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ABSTRACT OF THE DISSERTATION

q-Enumeration of Classical Combinatorial Structures

by

David P. Little

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Adriano Garsia, Chair

The primary focus of this dissertation is to establish generating functions for

speci�c instances of two classical combinatorial structures, namely permutations and

partitions. We start by giving two simple correspondences between Dyck paths and

permutations that avoid certain patterns. These correspondences immediately yield

generating functions in the shape of continued fractions. Next, we construct permu-

tations with exactly one occurrence of a certain pattern by again manipulating Dyck

paths. These constructions immediately give way to a variety of generating functions in

the form of Chebyshev polynomials of the second kind. Next, we examine an involution

on Dyck paths that yields numerous results regarding pattern avoidances. Lastly, we

turn our attention to partitions, and examine Franklin's involution on partitions with

distinct parts.
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Chapter 1

Pattern avoidances and Dyck

paths

In this chapter we establish the basic relationships between lattice paths and

permutations that avoid a given pattern. These correspondences will provide a founda-

tion for subsequent chapters. We also show how these constructions relate to previously

known results.

1.1 Introduction

Given permutations � 2 Sk and � 2 Sn for n � k, we say that � contains the

pattern � if there exists indices i1 < i2 < � � � < ik such that �ir < �is if and only if

�r < �s for all 1 � r; s � k. For example, the permutation (3; 2; 4; 1) has 2 occurrences

of the pattern (2; 3; 1), namely (2; 4; 1) and (3; 4; 1), 1 occurrence of the pattern (3; 2; 1),

and 1 occurrence of the pattern (2; 1; 3).

In the event that � does not contain the pattern �, we say that � is �-avoiding

1
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or more simply � avoids �. The set consisting of all �-avoiding permutations on n is

denoted by Sn(�) and its cardinality is denoted by sn(�). Given several permutations

�1; : : : ; �l, Sn(�1; : : : ; �l) denotes \lj=1Sn(�j). Notice that the example given above

is an element of S4(123; 132; 312). In subsequent chapters, we will examine particular

cases when a permutation has a given number of occurrences of a pattern. Consequently,

we will also adopt the convention that Sk
n(�) denotes the subset of Sn that consists of

permutations with exactly k occurrences of the pattern �.

In this chapter, we will primarily deal with patterns of length 3. Given any

� 2 S3, it is well known [5] that sn(�) is given by the nth Catalan number,
�
2n
n

�
=(n+1).

It is also well known that this is the number of Dyck paths from (0; 0) to (n; n). In order

to establish our results, we will introduce many correspondences between permutations,

�, and paths, �. We use the convention that �� is the permutation that corresponds to

the path ��, and vice versa. While this has the possibilty of introducing some ambiguity,

each correspondence will be identi�ed by a set of avoided patterns, and any uncertainty

can be erased by noting the relavant patterns avoided by �� . We will also use these

symbols interchangably, meaning that to say �� is in Sn(�) is the same as saying �� is

in Sn(�).

1.2 Parking functions and Dyck paths

In order to establish our results in latter chapters, it will be necessary to con-

struct some basic correspondences between Sn(�) and the set of Dyck paths. These

correspondences will all stem from proving the following fundamental fact.

Theorem 1.1 sn(�) =
1

n+1

�
2n
n

�
for all � 2 S3.



3

In order to prove the above theorem, we recall the de�nition of a parking func-

tion. Consider the situation of parking n cars on a one-way street and each car has a

preferred spot in which to park. When the ith car arrives at its preferred spot, park

the car in that spot if possible, otherwise park in the next available spot. We call any

function, f , from f1; 2; : : : ; ng to itself, a preference function and interpret it to mean

that the ith car prefers to park in the f(i)th spot. Of course there is no guarantee that

for any preference function, each car will be able to park, much less park in its preferred

spot. For instance, if there are two cars that prefer to park in the last spot, the second

car that drives to the last spot will not be able to park. If each car is able to park, then f

is referred to as a parking function. See [6] for more details regarding parking functions.

Let fi be the number of cars that want to park in the �rst i spots. If fi < i

for some i, then there will be n� fi cars that want to park in the last n � i spots, and

they will be unable to do so since n � fi > n� i. Thus f is not a parking function. On

the other hand, if f is not a parking function, then let I be the �rst car that is unable

to park and let f(I) = J . Since car I is unable to park, cars 1 through I � 1 have taken

spots J through n and possibly others. Let K be the last available spot when car I

attempts to park. There are at least n �K + 1 cars that prefer to park in spots K + 1

through n, the n�K cars that actually parked there plus car I . Therefore fK is at most

K � 1.

This shows that fi � i for all i is a necessary and su�cient condition for f to

be a parking function. Using this as the de�ning property of a parking function, we can

associate to f a path from (0; 0) to (n; n) using only the vectors (0; 1) and (1; 0), which

we will refer to as steps NORTH and EAST, respectively. To do this, we specify that

the n steps EAST go from (i� 1; fi) to (i; fi) for each i. The condition that fi � i for
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all i simply means that our path must remain weakly above the line y = x. These paths

corresponding to parking functions are called Dyck paths1 and the set of all such paths

for a �xed n is denoted by Dn. For example, let f be given by:

f(1) = 3 f(2) = 6 f(3) = 1 f(4) = 1

f(5) = 7 f(6) = 3 f(7) = 1 f(8) = 6

and therefore we have that f1 = f2 = 3, f3 = f4 = f5 = 5, f6 = 7, and f7 = f8 = 8.

We have incorporated both the parking function and Dyck path into a single diagram

by labeling each step NORTH from (I � 1; J � 1) to (I � 1; J) with the label of a car

that prefers to park in spot I . Figure 1.1 illustrates this process with the sample parking

function given above.

5

8

2

6

1

7

4

3

Figure 1.1: Parking functions and Dyck paths

1.3 Three basic involutions

Before we prove Theorem 1.1, it will be useful to point out three very natural

operations acting on a permutation � = (�1; �2; : : : ; �n). First, the complement of �,

denoted by �c, refers to the permutation (n+1��1; n+1��2; : : : ; n+1��n). Second, the
1In most texts, the set of Dyck paths refers to the paths from (0; 0) to (0; 2n) that stay weakly above

the x-axis while using only NORTHEAST and SOUTHEAST steps.
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reverse of �, denoted by �r, refers to the permutation (�n; �n�1; : : : ; �1). And last, the

inverse of �, denoted by �i, is the usual functional inverse of �. With these de�nitions,

it is clear that we must have the following lemma.

Lemma 1.2 Let � 2 Sk for some k � n. The following are equivalent:

1. � 2 Sn(�)

2. �c 2 Sn(�
c)

3. �r 2 Sn(�
r)

4. �i 2 Sn(�
i)

Proof. Assume that � is not in Sn(�) and let (�i1 ; �i2 ; : : : ; �ik) be an instance

of the pattern � in �. It is clear that (n + 1 � �i1 ; n + 1 � �i2 ; : : : ; n + 1 � �ik),

(�n+1�ik ; �n+1�ik�1 ; : : : ; �n+1�i1), and (i�i
1
; i�i

2
; : : : ; i�i

k

) will be instances of the pat-

terns �c, �r, and �i in �c, �r, and �i, respectively. This shows that 2, 3, and 4 each

imply 1. But since each operation is an involution, we can simply replace � by �c (resp.

�r, �i) and � by �c (resp. �r, �i) and use the same argument as above to show that 1

implies 2 (resp. 3,4). 2

Using Lemma 1.2, we immediately have that sn(132) = sn(312) = sn(231) =

sn(213) and sn(321) = sn(123). The connections between each set is diagramed in Figure

1.2. This allows us to break up the proof of Theorem 1.1 into two parts. First, we will

prove that sn(132) =
1

n+1

�
2n
n

�
and second, sn(321) =

1
n+1

�
2n
n

�
. It is important to note

here that we have singled out the patterns (132) and (321) to simplify the notation as

much as possible. It is not our intention to suggest that these patterns are more relevant

than the others. In most presentations, (132)-avoiding and (123)-avoiding permutations
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Sn(132) Sn(312)

Sn(213)Sn(231)

c

r

c

r i

i

i

Sn(123) Sn(321)

c

r

i i

Figure 1.2: Diagram of three involutions

are studied. Also, Sn(231) is of particular interest since it is the set of all stack-sortable

permutations [6, 15].

We should also point out that we can use Lemma 1.2 to establish correspon-

dences between sets that avoid any number of patterns. In other words, once we have enu-

merated the set Sn(�1; : : : ; �l), we would then have equivalent results for Sn(�
c
1; : : : ; �

c
l ),

Sn(�
r
1; : : : ; �

r
l ), and Sn(�

i
1; : : : ; �

i
l). Instead of repeatedly referring to Lemma 1.2, we

will refrain from listing each of these equivalent results after a new identity. Conse-

quently, we will not include any result that follows immediately from Lemma 1.2, unless

a di�erent approach would prove more fruitful.

1.4 Constructing (132)-avoiding permutations

As mentioned above, we will begin our proof of Theorem 1.1 by showing that

sn(132) =
1

n+1

�
2n
n

�
: To do so, we will construct a bijection between Sn(132) and Dn.

Given � 2 Dn, form the parking function, f , that corresponds to � by number-

ing the vertical portions of the path from top to bottom. Now simply park the cars and

let �i be the car that parks in the ith spot.

Let us �rst establish that this process results in an element of Sn(132). Assume
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1

2

3

4

5

6

7

8

 !

0
B@ 1 2 3 4 5 6 7 8

6 7 4 5 8 2 1 3

1
CA

Figure 1.3: Example of bijection between Dn and Sn(132)

that (�I ; �J ; �K) is a (132) pattern in the resulting permutation �. Since car �K is parked

after car �I , it was unable to park in its preferred spot. This implies that when car �K

attempted to park, spots f(K) throughK�1 (which includes spot I) were already taken.

Therefore when car �J tries to park, there are no available spots between cars �I and

�K , whichs contradicts our assumption that (�I ; �J ; �K) was a (132) pattern. Therefore

� 2 Sn(132).

Now, let us establish that this is an injection. Given two di�erent paths, �1

and �2, �nd the �rst place where the paths di�er when traversing the path from (n; n)

to (0; 0) and assume that this occurs after I steps SOUTH. Furthermore, assume that

the next step in �1 is to the WEST and that the next step in �2 is to the SOUTH. When

we park cars according to �1, car I + 1 will park in its preferred spot, f1(I + 1). When

we park cars according to �2, car I+1 will park weakly to the right of its preferred spot,

f2(I + 1). But since f1(I + 1) < f2(I + 1), the resulting permutations will be distinct.

Given � 2 Sn(132), we can construct �� as a path going from (n; n) to (0; 0).

We start by pointing out that car 1 will always park in its preferred spot since it is the

�rst car to park. Let �� be the path that starts at (n; n) and proceeds to the point

(��1(1) � 1; n� 1) by taking exactly n + 1 � ��1(1) steps WEST followed by a single
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step SOUTH. This not only insures that f(1) = ��1(1), but it also guarantees that the

�nal portion of �� will be weakly above the line y = x. The remaining portion of �� is

constructed by systematically determining where cars 2 through n prefer to park.

To determine f(i), look at car i's position relative to car i� 1. If car i resides

in a spot prior to car i � 1, then car i has parked in its preferred spot. Append to ��

exactly f(i� 1)� f(i) steps WEST followed by a single step SOUTH. Thus �� now goes

through the point (f(i)� 1; n� i) where f(i) = ��1(i). Notice that if �� was above the

line y = x, it will remain so after this operation since f(i� 1)� f(i) � 1.

