elimina-

tion for Gr�obner bases, we have

NForm(p;Gi) = 0:

Since Gi � K[a1; : : : ; am; x1; : : : ; xi] and xj 62 K[a1; : : : ; am; x1; : : : ; xi], by Lemma 3

and Lemma 2 we have

NForm(hd;Gi) = 0 for d � 1
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which then implies that

hd 2 I \ K[a1; : : : ; am; x1; : : : ; xi] for d � 1:

Case (7.14) ! (7.12)

Condition (7.14) implies that for all

p 2 I \ K[a1; : : : ; am; x1; : : : ; xi; : : : ; xi+
];

its xj degree grading for i+ 1 � j � 
,

p = h
xj
0 + h

xj
1 + h

xj
2 + : : : ;

where h
xj
d is of degree d in xj, will have the property that

hd 2 I \ K[a1; : : : ; am; x1; : : : ; xi] for d � 1:

Assume, for the sake of proof by contradiction,

hI \ K[a1; : : : ; am; x1; : : : ; xi]i 6= hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i:

This then implies the existence of a polynomial p,

p 2 hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i n hI \ K[a1; : : : ; am; x1; : : : ; xi]i: (7.44)

Condition (7.44) implies the next two relations,

NForm(p;G \ K[a1; : : : ; am; x1; : : : ; xi+
]) = 0; (7.45)

but

NForm(p;G \ K[a1; : : : ; am; x1; : : : ; xi]) 6= 0: (7.46)

We will write p in its graded form

p = h
i+

0 + h

i+

1 + h

i+

2 + : : : where hi+
d is of degree d in xi+
:
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By the condition given in (7.14) we must have

NForm(h
i+

k ;G \ K[a1; : : : ; am; x1; : : : ; xi]) = 0

for all k � 1. So

NForm(p;G \ K[a1; : : : ; am; x1; : : : ; xi]) =

NForm(hi+
0 ;G \ K[a1; : : : ; am; x1; : : : ; xi])

where hi+
0 2 K[a1; : : : ; am; x1; : : : ; xi+
�1].

We may then consider the xi+
�1 degree grading of h
i+

0 ,

h
i+

0 = h

i+
�1
0 + h

i+
�1
1 + h

i+
�1
2 + : : :

where hi+
d is of degree d in xi+
�1. Then (7.14) implies that

NForm(p;G \ K[a1; : : : ; am; x1; : : : ; xi]) =

NForm(hi+
�10 ;G \ K[a1; : : : ; am; x1; : : : ; xi])

where hi+
�10 2 K[a1; : : : ; am; x1; : : : ; xi+
�2].

Continuing in this fashion we have

NForm(p;G\K[a1; : : : ; am; x1; : : : ; xi]) = NForm(hi+10 ;G\K[a1; : : : ; am; x1; : : : ; xi])

where hi+10 2 K[a1; : : : ; am; x1; : : : ; xi].

We now have that

NForm(p;G \ K[a1; : : : ; am; x1; : : : ; xi]) =

NForm(hi+10 ;G \ K[a1; : : : ; am; x1; : : : ; xi]) 6= 0; (7.47)

but

NForm(p;G \ K[a1; : : : ; am; x1; : : : ; xi+
]) =

NForm(hi+10 ;G \ K[a1; : : : ; am; x1; : : : ; xi+
]) = 0: (7.48)
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Since hi+10 2 K[a1; : : : ; am; x1; : : : ; xi], this is a contradiction and (7.12) follows.

Case (7.12) ! (7.11)

Assume, for the sake of contradiction, that there exists a good polynomial

q 2 hI \ K[a1; : : : ; am; x1; : : : ; xi+
 ]i

with respect to hI \ K[a1; : : : ; am; x1; : : : ; xi]i. Then

q 62 hI \ K[a1; : : : ; am; x1; : : : ; xi]i

and therefore

hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i 6= hI \ K[a1; : : : ; am; x1; : : : ; xi]i

which is a contradiction.

Case (7.11) ! (7.12)

Assume, for the sake of contradiction,

hI \ K[a1; : : : ; am; x1; : : : ; xi+
]i 6= hI \ K[a1; : : : ; am; x1; : : : ; xi]i;

then there exists a

q 2 hI \ K[a1; : : : ; am; x1; : : : ; xi+
 ]i

such that

q 62 hI \ K[a1; : : : ; am; x1; : : : ; xi]i:

The polynomial q is good with respect to hI \ K[a1; : : : ; am; x1; : : : ; xi]i and we

have found our contradiction.

2
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7.9 Appendix: Decoupled systems of equations

In this section, for the sake of completeness, we will describe solution forms

which are better than the \triangular form" given in Section 4.2.1. We call these

solution forms decoupled, since a given unknown will appear in an equation with

only knowns. They have been mentioned in Sections 4.2.2 and 4.2.3, but we will

give a more rigorous de�nition here.
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7.9.1 Essentially decoupled

An even more computationally useful set of matrix equations will have the

\essentially decoupled form", the formal de�nition will follow.

q1(a1; : : : ; am) = 0 (7.49)

q2(a1; : : : ; am) = 0 (7.50)

...

qm(a1; : : : ; am) = 0 (7.51)

qm+1(a1; : : : ; am;x1) = 0 (7.52)

qm+2(a1; : : : ; am;x1) = 0 (7.53)

...

qm+sp(a1; : : : ; am;xp) = 0 (7.54)

xp+1 = qm+sp+1(a1; : : : ; am; x1; : : : ; xp) (7.55)

...

xn = qs2(a1; : : : ; am; x1; : : : ; xp) (7.56)

qs2+1(a1; : : : ; am; x1; : : : ; xn) = 0 (7.57)

...

qs3(a1; : : : ; am; x1; : : : ; xn) = 0 (7.58)

A solution of this type is made up of compatibility conditions, equations (7.49-

7.51) and equations (7.57-7.58); equations in one unknown, equations (7.52-7.54);

and equations (7.55-7.56) which are singletons de�ned in De�nition 7.5.1.

Given such a decoupled set of equations one can use equations (7.52-7.54),

qm+1; : : : ; qm+sp, to solve for x1; : : : ; xp simultaneously. One must then validate

these solutions with the solution compatibility conditions (7.57-7.58). It is then a
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simple matter to �nd matrices xp+1; : : : ; xn by evaluating polynomials

qm+sp+1; : : : ; qs2 :

De�nition 7.9.1 Let I be an ideal of K[a1; : : : ; am; x1; : : : ; xn]. We say that I

can be essentially decoupled if there exist j, 1 � j � n; k, j � k � n and

injective maps � : f1; : : : ; jg ! f1; : : : ; ng and � : fj + 1; : : : ; ng ! f1; : : : ; ng n

image(�); a set G�; and a set G � I such that

G = G0 [G1 [ : : : [Gj [ fx�(i) � gi(a1; : : : ; am; x�(1); : : : ; x�(j)) : j + 1 � i � ng

[ G�

where G0 = G \ K[a1; : : : ; am], no subset of G generates I, and

Gi � K[a1; : : : ; am; x�(i)] n K[a1; : : : ; am]; Gi 6= ;;

for 1 � i � j.

7.9.2 Formally decoupled

An even more computationally useful set of matrix equations will have the

\formally decoupled form" which does not have compatibility conditions on the

unknowns. The formal de�nition will follow.

q1(a1; : : : ; am) = 0 (7.59)

q2(a1; : : : ; am) = 0 (7.60)

...

qm(a1; : : : ; am) = 0 (7.61)
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qm+1(a1; : : : ; am;x1) = 0 (7.62)

qm+2(a1; : : : ; am;x1) = 0 (7.63)

...

qm+sp(a1; : : : ; am;xp) = 0 (7.64)

xp+1 = qm+sp+1(a1; : : : ; am; x1; : : : ; xp) (7.65)

...

xn = qs2(a1; : : : ; am; x1; : : : ; xp) (7.66)

A solution of this type is made up of compatibility conditions only on the knowns,

equations (7.59-7.61); equations in one unknown, equations (7.62-7.64); and equa-

tions (7.65-7.66) which are singletons as de�ned in De�nition 7.5.1.

Given such a decoupled set of equations one can use equations (7.62-7.64),

qm+1; : : : ; qm+sp, to solve for x1; : : : ; xp simultaneously. It is then a simple matter

to �nd matrices xp+1; : : : ; xn by evaluating polynomials qm+sp+1; : : : ; qs2.

De�nition 7.9.2 Let I be an ideal of K[a1; : : : ; am; x1; : : : ; xn]. We say that I

can be formally decoupled if there exist j, 1 � j � n; k, j � k � n and

injective maps � : f1; : : : ; jg ! f1; : : : ; ng and � : fj + 1; : : : ; ng ! f1; : : : ; ng n

image(�) and a set G � I such that

G = G0 [ G1 [ : : : [ Gj [ fx�(i) � gi(a1; : : : ; am; x�(1); : : : ; x�(j)) : j + 1 � i � ng

where G0 = G \ K[a1; : : : ; am], no subset of G generates I, and

Gi � K[a1; : : : ; am; x�(i)] n K[a1; : : : ; am]

for 1 � i � j.

Notice that both of these solution forms, essentially decoupled and formally

decoupled, satisfy the formally backsolvable criteria and we have the following set

inclusion relationship.

Formally decoupled � Essentially decoupled � Formally backsolvable
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In this part there are many theorems from the rather comprehensive book in

linear system theory and control, \Robust and Optimal Control" [28], which are

solved using the noncommutative Gr�obner basis methods.

We will give proofs and \discover" which �t into the strategy formalism or in

some cases almost �t into the strategy formalism.

The �rst chapter, Chapter 8, treats basic properties of Riccati equations. The

Riccati equation

ATX +XA+XRX +Q = 0 (7.67)

is ubiquitous in linear control theory. See [28] for the particulars. We have seen

that many basic facts about Riccati equations follow quickly from noncommutative

Gr�obner basis methods. To be more precise we have discovered the key formulas

in Theorems 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, and 13.9 from Chapter 13 of [28]

using a 1-prestrategy.

The second chapter, Chapter 9, treats Theorems 13.25, 13.26, and 13.29 from

[28] which concern the positive real and the inner properties of transfer functions.

In Chapter 10, Theorem 8.5 from [28] is \discovered" which gives formulas for

dilating a system to all-pass. This theorem is useful in the construction of optimal

Hankel norm approximations.

Chapter 11 treats a model uncertainty problem where the perturbation has the

coprime factored structure. This theorem appears as Theorem 9.6 in [28].



Chapter 8

A Development of Algebraic

Riccati Equations Using

Noncommutative Gr�obner Bases

Here we study properties and solutions of the algebraic Ricatti equation (ARE).

If A, Q, and R are real, square matrices of similar size where Q and R are sym-

metric, then an ARE in X is the following equation:

ATX +XA+XRX +Q = 0 (8.1)

Often useful in studying the Algebraic Ricatti Equation is the so called Hamiltonian

matrix:

H ,

"
A R

�Q �AT

#
(8.2)

Here we wish to show that H has a symmetric spectrum about the j!-axis. This

can be accomplished by showing that there exists an invertible matrix, say J , such

that J�1HJ = �H�. We could discover J by the methods given here, but let us

for the moment just verify that J ,

"
0 �I

I 0

#
accomplishes the task at hand.

141
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The Mathematica input:1

J = ff0,-1g,f1, 0gg;

Hamiltonian = ffA,Rg,f-Q,-tp[A] gg;

tp[Q] = Q; tp[R] = R;

MatMult[J,Hamiltonian,Inverse[J]] - (-tpMat[Hamiltonian]) (8.3)

returns

ff0,0g,f0,0gg (8.4)

which veri�es the above assertion.

8.1 Solving the ARE: an invariant subspace of H

We begin by showing the relationship of the two newly de�ned entities, (7.67)

and (8.2). We show how one might discover the solution of the above ARE through

an analysis of the Hamiltonian matrix. We begin by proving the following theorem,

Theorem 13.1 in [28].

Theorem 6 Let V � C 2n be an n-dimensional invariant subspace of H, and let

X1;X2 2 C n�n be two complex matrices such that

V = Im

"
X1

X2

#
:

If X1 is invertible, then X = X2X
�1
1 is a solution to the Riccati equation 7.67 and

�(A+ RX) = �(H jV ). Furthermore, the solution X is independent of a speci�c

choice of V .