If car i resides in a spot after car i � 1, then there can be no empty spots

between car i�1 and car i once car i has parked. Otherwise, this spot will be eventually

�lled by car j, with j > i, and (i�1; j; i) would form a (132) pattern. In other words, we

have shown that car i parked in the �rst available spot following car i� 1. We therefore

say that car i wanted to park in the same spot that car i � 1 wanted to park and we

append to �� a single step SOUTH. Now �� goes through the point (f(i) � 1; n � i)

where f(i) = f(i�1). Again notice that this operation cannot produce a �� that crosses

the line y = x. If it did then f(i) > n � i + 1, which says that at least i cars want to

park in the last i� 1 spots and this cannot happen.

Using this process, ultimately the path �� will reach the point (f(n)�1; 0) only

after all n cars have parked. Notice that the car that parked in the �rst spot must have

preferred to park there, otherwise it would have driven past it. Thus each subsequent

car must park after the �rst spot, which means that its preferred spot was the �rst spot.

In particular, f(n) = 1, and thus �� 2 Dn. Therefore we have established that this

correspondence is in fact a bijection.

This of course provides us with
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Lemma 1.3 sn(132) =
1

n+1

�
2n
n

�
;

which was the �rst step in proving Theorem 1.1.

We should point out that Christian Krattenthaler [7] independently discovered

this construction described in terms of (123)-avoiding permutations, however, he neglects

to describe the process of converting a Dyck path into a (132)-avoiding permutation.

1.5 An alternate construction

In the above construction, if a car did not park in its preferred spot, then it

parked in the next available location. The fact that there was always a next location

was taken care of by the assumption that our path remained weakly above the diagonal.

Unfortunately, this does not provide us with adequate information regarding where this

\next location" will occur. In this section we present an alternate construction for

elements of Sn(132) that will make this point more clear.

To construct an element of Sn(132), simply take a path � 2 Dn and label the

vertical segments from top to bottom as before. Here, it will be easier to think of our

path � going from (0; 0) to (2n; 0), as is the usual custom. So we are really labeling the

NORTHEAST steps from right to left. Now imagine that there is a horizontal string

connecting each NORTHEAST step to the �rst SOUTHEAST step that occurs to its

immediate left. For example, the path in Figure 1.3 would be labelled as follows:

Now simply slide each label on the NORTHEAST edges along the string until

it reaches the corresponding SOUTHEAST edge, as is done in Figure 1.5. Reading the

numbers from left to right yields a permutation in Sn(132). Note that this is exactly the

same as the permutation in Figure 1.3.

It is easy to see that this forms a permutation in Sn(132) according to the same
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Figure 1.4: Alternate labelling of a path
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Figure 1.5: Alternate construction of Sn(132)

recipe as provided in the previous section. Car 1 will always park in its preferred spot. If

car i parks in its preferred spot, it will do so prior to the spot in which car i� 1 parked.

If car i does not park in its preferred spot, it will park in the next available location

following car i� 1. However, in this light, it is more clear as to where this next location

will be. For instance, in Figure 1.4, it is clear that car 8 will park in the very next spot

following car 5. And we can determine this without having to park cars 6 and 7.

Also in this setting, it is clear what the e�ect of our three involutions is on this

construction. For instance, the complement of �, which is a (312)-avoiding permutation,

is formed by labelling the NORTHEAST steps from left to right instead of right to left.

The reverse of �, which is a (231)-avoiding permutation, is formed by simply reading o�

the permutation from right to left instead of left to right. The inverse of �, which is a

(132)-avoiding permutation, is formed by labelling the SOUTHEAST steps from left to

right, sliding the labels to the left and then reading the permuation from right to left. In

other words, �i is the (132)-avoiding permutation that corresponds to the path formed
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by reecting � across the line x = n.

We can also combine these procedures to form other types of permutations. If

we slide the labels from right to left, we see that �ci 2 Sn(231) is formed by labelling

the SOUTHEAST steps from left to right and �cic 2 Sn(213) is formed by labelling the

SOUTHEAST steps from right to left. In fact it is exactly this interpretation of �ci that

gives West [15] his correspondence between bracketing sequences and Sn(231), the set of

stack-sortable permutations.

1.6 Constructing (321)-avoiding permutations

To complete our proof of Theorem 1.1, it remains to construct a correspondence

between Sn(321) and Dn. To do so, we will return to the setting of parking functions.

Imagine that we are parking n cars and that some cars have very important passengers,

meaning that these cars must park in their preferred spot. But since important passen-

gers have important things to do, they are typically late, and therefore we identify vip

cars as the last car that wants to park in a given spot. These cars appear shaded in

Figure 1.6. To construct our bijection, pick an element of Dn and number the vertical

segments of the path from bottom to top. Now park the cars by �rst taking care of the

vip cars and then parking each of the remaining cars in the �rst available spot.

Let us �rst establish that this process results in a (321)-avoiding permutation.

Assume that (�I ; �J ; �K) is a (321) pattern in the resulting permutation �. If car �I is

a vip car, then cars �J and �K are regular cars since vip cars are parked in increasing

order. But regular cars are also parked in increasing order and thus �J < �K , which

contradicts our assumption. If car �I is a regular car, then cars �J and �K are vip cars.

Thus �J < �K , which again contradicts our assumption. Therefore � 2 Sn(321).
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Figure 1.6: Example of bijection between Dn and Sn(321)

Now let us establish that this is an injection. It is clear that a path is uniquely

determined by the set of vip cars in conjunction with their preferred spots. This is

because once we know where the vip cars prefer to park, the remaining cars prefer

to park in the same spot as the vip car with the smallest label that is bigger than

theirs. Therefore, given two distinct paths, the set of vip cars and their preferred spots

corresponding to these paths must be di�erent. Since the vip cars must park in their

preferred spots, the permutations corresponding to these paths will be distinct.

Given � 2 Sn(321), we can construct the path that corresponds to it by simply

determining which cars are vip cars. We say that �i is a salient point if for all j < i,

�j < �i. We identify car �i to be a vip car if and only if �i is a salient point. Notice

that the remaining cars must be parked in increasing order. If not, then there are two

cars � and � such that � > � and car � is parked before car �. Since car � was not a

salient point, there exists at least one car  such that (; �; �) is a (321) pattern, and

this contradicts our assumption.

Now that we have identi�ed the vip cars, we can easily reconstruct the path. It

remains to show that the path stays weakly above the line y = x. Clearly the path will

begin and end weakly above the line y = x since �1 and n will always be classi�ed as
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vip cars. Therefore, if the path crosses the line y = x once, it must cross again. Assume

that our path crosses the line y = x from below at the point (J; J). This implies that

�J+1 is a salient point and that J is not. On the other hand, the J spots prior to �J+1

will eventually be �lled with cars 1 through J , which implies that J is a salient point.

Therefore the path cannot cross the line y = x. This of course implies that �� 2 Dn and

thus our correspondence is a bijection. This in turn establishes

Lemma 1.4 sn(321) =
1

n+1

�
2n
n

�
,

which completes the proof of Theorem 1.1.

We should again point out that Christian Krattenthaler [7] independently dis-

covered this construction described in terms of (123)-avoiding permutations.

Notice that to any Dyck path, we can now associate several permutations.

In particular, we can associate a (132)�avoiding permutation and a (321)�avoiding

permutation to a speci�c Dyck path rather easily. This yields a very natural bijection

between Sn(132) and Sn(321) by associating �1 2 Sn(132) with �2 2 Sn(321) if and only

if �1 and �2 correspond to the same element of Dn. Using Lemma 1.2, we can convert

�2 into an element of Sn(123) in two ways, each one representing a di�erent bijection

between Sn(132) and Sn(123).

In view of Figure 1.2, once a correspondence between Sn(132) and Sn(123) has

been made, we can create several other bijections. Of all the bijections that we have

encountered, the only di�erence has been in making use of Lemma 1.2. In the remaining

sections of this chapter we will examine the relationship between these correspondences

and these other well known bijections.
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1.7 Simion-Schmidt algorithm

Rodica Simion and Frank Schmidt [12] establish a bijection between the sets

Sn(123) and Sn(132). In addition to being one of the �rst, their bijection has the added

bene�t that elements of Sn(123; 132) are left unchanged. The bijection is broken down

into the following two algorithms.

Algorithm A

Input: � = (�1; : : : ; �n) 2 Sn(123)

Output: � = (�1; : : : ; �n) 2 Sn(132)

Step 1: i = 1

Step 2: �1 = �1, x = �1
Step 3: i = i+ 1 if i > n then exit.

Step 4: If x > �i then �i = �i and x = �i
else �i = minfkjx < k � n; k 6= �j for all j < ig.
Repeat step 3

Algorithm B

Input: � = (�1; : : : ; �n) 2 Sn(132)

Output: � = (�1; : : : ; �n) 2 Sn(123)

Step 1: i = 1

Step 2: �1 = �1, x = �1
Step 3: i = i+ 1 if i > n then exit.

Step 4: If x > �i then �i = �i and x = �i
else �i = maxfkjk � n; k 6= �j for all j < ig.
Repeat step 3

We will now demonstrate how our algorithm relates to that given by Simion and

Schmidt. Let � be an arbitrary (132)-avoiding permutation of length n. If � 2 Sn(123)

is the result of applying Algorithm B to � and � 2 Sn(321) is the result of converting �

into � 2 Dn and then interpreting � as an element of Sn(321), then we aim to show that

� = �c: (1.1)

The act of complementing � in terms of � means that the vertical segments of
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� are labeled from top to bottom, vip cars are identi�ed as being the earliest car that

prefers to park in a given spot and that non-vip cars are parked in reverse order. In

our original treatment, we choose to deal with Sn(321) instead of Sn(123) so as to be

able to maintain the order in which cars are parked. Nevertheless, using this method of

converting � into � = �c, it is easy to establish 1.1.

First, notice that in both our methods of converting � into � 2 Sn(132) and

� 2 Sn(123), the �rst car that wants to park in spot 1 will necessarily do so, and since in

both methods we label the vertical segments from top to bottom, this will be the same

car. In other words, �1 = �1. Let us call this common value x, so as to compare with

Algorithm B.

Now for all i � 2, if �i < x then �i must have parked in its preferred spot. This

would identify it as being a vip car and therefore �i = �i and we reset x to be �i. If �i > x,

then �i did not park in its preferred spot and �i would be �lled by the highest labelled

non-vip car remaining, which is equivalent to setting �i to be maxfkjk � n; k 6= �j for

all j < ig.

For example, the permutation � = (67324158) 2 S8(132) would correspond to

the element of D8 in Figure 1.7. This path also corresponds to � = (31672845) 2 S8(321)

and therefore � = (68327154) 2 S8(123).

Simion and Schmidt also pointed out that for any value 1 � x � n,

jf� 2 Sn(123)j�1 = xgj = jf� 2 Sn(132)j�1 = xgj: (1.2)

This can be easily seen using our construction for elements of Sn(132) and Sn(321). Fix

a path � 2 Dn that starts with exactly s steps north. The permutation � 2 Sn(132) that

corresponds to � will have the property that �1 = n� s+ 1, since the vertical segments

were labeled from top to bottom and the �rst car that wants to park in a particular spot
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Figure 1.7: Path corresponding to (67324158) 2 S8(132) and (68327154) 2 S8(123)

will do so. The permutation � 2 Sn(321) that corresponds to � will have the property

that �1 = s and therefore �c 2 Sn(123) will have the property that �c1 = n + 1 � s.

Therefore, the common value in 1.2 is the number of elements of Dn that start with

exactly n+ 1� x steps north, which is given by

n + 1� x

n

�
n+ x� 2

n � 1

�
:

1.8 West's bijection

In [15], Julian West uses bracketing sequences to enumerate (231) avoiding

permutations, the so-called stack-sortable permutations, see [6]. Using a natural bijection

between bracketing sequences and Dyck paths, we can easily establish the relationship

between. The bracketing sequences, Bn, is the set of all sequences consisting of n left

parentheses, '(', and n right parentheses, ')', so that at no point does the number of ')'

exceed the number of '(' when reading from left to right. The natural bijection between

Bn and Dn is to replace each '(' with a step NORTH and each ')' with a step EAST.
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The path shown in Figure 1.1 would translate into the following bracketing sequence.

((())(()))(()()):

To convert the above sequence into an element of Sn(231), simply label each ')' from left

to right and label each '(' with the same label of the ')' that closes it o�. The above

sequence would be labelled as follows

(
5

(
2

(
1

1

)
2

)(
4

(
3

3

)
4

)
5

)(
8

(
6

6

)(
7

7

)
8

):

The corresponding (231)-avoiding permutation would be (5; 2; 1; 4; 3; 8; 6; 7). Notice that

this matches exactly our interpretation of �ci as given in Section 1.5.

To complete the bijection between Sn(132) and Sn(123), West uses rooted trees

to enumerate elements of Sn(123).



Chapter 2

Generating functions

Using the techniques established in the previous chapter, we can identify gener-

ating functions that count the number of particular patterns in permutations that avoid

(132) or (321).

2.1 Introduction

To any Dyck path, �, we associate a word, w(�), in the alphabet

fa0; a1; : : : ; c0; c1; : : :g:

To this end, label each step NORTH from height i to i+1 with an ai only if it is followed

by another step NORTH, otherwise label it with ci. Read o� the labels from bottom

to top to form w(�). For example, the path in Figure 1.1 is associated with the word

a0a1c2a1c2a0c1c1. We also de�ne a shift operator S that acts on w(�) by replacing each

ai by ai+1 and each ci by ci+1. For example, S[a0a1c2a1c2a0c1c1] = a1a2c3a2c3a1c2c2.

Let C(z; a; c) be the generating function for words associated to Dyck paths

18
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de�ned by

C(z; a; c) =
X
n�0

X
�2Dn

w(�)zn:

We can further decompose the words associated with Dyck paths based on whether the

�rst letter of w(�) is an a0 or a c0. This enables us to write down the following recursive

formula for C(z; a; c),

C(z; a; c) = 1 + za0(S[C(z; a; c)]� 1)C(z; a; c)+ zc0C(z; a; c):

Solving for C(z; a; c) yields the following continued fraction expansion

C(z; a; b) =
1

1 + (a0 � c0)z �
a0z

1 + (a1 � c1)z �
a1z

1 + (a2 � c2)z � � � �

: (2.1)

In particular, if we let C(z) be C(z; a; c) with ai = ci = 1 for all i � 0, then

C(z) = 1 + zC(z)2; (2.2)

and therefore we can solve for C(z) explicitly

C(z) =
1�p1� 4z

2z
; (2.3)

which is the well-known generating function for the Catalan sequence. By making speci�c

replacements for ai and ci, we yield various generating functions for speci�c pattern

avoiding permutations.

2.2 A generating function for (132)-avoiding permutations

Let � 2 Sn(132) and let �� 2 Dn be the path corresponding to �. Recall that

a step NORTH originating from the point (x; x + i) means that car n � x � i prefers
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to park in spot x + 1. This implies that after car n � x � i parks, spots 1 through x

will all be available. Since each of the remaining x + i cars prefers to park in one of

the �rst x spots, exactly i of them will be forced to park in the �rst available spot after

car n � x � i. Therefore, for any k � 1, there are exactly
�

i
k�1

�
patterns of the form

(123 : : :k) in � that use n � x � i as the \1". In other words, if we de�ne the sequence

fskn;rg by the following,

X
r�0

skn;rq
r =

X
�2Dn

w(�)j
ai;ci!q(

i

k�1)
(2.4)

then skn;r will denote the number of elements of Sn(132) that have exactly r occurrences

of the pattern (123 : : :k). More generally, if we replace ai and ci by q(
i

k�1) in (2.1), we

have

Theorem 2.1 The generating function for the sequence fskn;rgn;r�0 is given by:

X
n;r�0

skn;rz
nqr =

1

1�
zq0

1�
zq1

1�
zq2

1� � � �

where qi = q(
i

k�1).

Note that this was originally proven by Robertson, Wilf, and Zeilberger [11] in the case

when k = 3 and in full generality by Mansour and Vainshtein [9], however this method

of proof is new.

Corollary 2.2 sn(132; 123 : : :k) = the number of Dyck paths from (0; 0) to (n; n) that

are bounded above by the line y = x+ k � 1.



21

Proof. Let � 2 Dn and let �� be the (132)-avoiding permutation corresponding to �.

From the proof of Theorem 2.1, we know that if w(�) contains an ak�1 or a ck�1, then

�� will contain a (12 : : :k) pattern. Therefore � is bounded above by y = x+ k � 1. 2

Corollary 2.3 For all n � 1, sn(132; 123) = 2n�1

Proof. Using Corollary 2.2, a path � 2 Dn which corresponds to an element of

Sn(132; 123) must remain weakly below the line y = x + 2. Since � necessarily starts

with a step NORTH, each of the remaining n � 1 steps NORTH can be paired o� with

a step EAST that immediately precedes or immediately follows it. In other words, the

generating function for such paths is given by

a0(a0 + c1)
n�1

since a0 = c0. Therefore there are 2
n�1 such paths. 2

Corollary 2.4 For all n � 2, jSn(132)\ S1
n(123)j = (n� 2)2n�3

Proof. Making use of the replacements given in (2.4), it is clear that if �� has exactly

one (123) pattern, then w(�) must contain exactly one c2, and in fact this c2 must be

immediately preceded by an a1. We can construct such a path as follows. Starting with

a path � 2 Dn�2 such that �� is an element of Sn�2(132; 123), simply insert the word

a1c2 into w(�) after any one of its n � 2 letters. Applying Corollary 2.3 completes the

proof. 2

Another way to look at the above argument is to think of the c2 as \gluing"

together a pair of nonempty paths (�1; �2) 2 D��D� , where �+� = n�1. The process

of \gluing" two paths together is formally de�ned by �rst replacing the last step of �1
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with a step NORTH, then replacing the �rst step of �2 with a step EAST and �nally

connecting these two paths together with a step NORTH followed by a step EAST. This

process is illustrated in Figure 2.1.

b

b

b b b

�1

�2

a1

c2

Figure 2.1: \Gluing" together two Dyck paths

Corollary 2.5 For all n � 3, jSn(132)\ S2
n(123)j = n(n� 3)2n�6

Proof. Again making use of the replacements made in (2.4), it is clear that for �� to

have exactly two (123) patterns, w(�) must contain exactly two c2's. We can construct

such a path as follows. Take a triple of paths, (�1; �2; �3), from D� � D� � D where

�+�+ = n�2 and only � is allowed to be zero. Make sure that each path corresponds

to a permutation that avoids both (132) and (123). Form � by gluing the three paths

together. When � = 0, the two c2's in w(�) are adjacent. This means that the two (123)

patterns will have the same \2" and \3". In this case there are exactly 2��12�1 pairs

of paths for each of the n� 3 solutions to �+  = n� 2. If � > 0, then the two c2's are

not adjacent and the two (123) patterns will either be disjoint or share the \3". In this

case, there are exactly 2��12��12�1 triples of paths for each of the
�
n�3
2

�
solutions to

�+ � +  = n � 2. Therefore we have that the total number of paths is given by

(n� 3)2n�4 +

�
n� 3

2

�
2n�5 = n(n� 3)2n�6:
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2

Corollary 2.6 For all n � 4, jSn(132)\ S3
n(123)j = (n�4)(n�2)(n+3)

3
2n�8

Proof. Following the method of proofs established in Corollaries 2.4 and 2.5, we see

that in order to construct elements of Sn(132)\ S3
n(123), we will need 4-tuples of paths

(�1; �2; �3; �4), from D� �D� �D �D� where �+ � +  + � = n� 3 and only � and 

can be zero.

If both � and  are zero, then there are exactly 2��12��1 pairs of paths for each

of the n� 4 solutions to �+ � = n� 3. If exactly one of � and  is zero (assume  = 0)

then there are exactly 2��12��12��1 triples of paths for each of the
�
n�4
2

�
solutions to

�+�+� = n�3. And �nally, if neither � nor  is zero, then there are 2��12��12�12��1

4-tuples of paths for each of the
�
n�4
3

�
solutions to �+ � +  + � = n� 3. Therefore we

have that the total number of paths is given by

(n� 4)2n�5 + 2

�
n� 4

2

�
2n�6 +

�
n� 4

3

�
2n�7 =

(n� 4)(n� 2)(n+ 3)

3
2n�8:

2

If we were to continue to look at speci�c values of jSn(132)\Sr
n(123)j for r � 4,

we would have to start taking into account the additional possibly of c3 and a2 appearing

in w(�). In the next section, we will have a di�erent specialization for ai starting with

a2, so for the time being, we will stop here.

2.3 A generating function for (321)-avoiding permutations

Let � 2 Sn(321) and let �� 2 Dn be the path corresponding to �. Recall that

a step NORTH originating from the point (x; x+ i) means that car x+ i+ 1 prefers to
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park in spot x + 1. If car x + i+ 1 is a vip car, or in other words, the step NORTH is

immediately followed by a step EAST, then car x + i + 1 will necessarily park in spot

x + 1. It also means that at most x of the cars 1 through x + i are vip cars and thus

exactly i non-vip cars will park in the �rst available spot after car x+ i+ 1. Therefore,

for any k � 1, there are exactly
�

i
k�1

�
patterns of the form (k12 : : :k � 1) in � that use

x+ i+ 1 as the \k". If car x+ i+ 1 is not a vip car, no such pattern can be formed. In

other words, if we de�ne the sequence ftkn;rg by the following,

X
r�0

tkn;rq
r =

X
�2Sn(321)

w(�)j
ai!1;ci!q(

i

k�1)

then tkn;r will denote the number of elements of Sn(321) that have exactly r occurrences

of the pattern (k12 : : :k � 1). More generally, if we replace ai by 1 and ci by q(
i

k�1) in

2.1, we have

Theorem 2.7 The generating function of the sequence ftkn;rgn;r�0 is given by:

X
n;r�0

tkn;rz
nqr =

1

1� zq0 �
z

1� zq1 �
z

1� zq2 �
z

1� zq3 � � � �

where qi = q(
i

k�1) � 1.

Note that this was originally proven by Krattenthaler [7].

Each of the next three corollaries is a consequence of Corollaries 2.3-2.5 and

the fact that a0 and a1 have the same weight in the construction of (132)-avoiding

permutations as they do in the construction of (321)-avoiding permutations.
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Corollary 2.8 jSn(321; k12 : : :k � 1)j = the number of Dyck paths from (0; 0) to (n; n)

that are bounded above by the line y = x+ k � 1.

Corollary 2.9 For all n � 1, jSn(321; 312)j= 2n�1

Corollary 2.10 For all n � 2, jSn(321)\ S1
n(312)j = (n� 2)2n�3

Corollary 2.11 For all n � 3, jSn(321)\ S2
n(312)j = n(n� 3)2n�6

For this last corollary, we may use Corollary 2.6 as a starting point, but notice

that it is entirely possible for a path to consist only of the letters a0, a1, c1, a2 and c3.

In particular, a path having exactly one c3 appearing in it and no c2's would correspond

to an element of Sn(321) \ S3
n(312). Mimicking the proof of Corollary 2.4, we see that

there are exactly (n� 3)2n�4 such paths. Therefore,

Corollary 2.12 For all n � 4, jSn(321)\ S3
n(312)j = 2n�8

3 (n3 � 3n2 + 38n� 120).



Chapter 3

Permutations with one occurrence

of the pattern (132)

In this chapter we o�er constructions for generating a variety of permutations

that have exactly one occurrence of the pattern (132).

3.1 Constructing permutations with one (132) pattern

Mikl�os B�ona [2] established that

Theorem 3.1 s1n(132) =
�
2n�3
n�3

�
.