Proof:

Begin by de�ning an n-dimensional invariant subspace of H, Im

"
X1

X2

#
. Since our

1This instance of Mathematica input is a little di�erent than the Mathematica input presented

in the rest of this document, since it does not involve Gr�obner Bases.
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subspace is invariant there must exist a matrix L such that"
A R

�Q �AT

#"
X1

X2

#
=

"
X1

X2

#
L (8.5)

Notice that to get this result we need not set Q and R symmetric.

Hamiltonian = ffA,Rg,f-Q,-tp[A]gg;

AllRelations = MatMult[Hamiltonian,

ffX1g,fX2gg] - MatMult[ffX1g,fX2gg,ffLgg ];

AllRelations = Join[ AllRelations, NCMakeRelations[fInv,X1g]];

SetMonomialOrder[ fA,tp[A],R,X1,X2,L,Inv[X1]g,fQg ];

NCProcess[AllRelations,3,"Discover"]; (8.6)

This results in the following output.

THE ORDER IS NOW THE FOLLOWING:

A < AT < R < X1 < X2 < L < X�1
1 � Q < L

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fL; Qg

The corresponding rules are the following:

L! X�1
1 AX1 +X�1

1 RX2 (8.7)

Q! �1X2X
�1
1 A�AT X2X

�1
1 �X2X

�1
1 RX2X

�1
1 (8.8)

From the category fQ;Lg we have in equation (8.8) the solution to the ARE (7.67).

Obviously X = X2X
�1
1 .

We also see that �(A + RX) = �(L): Multiplying the X�1
1 RX2 term of the

equation in L given in the spreadsheet, (8.7) byX�1
1 X1 and making the substitution

for X given above we have the appropriate similarity transformation. That is

X�1
1 (A+RX)X1 = L.
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In particular if we have taken the invariant subspace corresponding to the stable

subspace of H (recall that n of H's eigenvalues are in C �), then �(L) � C � and

A+RX is stable. 2

8.2 Converse

Next we discover the converse, the solution to the ARE (7.67) corresponds to

an invariant subspace of the Hamiltonian (8.2). This is Theorem 13.2 in [28].

Theorem 7 If X 2 C n�n is a solution to the Riccati equation (7.67), then there

exist matrices X1;X2 2 C n�n , with X1 invertible, such that X = X2X
�1
1 and the

columns of

"
X1

X2

#
form a basis of an n-dimensional invariant subspace of H.

Proof:

Discover solution

Take X to be a solution to the ARE (7.67) and let our invariant subspace have

parameterization

"
I

X2

#
. Taking the parameterization

"
X1

X2

#
where X1 is in-

vertible led to no useful results. So we set X1 = I to reduce freedom in the system

of equations. This might seem like a drastic reduction, but experience has shown

that if this is incompatible it will be obvious quickly. From our experience with

Theorem 13.1 we expect X1 to be invertible and so do not pick X1 = 0.

Hamiltonian = ffA,Rg,f-Q,-tp[A]gg;

AllRelations =

MatMult[Hamiltonian, ff1g,fX2gg] - MatMult[ff1g,fX2gg, ffLgg ];

AllRelations = Join[ AllRelations, f tp[A]**X + X**A + X**R**X + Q g

];
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SetMonomialOrder[ fX,Q,A,tp[A],R,Inv[X1],X1,X2g, fLg ];

NCProcess[AllRelations,3,"Solution1"]; (8.9)

The output:

THE ORDER IS NOW THE FOLLOWING:

X < Q < A < AT < R < X�1
1 < X1 < X2 � L

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fLg

The corresponding rules are the following:

L! A+RX2

The expressions with unknown variables fg

and knowns fA; Q; R; X; X2; A
T
g

X RX !�1Q �X A�AT X

X2RX2 ! �1Q�X2A�AT X2

This suggests that X2 = X.

Verify solution

We will have found an invariant subspace of H, Im

"
I

X

#
, if

H

"
I

X

#
�

"
I

X

#
L�

"
chk1

chk2

#
= 0

implies that both chk1 and chk2 are 0. This can be veri�ed easily with our com-

puter algebra methods. We supply the following computer input.

L = A + R**X;
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AllRelations = Flatten [ffchk1g,fchk2gg+

MatMult[Hamiltonian, ff1g,fXgg] -

MatMult[ff1g,fXgg, ffLgg ] ];

AllRelations = Join[ AllRelations, f

tp[A]**X + X**A + X**R**X + Q g ];

SetMonomialOrder[fX,Q,A,tp[A],R,Inv[X1]g,fchk1,chk2g];

NCProcess[AllRelations,3,"Solution2"]; (8.10)

This computer input resulted in the following LATEX output:

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fchk1; chk2g

The corresponding rules are the following:

chk1 ! 0

chk2 ! 0

So Im

"
I

X

#
is an invariant subspace of H where X = X2X

�1
1 = XI�1. 2

8.3 Special Riccati solutions

Next we �nd hermitian solutions to the ARE (7.67) by proving Theorem 13.3

from [28]:

Theorem 8 Let V be an n-dimensional H-invariant subspace and let X1;X2 2
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C n�n be such that

V = Im

"
X1

X2

#
:

Then �i + ��j 6= 0 for all i; j = 1; : : : ; n; �i; �j 2 �(HjV ) implies that X�

1X2 is

hermitian. Furthermore, if X1 is nonsingular, then X = X2X
�1
1 is hermitian.

Proof:

Again take

"
X1

X2

#
as a parameterization of an invariant subspace. Create an

indeterminant wanted = X�

2X1 � X�

1X2 to analyze the hermitian properties of

X�

2X1. If it can be shown in some way that wanted = 0 we will have shown X�

1X2

is hermitian.

AllRelations = MatMult[Hamiltonian, ffX1g, fX2gg]

- MatMult[ffX1g,fX2gg, ffLgg ];

AllRelations = Union[ AllRelations, NCMakeRelations[

fInv, X1g] , fwanted == tp[X2]**X1 - tp[X1]**X2,

Q == tp[Q], R == tp[R] g ];

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ffL,wantedg,fX1,X2,Q,A,tp[A],R,Inv[X1]gg,

AllRelations];

NCProcess[AllRelations,2,"Solution1"]; (8.11)

The output includes the following:

THE ORDER IS NOW THE FOLLOWING:

L < LT < wanted < wantedT � X1 < XT�1
1 < XT

1 < X�1
1 < X2 < XT

2 < Q <

QT < A < AT < R < RT
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The expressions with unknown variables fg

and knowns fL; wanted; LT
g

wantedL!�1LT wanted (8.12)

From rule (8.12) above we see that wanted satis�es a full rank null Sylvester

equation (2.2) if L enjoys the property that �i + ��j 6= 0 for � 2 �(L). Then for

X the solution derived in Theorem 13.1 X = X2X
�1
1 = X��

1 (X�

1X2)X
�1
1 so X is

hermition as well. 2

The following theorem, Theorem 13.4 in [28], gives necessary and su�cient condi-

tions for a solution to be real.

Theorem 9 Let V be an n-dimensional H-invariant subspace, and let X1;X2 2

C n�n be such that X1 is nonsingular and the columns of

"
X1

X2

#
form a basis of

V . Then X = X2X
�1
1 is real if and only if V is conjugate symmetric, i.e. v 2 V

implies that v 2 V .

Proof:

())

De�ning X , X2X
�1
1 , X must be real; and, since Im

"
I

X

#
is our H-invariant

subspace V, we have V conjugate symmetric.

(()

Assuming our space is conjugate symmetric we have the following relation satis�ed."
X1

X2

#
=

"
X1

X2

#
P (8.13)

where the � denotes complex conjugate.

In the Mathematica code below we use the symbols CnjX1 and CnjX2 to

denote �X1 and �X2 respectively. We also introduce �X = �X2
�X1
�1
.
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The input:

AllRelations = ffCnjX1g,fCnjX2gg - MatMult[ffX1g,fX2gg, ffPgg ];

AllRelations = Union[ AllRelations, NCMakeRelations[Inv,X1,CnjX1,P],X

== X2**Inv[X1], f CnjX == CnjX2**Inv[CnjX1] g];

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ ffCnjXg,fXg,fP,X1,Q,A,tp[A],R,

Inv[CnjX1],CnjX1,CnjX2,X2,Inv[X1]gg, AllRelations ];

NCProcess[AllRelations,3,"Solution"]; (8.14)

This corresponds to the following output:

THE ORDER IS NOW THE FOLLOWING:

CnjX < CnjXT
� X < XT

� P < P T�1 < P T < P�1 < X1 < XT�1
1 < XT

1 <

Q < A < A < R < CnjX�1
1 < CnjX1 < CnjXT�1

1 < CnjXT
1 < CnjX2 <

CnjXT
2 < X2 < XT

2 < X�1
1

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fX; XT
g

The corresponding rules are the following:

X ! CnjX

XT
! CnjXT

From the spreadsheet we see that X = X so our solution is real.

2
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8.4 Summary of above results

De�nition 8.4.1 H 2 dom(Ric) if the following conditions are satis�ed:

1. H has no purely imaginary eigenvalues.

2. X (H) (stable invariant subspace) and Im

"
0

I

#
are complementary.

If X (H) is spanned by

"
X1

X2

#
, then X = X2X

�1
1 is unique. We write X =

Ric(H).

(Under change of basis P ,

"
X1

X2

#
P =

"
X1P

X2P

#
and X = (X2P )(X1P )

�1 =

X2PP
�1X�1

1 = X2X
�1
1 .)

Some of the above results on Riccatis are summarized in Theorem 13.5 from

[28] which we prove next.

Theorem 10 Suppose H 2 dom(Ric) and X = Ric(H). Then

1. X is real symmetric;

2. X satis�es the algebraic Riccati equation

A�X +XA+XRX +Q = 0;

3. A+RX is stable.

Proof: Here we create an invariant stable subspace of the Hamiltonian. It is

parameterized by

"
X1

X2

#
. We de�ne Hstable with the equation

H

"
X1

X2

#
=

"
X1

X2

#
Hstable

where �(Hstable) � C .
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(i)

Hstable's eigenvalues are such that �i + ��j 6= 0 for � 2 �(Hstable). So by the

argument with Theorem 13.3 we have XT
1 X2 is hermition and therefore X =

X�T
1 (XT

1 X2)X
�1
1 is hermition.

From Theorem 13.4 we have that it is real after the following observation.

Hstable is conjugate symmetric:

Take v 2 Hstable (w.l.o.g. a generalized eigenvector and so again with no l.o.g.

an eigenvector), then Hstablev = �v so Hstablev = �v or further Hstablev = �v, since

Hstable has real entries. This conjugation, however, does not change �'s stability.

� 2 C . So v 2 Hstable. (Hstable is conjugate symmetric.)

(ii,iii)

Here we set X = X�T
1 (XT

1 X2)X
�1
1 and show that X is a solution to the Riccati

associated with H (8.2). We also show that A+RX is stable.

Here is the Mathematica input.

AllRelations = MatMult[Hamiltonian, ffX1g,fX2gg]

- MatMult[ffX1g,fX2gg,ffHstablegg];

AllRelations = Union[ AllRelations, NCMakeRelations[ fInv, X1g],

f X == tp[Inv[X1]]**tp[X1]**X2**Inv[X1],

tp[A]**X + X**A + X**R**X + Q == wanted,

L == A + R ** X , tp[X2]**X1 - tp[X1]**X2, Q == tp[Q], R == tp[R] g ];

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ ffL,X,X1,X2,Q,A,tp[A],R,Inv[X1]g, fwanted,Hstablegg,

AllRelations ];

NCProcess[AllRelations,2,"Solution"]; (8.15)
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Mathematica input (8.15) gives the following TEX output.

THE ORDER IS NOW THE FOLLOWING:

L < LT < X < XT < X1 < XT�1
1 < XT

1 < X2 < XT
2 < Q < QT < A < AT < R <

RT < X�1
1 � wanted < wantedT < Hstable < HstableT

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fHstable; wanted; HstableT ; QT ; RT ; wantedT ; XT
g

The corresponding rules are the following:

Hstable! X�1
1 LX1 (8.16)

wanted! 0 (8.17)

HstableT ! XT
1 LT XT�1

1

(ii)

Since wanted = 0 in the spreadsheet, (8.17), we have shown that this X = X2X
�1
1

is a solution to the Riccati.