B�ona's proof relies heavily on the following recursion

Bn =

nX
I=4

BI�1Cn�I +

n�3X
I=1

CI�1Bn�I +

n�1X
I=2

CI�2Cn�I (3.1)

with initial conditions B0 = B1 = B2 = 0, where for convenience we have set Bn =

s1n(132) and Cn =
�
2n
n

�
=(n+1). This recursion comes from the fact that we can partition

the set S1
n(132) into three subsets. If we let I be the number such that �I = n, then the

26
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�rst subset consists of permutations such that the (132) pattern occurs before the I th

position, the second subset consists of permutations such that the (132) pattern occurs

after the I th position and the last subset consists of permutations such that n acts as

the \3" in the (132) pattern. In our case, we would like to prove the above theorem by

directly constructing the relevant permutations. We begin with the following lemma.

Lemma 3.2 Let � 2 S1
n(132). Then the only (132) pattern that occurs in � must be of

the form

(�I ; �I+1; �I + 1):

for some 1 � I � n � 2 and 1 � �I < n � I

Proof. Let � 2 S1
n(132) and let f�I ; �J ; �Kg be the only (132) pattern that appears

in � for some I < J < K. If J > I + 1 and �I+1 < �K then (�I+1; �J ; �K) is another

(132) pattern. If J > I + 1 and �I+1 > �K then (�I ; �I+1; �K) is another (132) pattern.

Therefore we must have J = I + 1. If �K > �I + 1 then �i = �I + 1 for some i 6= K. If

i < I then (�i; �I+1; �K) is another (132) pattern. If i > I then (�I ; �I+1; �i) is another

(132) pattern. Therefore we conclude that �K = �I +1. Finally, since each of the �I � 1

numbers less �I must appear after spot I + 1, we conclude that �I < n � I . 2

A consequence of the above lemma is that we can construct all elements of

S1
n(132) for a �xed I and �I in the following manner. Let � 2 Dn be a path that has the

following properties:

1. The I th step EAST is preceded by at least two steps NORTH and followed by at

least one step EAST,

2. The two steps NORTH that precede the I th step EAST cannot start on the line

y = x.
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For instance, the path illustrated in Figure 3.1 has these properties for I = 2,

4, and 6. To form the corresponding element of S1
n(132), �rst form the (132)-avoiding

permutation, �, corresponding to � by labelling the vertical segments from top to bottom

and then parking the cars accordingly. Property 1 means that we must have �I+1 =

1+�I . Property 2 insures that there is at least one value k > I+1 such that �k > �I+1.

Let K be the smallest such value of k. Now switch the cars in spot I +1 with the car in

spot K. Let � be the permutation that sends i to the car that now resides in spot i.

Clearly � has at least one (132) pattern, namely (�I ; �I+1; �I + 1). Notice also

that for all i and j such that �i; �j < �I where I + 1 < i < K < j, we must also have

�i > �j . This insures that the process of switching the cars parked in spots I +1 and K

cannot introduce any other (132) patterns, and thus � 2 S1
n(132).

Figure 3.1: � 2 D15 corresponding to an element of S1
15(132)

For I = 2, the permutation corresponding to the path in Figure 3.1 is given by0
B@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 9 11 7 8 5 6 10 12 3 2 1 4 14 15

1
CA ;
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for I = 4, it is given by0
B@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 9 10 7 11 5 6 8 12 3 2 1 4 14 15

1
CA ;

and for I = 6, it is given by0
B@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 9 10 7 8 5 11 6 12 3 2 1 4 14 15

1
CA :

In each case, the only (132) pattern is underlined.

Given our construction, we can decompose � into �1, the portion of � that

occurs prior to the two steps NORTH followed by the I th step EAST, and �2, the

portion of � that occurs after the (I +1)st step EAST. This decomposition is illustrated

in Figure 3.2. For I = 6. the path in Figure 3.1 is decomposed in Figure 3.3.

b

b

b b b

�1

�2

Figure 3.2: Decomposition of �

Since the number of paths from (0; 0) to (a; b) for b � a that stay weakly above

the line y = x is given by

b+ 1� a

b+ 1

�
a+ b

a

�
;



30

�1 = �2 =

Figure 3.3: Sample decomposition of �

we see that the total number of relevant paths is

n�2X
I=1

n�I�1X
�I=1

(n� I � �I + 1)2

(n� I)(n� �I)

�
n � I + �I � 2

n � I � 1

��
n � �I + I � 2

n� �I � 1

�
: (3.2)

Making the change of variable d = I + �I , (3.2) becomes

n�1X
d=2

d�1X
�I=1

(n� d+ 1)2

(n� d+ �I)(n� �I)

�
n � d+ 2�I � 2

n� d+ �I � 1

��
n � 2�I + d� 2

n� �I � 1

�
;

which can be transformed into the following summation

n�1X
d=2

n � d+ 1

n� 1

�
n + d� 4

d� 2

� d�2X
s=0

(2� d)s(1� n)s(
n�d
2

+ 1)s(
n�d+1

2
)s

(1)s(n� d+ 2)s(
�n�d

2 + 2)s(
�n�d+1

2 + 2)s
(3.3)

where (a)n = a(a + 1) � � �(a + n � 1). Now the inner summation is in the form of a

well-poised hypergeometric series. Using Clausen's 4F3 formula, (3.3) becomes

n�1X
d=2

n� d+ 1

n � 1

�
2n� 2

d� 2

�
=

�
2n� 3

n � 3

�
: (3.4)

which follows from the binomial theorem.

Our next task is to enumerate certain subsets of S1
n(132). To this end, we will

need the following

Lemma 3.3 Let � 2 S1
n(132) and let I < I + 1 < K be the indices of the lone (132)

pattern in �. For all k > K such that �k > �I+1,

(�I ; �I+1; �k) and (�I ; �I + 1; �k)
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are (123) patterns in �. Additionally, for all pairs j; k > K, j < k such that �j ; �k >

�I+1,

(�I ; �j; �k) and (�I+1; �j ; �k) and (�I + 1; �j ; �k)

are (123) patterns in �.

3.2 Constructing elements of S1
n
(132) \ Sn(123)

Using Corollary 2.10 and Lemma 1.2, we know that the number of (123)-

avoiding permutations that have exactly one occurrence of the pattern (132) is (n �

2)2n�3. Recall that this is also the number of (132)-avoiding permutations that have

exactly one occurrence of the pattern (123), see Corollary 2.4. In light of Lemma 3.3,

a path � that corresponds to an element of S1
n(132)\ Sn(123) can be decomposed into

(132,123)-avoiding paths �1 and �2 as illustrated in Figure 2.1. In other words, to con-

struct an element of S1
n(132) \ Sn(123), simply take an element of Sn(132) \ S1

n(123)

and swap the \2" and the \3" of the (123) pattern. For example, the path illustrated in

Figure 3.4 corresponds to the following element of Sn(132)\ S1
n(123)0

B@ 1 2 3 4 5 6 7 8 9 10 11 12

11 12 9 8 6 7 5 4 3 10 2 1

1
CA ;

where the lone (123) pattern has been underlined. Swapping the \2" and the \3" yields0
B@ 1 2 3 4 5 6 7 8 9 10 11 12

11 12 9 8 6 10 5 4 3 7 2 1

1
CA ;

which is an element of S1
n(132)\ Sn(123). Notice that since all of the numbers between

the \2" and the \3" must be less than the \2" and are in decreasing order, this process

of swapping will not introduce any more (132) patterns and it will not create any new

(123) patterns.
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Figure 3.4: Constructing an element of S1
12(132)\ S12(123)

Theorem 3.4 The number of permutations of length n � 4 that have exactly one oc-

currence of the pattern (132) and avoid the pattern (123) is given by

(n� 2)2n�3:

.

3.3 Constructing elements of S1

n
(132) \ S1

n
(123)

To construct an element of S1
n(132) \ S1

n(123), we start with an element of

Sn(132) \ S2
n(123) and convert one of the (123) patterns into a (132) pattern, while

leaving the other (123) pattern unchanged. This can only be accomplished if the (123)

patterns are disjoint or if they only share the \3". The path in Figure 3.5 illustrates

such a permutation. From the proof of Corollary 2.5, the number of such permutations

is �
n � 3

2

�
2n�5:

Since there are two choices for which (123) pattern is to be converted into a (132) pattern,

we have
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Figure 3.5: Constructing an element of S1
14(132)\ S1

14(123)

Theorem 3.5 The number of permutations of length n � 4 that have exactly one oc-

currence of the pattern (132) and exactly one occurrence of the pattern (123) is given

by

(n� 3)(n� 4)2n�5:

Alternatively, we could start with a path � in S1
n�2(132)\Sn�2(123) and insert

two steps NORTH followed by two steps EAST at any one of the n � 3 places where �

touches the line y = x + 1. Using Theorem 3.4, this again results in (n� 3)(n� 4)2n�5

permutations. For example, the path in Figure 3.5 would be interpretted as0
B@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13 14 11 10 8 12 7 5 6 4 3 9 2 1

1
CA ;

if we converted the �rst (123) pattern into a (132) pattern,or as

0
B@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13 14 11 10 8 9 7 5 12 4 3 6 2 1

1
CA ;

if we converted the second (123) pattern into a (132) pattern. In both permutations, the

(132) pattern is underlined and the (123) pattern is barred.



Chapter 4

Permutations with one occurrence

of the pattern (321)

In this chapter we o�er constructions for generating a variety of permutations

that have exactly one occurrence of the pattern (321).

4.1 Constructing permutations with one (321) pattern

John Noonan [10] established that

Theorem 4.1 s1n(321) =
3
n

�
2n
n+3

�
.

Noonan o�ers a proof that looks at these permutations in a more general setting

and shows that they must satisfy a certain recursion. From our point of view, it will

prove more bene�cial to have a constructive proof of the above theorem.

Proof. We begin by assuming that the values f�I ; �J ; �Kg form the lone (321) pattern

in � 2 Sn for some I < J < K. Thus if i < J and i 6= I , then �i < �J , otherwise

f�i; �J ; �Kg would form another (321) pattern. Similarly, if i > J and i 6= K, then

34
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�i > �J . Therefore � maps f1; 2; : : : ; Jg bijectively on to the set f1; 2; : : : ; �K � 1; �K +

1; : : : ; �J ; �Ig, and we must conclude that �J = J .

We can now construct all permutations � 2 S1
n(321) such that �J = J acts as

the \2" in the only (321) pattern in �. Let �1 2 DJ and �2 2 Dn�J+1 . First, park the

cars f1; 2; : : : ; Jg in spots 1 through J according to �1, avoiding a (321) pattern. Let I

be the position in which car J parks and let �K be the car that parks in spot J . Notice

that we must exclude the case when car J parks in spot J since �K < J . This implies

that �1 ends with at least two steps EAST because car J will always park in its preferred

spot. Therefore there are exactly

CJ � CJ�1

choices for �1, where Cn =
�
2n
n

�
=(n+1). This part of the process is illustrated in Figure

4.1.

8

7

6

5

4

3

2

1

 !

0
B@ 1 2 3 4 5 6 7 8

1 3 5 2 8 4 6 7

1
CA

Figure 4.1: Constructing elements of S1
n(321): Step 1

Now park cars f�K ; J + 1; J + 2; : : : ; ng in spots J through n according to �2,

avoiding a (321) pattern. Note that car �K is in fact being parked again. Let K be the

position in which car �K now resides and let �I be the car that is now located in spot J .

Notice that we must exclude the case when car �K parks in spot J since K > J . This

implies that �2 starts with at least two steps NORTH because car �K always prefers to
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park in spot J , but can only do so if it is a vip car. Therefore there are exactly

Cn�J+1 � Cn�J

choices for �2. This part of the process is illustrated in Figure 4.2.

15

14

13

12

11

10

9

7

 !