(iii)

Since we have de�ned L = A + RX from the spreadsheet we have X�1
1 LX1 =

X�1
1 (A+RX)X1 = Hstable. This implies that A+RX is stable.

2

8.5 Stabilizing solutions

De�nition 8.5.1 (A;R) is stabilizable if
h
A� �I R

i
has full row rank for

all �, Re(�) � 0.

The next theorem, Theorem 13.6 in [28], will give conditions for the existence

of a stabilizable solution to the Algebraic Riccati Equation.
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Theorem 11 Suppose H has no imaginary eigenvalues and R is either positive

semide�nite or negative semide�nite. Then H 2 dom(Ric) if and only if (A;R) is

stabilizable.

Proof:

(()

Again we create an invariant stable subspace of the Hamiltonian, Hstable. This is"
X1

X2

#
. This time we cannot assume that X�1

1 exists because this is the comple-

mentary condition. Since we have condition (i) of dom(Ric) all we must show is

condition (ii) which is equivalent to the existence of X�1
1 .

We will show that if X1 has a non-trivial kernel it leads to a contradiction.

Here we let x 2 Ker(X1) so X1x = 0.

Here a slight de�ciency of NCGB shows it's head. The software cannot easily han-

dle commutative elements. A simple work around for this problem when scalars

must be introduced is to use a prime number in place of this commutative inde-

terminate. In our NCGB run below we use 7 in place of �, a stable eigenvalue.

Hamiltonian = ffA,Rg,f-Q,-tp[A]gg;

AllRelations = MatMult[Hamiltonian,ffX1g,fX2gg]

- MatMult[ffX1g,fX2gg,ffHstablegg ];

AllRelations = Join[ AllRelations, f X1**x == 0,

Hstable ** x == 7 x, (* Re(7)< 0 *)

Q == tp[Q],R == tp[R],

tp[X2]**X1 == tp[X1]**X2

g ];

NCAutomaticOrder[ ffx,X2,Q,A,tp[A],R,Hstableg,fX1gg,AllRelations];
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NCProcess[AllRelations,3,"Solution"];

(8.18)

The above Mathematica input resulted in the following spreadsheet.

THE ORDER IS NOW THE FOLLOWING:

x < xT < X2 < XT
2 < Q < QT < A < AT < R < RT < Hstable < HstableT �

X1 < XT
1

The expressions with unknown variables fg

and knowns fA; Hstable; R; x; X2; A
T ; HstableT ; xT ; XT

2 g

RX2 x! 0

(7 +AT )X2 x == 0

Looking at the spreadsheet we have

xT XT
2 (7 +A) = 0

xT XT
2 R = 0;

then

xTXT
2

h
A� (�7) R

i
= 0

But �7 is a positive eigenvalue (7 2 C ) and (A,R) is stabilizable. This implies

X2x = 0 so X1x = 0 and X2x = 0 where x 6= 0.

 
X1

X2

!
has full column rank,

since it is a parameterization of a subspace. We have found our contradiction.

There cannot exist such an x. We must have X1 nonsingular.

So Im

"
X1

X2

#
and the Im

"
0

I

#
are complementary.

H 2 dom(Ric)
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())

Follows from the de�nition.

2

The next theorem, Theorem 13.9 from [28], relates the structure of a certain

matrix pencil with the existence of unobservable modes.

Theorem 12 Suppose D has full column rank and let R = D�D > 0; then the

following are equivalent

1.

"
A� |!I B

C D

#
has full column rank for all ! 2 R.

2. ((I�DR�1D�)C;A�BR�1D�C) has no unobservable modes on the |!-axis.

Proof:

(i) ()) (ii)

Here again we have to use the lucky number 7 to represent j!. This causes a slight

di�culty. We have been using the tp[ ] construction to denote complex conjugate

and so far this has not caused any di�culties. Here, however, our commutative

\indeterminate" should have the property that

tp[7] = - 7;

since

(j!)� = �j! for ! 2 R :

The major rami�cation for our computer algebra techniques is that one cannot use

the command NCAddTranspose[ ] blindly. Below we will handle our 7's carefully.

The main idea of the proof is as follows. We assume that we have a x which

is an eigenvector corresponding to j! (7) of A�BR�1DTC and in the null space

of (I � DR�1DT )C (i.e. an unobservable mode) and show that this leads to a

contradiction. We begin by assuming the invertibility of X1 and X2 to facilitate

the algebra.
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The NCGB input :

jWmatrix = ffA-7, Bg,fC,Dgg;

AllNonTpedRelations = Union[ NCMakeRelations[fInv, R,A,X1,X2 g],

f MatMult[ jWmatrix, ffX1g,fX2 gg ],

R == tp[D] ** D,

(A - B**Inv[R]**tp[D]**C)**x == 7 x,

(1 - D**Inv[R]**tp[D])**C**x == 0 g; (8.19)

We separate these relations, AllNonTpedRelations, into those which contain

7's, RelsWith7, and those which do not, Non7Relations.

RelsWith7 = f

(A-B**Inv[R]**tp[D]**C)**x==7 x,(-7+A)**X1+B**X2 g;

(* Notice the sign changes *)

RelsWith7 = Union[ RelsWith7,

f tp[(A-B**Inv[R]**tp[D]**C)**x]== -tp[ 7 x ],

tp[ 7 X1]+A**X1+B**X2 g ];

AllRelations = Union[ NCAddTranspose[ Non7Relations ],

RelsWith7 ];

NCAutomaticOrder[ffQ,D,x,R,A,B,Cg,fX1,X2gg,AllRelations];

NCProcess[AllRelations,3,"Solution",RR->False]; (8.20)

The Mathematica input (8.20) results in the following output.

The expressions with unknown variables fX2; X
�1
1 g
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and knowns fC; DT ; RT�1
g

X2X
�1
1 ! �1RT�1DT C (8.21)

This suggests we pick X1 = 1 and X2 = �R�1DT C. Recall that neither X1

nor X2 is necessarily invertible. Since the expression on the right hand side of

(8.21) is not (necessarily) invertible, but the inverted Xi is on the right this leads

us to make the choice X1 = I.

We make the substitution and see if chk1 and chk2 go to 0:

X1 = 1;

X2 = - tp[Inv[R]]**tp[D]**C;

AllRelations =

f MatMult[ mtx1 ,ffX1g,fX2gg]

- ffchk1g,fchk2gg,

NCMakeRelations[fInv,R,Ag],

R == tp[D] ** D,

(A - B**Inv[R]**tp[D]**C)**x == 7 x,

(1 - D**Inv[R]**tp[D])**C**x g;

NCAutomaticOrder[ffchk1,chk2,D,R,A,B,Cg,fxgg,AllRelations];

NCProcess[AllRelations,3,"Solution"]; (8.22)

Mathematica input (8.22) gives the following output.

The expressions with unknown variables fxg

and knowns fchk1; chk2g

chk1 x! 0
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chk2 x! 0

So it appears that

"
chk1

chk2

#
x = 0 or equivalently

"
A� 7 B

C D

# "
I

�R�1DTC

#
� x = 0

So the unobservable mode of ((I � DR�1DT )C;A � BR�1DTC) has given us a

nonzero vector in the null space of the matrix in (i). This is a contradiction. This

matrix has full column rank for all !.

(ii) ()) (i)

Not complete.

2



Chapter 9

Positive Real Matrix Functions

Here we prove some theorems about positive real matrix functions using NCGB.

First let's recall the de�nition of positive real.

De�nition 9.0.2 A rational matrix function G(s) is said to be positive real if

it has the following property

G(j!) +G�(j!) > 0

for all ! 2 R and G(s) is analytic in the right half plane.

9.1 Example of a pre-strategy

We prove the \algebraic part" of the following theorem with a pre-strategy,

Theorem 13.25 [28]:

Theorem 13 Let

2
4 A B

C D

3
5 be a state space realization of G(s) with A stable

(not necessarily a minimal realization). Suppose there exist an X � 0; Q, and W

159
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such that

XA+A�X = �Q�Q (9.1)

B�X +W �Q = C (9.2)

D +D� = W �W: (9.3)

Then G(s) is positive real and

G(s) +G�(s) =M�(s)M(s)

with M(s) =

2
4 A B

Q W

3
5. Theorem 13.25 [28] also states that if M(j!) has full

column rank for all ! 2 R, then G(s) is strictly positive real, a fact we do not

address here.

Proof:

Here we create an indeterminant, Wanted = G� + G�M�M and show that the

relations which make up this theorem imply Wanted = 0. This will then show

that G� +G =M�M . Recall the work around for a single commutative variable,

in this case s, introduced in Section 2.4.1 which uses 7.

Here is the input:

newVariables = fX,Q,Wg;

origVariables = fA,B,C,Dg;

Invert = f NCMakeRelations[fInv, A,X, 7-A, 7+A g],

tp[X] == X g;

eqnObs = f X**A + tp[A]**X + tp[Q]**Q == 0 g;

eqn2 = f tp[B]**X + tp[W]**Q - C == 0 g;

eqn3 = f D + tp[D] == tp[W]**W g;

NewEquation = f

Wanted == C**Inv[7-A]**B + D -
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tp[B]**tp[Inv[7+A]]**tp[C] + tp[D]

- (( -tp[B]**tp[Inv[7+A]]**tp[Q] + tp[W]) **

( Q**Inv[7-A]**B + W ) ) g;

AllRelations = Flatten[fInvert,eqnObs,eqn2,eqn3,NewEquationg];

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ fFlatten[ forigVariables,

newVariablesg],fWantedgg, AllRelations ];

NCProcess[AllRelations,3,"Other",RR->False,SBByCat->False]; (9.4)

This gives the following result:

THE ORDER IS NOW THE FOLLOWING:

A < (7� A)�1 < A�1 < (7 + A)�1 < AT < (7�A) T�1 < AT�1 < (7 +A) T�1 < B <

BT < C < CT < D < DT < X < X�1 < XT < XT�1 < Q < QT < W < WT
�

Wanted

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fWanted; XT ; XT�1
g

The corresponding rules are the following:

Wanted! 0

Now since Wanted = 0 we have

G(s) +G�(s)� (M�(s)M(s)) = 0

or

G(s) +G�(s) =M�(s)M(s):
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This is the desired algebraic result and we have shown the equivalence of the

transfer functions under consideration. Note that we have not proved A is stable.

Correspondingly we did not use the assumption X � 0. 2

9.2 Example of a 2-Strategy (Converse of Sec-

tion 9.1)

We discover the algebraic portion of the following theorem with a 2-Strategy+,

Theorem 13.26 in [28], under an added minimality assumption on one of the sys-

tems. It is clear from the outset that a 1-Strategy will not work, since one of

the equations (9.5) contains two variables which are not in the statement of the

problem. It is gratifying that a 1-Strategy+ is used through all of the derivations

until the last step. This bodes well for computer \automation" of the process.

The 2-Strategy+ discovery of (9.5) and (9.6) does not imply that alternatives

to these equations do not exist, since the Strategy+ rules allow us to be rather

free in taking various motivated unknowns to be 0. However, the computer runs

produce output equations which a human observer would readily see have only 0

as a solution. All of this will be seen in the derivation below.

Theorem 14 Suppose(A;B;C;D) is a minimal realization of G(s) with A stable

and G(s) is positive real. Then there exist an X � 0; Q, and W such that

XA+A�X = �Q�Q (9.5)

B�X +W �Q = C (9.6)

D +D� = W �W: (9.7)

and

G(s) +G�(s) =M�(s)M(s)
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with M(s) =

2
4 A B

Q W

3
5. Furthermore, if G(s) is strictly positive real, then M(j!)

given above has full column rank for all ! 2 R.

Discovery:

We start with the minimal system G(s) =

2
4 A B

C D

3
5 and a system M =

2
4 A1 B1

C1 D1

3
5 and our goal is to �nd simple equations which are equivalent to G(s)+

G�(s) =M�(s)M(s). Hopefully, we will obtain (9.5)-(9.7) or equations equally as

elegant.

9.2.1 The setup

In state space coordinates we have:

G +G� =

2
664
A 0 B

0 �AT
�CT

C BT D +DT

3
775 (9.8)

M�M =

2
664

A1 0 B1

�CT
1 C1 �AT

1 �CT
1 D1

DT
1 C1 BT

1 DT
1D1

3
775 (9.9)

We shall make the assumption (not actually required by the theorem) that

both systems are minimal. Thus the statespace isomorphism theorem, see Chap-

ter 12, implies there exists an invertible map T from the statespace of (9.8) to the

statespace of (9.9).

Let's denote the state space matrices of system (9.8) (resp. (9.9)) by Ag, Bg,

Cg, and Dg (resp. Am, Bm, Cm, Dm). In the spirit of minimizing the number
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of indeterminates we avoid explicitly introducing the inverse of T by writing the

similarity transformation between the two above composed systems as

TAg = AmT; CgT = Cm; Bg = TBm; Dg = Dm

A common property, although obviously not always true, of block transforma-

tion matrices is that the diagonal blocks are invertible. We will make such an

assumption about the diagonal blocks of the block 2x2 matrix T .

By the throughput matrix equality we have

D +DT = DT
1D1:

We re-labelD1 asW so our derivations will have the same notation as the statement

of the theorem.

9.2.2 Discovering via a strategy

Essential to the discovery process is the monomial order inherited from the

classi�cation of symbolic indeterminates into knowns and unknowns. Since in the

statement of the theorem we are given system G and seek to �nd systemM which

satis�es certain criteria, it seems natural to regard A;B; and C as known and

A1; B1; and C1 as unknown. Likewise the observability Grammian of the unknown

system M , introduced below as X3, will be considered unknown.

The blocks of the transformation

T =

 
T11 T12

T21 T22

!

to the unknown system will likewise be considered unknown.

The computer input

Here is the Mathematica input we begin with:
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origVariables = fA,B,C,Dg;

grams = fX1,X2,X3g;

Ts = fT11,T12,T21,T22g;

newVariables = fA1,B1,C1,Wg;

SetNonCommutative[newVariables];

SetNonCommutative[grams];

SetNonCommutative[Ts];

SetNonCommutative[origVariables];

Invert = NCMakeRelations[fInv,T11,T22,A,A1,X1,X2,X3g];

eqnCtrl = f X1 ** tp[A] + A ** X1 + B ** tp[B] == 0 g;

eqnObs = f tp[A] ** X2 + X2 ** A + tp[C] ** C == 0 ,

tp[A1] ** X3 + X3 ** A1 + tp[C1] ** C1 == 0 g;

SelfAdjoints = f X1 == tp[X1], X2 == tp[X2], X3 == tp[X3] g;

(* Tmtx is the similarity transformation between G + G and M M. *)

Tmtx = f f T11, T12 g , f T21, T22 g g;

Similarities = f

(* The A transformation *)

MatMult[Tmtx,ffA,0g,f0,-tp[A]gg]

- MatMult[ffA1,0g,f-tp[C1]**C1,-tp[A1]gg,Tmtx],

(* The B transformation *)

MatMult[Tmtx,ffBg,f-tp[C]gg]

- ffB1g,f-tp[C]**Wgg,
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(* The C transformation *)

ffC,tp[B]gg

- MatMult[fftp[W]**C1,tp[B1]gg,Tmtx],

(* The D transformation *)

D + tp[D] == tp[W]**W

g;

Rels = Flatten [f Invert,eqnCtrl,eqnObs,Similarities,

SelfAdjoints g ];

Rels = NCAddTranspose[ Rels ];

NCAutomaticOrder[ fFlatten[forigVariables, X1,X2g],

fX3g, Ts , newVariablesg, Rels ] ;

NCProcess[Rels,2,"Run1"]; (9.10)

The computer output

What follows is the output of NCProcess. Here is the order as reported by

NCGB:

THE ORDER IS NOW THE FOLLOWING:

A < A�1 < AT < AT�1 < B < BT < C < CT < D < DT < X1 < X1
�1 <

X1
T < X1

T�1 < X2 < X2
�1 < X2

T < X2
T�1

� T 11 < T 11
�1 < T 11

T < T 11
T�1

�

X3 < X3
�1 < X3

T < X3
T�1

� A1 < A1
T
� T 12 < T 12

T
� T 21 < T 21

T
� T 22 <

T 22
�1 < T 22

T < T 22
T�1

� B1 < B1
T < C1 < C1

T < W < W T
� A1

�1 < A1
T�1
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THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fA1; B1; A1
T ; B1

T ; X1
T ; X2

T ; X3
T ; X1

T�1; X2
T�1; X3

T�1
g

The corresponding rules are the following:

A1 ! T 11AT 11
�1 (9.11)

B1 ! T 11B � T 12C
T (9.12)

Important categories follow:

The expressions with unknown variables fT 12
T ; T 11

T�1; T 11
T
g

and knowns fA; AT
g

T 12
T T 11

T�1AT T 11
T
!�1AT 12

T (9.13)

The expressions with unknown variables fT 21
T ; X3; T 11

T ; T 11g

and knowns fA; AT
g

(T 21
T T 11� T 11

T X3 T 11)A+AT (T 21
T T 11� T 11

T X3 T 11) == 0 (9.14)

The expressions with unknown variables fT 22; T 21; T 12
T ; T 12; T 11

T ; T 11
�1
g

and knowns fC; BT
g

�1C (T 11
�1 T 12 � T 12

T T 22 + T 12
T T 21 T 11

�1 T 12) + BT (1 � T 11
T T 22 +

T 11
T T 21 T 11

�1 T 12) == 0 (9.15)

Analysis

Equations (9.11) and (9.12) are singletons and de�ne A1 and B1 respectively.

The equation for B1 will become simpler by the time our computations are done,

but the important thing is that this unknown has been solved for.
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Multiplying (9.13) on the right by T�T11 and setting

q4 = T T
12T

�T
11

we have

q4A
T +Aq4 = 0; (9.16)

an equation in one (motivated) unknown. Equation (9.16) implies that q4 = 0,

since A is assumed to be stable.

Using that A is stable does not operate purely at the level of computer algebra.

This step requires human intervention. On the other hand, equation (9.16) has

q4 = 0 as a solution for any A, thus the de�nition of a Strategy+ allows us to take

q4 = 0. This operates purely at the level of computer algebra algorithms and could

be implemented in generic software.

Then, since T�T11 is non-singular, we have that

T12 = 0:

Setting

q5 = T T
21T11 � T T

11X3T11 (9.17)

equation (9.14) becomes

q5A
T +Aq5 = 0; (9.18)

which in turn implies that q5 = 0. Factoring the T11 from equation (9.17) we have

(T T
21 � T T

11X3)T11 = 0 (9.19)

and so

T T
21 = T T

11X3:

Examining (9.15) after setting T12 = 0 we are left with

BT (1 � T T
11T22) = 0:
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This becomes an equation in one variable by setting

q1 = 1 � T T
11T22:

Clearly, BTq1 = 0 has q1 = 0 as a solution for all choices of B. Thus the

rules of a 1-strategy+ allow us to set q1 = 0. This is amusing from an engineering

viewpoint, since B is usually a very low rank matrix, so while q1 may be 0 we

have not proved that it is. Another computer run which does not assume q1 = 0

produces the result q1 = 0 in a way which is consistent with engineering practice.

The computer input

Next we put our newly derived relations into the Mathematica input and call

NCProcess again.

T12 = 0;

DiscoveredRels = f

T21 - X3 ** T11,

q1 == 1 - T11 **tp[T22] g

Rels = Flatten [f Invert,eqnCtrl,eqnObs,

Similarities,SelfAdjoints, DiscoveredRels g ];

NCProcess[Rels,2,"Run2", SBByCat->False, RR->False]; (9.20)

The computer output

The output contained the following category:

The expressions with unknown variables fT 11; q1g

and knowns fA; B; X1; A
�1; AT�1

g
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q1 T 11B ! 0 (9.21)

q1 T 11AB ! 0

q1 T 11AAB ! 0

q1 T 11AAAB ! 0 (9.22)

This strongly suggests that

q1T11A
nB = 0 for all integers n � 0: (9.23)

The hypothesis of Theorem 13 of minimality and therefore controllability of

the original system implies the controllability operator is right invertible. (See

Section 12.1 for details.) Equation (9.23) implies that

q1 = 0:

Then we have

1 � T T
11T22

or if you prefer

T T
11 = T�122 :

The computer input

We make the corresponding changes and run NCProcess again.

DiscoveredRels = f

T21 - X3 ** T11,

q1 == 1 - T11 **tp[T22] ,

tp[T11] == Inv[T22] g;

NCAutomaticOrder[ fFlatten[forigVariables, X2, X1, W g], fq1g, fT11g,
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fC1g,fX3g,fT22g,fT21g,fA1,tp[A1],B1g, fInv[A1], tp[Inv[A1]] gg,

Rels ] ;

NCProcess[Rels,2,"Run3", SBByCat->False, RR->False ]; (9.24)

The computer output

The output contained the following category:

The expressions with unknown variables fX3; C1
T ; C1; T 11

T ; T 11g

and knowns fA; A�1; AT
g

T 11
T X3 T 11A! �1AT T 11

T X3 T 11 � T 11
T C1

T C1 T 11 (9.25)

At this stage we maymake our procedure a 2 strategy by de�ning two motivated

unknowns,

Q = C1T11 and X = T T
11X3T11:

This will make equation (9.25) an equation in two unknowns:

QT Q! �1X A�AT X:

The computer input

We make the following Mathematica input.

DiscoveredRels = f

T21 - X3 ** T11,

q1 == 1 - T11 **tp[T22],

tp[T11] == Inv[T22],

Q == C1 ** T11,
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X == tp[T11]**X3 ** T11 g;

NCProcess[Rels,2,"Run4", SBByCat->False, RR->False ]; (9.26)

The computer output

The output contains the following categories:

The expressions with unknown variables fX; Qg

and knowns fC; BT ; W T
g

W T Q! C �BT X

The expressions with unknown variables fX; QT ; Qg

and knowns fA; AT
g

QT Q! �1X A�AT X

These are the desired relations and therefore we have discovered the algebraic

part of Theorem 13. Our algebraic computations may be said to �t in the 2-

Strategy+ formalism.
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9.3 Inner transfer functions

Lemma 13.29 from [28] gives some algebraic results on systems which are used

to analyze inner transfer functions. This result is derived next.

Theorem 15 Suppose N =

2
4 A B

C D

3
5 2 RH1 and X = X� > 0 satis�es

A�X +XA+ C�C = 0 (9.27)

Then

1. D�C +B�X = 0 implies N�N = D�D.

2. (A;B) controllable, and N�N = D�D implies D�C +B�X = 0.

Proof:

(a)

The NCGB input:

newVariables = fX1,X2,Wantedg;

SetNonCommutative[newVariables];

origVariables = f Inv[A], A , B, C, D g;

SetNonCommutative[ origVariables ];

tp[X1] = X1;

tp[X2] = X2;

Invert = f

NCMakeRelations[fInv,A, (7-A),(7+A) g] g;

eqnObs = f tp[A] ** X1 + X1 ** A + tp[C] ** C == 0 g;

eqnCtrl = f X2 ** tp[A] + A ** X2 + B ** tp[B] == 0 g;
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eqn1 = f tp[D] ** C + tp[B] ** X1 g;

(* Wanted == N� N *)

NewEquation = f Wanted == - tp[D] ** D +

(- tp[B] ** tp[Inv[7+A]] ** tp [ C] + tp[D])**

( C** Inv[7-A] ** B + D ) g;

AllRelations = Flatten [f Invert, eqnObs, eqnCtrl, eqn1 , NewEquation

g ] ;

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ffX1,A,B,C,Dg,fWantedgg, AllRelations ];

NCProcess[AllRelations,3,"PosReal",RR->False,SBByCat->False]; (9.28)

This computer input resulted in the following LATEX output:

THE ORDER IS NOW THE FOLLOWING:

X1 < A < (7 +A)T�1 < AT�1 < (7 �A)T�1 < AT < (7 +A)�1 < A�1 <

(7�A)�1 < B < BT < C < CT < D < DT
�Wanted < WantedT � X2

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fWanted; WantedTg

The corresponding rules are the following:

Wanted! 0

WantedT ! 0
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(b)

Not complete. We hope that the controllability and observability constructions

developed in Chapter 12 may be used to prove this result but have been unsuc-

cessful so far. 2



Chapter 10

Hankel Norm Approximations

The theorem presented in this section can be used to solve the optimal Hankel

norm approximation problem. We will use noncommutative computer algebra to

generate formulas for matrix blocks which dilate an arbitrary system to an all pass

system.