0
B@ 8 9 10 11 12 13 14 15

10 11 7 12 13 9 15 14

1
CA

Figure 4.2: Constructing elements of S1
n(321): Step 2

Finally, switch the two cars J and �I , which are in spots I and J respectively,

and de�ne � to be the function that sends i to the car that now resides in spot i. Clearly

� has at least one (321) pattern created by (�I ; �J ; �K), but a careful inspection of the

above construction yields that this is the only (321) pattern. All of the cars that are

eventually parked in spots 1 through J are labelled with a number less than or equal to

J , except for the car that is in spot I . But car �I is conveniently placed in the spot that

is �lled with car J so as to not introduce any (321) patterns amoung spots 1 through J .

Additionaly, �I 's location relative to cars J + 1 through n does not change. Similarly,

when car �K is re-parked, it's location relative to cars 1 through J does not change.

Therefore, the only way to have a (321) pattern is for the \3" to occur before spot J

and the \1" to occur after spot J . J must act as the \2", otherwise we would have had

a (321) pattern due to �1 or �2. Since �I is the only number prior to J that is bigger

than J , it must act as the \3". Likewise, �K is the only number that occurs after J that
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is smaller than J , and thus acts as the \1". Therefore � is in fact an element of S1
n(321).

The element in S1
15(321) given by Figures 4.1 and 4.2 is

0
B@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 5 2 10 4 6 8 11 7 12 13 9 15 14

1
CA ;

where the numbers that make up the only (321) pattern are underlined.

Given an arbitrary element of S1
n(321), we can easily reverse each of the above

steps. Therefore the total number of permutations with exactly one (321) pattern is

given by

n�1X
J=2

(CJ � CJ�1)(Cn�J+1 � Cn�J ): (4.1)

If we let F (x) =
P

i�1(Ci � Ci�1)x
i, then 4.1 is none other than the coe�cient of xn+1

in F (x)2. Notice that F (x) = (1� x)C(x)� 1 and using 2.2, we have that

F (x)2 = (1� x)2C(x)2 � 2(1� x)C(x) + 1

= (1� 2x+ x2)
C(x)� 1

x
� 2(1� x)C(x) + 1

= (
1

x
� 4 + 3x)C(x)� (

1

x
� 3 + x):

Taking the coe�cient of xn+1 for n � 2 on both sides reveals that 4.1 is

Cn+2 � 4Cn+1 + 3Cn =
3

n

�
2n

n + 3

�
:

2

In the above proof, it was shown that each element of S1
n(321) corresponds to a

pair of Dyck paths (�1; �2) 2 Dn1 �Dn2 , where n1+n2 = n+1. Since �1 must end with

at least two consecutive steps EAST and �2 must start with at least two consecutive

steps NORTH, we can decompose these paths still further. Let �11 represent the initial
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portion of �1 continuing until �1 touches the line y = x for the last time, not including

the last step EAST in �1. Of the remaining part of �1, let �12 be the portion that starts

on the line y = x + 1 continuing until �1 touches the line y = x + 1 for the last time,

not including the next to last step EAST in �1. Let �13 be the remaining portion of �1,

starting on the line y = x+2 and continuing until �1 crosses the line y = x+ 2. Let �21

represent the portion of �2 that starts immediately after the two initial steps NORTH

and continues until it crosses the line y = x+ 2 for the �rst time. Let �22 represent the

remaining portion of �2 that starts on the line y = x + 1 and continues until it crosses

the line y = x. And �nally, let �23 represent the remaining portion of �2 that starts on

the line y = x and continues until the end of �2. This process is illustrated in Figure 4.3.

The decomposition of �1 and �2 as given in Figures 4.1 and 4.2 is shown in Figure 4.4.

b

b

b

b

b b b

�11

�12

�13

�1 =

b

b

b

b b

b b

�21

�22

�23

�2 =

Figure 4.3: Decomposition of �

This leads us immediately to the following.

Corollary 4.2 X
n�3

3

n

�
2n

n+ 3

�
xn =

(1� p1� 4x)6

64x3

Proof. Since each element of S1
n(321) can be decomposed into a 6-tuple of paths,

(�11; �12; : : : ; �23) 2 Dn1 �Dn2 � � � ��Dn6 where n1+n2+ � � �+n6 = n� 3, we see that
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�11 = �12 = �13 =

�21 = �22 = �23 =

Figure 4.4: Sample decomposition of �1 and �2

the generating function for s1n(321) is given by x3C(x)6. Applying (2.3) completes the

proof. 2

Remarkably, this says that an ordered set of 6 permutations, each avoiding the

pattern (321), corresponds to a single permutation that has exactly one occurrence of

the pattern (321).

Our next task is to enumerate certain subsets of S1
n(321), but in order to do so,

we will need the aid of the following

Lemma 4.3 Let � 2 S1
n(321) and let I < J < K be the indices of the lone (321) pattern

in �. For all i such that I < i < J,

(�I ; �i; J) and (�I ; �i; �K)

are (312) patterns in �. Similarly, for all j such J < j < �I ,

(�I ; J; j) and (�I ; �K; j)

are (312) patterns in �.

Proof. Note that for all i such that I < i < J , we must have �i < �K , otherwise

(�I ; �i; �K) would form a (321) pattern. Therefore (�I ; �i; J) and (�I ; �i; �K) are (312)
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patterns. Also note that the set of cars f�K ; J + 1; : : : ; �Ig all prefer to park in spot

J , but only �I is allowed to park there. The other cars are parked in increasing order.

Therefore (�I ; J; j) and (�I ; �K; j) are (312) patterns for each j such that J < j < �I .

2

4.2 Constructing elements of S1
n
(321) \ Sn(312)

Using Corollary 2.4 and Lemma 1.2 we know that the number of (312)-avoiding

permutations that have exactly one occurrence of the pattern (321) is (n�2)2n�3. Recall

that this is the same as the number of elements of Sn(321)\ S1
n(312), which was shown

using elements of Dn. In the above construction of � 2 S1
n(321), �� was an element of

Dn+1. This suggests that there is a simple embedding of Dn onto Dn+1 that explains

why these sets are equinumerous.

Using Lemma 4.3, we must have I = J � 1 and �I = J + 1 if � 2 S1
n(321) \

Sn(312). In other words, both �13 and �21 are empty, where � = �� and � is decomposed

as in Figure 4.3. Additionally, �1 and �2 must correspond to (312)-avoiding permuta-

tions. Furthermore, since �12 and �22 start on the line y = x+1, w(�12) and w(�22) can

only be powers of c0. Therefore

w(�) = w(�11)a0c
i
1c1a0c1c

j
1w(�23)

for some i; j � 0. If �� corresponds to an element of Sn(321)\ S1
n(312), then

w(��) = w(��11)a0c
i
1a1c2c

j
1w(��23)

for some i; j � 0. In other words, we can switch between the two sets by simply replacing

c1a0c1 in w(�) with a1c2, and vice versa. Graphically, this amounts to Figure 4.5, where

the relevant portions of the path have been shaded.
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b

b

b b

b b

b b b

b

b b

b b

b b

b b b

�11

�23

 !

b

b

b b

b b

b

b b b

b b

b b

b b b

�11

�23

Figure 4.5: A bijection between S1
n(321)\ Sn(312) and Sn(321)\ S1

n(312)

This correspondence establishes

Theorem 4.4 The number of permutations of length n � 4 that have exactly one oc-

currence of the pattern (321) and avoid the pattern (312) is given by

(n� 2)2n�3:

4.3 Constructing elements of S1
n
(321) \ S1

n
(312)

Using Lemma 4.3, we must have I = J � 1 and �I = J + 1 if � 2 S1
n(321) \

S1
n(312). In other words, both �13 and �21 are empty. Notice that so far, this is exactly

the same as the situation that occurred when we were constructing elements of S1
n(321)\

Sn(312). In fact, we can use that construction to help us here. In particular, w(�) will

have a single occurrence of the letter c2, because the (312) pattern that occurs must have

come from �1 or �2, which are (321) avoiding permutations. If we can remove the c2,

we should be able to produce a (312)-avoiding permutation with exactly one decreasing

sequence of length three.
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Alternatively, starting with � 2 S1
n�2(321)\ Sn�2(312), we can construct � 2

S1
n(321) \ S1

n(312). The idea is to choose a vertical segment of �� and replace it by a

series of three vertical segments, thereby converting it from an element of Dn�1 to Dn+1.

If we let � = ��, then

w(�) = w(�11)a0S[w(�12)]c1a0c1S[w(�22)]w(�23):

Excluding the c1a0 pair immediately following S[w(�12)], we can accomplish this using

the following substitutions:

a0 ! a0a1c2 c0 ! a0a1c2 c1 ! c1a1c2: (4.2)

Graphically, this can be represented as in Figure 4.6. An example of this substitution is

given in Figure 4.7.

b

b

b

$
b

b

b

b b b

b

b

b b $
b

b

b

b b b b

b

b b

$
b

b b

b

b b b

Figure 4.6: Graphical representation of replacements in 4.2

The reason we can not apply these substitutions to the c1a0 pair immediately

following S[w(�12)] is that the resulting path would not correspond to an element of

S1
n(321). Therefore we can simply choose any of the other n � 3 vertical segments in

� to make this replacement, and the resulting path will correspond to an element of

S1
n(321) \ S1

n(312). Conversely, given an element of S1
n(321) \ S1

n(312), we can easily

identify which replacement was made and �nd the corresponding element of S1
n�2(321)\

Sn�2(312). Thus we have established
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 !

Figure 4.7: Correspondence between S1
n�2(321)\ Sn�2(312) and S1

n(321)\ S1
n(312)

Theorem 4.5 The number of permutations of length n � 4 that have exactly one oc-

currence of the pattern (321) and exactly one occurrence of the pattern (312) is given

by

(n� 3)(n� 4)2n�5:

Notice that this a simple consequence of Lemma 1.2 and Theorem 3.5, however,

the proofs of Theorems 3.5 and 4.5 are signi�cantly di�erent. In this presentation, we

used paths in Dn+1 to construct a single element of S1
n(321)\S1

n(312), while in the proof

of Theorem 3.5, we used paths in Dn to construct two elements of S1
n(132)\ S1

n(123).

4.4 Constructing elements of S1

n
(321) \ S2

n
(312)

Let � 2 S1
n(321) \ S2

n(312) and let � = ��. Using Lemma 4.3, we must have

I = J � 2 or I = J � 1 if we want exactly two occurrences of the pattern (312).

Case: I = J � 2

In this case, (�I ; �J�1; J) and (�I ; �J�1; �K) will constitute our only allowed (312) pat-

terns. Again using Lemma 4.3, we must have �I = J+1, or in other words, �21 is empty.

Additionally, if �K < J �1, then there exists an i < J�2 such that �i = J �1, and thus



44

(�i; �J�1; �K) would be a third (312) pattern. Therefore �K = J � 1, or in other words,

w(�13) = c0. Lastly, since �12 and �22 start on the line y = x + 1, the words associated

with these paths can be nothing more than powers of c0, since the two existing (312)

patterns can already be attributed to �13. But this is exactly like the construction for

elements of S1
n(321) \ Sn(312), except that �13 is not empty. Therefore, if we simply

remove �13, we will have an element of S1
n�1(321) \ Sn�1(312). Since this process is

easily reversed, we have that there are (n� 3)2n�4 elements of S1
n(321) \ S2

n(312) with

I = J � 2.

Case: I = J � 1

In this situation, �13 must be empty. Using Lemma 4.3, additionally, we must have

�I = J + 2 or �I = J + 1.

Subcase: �I = J + 2

Here our only allowed (312) patterns are (J+2; J; J+1) and (J+2; �K; J+1). IfK > J+1

then (�J+1; �K; J + 1) will be another (312) pattern. Therefore, K = J + 1, or in other

words, w(�21) = c0. Since we already have our two (312) patterns, �11, �12, �22 and �23

must correspond to (312)-avoiding permutations. Again, this is exactly like constructing

elements of S1
n(321)\Sn(312), except that �21 is not empty. If we simply remove �21, then

we would obtain a path corresponding to an element of S1
n�1(321) \ Sn�1(312). Since

this process can be reversed, these two sets must have the same cardinality, namely

(n� 3)2n�4.