10.1 Dilating a transfer function to all pass

De�nition 10.1.1 A matrix function G(s) is said to be all pass if it has the

following property

G(s)G�(s) = I

Given system G(s) =

2
4 A B

C D

3
5, the condition stated above is equivalent via The-

orem 8.41 in [28] to the existence of a P and a Q symmetric (where the throughput

matrix D must be unitary) which satisfy the following:

AP + PAT +BTB = 0

ATQ+QA+ CCT = 0

1which incidentally was proven using the NCGB techniques.

176
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PQ = I

Here we take an arbitrary system and dilate it to an all pass system. More specif-

ically we prove Theorem 8.5 in [28]. We go to great lengths to proceed through

the proof in a motivated fashion. It turns out that the constructions are highly

non-unique which forces us to set many variables to 0. This is what keeps us from

discovering the theorem with a true 1-strategy.

Theorem 6 Let G(s) =

2
4 A B

C D

3
5 with A 2 C n�m ; C 2 Cm�nCm�m satisfy

AP + PA� +BB� = 0

A�Q+QA+ C�C = 0

for

P = P � = diag(�1; �Ir)

Q = Q� = diag(�2; �Ir)

with �1 and �2 diagonal, � 6= 0 and �(�1�2 � �2I) = 0.

Patition (A;B;C) conformably with P , as

A =

"
A11 A12

A21 A22

#
; B =

"
B1

B2

#
; C = [C1 C2]

and de�ne W (s) :=

2
4 ~A ~B

~C ~D

3
5 with

~A = ��1(�2A�11 + �2A11�1 � �C�

1UB
�

1)

~B = ��1(�2B1 + �C�

1U)

~C = C1�1 + �UB�

1

~D = D � �U
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where U is a unitary matrix satisfying

B2 = �C�

2U

and

� = �1�2 � �2I:

Also de�ne the error system

E(s) = G(s) �W (s) =

2
4 Ae Be

Ce De

3
5

with

Ae =

"
A 0

0 ~A

#
; Be =

"
B

~B

#
; Ce = [C � ~C];De = D � ~D:

Then

(1) (Ae; Be; Ce) satisfy

AePe + PeA
�

e +BeB
�

e = 0 (10.1)

A�eQe +QeAe + C�

eCe = 0 (10.2)

with

Pe =

2
664
�1 0 I

0 �Ir 0

I 0 �2�
�1

3
775 (10.3)

Qe =

2
664

�2 0 ��

0 �Ir 0

�� 0 �1�

3
775 (10.4)

PeQe = �2I (10.5)

(2) E(s)E�(s) = �2I.
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Here we attempt to \discover" this theorem. That is we show how a naive in-

vestigator might discover the dilation (if it exists) which satis�es the criteria of

Theorem 6. The setup of this problem is straightforward. We take the realization

of our system to have

diagonal Grammians;�1 and �2:

We also take

� = I � �1�2

as in the theorem above. Then �1, �2, and � are all diagonal. Therefore they

and their inverses commute with each other. This structure is exploited with the

NCGB command SetPairWiseCommutative[]. The dilation of the system has

three entries, ( ~A; ~B; ~C), but there are many unknowns, since the Grammians of

the dilated system are somewhat undetermined. We call these 3x3 grammians Pe

and Qe and require

PeQe = I

to satisfy the all pass theorem, Theorem 6 above. We go about trying to see if

there exists such a dilation. The diagonal entries of Pe and Qe are set invertible,

since this is a property of most block dilations.

We attempt to label our symbolic indeterminates in an informative fashion:

Gamma = �; Sig1 = �1; Sig2 = �2

Atil = ~A; Btil = ~B; andCtil = ~C

Here is the original input to NCProcess.

SysVars = fA11,A12,A21,A22,B1,B2,C1,C2g;

OtherVars = fSig1,Sig2,U,Gammag;

Pvars = fP11, P12, P13, P21, P22, P23,P31, P32, P33g;

Qvars = fQ11, Q12, Q13,Q21, Q22, Q23,Q31, Q32, Q33g;
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SetNonCommutative[SysVars];

SetNonCommutative[OtherVars];

SetNonCommutative[Qvars];

SetNonCommutative[Pvars];

unknowns = f Atil, Btil, Ctil , Dtil g;

SetNonCommutative[unknowns];

(* Notational convenience *)

P = tp[P] = ffSig1,0g, f0, 1gg;

Q = tp[Q] = ffSig2,0g, f0, 1gg;

A = ffA11, A12g, fA21, A22gg;

B = ffB1g, fB2gg;

Cn = ff C1, C2 gg;

Ae = ffA11, A12, 0 g, fA21, A22, 0 g, f0, 0, Atilg g;

Be = ffB1g,fB2g,fBtilgg;

Ce = ffC1, C2, -Ctilgg;

De = D - Dtil;

Pe = ffP11, P12, P13g, fP21, P22, P23g, fP31, P32, P33gg;

Qe = ffQ11, Q12, Q13g, fQ21, Q22, Q23g, fQ31, Q32, Q33gg;

Inverts = NCMakeRelations[fInv,Sig1,Sig2,Gamma,P11,P22,

P33,Q11,Q22,Q33g];

GivenRels = f
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U ** tp[U] == 1, tp[U] ** U == 1,

B2 == - tp[C2] ** U ,

- tp[U]**C2 == tp[B2],

Gamma == Sig1** Sig2 - 1 ,

tp[Sig1] == Sig1, tp[Sig2] == Sig2,

MatMult[A,P] + MatMult[P,tpMat[A]] + MatMult[B,tpMat[B]],

MatMult[tpMat[A],Q] + MatMult[Q,A]+ MatMult[tpMat[Cn],Cn], tp[Gamma]

== Gamma,

SetPairWiseCommutative[Sig1,Sig2,Gamma,Inv[Gamma]] g ;

ConditionsToSatisfy = f

MatMult[Ae,Pe] + MatMult[Pe,tpMat[Ae]] + MatMult[Be,tpMat[Be]],

MatMult[tpMat[Ae],Qe] + MatMult[Qe,Ae] + MatMult[tpMat[Ce],Ce],

MatMult[Pe,Qe] - IdentityMatrix[3] g;

AllRelations = Flatten[f Inverts, GivenRels, ConditionsToSatisfy g];

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ffSysVars,OtherVarsg,funknownsgg,AllRelations ];

NCProcess[AllRelations,1,"DiscoverReally",DegreeCap->10,

DegreeSumCap->17, SBByCat->False]; (10.6)

Notice at the beginning and the end of our discovery process we are working with

approximately the same number of equations. Modulo some small realizations

(i.e. V ariableX == V ariableY + V ariableZ) it is only the number and type of

unknown variables which changes. It is not hard to believe at this point that our

polynomial equations are terribly underdetermined. We have a huge amount of

freedom here. In light of this fact we take whatever suggestions NC Collect on
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Unknown Variables gives us.

Here are some of these suggestions:

The expressions with unknown variables fQ21; Q12; Q11; P
�1
33 ; P32; P31; Ctil

T ; Btil;

AtilT ; Atilg

and knowns fA11; A12; A21; A22; C1; C2; Sig2; A
T
11; A

T
12; A

T
21; A

T
22; B

T
1 ; B

T
2 ; C

T
1 g

(P�1
33 P32 + P�1

33 P31Q12)A21 + CtilT C1 + P�1
33 Atil P31Q11 � P�1

33 Atil P31 Sig2 +

P�1
33 BtilBT

1 (Q11 � Sig2) + P�1
33 P31Q11A11 + P�1

33 P31A
T
11 (Q11 � Sig2) �

P�1
33 P32A

T
22Q21 +AtilT P�1

33 P31Q11 +AtilT P�1
33 P32Q21 == 0

(P�1
33 P32 + P�1

33 P31Q12)A22 + CtilT C2 + P�1
33 Atil P31Q12 + P�1

33 BtilBT
1 Q12 +

P�1
33 P31Q11A12 + P�1

33 P31A
T
11Q12 + P�1

33 P32A
T
22 (1 � Q22) + AtilT P�1

33 P31Q12 +

AtilT P�1
33 P32Q22 == 0

�1A21 (1 + Gamma � Sig1Q11) + A22Q21 + B2 (Btil
T P�1

33 P31Q11 +

BtilT P�1
33 P32Q21) � P22A21 + (P21C

T
1 � P23Ctil

T)C1 + AT
12 (Q11 � Sig2) +

AT
22Q21 +A21 P11 Sig2 +A22 P21 Sig2 + P21A

T
11 Sig2 == 0

A21 (P12 + Sig1Q12) � A22 (1 � P22 � Q22) + B2 (Btil
T P�1

33 P31Q12 +

BtilT P�1
33 P32Q22) + P21A

T
21 � P22A22 + (P21C

T
1 � P23Ctil

T)C2 + AT
12Q12 �

AT
22 (1 �Q22) == 0

�1 (AT
11Q

T
11 + AT

21Q
T
12 + QT

11A11)Sig1 � (QT
11B1 � QT

11 P
T
31 P

T�1
33 Btil �

QT
21P

T
32 P

T�1
33 Btil)BT

1 � CT
1 (C1 (Sig1 � P T

11)�C2 P
T
12 + Ctil P T

13) +QT
21A

T
12 == 0

�1A21 P
T
21+A22 (1�P T

22)� (QT
12B1�QT

12P
T
31 P

T�1
33 Btil�QT

22P
T
32 P

T�1
33 Btil)BT

2 �

AT
12 (Sig2 P

T
21+QT

21) +AT
22 (1� P T

22�QT
22)�QT

12A12+QT
22A

T
22�CT

2 CtilP
T
23 == 0

A12Q23�B1 (Btil
T P�1

33 �BtilT P�1
33 P31Q13�BtilT P�1

33 P32Q23)+A11Sig1Q13�

P12C
T
2 Ctil + P13Ctil

T Ctil + P13Ctil
T Ctil � (P11 � Sig1)C

T
1 Ctil �

Sig1Q13Atil == 0

Since these are such long equations in many unknowns it seems likely that those

collected on subexpressions are, in fact, 0. Making unabashed use of suggestions

made by NCCV we have \solved" for the following variables:
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P11 = Sig1;

P22 = 1;

Q22 = 1;

Q11 = Sig2; (10.7)

Computer input (10.6) and (10.7) results in the following output.

The expressions with unknown variables fP12g

and knowns fA11; A
T
22g

P12A
T
22 ! �1A11P12

The expressions with unknown variables fP21g

and knowns fA22; A
T
11g

P21A
T
11 ! �1A22P21

The expressions with unknown variables fQ12g

and knowns fA22; A
T
11g

Q12A22 ! �1AT
11Q12

The expressions with unknown variables fQ21g

and knowns fA11; A
T
22g

Q21A11 ! �1AT
22Q21

Since A is a completely arbitrary matrix there is no reason for the spectrum of

square A11 to have anything to do with the spectrum of square A22. By general

intuiton we assume the four categories above are full rank Sylvesters and take:
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P12 = 0;

P21 = 0;

Q12 = 0;

Q21 = 0; (10.8)

Mathematica inputs (10.6), (10.7), and (10.8) result in the following output.

The expressions with unknown variables fQ31; P13g

and knowns fGammag

P13Q31 ! �1Gamma

The expressions with unknown variables fQ31; P23g

and knowns fg

P23Q31 ! 0

The expressions with unknown variables fQ32; P13g

and knowns fg

P13Q32 ! 0

From the �rst category above we have that P13 and Q31 are of full rank, since �

was assumed to be of full rank. Therefore the other categories imply that P23 = 0

and Q32 = 0. Also there were enough clues to imply that the other variables were

not 0. They were set invertible. We add these relations:

P23 = 0;

P32 = 0;

Q23 = 0;
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Q32 = 0;

Inverts = NCMakeRelations[fInv,Sig1,Sig2,Gamma,P33,

Atil,P13,P31,Q13,Q31,Q33g];

AllRelations = Flatten[f Inverts, GivenRels, ConditionsToSatisfy g];

AllRelations = NCAddTranspose[AllRelations];

NCAutomaticOrder[ffSysVars,OtherVarsg,funknownsgg,AllRelations ];

NCProcess[AllRelations,1,"DiscoverReally2",DegreeCap->10,

DegreeSumCap->17, SBByCat->False]; (10.9)

Here was the somewhat ambiguous result:

The expressions with unknown variables fQ13; P
T
13g

and knowns fGammag

Q13P
T
13 ! �1Gamma

The expressions with unknown variables fQ13; P
T�1
13 g

and knowns fGamma; Sig1; Sig2; GammaT�1; SigT�11 ; SigT�12 g

GammaP T�1
13 ! �1Q13

Sig2 P
T�1
13 + SigT�11 (Q13 � P T�1

13 ) == 0

GammaT�1Q13 !�1P T�1
13

Sig1 P
T�1
13 + SigT�12 (Q13 � P T�1

13 ) == 0

SigT�12 SigT�11 (Q13 � P T�1
13 ) + P T�1

13 == 0

The expressions with unknown variables fQT
13; P13g

and knowns fGammag
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P13Q
T
13 ! �1Gamma

The expressions with unknown variables fQT
13; P

�1
13 g

and knowns fGamma; Sig1; Sig2; GammaT�1; SigT�11 ; SigT�12 g

P�1
13 Gamma!�1QT

13

QT
13GammaT�1 !�1P�1

13

P�1
13 Sig2 � (P�1

13 �QT
13)Sig

T�1
1 == 0

P�1
13 Sig1 � (P�1

13 �QT
13)Sig

T�1
2 == 0

P�1
13 Sig1Gamma! �1QT

13 Sig1

P�1
13 Sig2Gamma! �1QT

13 Sig2

QT
13Sig1GammaT�1 !�1P�1

13 Sig1

P�1
13 Sig1 Sig1 � (P�1

13 �QT
13)Sig1 Sig

T�1
2 == 0

P�1
13 Sig1 Sig1Gamma! �1QT

13 Sig1 Sig1

P�1
13 Sig2 Sig2Gamma! �1QT

13 Sig2 Sig2

QT
13Sig1 Sig1GammaT�1 !�1P�1

13 Sig1 Sig1

After staring at these relations for a while the following two solutions for P13 and

Q13 are apparent.

1. Q13 = �� and P13 = �I or

2. P13 = �� and Q13 = �I.

The straight route

Choosing Q13 = �� and P13 = I we are following the solution in [28].

We make the following changes:
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P13 = 1;

P31 = 1;

Q13 = -Gamma;

Q31 = -Gamma; (10.10)

run NCProcess again, and generate the following output:

P33 ! SigT�11 GammaT�1 + SigT�11

Q33 ! Sig1Gamma

This is a nice answer for Q33, but not too satisfying for P33. Let's change the order

and run NCGB again.

NCAutomaticOrder[f Flatten[f SysVars, U,Sig2,Gamma ,unknownsg],

fSig1,P33, Q33 g g , AllRelations ]

NCProcess[AllRelations,1,"DiscoverReally2",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.11)

This computer input resulted in the following LATEX output:

The corresponding rules are the following:

P33 ! Sig2GammaT�1

Q33 ! SigT�12 Gamma+ SigT�12 GammaGamma

Sig1 ! SigT�12 Gamma+ SigT�12
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We now have P33 = �2�
�1 and Q33 = �1� and so this coincides with the solution

in the text.

This is the same result which is derived by choosing Q13 = � and P13 = �I. In

fact using these identi�cations both the P33 and Q33 identities were found in one

run of NCProcess.

Now the 3x3 matrices Pe and Qe have been discovered. We make the P33 and Q33

identi�cation and begin with a search for ~B. The order may look strange to the

uninitiated. We would like to avoid the submatrices partitioned around the last

Grammian value, the entries with a 2 in the subscript, as well as other new dilated

elements. Since in previous runs we see that Btil and B2 appear together we set

them together in the order.

P33 = Sig2**Inv[Gamma];

Q33 = Sig1**Gamma;

NCAutomaticOrder[fFlatten[ff OtherVars, A11, A22 , C1g, fB1 gg ],

f Btil, B2g , f Atil, Ctil, A21, A12, C2 g g , AllRelations]

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.12)

The expressions with unknown variables fBT
2 ; Btilg

and knowns fB1; Sig2; U; C
T
1 ; GammaT�1g

BtilBT
2 ! Sig2GammaT�1B1B

T
2 +GammaT�1CT

1 U BT
2
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This suggests that

~B = ��1(�2B1 + CT
1 U)

which coincides with the text.

Next we search for ~C:

NCAutomaticOrder[fFlatten[ffOtherVars,A11,A22,C1g, fB1gg],

fCtil,C2g,fAtil,Btil,A21,A12,B2gg, AllRelations ]

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.13)

The expressions with unknown variables fCT
2 ; Ctilg

and knowns fC1; Sig1; U; B
T
1 g

CT
2 Ctil! CT

2 C1 Sig1 + CT
2 U BT

1

So we now believe that

~C = C1�1 + UBT
1

We turn to ~A with

NCAutomaticOrder[ffSig1, Sig2g, Flatten[f U, Gamma, C1, A11,

B1g],fAtilg,fA21,A12,A22,B2,C2gg, AllRelations ];

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.14)

And a truly satisfying answer is �nally derived:

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fAtil; Gamma�1; Sig�11 ; Sig�12 ; AtilT ; GammaT ; SigT1 ; Sig
T
2 g



190

The corresponding rules are the following:

Atil ! GammaT�1AT
11 + SigT�11 A11Sig1 � GammaT�1CT

1 U BT
1 +

SigT�11 GammaT�1A11Sig1

So we see that with a little manipulation :

~A = ��1(AT
11 + �2A11�1 � CT

1 UB
T
1 )

Let's con�rm that our dilation and associated Grammians do what they're

supposed to do. Lot's of our choices have been very ad hoc. We have no reason

to believe that B2 has full row rank, for example, in our discovery of Btil. We will

verify our result by creating \check indeterminates" and showing that they are, in

fact, 0. In the following we will assume that Pe, Qe, Ae, Be, and Ce are de�ned

as in computer input (10.6).

Atil=Inv[Gamma]**(tp[A11]+Sig2**A11**Sig1-tp[C1]**U**tp[B1]);

Btil = Inv[Gamma] ** ( Sig2 ** B1 + tp[C1] ** U );

Ctil = C1 ** Sig1 + U ** tp[B1];

CheckVars = f Cp11, Cp12, Cp13, Cp21, Cp22, Cp23, Cp31, Cp32, Cp33, Cq11,

Cq12, Cq13, Cq21, Cq22, Cq23, Cq31, Cq32, Cq33 g;

SetNonCommutative[ CheckVars ];

(* Check matrices *)

Ckp = ffCp11, Cp12, Cp13g, fCp21, Cp22, Cp23g, fCp31, Cp32, Cp33gg;

Ckq = ffCq11, Cq12, Cq13g, fCq21, Cq22, Cq23g, fCq31, Cq32, Cq33gg;

Cke = ffCe11, Ce12, Ce13g, fCe21, Ce22, Ce23g, fCe31, Ce32, Ce33gg;

Search = f

MatMult[Ae,Pe] + MatMult[ Pe,tpMat[Ae]] + MatMult[Be,tpMat[Be]] + Ckp,

MatMult[tpMat[Ae],Qe] + MatMult[Qe,Ae] + MatMult[tpMat[Ce],Ce] + Ckq,
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MatMult[Pe,Qe] - IdentityMatrix[3] + Cke g;

NCAutomaticOrder[fFlatten[fSysVars,OtherVarsg],

fCheckVarsgg, AllRelations];

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.15)

The result of the above computer input is the following.

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fCe11; Ce12; Ce13; Ce21; Ce22; Ce23; Ce31; Ce32; Ce33; Cp11; Cp12; Cp13; Cp21;

Cp22; Cp23; Cp31; Cp32; Cp33; Cq11; Cq12; Cq13; Cq21; Cq22; Cq23; Cq31; Cq32;

Cq33; Gamma�1; Sig�11 ; Sig�12 ; CpT11; Cp
T
12; Cp

T
13; Cp

T
21; Cp

T
22; Cp

T
23; Cp

T
31; Cp

T
32;

CpT33; Cq
T
11; Cq

T
12; Cq

T
13; Cq

T
21; Cq

T
22; Cq

T
23; Cq

T
31; Cq

T
32; Cq

T
33; GammaT ; SigT1 ; Sig

T
2 g

The corresponding rules are the following:

Ce11 ! 0

Ce12 ! 0

Ce13 ! 0

Ce21 ! 0

Ce22 ! 0

Ce23 ! 0

Ce31 ! 0

Ce32 ! 0

Ce33 ! 0

Cp11 ! 0
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Cp12 ! 0

Cp13 ! 0

Cp21 ! 0

Cp22 ! 0

Cp23 ! 0

Cp31 ! 0

Cp32 ! 0

Cp33 ! 0

Cq11 ! 0

Cq12 ! 0

Cq13 ! 0

Cq21 ! 0

Cq22 ! 0

Cq23 ! 0

Cq31 ! 0

Cq32 ! 0

Cq33 ! 0

Since all of our desired relations hold we have veri�ed the identities found and

now the theorem has been proven as well as discovered.

A new direction

The choice P13 = I, Q13 = �� was made in the previous section and in the

book, but nothing has ruled out the alternative: P13 = ��, Q13 = I. We make this

choice here. (The identi�cations P13 = � and Q13 = �I lead to the same results.)
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These four additions were made to computer input (10.9) (instead of computer

input (10.10) as done in the previous section) :

P13 = -Gamma;

P31 = -Gamma;

Q13 = 1;

Q31 = 1; (10.16)

At this point the 3x3 block matrices Pe and Qe are completely determined except

for P33 and Q33. We can �x this with another run of NCGB.

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fP33; Q33; Gamma�1; P�1
33 ; Q

�1
33 ; Sig

�1
1 ; Sig�12 ; GammaT ; P T

33; Q
T
33; Sig

T
1 ; Sig

T
2 ;

P T�1
33 ; QT�1

33 g

The corresponding rules are the following:

P33 ! Sig2Gamma

Q33 ! Sig1GammaT�1

So we have found a new P33 and Q33 which satisfy the sought for conditions.

These are somewhat di�erent than those found in the text as well.

Now Pe and Qe have been completed and we need to �nd the actual dilation

which corresponds to these grammians.

We begin our search for Btil by adding the following relations and creating the

following order:

P33 = Sig2** Gamma;

Q33 = Sig1**tp[Inv[Gamma]];

NCAutomaticOrder[fFlatten[f A11, A22, B1, OtherVars g],
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f Btil,B2g,fCtil,Atil,C1,C2,A12,A21gg, Rels ]

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.17)

The indeterminates above the fBtil,B2g group are things we do not want

to see when solving for Btil. The fact that fBtil,B2g are in fact a group was

observed by categories in the above runs and discovering the inevitable coupling

of these terms.

THE ORDER IS NOW THE FOLLOWING:

A11 < AT
11 < A22 < AT

22 < B1 < BT
1 < Sig1 < SigT�11 < SigT1 < Sig�11 < Sig2 <

SigT�12 < SigT2 < Sig�12 < U < UT < Gamma < GammaT�1 < GammaT <

Gamma�1 � Btil < BtilT < B2 < BT
2 � Ctil < CtilT < Atil < AtilT�1 <

AtilT < Atil�1 < C1 < CT
1 < C2 < CT

2 < A12 < AT
12 < A21 < AT

21

The expressions with unknown variables fCT
1 ; B

T
2 ; Btilg

and knowns fB1; Sig2; Ug

CT
1 U BT

2 ! �1BtilBT
2 � Sig2B1B

T
2

This suggests we have

~B = �CT
1 U � �2B1:

We next seek to discover ~C with the following order.