Subcase: �I = J + 1

This means that �21 is also empty. In this situation neither �I nor �J can be involved

in a (312) pattern. This means that the (312) patterns must come from either �1 or �2,
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but not from the interaction between the two. It also means that we can think of �1

(resp. �2) as corresponding to an element of SJ�1 (Sn�J ), by simply removing the last

(�rst) c1 that occurs in w(�1) (w(�2)).

If both (312) patterns come from �1, then applying Corollaries 2.9 and 2.11,

we have

(J � 1)(J � 4)2J�72n�J�1

such paths. Summing over all possible J yields

2n�8
n�1X
J=5

(J � 1)(J � 4) = 2n�8
n(n � 4)(n� 5)

3
:

The same argument applies to the case when both (312) patterns come from �2.

If both �1 and �2 contain exactly one (312) pattern, then applying Corollary

2.10, we have

(J � 3)2J�4(n� J � 2)2n�J�3

such paths. Summing over all possible J yields

2n�7
n�2X
J=4

(J � 3)(n� J � 2) = 2n�7
(n� 4)(n� 5)(n� 6)

6
:

In total, we have

(n� 3)2n�3 + 2n�7
n(n� 4)(n� 5)

3
+ 2n�7

(n� 4)(n� 5)(n� 6

6

relevant paths, which yields

Theorem 4.6 The number of permutations of length n � 4 that have exactly one oc-

currence of the pattern (321) and exactly two occurrences of the pattern (312) is given

by

2n�8(n3 � 11n2 + 70n� 136):
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4.5 Constructing elements of S1

n
(321) \ S3

n
(312)

Let � 2 S1
n(321) \ S3

n(312) and let � = ��. Using Lemma 4.3, we must have

I = J � 2 or I = J � 1 if we want exactly three occurrences of the pattern (312).

Case: I = J � 2

In this case (�I ; �J�1; J) and (�I ; �J�1; �K) will constitute two of our three (312) pat-

terns. Again using Lemma 4.3, we must have �I = J+1, or in other words, �21 is empty.

If �K < J�2, then there exists an i; j < I such that �i = J�1 and �j = J�2, and thus

(�i; �J�1; �K) and (�j ; �J�1; �K) would be a third and fourth (312) pattern. Therefore

�K = J � 1 or �K = J � 2.

Subcase: �K = J � 1

This forces w(�13) to be c0, otherwise car J � 1 would park in its preferred spot which

would be before spot I . We are now left with the task of constructing one more (312)

pattern. But this is the same situation as constructing elements of S1
n(321) \ S1

n(312),

except �13 is not empty. If we were to simply remove �13, a path corresponding to an

element of S1
n�1(321)\S1

n�1(312) would remain. Since this process is reversible, applying

Theorem 4.5 yields that there are (n� 4)(n� 5)2n�6 such permutations.

Subcase: �K = J � 2

This implies that (J � 1; �J�1; J � 2) is our third and �nal (312) pattern. Additionally,

we must have �J�3 = J � 1, otherwise, (J � 1; �J�3; J � 2) would be a fourth (312)

pattern. This implies that �13 is the path in D2 corresponding to the word c20. The

remainder of the path cannot contribute anymore (312) patterns. But this is the same

situation as constructing elements of S1
n(321)\ Sn(312), except �13 is not empty. If we

were to simply remove �13, a path corresponding to an element of S1
n�2(321)\Sn�2(312)
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would remain. Since this process is reversible, applying Theorem 4.4 yields that there

are (n� 4)2n�5 such permutations.

Case: I = J � 1

This means that �13 is empty and we still need to create three (312) patterns. Using

Lemma 4.3, we can only have �I = J + 2 or �I = J + 1.

Subcase: �I = J + 2

In this case, two of our allowed (312) patterns are (J +2; J; J+1) and (J+2; �K ; J+1).

If K > J +2 then (�J+1; �K; J +1) and (�J+2; �K; J + 1) would be two more additional

(312) patterns. Therefore, K = J + 1 or K = J + 2.

If K = J + 1, then �21 is in D1 and we still need to construct one more (312)

pattern. But this is the same situation as constructing elements of S1
n(321) \ S1

n(312),

except �21 is not empty. If we were to simply remove �21, a path corresponding to an

element of S1
n�1(321)\S1

n�1(312) would remain. Since this process is reversible, applying

Theorem 4.5 yields that there are (n� 4)(n� 5)2n�6 such permutations.

If K = J + 2, then (�J+1; �K ; J + 1) is our third and �nal (312) pattern.

Additionally, we must have �J+1 = J +3, otherwise, (�J+1; �K; J+3) would be a fourth

(312) pattern. This implies that �21 is the path in D2 corresponding to the word c
2
0. The

remainder of the path cannot contribute anymore (312) patterns. But this is the same

situation as constructing elements of S1
n(321)\ Sn(312), except �21 is not empty. If we

were to simply remove �21, a path corresponding to an element of S1
n�2(321)\Sn�2(312)

would remain. Since this process is reversible, applying Theorem 4.4 yields that there

are (n� 4)2n�5 such permutations.
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At this point we would like to mention that we have so far classi�ed

(n� 4)(n� 5)2n�5 + (n� 4)2n�4 = (n� 3)(n� 4)2n�5

relevant patterns. What is (not so) surprising about this is that it coincides exactly with

the number of elements of S1
n(321)\S1

n(312). We leave it as an exercise to the reader to

construct a bijection between these two sets.

Subcase: �I = J + 1

In this case, �21 is also empty and neither �I nor �J can be involved in a (312) pattern.

This means that the (312) patterns must come from either �1 or �2, but not from

the interaction between the two. It also means that we can think of �1 and �2 as

corresponding to elements of SJ�1 and Sn�J , just as we did in the previous section.

If all three (312) patterns come from �1, then applying Corollaries 2.9 and 2.12,

we have

2J�9

3
(J3 � 6J2 + 47j � 162)2n�J�1

such paths. Summing over all possible J yields

2n�10

3

n�1X
J=6

(J3 � 6J2 + 47j � 162) =
2n�12

3
(n� 5)(n3 � 5n2 + 82n� 336):

The same argument applies to the case when all three (312) patterns come from �2. If

�1 contains exactly two (312) patterns and �2 contains exactly one (312) pattern, then

applying Corollaries 2.10 and 2.11, we have

(J � 1)(J � 4)2J�7(n� J � 2)2n�J�3

such paths. Summing over all possible J yields

2n�10
n�2X
J=5

(J � 1)(J � 4)(n� J � 2) = 2n�12
n(n� 5)(n� 6)(n� 7)

3
:
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The same argument applies to the case when �1 contains one (312) pattern and �2

contains two (312) patterns. In total, we have

(n� 3)(n� 4)2n�5 +
2n�11

3
(n � 5)

�
(n3 � 5n2 + 82n� 336) + n(n� 6)(n� 7)

�

relevant paths, which yields

Theorem 4.7 The number of permutations of length n � 4 that have exactly one oc-

currence of the pattern (321) and exactly three occurrences of the pattern (312) is given

by

2n�10

3
(n� 4)(n3 � 10n2 + 163n� 498):



Chapter 5

More generating functions

Using the theory of orthogonal polynomials and its relationship to Dyck paths,

we can further generalize many of the results from previous chapters.

5.1 Introduction

Let the sequence of polynomials fQngn�0 be de�ned recursively by

Qn+1 = zQn �Qn�1;

with initial conditions Q0 � 1 and Q1 = z. These polynomials are related to the nth

Chebyshev polynomial of the second kind, Un, by the simple relation

Qn(z) = Un(z=2):

We state without proof some basic results from the theory of orthogonal polynomials.

For further background, see [3, 14].

Theorem 5.1

Qn(1=
p
z)p

zQn+1(1=
p
z)

=
X
k�0

cn;kz
k

50
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where cn;k is the number of elements of Dk that stay weakly below the line y = x+ n.

Theorem 5.2 p
z
n�1

Qn+1(1=
p
z)

=
X
k�n

dn;kz
k

where dn;k is the number of paths from (0; 0) to (k� n; k) using only steps NORTH and

EAST that stay weakly below the line y = x+ n and weakly above the line y = x.

In view of the continued fraction expansions that we saw in previous chapters,

we should point out that

Theorem 5.3

Qn(1=
p
z)p

zQn+1(1=
p
z)

=
1

1�
z

1�
z

1�
� � �

� � �
� � �

1� z

:

where there are a total of n z's that appear in the above continued fraction.

5.2 (132)-avoiding permutations

Each of the following corollaries follows from the above theorems and the spe-

cializations for ai and ci as given in Section 2.2.

Corollary 5.4 Let k � 2. The generating function for the number of (132)-avoiding

permutations of length n that also avoid the pattern (12 : : :k) is given by

Qk�1(1=
p
z)p

zQk(1=
p
z)
:
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Proof. This is a simple consequence of Theorem 5.1 and Corollary 2.2. 2

Corollary 5.5 Let k � 2. The generating function for the number of (132)-avoiding

permutations of length n that have exactly one occurrence of the pattern (12 : : :k) is

given by

1

Q2
k(1=
p
z)

Proof. This follows immediately from Theorem 5.2 and Figure 5.1. 2

b

b b

�1

�2

ck�1

Figure 5.1: Generic element of Sn(132)\ S1
n(12 : : :k)

Corollary 5.6 Let k � 2. The generating function for the number of (132)-avoiding

permutations of length n that have exactly two occurrences of the pattern (12 : : :k) is

given by p
zQk�1(1=

p
z)

Q3
k(1=
p
z)

Proof. Using Figure 5.2 as a guide, apply Theorem 5.1 to path �2 and apply Theorem

5.2 to paths �1 and �3. The generating function is thus given by

zk=2

Qk(1=
p
z)
� Qk�1(1=

p
z)p

zQk(1=
p
z)
� zk=2

zk�1Qk(1=
p
z)
;
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where the additional powers of z come from the vertical segments separating the three

paths and the fact that �3 is turned on its side. 2

b

b b

b

b b

�1

�2

�3

ck�1

ck�1

Figure 5.2: Generic element of Sn(132)\ S2
n(12 : : :k)

Using a similar method of proof, we can also obtain

Corollary 5.7 Let k � 2. The generating function for the number of (132)-avoiding

permutations of length n that have exactly three occurrences of the pattern (12 : : :k) is

given by

zQ2
k�1(1=

p
z)

Q4
k(1=
p
z)

:

5.3 (321)-avoiding permutations

Each of the following corollaries is an immediate consequence of the analogous

corollary from the previous section, in addition to the following observation. The spe-

cializations for ai and ci that we used to count the number of (12 : : :k) patterns in

(132)-avoiding permutations were exactly the same as the ones we used to count the
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number of (k12 : : :k � 1) patterns in (321)-avoiding permutations, for i < k � 1. For

i = k� 1, the only di�erence was that we replaced ak�1 by q to count (12 : : :k) patterns

and we replaced ak�1 by 1 to count (k12 : : :k � 1) patterns, but since our paths are

bounded above by the line y = x+k (with one exception), the words associated to these

cannot use the letter ak�1.

Corollary 5.8 Let k � 3. The generating function for the number of (321)-avoiding

permutations of length n that also avoid the pattern (k12 : : :k � 1) is given by

Qk�1(1=
p
z)p

zQk(1=
p
z)
:

Corollary 5.9 Let k � 3. The generating function for the number of (321)-avoiding

permutations of length n that have exactly one occurrence of the pattern (k12 : : :k � 1)

is given by

1

Q2
k(1=
p
z)
:

Corollary 5.10 Let k � 3. The generating function for the number of (321)-avoiding

permutations of length n that have exactly two occurrences of the pattern (k12 : : :k � 1)

is given by p
zQk�1(1=

p
z)

Q3
k(1=
p
z)

:

Corollary 5.11 Let k � 4. The generating function for the number of (321)-avoiding

permutations of length n that have exactly three occurrences of the pattern (k12 : : :k�1)

is given by

zQ2
k�1(1=

p
z)

Q4
k(1=
p
z)

:

Note that in this last corollary, we do not include the case k = 3. This is

because it is possible for a path to cross the line y = x + 3 and still correspond to a
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permutation with exactly three (312) patterns. This subtlety was already encountered

in proving Corollary 2.12.

5.4 Permutations with one (321) pattern

Following the constructions used in the previous chapter, we can also obtain

generating functions for permutations with one (321) pattern.

Corollary 5.12 Let k � 2. The generating function for the number of elements of

S1
n(321) that also avoid the pattern (k12 : : :k � 1) is given by

Q2
k�3(1=

p
z)

Q2
k(1=
p
z)

:

Proof. Using Theorem 5.1 (three times) and following the decomposition of � as given

in Figure 4.3, we see that the above generating function is given by

�
Qk�1(1=

p
z)p

zQk(1=
p
z)
z

Qk�2(1=
p
z)p

zQk�1(1=
p
z)
z

Qk�3(1=
p
z)p

zQk�2(1=
p
z)

�2
,

z:

We must divide by z due to the fact that permutations in S1
n(321) correspond to paths

in Dn+1. 2



Chapter 6

An involution on Dyck paths

In this chapter, we examine how an involution on paths can result in a wide

array of information regarding pattern avoidances.

6.1 Introduction

For any path, �, we say that � has a descent at i if the ith step is to the

EAST and is immediately followed by a step NORTH. The set of all descents of � will

be denoted by Des(�) and its cardinality is given by des(�). The major index of �,

denoted maj(�), is de�ned to be the sum of the elements of Des(�). Note that while

two distinct paths can have the same set of descents, the positions of these descents

uniquely determine a path. In other words we can identify a path by a pair of increasing

sequences, (a1; a2; : : : ; akjb1; b2; : : : ; bk), specifying that the descents in � only occur after

ai steps NORTH and bi steps EAST for each 1 � i � k. In short, we write � = (a�jb�).

A path � is a Dyck path if and only if all of its descents occur above the diagonal. Put

56
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another way,

� 2 Dn , 8i ai � bi:

In Figure 6.1, the descents are labelled by their appropriate index, with the rows and

columns labelled by the sequences a� and b�, respectively.

3

2

5

6

4

10

7

7

14

9

9

18

Figure 6.1: Descents of a path �

We can similarly de�ne descent and major index for permutations, � 2 Sn. We

say that � has a descent at i if �i > �i+1. The set of all descents of � will be denoted

by Des(�) and its cardinality is given by des(�). The major index of a permutation,

denoted maj(�), is the sum of the indices where � has a descent. In this chapter, we

are only considering the case when � is a (132)-avoiding permutation. For example, the

path given in Figure 6.1 corresponds to the permutation0
B@ 1 2 3 4 5 6 7 8 9 10

8 9 5 6 4 7 10 2 3 1

1
CA ;

which has descents occurring in positions 2, 4, 7, and 9, which is exactly b�.

Lemma 6.1 For all � 2 Dn, maj(��) = b1 + b2 + � � �+ bk

Proof. Let � = (a�jb�) 2 Dn and let � = �� be the corresponding element of Sn(132).

Using the alternate construction of � given in Section 1.5, it is clear that �i > �i+1 if

and only if i = bj for some j. 2
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6.2 The involution

Since b� yields information about the major index of ��, it is natural to ask

what information does a� provide about �� or is there some other path �0 where ��0 has

descent set a�.

If A = fa1; a2; : : : ; akg and B = fb1; b2; : : : ; bkg are subsets of [n� 1] such that

� = (AjB) 2 Dn then let �0 = (BcjAc) 2 Dn, where A
c and Bc are the set complements

of A and B. Clearly Ac and Bc will satisfy the inequalities bcj � acj so that �0 is an

element of Dn. It is also clear that this construction is an involution. For example, if �

is the path shown in Figure 6.1, then �0 is shown in Figure 6.2.

1

1

2

3

2

5

5

4

9

6

5

11

8

8

16

Figure 6.2: Descents of �0

Using the above construction, we can now interpret a� as being the set com-

plement of the descent set of ��0 . In other words, we have the following relationship.

Lemma 6.2 For all � 2 Dn, maj(�) = maj(��) +
�
n
2

��maj(��0)

This of course gives us an exact formula for the di�erence betweenmaj(��) andmaj(��0).

Amazingly, the sum of these two numbers is also restricted.

Lemma 6.3 For all � 2 Dn, maj(��) +maj(��0) �
�
n
2

�
.
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Proof.

maj(��) +maj(��0) = b1 + b2 + � � �+ bk + b01 + b02 + � � �+ b0l

= b1 + b2 + � � �+ bk +

�
n

2

�
� (a1 + a2 + � � �+ ak)

=

�
n

2

�
� (a1 � b1)� (a2 � b2)� � � � � (ak � bk)

�
�
n

2

�

2

Notice that equality is equivalent to having ai = bi for all i. This describes

exactly those paths which Haglund referred to as balance paths. As it turned out, bal-

ance paths played a pivotal role in �nding a statistic for Garsia and Haiman's qt-Catalan

sequence [4]. They also have a particular interpretation when it comes to pattern avoid-

ances.

6.3 More pattern avoidances

Lemma 6.4 For all � 2 Dn, maj(��)+maj(��0) =
�
n
2

�
if and only if �� 2 Sn(132; 213).

Proof. Assume � 2 Sn(132; 213) and let � = �� = (a�jb�). We proceed by induction

on n. If �n = 1 then � starts with a path �0 2 Dn�1 and ends with a step NORTH

followed by a step EAST. If �n = i > 1 then �n�j = i� j for all 1 � j < i. If not, let J

be the minimum j such that �n�j 6= i� j. If �n�J < i�J then (i�J; �n�J ; i) is a (213)

pattern. If �n�J > i � J then �n�J must also be bigger than i, otherwise this would

contradict our choice of J , and thus (i�J; �n�J ; i) is a (132) pattern. Therefore � starts

with a path �0 2 Dn�i and ends with exactly i steps NORTH followed by i steps EAST.

In either case, ak = bk = n � �n where k = des(�) and ai = bi for all i < k
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by applying the inductive hypotesis to �0. In other words we have established that

� = (a�ja�), which means that maj(��) +maj(��0) =
�
n
2

�
.

Assume maj(��) +maj(��0) =
�
n
2

�
, or equivalently ai = bi for all i. It is clear

from Figure 6.3 that � consists of sequences of consecutive numbers in increasing order.

Furthermore, these sequences are ordered in decreasing order according to their �rst

element. Therefore if there exists two numbers i < j such that �i < �j then �i and �j

both come from the same increasing sequence. and thus � avoids the pattern (213). 2

1

2

3

4

5

6

7

8

9

10

 !

0
B@ 1 2 3 4 5 6 7 8 9 10

8 9 10 7 3 4 5 6 1 2

1
CA

Figure 6.3: An element of S10(132; 213)

Corollary 6.5 For all � 2 Dn, �� 2 Sn(132; 213) i� ��0 2 Sn(132; 213)

Proof. Use the above lemma and the fact that the map � ! �0 is an involution. 2

Corollary 6.6 For all n � 1, sn(132; 213) = 2n�1.

Proof. Using Lemma 6.4, each element of Sn(132; 213) corresponds to a path � =

(a�ja�). Since a� can be any subset of [n� 1], there are exactly 2n�1 such paths. 2

We should point out that the above corollary does not follow from any of our

previous results in conjuction with Lemma 1.2.
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Corollary 6.7 Let � 2 Sn(132; 213) and �� = (a�ja�). The number of (12 : : :k) pat-

terns in � is given by
des(�)X
i=1

�
ai

k

�
:

Corollary 6.8 Let � 2 Sn(132; 213) and �� = (a�ja�). The number of (k : : :21) pat-

terns in � is given by

ek(a�) =
X

1�i1<i2<���<ik�n

ai1ai2 � � �aik ;

where ek denotes the kth elementary symmetric function.

Corollary 6.9 Let F k
n denote sn(132; 213; 12 : : :k) for k � 2. Then F k

n satis�es the

following recursion

F k
n = F k

n�1 + F k
n�2 + � � �+ F k

n�k+1 ; (6.1)

with initial conditions F k
0 = 1, F k

i = 2i�1 for 1 � i � k � 2.

Proof. Let � 2 Sn(132; 213) and let �� = (a� ja�). If � also avoids the pattern

(12 : : :k), then ai < k for each i. The terms on the right hand side of 6.1 decomposes

paths based on the value of a1. The initial conditions follow from the previous corollary

and the fact that all permutations of length n avoid the pattern (12 : : :k) if n < k. 2

This generalizes a result given in [12] for k = 3, in which case these numbers

coincide with the Fibonacci sequence.

Lemma 6.10 For all � 2 Dn, �� 2 Sn(132; 231) i� ��0 2 Sn(132; 312).

Proof. Assume � 2 Sn(132; 231). Let �� = (ajb) and let f be the parking function that

corresponds to �. If car i parks in its preferred spot, f(i), then f(i� 1)� f(i) = 1. This
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is because if f(i� 1)� f(i) > 1 then the car that parks in spot f(i) + 1 will come along

after cars i� 1 and i. In other words, (�f(i); �f(i)+1; �f(i�1)) will be a (231) pattern. In

particular, this means that

b = f1; 2; : : : ; kg

where k = f(1). And in fact this is a su�cient condition for � to avoid (132) and (231).

Assume � 2 Sn(132; 312). Let �� = (cjd) and let g be the parking function

that corresponds to �. If g(i) > 1 then g(i� 1)� g(i) > 0. Otherwise g(i) = g(i� 1)

and (�1; �g(i); �g(i)+1) will form a (312) pattern. In particular, this means that

c = fl+ 1; l+ 2; : : : ; ng

where l = n + 1� �1. And in fact this is a su�cient condition for � to avoid (132) and

(312).

To complete the proof, we simply need to point out that

� = (aj1; 2; : : : ; k) , �0 = (k + 1; k+ 2; : : :njac):

2

� =  ! �0 =

Figure 6.4: Example of � 2 S10(132; 231) and �0 2 S10(132; 312)

This correspondence between elements of Sn(132; 231) and Sn(132; 312) is il-

lustrated in Figure 6.4. It should be pointed out that this is a di�erent bijection than
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the one presented in [12]. Furthermore, since there are
�
n�1
k

�
choices for a1; a2; : : : ; ak,

summing over k yields

Corollary 6.11 For all n � 1, sn(132; 231) = sn(132; 312) = 2n�1

Figure 6.5: An element of S10(132; 231; 312)

It should be pointed out that the equality of sn(132; 231) and sn(132; 312) is

not a consequence of Lemma 1.2. Also notice that paths such as those shown in Figure

6.5 are the only paths that fall into both categories and thus correspond to the elements

of Sn(132; 231; 312). This immediately yields

Corollary 6.12 For all n � 1, sn(132; 213; 312) = n.

6.4 A qt-Catalan sequence

Let us de�ne a qt-analog of the Catalan sequence, dn(q; t), by

dn(q; t) =
X
�2Dn

qmaj(��)tmaj(�
�0
):

Clearly dn(q; t) is symmetric in q and t because the map � ! �0 is an involution.