NCAutomaticOrder[fFlatten[f A11, B1, C1, OtherVars g],

fCtil,C2g,fBtil, Atil, A22, B2, A12, A21gg, AllRelations ];

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,
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DegreeSumCap->17,SBByCat->False]; (10.18)

This computer input resulted in the following LATEX output:

THE ORDER IS NOW THE FOLLOWING:

A11 < AT
11 < B1 < BT

1 < C1 < CT
1 < Sig1 < SigT�11 < SigT1 < Sig�11 < Sig2 <

SigT�12 < SigT2 < Sig�12 < U < UT < Gamma < GammaT�1 < GammaT <

Gamma�1 � Ctil < CtilT < C2 < CT
2 � Btil < BtilT < Atil < AtilT�1 <

AtilT < Atil�1 < A22 < AT
22 < B2 < BT

2 < A12 < AT
12 < A21 < AT

21

The expressions with unknown variables fCT
2 ; Ctilg

and knowns fC1; Sig1; U; B
T
1 ; GammaT�1g

CT
2 Ctil! �1CT

2 C1 Sig1GammaT�1� CT
2 U BT

1 GammaT�1

This suggests

~C = (C1�1 � UBT
1 )�

�1:

Our next task is to �nd ~A: As was the case previously we simply change the

monomial order.

NCAutomaticOrder[fFlatten[f A11,B1,C1,OtherVars g],

fAtilg,fA22,C2,B2,A12,A21gg, AllRelations ]

NCProcess[AllRelations,1,"DiscoverReally3",DegreeCap->10,

DegreeSumCap->17,SBByCat->False]; (10.19)

THE ORDER IS NOW THE FOLLOWING:

A11 < AT
11 < Sig1 < SigT�11 < SigT1 < Sig�11 < Sig2 < SigT�12 < SigT2 < Sig�12 <

U < UT < Gamma < GammaT�1 < GammaT < Gamma�1 < C1 < CT
1 < B1 <
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BT
1 � Atil < AtilT�1 < AtilT < Atil�1 � A22 < AT

22 < C2 < CT
2 < B2 < BT

2 <

A12 < AT
12 < A21 < AT

21

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fAtil; Gamma�1; Sig�11 ; Sig�12 ; AtilT ; GammaT ; SigT1 ; Sig
T
2 g

The corresponding rules are the following:

Atil! AT
11GammaT�1 + Sig2A11Sig1GammaT�1 �CT

1 U BT
1 GammaT�1

So we have found a suitable expression for ~A. Compare with the expression in the

book (here on page 178). What we have found is a similarity transformation away

from the relations given there. Our newly discovered dilation is completed with

~A = (�2A11�1 � CT
1 UB

T
1 +AT

11)�
�1

Let's con�rm that our dilation and associated grammians do what they're sup-

posed to do. Lot's of our choices have been very ad hoc. We have no reason to

believe that B2 has full row rank, for example, in our discovery of ~B.

Btil = - Sig2**B1 - tp[C1]**U;

Ctil = - (C1**Sig1 + U**tp[B1])**tp[Inv[Gamma]];

Atil = -tp[C1]**C1**Sig1**tp[Inv[Gamma]]

- tp[C1]**U**tp[B1]**tp[Inv[Gamma]] - tp[A11];

(* Check matrices *)

Ckp = ffCp11, Cp12, Cp13g, fCp21, Cp22, Cp23 g, fCp31, Cp32, Cp33gg;

Ckq = ffCq11, Cq12, Cq13g, fCq21, Cq22, Cq23g, fCq31, Cq32, Cq33gg;

Cke = ffCe11, Ce12, Ce13g, fCe21, Ce22, Ce23g, fCe31, Ce32, Ce33gg;

VerifyRels = f
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MatMult[Ae,Pe] + MatMult[ Pe,tpMat[Ae]] + MatMult[Be,tpMat[Be]] + Ckp,

MatMult[tpMat[Ae],Qe] + MatMult[Qe,Ae] + MatMult[tpMat[Ce],Ce] + Ckq,

MatMult[Pe,Qe] - IdentityMatrix[3] + Cke g;

NCAutomaticOrder[fFlatten[fSysVars,OtherVarsg],fCheckVarsgg, Rels ];

NCProcess[AllRelations,1,"CheckAnswer", SBByCat->False]; (10.20)

This gives us the same output as listed on pages 191-192 con�rming the validity

of our result.

So we have found a new dilation which does not appear in the text and is equally

satisfying. NCGB didn't know it was the wrong one.



Chapter 11

Model Uncertainty and

Robustness

11.1 Coprime factor uncertainty

The next result we will prove is Theorem 9.6 from [28].

198
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Proof:

())

The inequalities present in this theorem are a fancy way of stating algebraic facts.

The results of this theorem will hold if

(I +�

"
K

I

#
(I + PK)�1M�1)�1 2 RH1 (11.1)

By the small gain theorem this would imply that





"
K

I

#
(I + PK)�1M�1)�1







1

� 1

for all k�k
1
< 1.

Along with the left coprime factorization of the plant, P = M�1N , we take a

right coprime factorization of the controller, K = UV �1, to facilitate the algebraic
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approach. We assume that the closed loop system is internally stable and hence

(( ~N+ ~�N)U+( ~M+ ~�M)V )
�1
2 RH1 by Lemma 5.10. Since we have assumed that

K stabilizes the nominal system P we may take the sensitivity matrix (I + PK)

to be invertible.

The approach here is to assume the invertibility of (( ~N+ ~�N)U+( ~M + ~�M)V )

and show that (11.1) holds.

The Mathematica input:

MyVars = f

M,N,Dn,Dm,U,V,UnkInv,Xk,Yk,Xp,Yp g;

SetNonCommutative[ MyVars ];

K = U**Inv[V];

P = Inv[M]**N;

DummyFactors = fXk,Yk,Xp,Ypg;

RealFactors = fM,N,U,V, Inv[M], Inv[V] g;

Inverts = f

Inv[((N+Dn)**U)+ ((M+Dm)**V) ] ** ( (N+Dn)**U+(M+Dm)**V) - 1,

((N+Dn)**U+(M+Dm)**V)** Inv[((N+Dn)**U) +((M+Dm)**V) ] - 1,

Inv[V] ** V - 1,

V ** Inv[V] - 1,

Inv[M] ** M - 1,

M ** Inv[M] - 1 g;

SysProps = f
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(* K stabilizes P so the sensitivity matrix is invertible *)

Inv[1+P**K] ** (1+P**K) - 1,

(1+P**K) ** Inv[1 + P**K] - 1,

(* P has lcf *)

M**Xp + N**Yp - 1,

(* K has rcf *)

Xk**U + Yk**V - 1 g;

Unknown = f

(1+MatMult[ffDn,Dmgg,ffKg,f1gg, ffInv[1+P**K]**Inv[M]gg][[1,1]])

**UnkInv - 1 g;

AllRelations = Flatten[fInverts,SysProps,Unknowng];

SetMonomialOrder[ RealFactors, f Inv[N**U+Dn**U+M**V+Dm**V]g,

DummyFactors,fUnkInvg,fDn,Dmg, fInv[1+P**K]g ];

NCProcess[AllRelations,7,"CoprimeUncert", SBByCat->False]; (11.2)

The output :

Input =

� 1 + ((Dm +M)V + (Dn +N)U)
�1

((Dm +M)V + (Dn +N)U)

� 1 + ((Dm +M)V + (Dn +N)U) ((Dm +M)V + (Dn +N)U)�1

� 1 + V �1 V

� 1 + V V �1

� 1 +M�1M

� 1 +MM�1

� 1 + (1 +M�1N U V �1)
�1

(1 +M�1N U V �1)
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� 1 + (1 +M�1N U V �1) (1 +M�1N U V �1)
�1

� 1 +M Xp +N Y p

� 1 +Xk U + Y k V

� 1 + (1 + (Dm+DnU V �1) (1 +M�1N U V �1)
�1

M�1)UnkInv

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fUnkInvg

The corresponding rules are the following:

UnkInv ! M V (DmV +DnU +M V +N U)�1 +

N U (DmV +DnU +M V +N U)�1

This says that the unknown inverse is a matrix polynomial of elements of RH1 .

Recall that M , V , N , and U are all in RH1 . The result follows.

(() This time we assume that equation (11.1) holds and try to show the stability

of the closed-loop system. By lemma 5.10 this is equivalent to

(( ~N + ~�N)U + ( ~M + ~�M)V )
�1
2 RH1 :

The only change we make is the order and the name of the (now) known inverse:

The input:

SetMonomialOrder[ RealFactors, KnownInv, DummyFactors,

fDn,Dmg, Inv[1 + P**K] , Inv[N**U+Dn**U + M**V+Dm**V ] ];

Known = f

(1+MatMult[ffDn,Dmgg,ffKg,f1gg, ffInv[1+P**K]**Inv[M]gg][[1,1]] )

** KnownInv - 1,

KnownInv **

( 1+ MatMult[ ffDn,Dmgg,ffKg,f1gg,

ffInv[1+P**K]**Inv[M]gg][[1,1]] ) - 1
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g; (11.3)

The output:

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

f(DmV +DnU +M V +N U)
�1
g

The corresponding rules are the following:

(DmV +DnU +M V +N U)�1 ! V �1 (1 +M�1N U V �1)
�1

M�1KnownInv

Then pulling theM�1 and V �1 inside the polynomial inverse we have the quantity

in question equal to (MV +NU)�1�KnownInv. Since the nominal system is stable

we have (DmV +DnU +M V +N U)�1 2 RH1 which implies the stability of

the perturbed closed loop system.

2
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Chapter 12

In�nite Sequences and the State

Space Isomorphism Theorem

In this chapter we prove some facts about time discrete linear systems. Objects

essential to this analysis include the observability and controllability operators.

These are expressed symbolically with in�nite sequences and therefore require more

care than standard noncommutative indeterminates.

We will de�ne controllability and observability, introduce controllability and

observability operators, and present some purely algebraic relations which capture

some of their properties. The practicioner may add these relations in a computer

algebra session working with time discrete time domain linear systems. In fact,

we will demonstrate the utility of these relations by using these purely algebraic

relations to prove some basic linear system theorems, the Youla-Tissi State Space

Isomorphism Theorem and the discrete Grammian equation.

12.1 Controllability and observability

In this section we will de�ne controllability and observability and recall some

basic facts about systems which have these properties.

Informally, if a system is controllable the state of the system may be controlled

205
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with the input vector. The formal de�nition follows.

De�nition 12.1.1 A linear discrete-time dynamic system is said to be control-

lable if for any initial state x0 = x(0) and �nal state x1 there exists an integer t0

such that for any integer t1 > t0 there exists input u(k) for k 2 f0; 1; : : : ; t1g where

the solution to x(k + 1) = Ax(k) +Bu(k) satis�es x(t1) = x1.

The following lemma gives some equivalent characterizations of controllability

and de�nes the controllability operator, C.

Lemma 7 Let A 2 Rn�n and B 2 Rn�m. Let A be asymptotically stable. It is

well known that the the following are equivalent

(1) The pair (A;B) is controllable.

(2) The controllability operator

C =
h
B AB A2B � � �

i
(12.1)

has full row rank.

(3) There exists a positive de�nite matrix Lc (the controllability Grammian)

which satis�es

ALcA
� + Lc +BB� = 0 (12.2)

Informally, if a system is observable the state of the system may be determined

from knowledge of the output and input vector. The formal de�nition follows.

De�nition 12.1.2 A linear discrete-time dynamic system is said to be observable

if there exists an integer t0 such that for any t1 > t0 the initial state x(0) can be

determined from knowledge of u(k) and y(k) for all k 2 f0; 1; : : : ; t1g.

The following lemma gives some equivalent characterizations of observability

and de�nes the observability operator, O.
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Lemma 8 Let A 2 Rn�n and C 2 Rm�n. Let A be asymptotically stable. It is also

well known (in fact a dual result of Lemma 7) that the the following are equivalent

(1) The pair (C;A) is observable.

(2) The observability operator

O =

2
666664

C

CA

CA2

...

3
777775 (12.3)

has full column rank.

(3) There exists a positive de�nite matrix Lo (the observability Grammian) which

satis�es

A�LoA+ Lo + C�C = 0 (12.4)

De�nition 12.1.3 A linear dynamic system which is both controllable and observ-

able is said to be minimal.

From the point of view of computer algebra a great problem with (12.1) and

(12.3) is that they are in�nite quantaties and so can not be handled directly. This

brings us to the main issue of this chapter.

Given a system (A;B;C;D) what information should we routinely feed

into a computer algebra session involving it? More speci�cally how can
we e�ectively deal with controllability and observability operators?

This chapter gives one possible answer to this speci�c question. We give a �nite

set (in fact 7) of relations which characterize C as the controllability and O as the

observability operator of a system. Then we illustrate the use and the strength

of our formalism by deriving the state space isomorphism theorem, a core fact in

control theory.
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12.1.1 The state space isomorphism theorem

The following theorem is known as the Youla-Tissi State Space Isomorphism

Theorem.

Theorem 16 Let (A1; B1; C1;D1) and (A2; B2; C2;D2) be two minimal linear discrete-

time dynamic systems. If y1(t1) = y2(t1) for u1(t) = u2(t) for all ui(t); t 2

f0; : : : ; t1g, then there exists an invertible matrix T such that

A1 = T�1A2T;

B1 = T�1B2; and

C1 = C2T:

This theorem is a chestnut in linear system theory. See, for instance, any intro-

ductory text in the subject such as [3] or [1].

Notice that we have used the above theorem elsewhere in this thesis, for ex-

ample Theorem 14. It is therefore a more \atomic" theorem than those which are

proved through the use of it. Our investigations suggest that this property makes

the theorem more di�cult to prove. We see a similar phenomena in automatic ge-

ometric theorem proving, see [4] and Section 6.1. There Shing-Chang Chou had no

hope of proving the Pythagorean theorem via computer, but was able to use this

\atomic" theorem (among others) to prove 256 theorems in Euclidean geometry.

12.2 Algebraic controllability and observability

In this section we will develop purely algebraic characterizations of controlla-

bility and observability.

12.2.1 Motivation

Since our derivations will be purely algebraic, it seems that our results will

be valid over any reasonable input and output space. However, since we wish to
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use the standard adjoint notation, we will restrict our attention to the in�nite

dimensional Hilbert space `+2 (C
n�m), de�ned formally at the end of this section.

We will let S be the forward shift operator on `+2 (C
n�m)

S([a0; a1; a2; : : : ]) = [0; a0; a1; a2; : : : ]:

It is easy to see that the adjoint of S is the backward shift operator S�,

S
�([a0; a1; a2; : : : ]) = [a1; a2; a3; : : : ]:

We will then have the following algebraic identities

S
�
S = I;SS� = I � P; and P T = P (12.5)

where I is the identity operator on `+2 (C
n�m) and P is the projection operator

P ([a0; a1; a2; : : : ]) = [a0; 0; 0; : : : ]:

The well known relation P 2 = P holds as well although it turns out to be a

consequence of those given above. In practice a person might add this relation to

computer input to speed up computation time.

Given a stable linear dynamic system

2
4 A B

C D

3
5 and letting C and O be the

members of `+2 (C
n�m ) de�ned by (12.1) and (12.3), respectively, we will have the

following algebraic identities

AC = CS and OA = S
�
O: (12.6)

If the system

2
4 A B

C D

3
5 is controllable then C will be right invertible. This

implies the existence of a C�R such that

CC
�R = I: (12.7)

One speci�c C�R is the pseudo-inverse,

C
T
�
CC

T
��1

:
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If the system

2
4 A B

C D

3
5 is observable then O will be left invertible. This implies

the existence of a O�L such that

O
�L
O = I: (12.8)

One speci�c O�L is the pseudo-inverse,

�
O

T
O
�
�1
O

T :

Notice that equations (12.6), (12.7), and (12.8) are purely algebraic identities

which can be used as input to the Gr�obner basis algorithm.

Next we summarize the algebraic relations developed above relating to control-

lability.

Formal algebraic de�nitions

De�nition 12.2.1 A discrete linear dynamic system (A;B;C;D) will have alge-

braic controllability operator C if the following relations hold

S
�
S = I; (12.9)

S S
� = I � P; (12.10)

P T = P; (12.11)

A C = C S; (12.12)

CP = BP (12.13)

Furthermore, we will say that the system is algebraically controllable if the follow-

ing relation holds

C C
�R = I (12.14)

Next we summarize the algebraic relations developed above relating to observ-

ability.
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De�nition 12.2.2 A discrete linear dynamic system (A;B;C;D) will have alge-

braic observability operator O if the following relations hold

S
�
S = I; (12.15)

S S
� = I � P; (12.16)

P T = P; (12.17)

O A = S O; (12.18)

PO = PC: (12.19)

Furthermore, we will say that the system is algebraically observable if the following

relation holds

O
�L
O = I: (12.20)

In practice a person would probably add the relation P 2 = P to save compu-

tation time although this relation is a consequence of those given above.

In this subsection we have used the standard notion of `+2 (C
n�m ). We let

`+2 (C
n�m) be the set of one sided square summable sequences. An element of

which is

a = [a0; a1; a2; : : : ] and ai 2 C n for all i

such that
1X
i=0

kaik
2 <1

where k � k is the norm induced by the scalar product on `+2 (C
n�m)

ha; bi =

1X
i=0

Trace(a�i bi) (12.21)

for a; b 2 `+2 (C
n�m ). It is well known that `+2 (C

n�m) is a Hilbert space.
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12.2.2 A formal algebraic description of similar systems

Let system

2
4 A1 B1

C1 D1

3
5 have controllability operator C1 and observability op-

erator O1. Let

2
4 A2 B2

C2 D2

3
5 have controllability operator C2 and observability

operator O2.

If these two systems have the same input-output characteristics we will have

G(s) = C1(sI �A1)
�1B1 +D1 = C2(sI �A2)

�1B2 +D2

which implies

C1A
j
1B1 = C2A

j
2B2 for all j � 0:

Then the following equations will be satis�ed

O1 C1 = O2 C2; (12.22)

C1 C1 = C2 C2;

O1 B1 = O2 B2; and

D1 = D2: (12.23)

12.3 Derivation of the Youla-Tissi theorem

We have now introduced enough algebraic identities to prove the Youla-Tissi

state space isomorphism theorem via computer algebra.

12.3.1 The computer input

In the following section we will assume that all variables have been set non-

commutative. We will begin with the de�nition of controllability and observability

operators as in (12.6) and (12.5).

SysProps = f
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A1 ** Ctrl1 == Ctrl1 ** S,

A2 ** Ctrl2 == Ctrl2 ** S,

Obsv1 ** A1 == tp[S] ** Obsv1 ,

Obsv2 ** A2 == tp[S] ** Obsv2,

tp[S] ** S == 1, S ** tp[S] == 1 - P,

tp[P] == P g; (12.24)

Since the two given systems are minimal, equations (12.7-12.8) may be entered with

the following computer input.

System1Controllable = f

Ctrl1 ** Rctl1 == 1 g; (12.25)

System2Controllable = f

Ctrl2 ** Rctl2 == 1 g; (12.26)

System1Observable = f

Lobsv1** Obsv1 == 1 g; (12.27)

System2Observable = f

Lobsv2** Obsv2 == 1 g; (12.28)

The equivalence of the two systems and equations (12.22-12.23) will give us

SystemsEquivalent = f

Obsv1 ** Ctrl1 - Obsv2 ** Ctrl2 == 0,

C1** Ctrl1 == C2 ** Ctrl2,

Obsv1 ** B1 == Obsv2 ** B2,

D1 == D2 g ; (12.29)

We next combine all the relevant equations

AllRelations = Union[ eqnMinimal, eqnTimeDomain,

inverses, SysProps, assumption ] ; (12.30)

We next set the order.
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NCAutomaticOrder[ ffC2,D2,B2,A2g,

fCtrl2,Rctl1,Rctl2,Ctrl1g,

fObsv1,Obsv2,Lobsv1,Lobsv2g,fS,Pg,

fA1,B1,C1,D1g

g, AllRelations] ; (12.31)

Finally the call to NCProcess.

NCProcess[AllRelations,3,"YoulaTissi",RR->False, SBByCat->False ]; (12.32)

12.3.2 The computer output

The result is a spreadsheet with the following category

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:

fA1; B1; C1; D1; A
�1
1 g

The corresponding rules are the following:

A1 ! Ctrl1Rctl2A2Ctrl2Rctl1

B1 ! Ctrl1Rctl2B2

C1 ! C2Ctrl2Rctl1

D1 ! D2

A�11 ! Ctrl1Rctl2A
�1
2 Ctrl2Rctl1

The expressions with unknown variables fCtrl1; Rctl1; Ctrl2g

and knowns fg

Ctrl2Rctl1Ctrl1 ! Ctrl2 (12.33)

The expressions with unknown variables fCtrl1; Rctl2; Ctrl2g

and knowns fg
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Ctrl1Rctl2Ctrl2 ! Ctrl1 (12.34)

The Youla-Tissi state space isomorphism theorem has been proved. We have

shown the existence of T

T = C1 C
�R
2 and T�1 = C2 C

�R
1

where T is the similarity transformation described in Theorem 12.1.1. Relations

(12.34) and (12.33) show that C1C
�R
2 is indeed the inverse of C2C

�R
1 . It is interesting

to note that (12.34) and (12.33) do not appear in the computer output if the

NCProcess option RemoveRedundent is set to True.

One can arrive at di�erent characterizations of T by using di�erent orders. For

example, running the Gr�obner basis algorithm on Rels de�ned in (12.30) under

the order

C2 < D2 < B2 < A2 < O1 < O2 < O
�L
1 < O

�L
2 �

C2 < C2 < C
�R
1 < C

�R
2 < S < P < A1 < B1 < C1 < D1 (12.35)

produces the following output

A1 ! Lobsv1Obsv2A2 Lobsv2Obsv1;

B1 ! Lobsv1Obsv2B2;

and

C1 ! C2 Lobsv2Obsv1:

We arrive at a di�erent characterization of the same T ,

T = O
�L
1 O2 and T�1 = O

�L
2 O1:
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12.4 Derivation of the discrete Grammian equa-

tions

We will next show how the methods developed in the previous section imply the

controllability Grammian equation (12.2) for the controllable system (A1; B1; C1;D1).

12.4.1 The computer input and output

Assume that computer inputs (12.24) and (12.25) are in place. These equations

are a consequence of the controllability of the system. Join these equations with

AllRelations = Union[ SysProps, System1Observable, f Ctrl1**P == B1**P

g ]; (12.36)

and symmetrize the relations with

AllRelations = NCAddTranspose[ AllRelations ]; (12.37)

We next set the order

NCAutomaticOrder[ffA1,B1g,fCtrl1g,fP,Sgg, AllRelations ] ; (12.38)

and call NCProcess

NCProcess[AllRelations ,3,"FindGram", SBByCat->False ]; (12.39)

The result includes the following relation

B1 P BT
1 ! Ctrl1Ctrl

T
1 �A1Ctrl1Ctrl

T
1 A

T
1 (12.40)

which is the discrete Grammian equation (12.2) with Lc = C1C
T
1 . Also included in

the output is the well known property of projection operators

P P ! P:

An analogous procedure can be used to discover the observability Grammian equa-

tion (12.4) with a change of order.
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12.5 Chapter conclusions

We have given purely algebraic relations for de�ning controllability operators C

and observability operators O. Of course, it is possible that we have not presented

a complete set of de�ning relations. That is other algebraic consequences which

may be shown analytically to follow from controllability and observability may not

follow algebraically from our relations. However, we have been able to use these

relations to generate the following formulas automatically

1 The Youla-Tissi state space isomorphism theorem.

2 The Discrete Grammian equation.

This work represents the �rst stages of an attempt to give practical de�nitions

of linear systems of use to computer algebra. Open questions include

1. What properties should a \complete set of de�ning relations" have?

2. Once a \complete set" has been de�ned what is one?

This �nal chapter has described what many would regard as the least devel-

oped research presented in this thesis. The problems handled in this section often

represent the axioms which are used to prove the results found elsewhere in this

thesis.

Proving the more atomic theorems seems to be a thankless pursuit, requiring

a signi�cant amount of e�ort to formulate algebraically, until the �nal tidbits of

algebra one is left with could easily be done by hand. Still, a development of the

subject with such an unyielding use of algebra is new and, as computers become

more powerful, perhaps useful to those who seek to discover new theorems. It is a

long walk to the elevator, but it's nice to know the way.1

The actual computer calculations done in this section were quite computation-

ally inexpensive. All of the computer runs in this section completed in less than

half a minute.

1See page 99.
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