Remarkably, dn(q; t), has the following properties.
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Lemma 6.13

q(
n

2)dn(q; 1=q) =
1

[n+ 1]q

2
642n
n

3
75
q

Proof. Using Lemma 6.2, we immediately have

q(
n

2
)dn(q; 1=q) =

X
�2Dn

qmaj(��)�maj(�
�0
)+(n

2
) =

X
�2Dn

qmaj(�);

with the last step being a classic result due to MacMahon [8]. 2

Lemma 6.14 X
�2Sn(132;213)

qmaj(�)tmaj(�0) =

n�1Y
i=1

(qi + ti)

Proof. Using Lemma 6.4, we know that if � 2 Sn(132; 213), then �� = (a�ja�) and

thus �0� = (a�0 ja�0) where the sets a� and a�0 partition the set f1; 2; : : : ; n�1g. In other

words, each i between 1 and n � 1 either contributes to maj(�) by being in the set a�

or to maj(�0) by being in the set a�0 . 2



Chapter 7

Extending Franklin's Involution

We are dealing here with the power series expansion of the product
Q

n>m(1�

qn). This expansion may be readily obtained from an identity of Sylvester and the latter,

in turn, may be given a relatively simple combinatorial proof. Nevertheless, the problem

remains to give a combinatorial explanation for the massive cancelations which produce

the �nal result. The case m = 0 is clearly explained by Franklin's proof of the Euler

Pentagonal Number Theorem. E�orts to extend the same mechanism of proof to the

general case m > 0 have led to the discovery of an extension of the Franklin involution

which explains all the components of the �nal expansion.

7.1 Introduction

Sylvester [13, p. 281] used Durfee squares to prove the following result.

Theorem 7.1

Y
n�1

(1 + zqn) = 1 +
X
n�1

znq
3n

2
�n

2 (1 + zq2n)(�zq)n�1=(q)n (7.1)

65
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where (z)n = (1�z)(1�zq) � � �(1�zqn�1): Multiplying the above equation by 1+z and

then setting z = �qm+1 for any m � 0 yields

Y
n>m

(1� qn) =
X
n�0

(�1)n
2
64n +m

m

3
75
q

q
3n

2
+n

2
+nm(1� q2n+m+1) (7.2)

where 2
64n +m

m

3
75
q

=
(q)n+m
(q)n(q)m

(7.3)

is the usual q-analog of the binomial coe�cients. When m = 0, equation (7.2) is none

other than Euler's Pentagonal Number Theorem,

Y
n>0

(1� qn) =
X
n�0

(�1)nq 3n2+n

2 (1� q2n+1): (7.4)

Of course, in the process of setting z = �qm+1, we invite a tremendous amount of cancel-

lation to occur, none of which is explained by Sylvester's proof of (7.1), which has been

included in the following section for the sake of completeness. However, Franklin's proof

of (7.4) does exactly that, and in fact, o�ers an explanation for every single cancellation

which occurs. It would be of historical interest to extend Franklin's ideas to explain as

many of the cancellations as possible in (7.2) for any m � 1. This will be the focus of

the remainder of the paper.

7.2 Sylvester's Proof of Theorem 7.1

The left-hand side of (7.1) can be thought of as the generating function for

partitions �, with k distinct parts > 0 weighted by zkqj�j, where j�j = �1+�2+ � � �+�k.

To prove Sylvester's identity, we need to show that the right-hand side of (7.1) enumerates

the exact same objects.
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D(�)

Figure 7.1: Typical partition with distinct parts, �n+1 < n

We begin by noting that the Durfee square associated with �, D(�), is the

largest square contained in the Ferrers diagram [1, p. 7] of �. The dimension, d(�), of

this square can be de�ned as the maximum i such that �i � i. Using the Durfee square

to classify these partitions, we see that � can fall into one of two distinct categories. The

�rst category is comprised of partitions � such that �n+1 < n, where for convenience we

have set n = d(�). A typical partition in this category would look like Figure 7.1.

Directly above D(�) can be any partition with distinct parts < n. These parti-

tions are generated by (�zq)n�1. Directly to the right of D(�) can be any partition with

exactly n distinct parts � 0. The generating function for these partitions is znq(
n

2)=(q)n.

Putting this all together, any partition falling into this category can be accounted for in

the following term

znqn
2+(n2)(�zq)n�1=(q)n: (7.5)

The second category is comprised of partitions � such that �n+1 = n. Note

that this is the only other possibility since �n+1 cannot be � n + 1 by the de�nition of

d(�). In this case, � must be of the form illustrated in Figure 7.2.

Directly above D(�) can be any partition with distinct parts � n and largest

part equal to n. Directly to the right of D(�) can be any partition with exactly n distinct
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D(�)
1

1

Figure 7.2: Typical partition with distinct parts, �n+1 = n

parts > 0. The following term accounts for any partition falling into this category.

zn+1qn
2+(n2)+2n(�zq)n�1=(q)n: (7.6)

Combining (7.5) and (7.6), we get the summand in the right-hand side of (7.1), and

summing over all values of n � 1 completes the proof.

7.3 Extending Franklin's Bijection

Franklin's proof [1, p. 10] of Euler's Pentagonal Number Theorem begins by

de�ning two sets of cells contained in the Ferrers diagram associated with a �xed parti-

tion. For our purposes we will need to extend these de�nitions as well as further classify

the cells involved.

Fix m � 0 and �, a partition with n distinct parts > m. De�ne a stair to be

a cell in the Ferrers diagram associated with � at the end of a row or the top of one of

the �n � m � 1 left-most columns. Of the remaining cells, de�ne a landing to be any

cell that does not have another cell above it. The m-landing staircase is the sequence of

neighboring stairs and landings, starting with the stair at the end of the �rst row, with

exactly m landings, using as many stairs occurring at the end of a row as possible. Let

Sm(�) refer to the cells in the m-landing staircase, with sm(�) de�ned to be jSm(�)j,
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S S S S S S S S S S S S S S SL L L L L L L L L L L L L

S S S S S S S S S S SL L L L L L L L L L

S S S S S S S S S

S S S S S S S SL L L L L L L

S S S S S SL L L L LS S

Figure 7.3: Example of a 3-landing staircase

and let T (�) refer to the cells in the top row of �, with t(�) de�ned to be jT (�)j = �n.

Lastly, we de�ne the weight of �, w(�), to be (�1)nqj�j.

For example, let m = 3 and � = (14; 11; 9; 8; 6), then the Ferrers diagram would

be labelled as in Figure 7.3, with stairs and landings denoted by S's and L's, respectively

and cells belonging to S3(�) shaded.

By de�nition, an m-landing staircase must have exactly m landings and can

have anywhere from 1 to n stairs. Since it will be an extremely useful fact for proving

7.2, we shall restate this in the following lemma.

Lemma 7.2 Let � be a partition with n distinct parts > m. Then the following inequal-

ities must hold.

m+ 1 � sm(�) � m+ n (7.7)

Armed with these de�nitions and the above lemma, we are now in a position

to prove the following

Lemma 7.3

Y
n>1

(1� qn) =
X
n�0

(�1)nq 3n2+n

2 (1 + q + q2 + � � �+ q2n): (7.8)

Although its validity can be readily checked by dividing both sides of (7.4) by

(1 � q), it will prove more insightful to obtain this identity through a combinatorial

means which can be easily extended to prove (7.2).
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Proof of Lemma 7.3

Notice that the left-hand side of (7.8) can be written in the form

X
n�0

X
�=(�1>���>�n)

w(�): (7.9)

We will proceed by de�ning a bijection, I , that pairs o� a partition, �, with I(�), in such

a way that w(I(�)) = �w(�) whenever � 6= I(�). This will allow us to reduce the inner

summation of (7.9) to a �nite sum that accounts only for the �xed points of I . The idea

is to use 1-landing staircases in a manner similar to the way Franklin used staircases (i.e.

0-landing staircases) to prove (7.4) . The basic principle of the involution is this,

1. If t(�) � s1(�), move T (�), if possible, to the outside of S1(�) so that s1(I(�)) =

t(�) and

2. If t(�) > s1(�), move S1(�), if possible, to the empty row above T (�).

The best way to see what is meant by \if possible", is to break up the de�nition of I into

two cases. Case 1 is when s1(�) < 1 + n, which means that S1(�) cannot reach the top

row of �, and thus it will always be possible to move either T (�) or S1(�). In the event

that t(�) � s1(�), move the landing in T (�) so that it is directly above the landing in

the �rst t(�) � 2 rows. If there is no landing in these rows, then place the landing at

the end of the �rst row. Now move the stairs in T (�) by placing one at the end of the

�rst t(�)� 1 rows. Moving T (�) in this manner will guarantee that s1(I(�)) = t(�), as

required. This procedure is illustrated in Figure 7.4.

In the event that t(�) > s1(�), move S1(�) to the top row, as in Figure 7.5.

Notice that this operation will not result in a partition with a part < 2, since t(I(�)) =

s1(�) � 2, by Lemma 7.2.
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Figure 7.4: Case 1: t(�) � s1(�)

Figure 7.5: Case 1: t(�) > s1(�)

Case 2 of the involution is when s1(�) = 1 + n. In this case, S1(�) must reach

the top row of �, and thus it might not be possible to move either T (�) or S1(�). In

other words, S1(�) shares at least one cell with T (�) and possibly two, if the landing in

S1(�) occurs in the last row of �. For this reason, we'll denote the row of � in which the

landing occurs by r(�). For Case 2a, we will assume that r(�) < n. If t(�) � s1(�)� 1,

move T (�) in a similar manner to Figure 7.4 and if t(�)� 1 > s1(�), move S1(�) in a

similar manner to Figure 7.5.

Figure 7.6: Case 2a: t(�) � s1(�)� 1

For Case 2b, we will assume that r(�) = n. If t(�) � s1(�) � 1, then the

involution is performed just as in Figures 7.4 and 7.6.

And �nally, if t(�)� 2 > s1(�), then the involution is similar to that in Figures
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Figure 7.7: Case 2a: t(�)� 1 > s1(�)

Figure 7.8: Case 2b: t(�) � s1(�)� 1

7.5 and 7.7.

In the event that � does not �t into one of the above categories, simply de�ne

I(�) = �. For example, moving T (�) could shorten S1(�) to the point that T (�) is too

big to move, as in Figure 7.10a. Similarly, moving S1(�) could shorten T (�) to the point

where S1(�) is also too big, as in Figure 7.10b. Table 7.1 summarizes the �xed points of

I .

We can now replace the inner summation in (7.9) with

X
�=I(�)

w(�) = (�1)nq 3n2+n

2 (1 + q + q2 + � � �+ q2n):

2

Figure 7.9: Case 2b: t(�)� 2 > s1(�)
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a) b)

Figure 7.10: Sample �xed points of I

Table 7.1: Fixed points of I for m = 1

s1(�) t(�) r(�) j�j
n + 1 n+ 1 f1; 2; : : : ; n� 1g n2 +

�
n+1
2

�
+ r(�)

n + 1 n+ 2 f1; 2; : : : ; n� 1g n2 +
�
n+1
2

�
+ n+ r(�)

n + 1 n+ 1 n n2 +
�
n+1
2

�
n + 1 n+ 2 n n2 +

�
n+1
2

�
+ n

n + 1 n+ 3 n n2 +
�
n+1
2

�
+ 2n

We are now in possession of a mechanism that can be easily generalized to

prove formula (7.2). However, we must �rst formalize the de�nition of our involution for

a �xed m � 1. Having done that, a simple observation regarding m-landing staircases

will provide the key to determining a necessary and su�cient characteristic of �xed

points.

Proof of equation (7.2)

Let � be a partition with n distinct parts > m. Let �(�) be the result of moving T (�) to

the outside of Sm(�). This is accomplished by placing a landing from T (�) on top of each

landing in the t(�)�m� 1 bottommost rows of Sm(�). Any landings still remaining in

T (�) should be placed at the end of the �rst row. Next, place the stairs from T (�) at the

ends of the t(�)�m bottommost rows. This process will insure that sm(�(�)) = t(�),

which is necessary in order to reverse the process. Let �(�) be the result of moving

Sm(�) to the empty row above T (�). Notice that we cannot apply � and � to just any
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partition � with parts > m, so to make up for this, we de�ne I as follows.

I(�) =

8>>>>><
>>>>>:

�(�) if t(�) � sm(�) & t(�) < m+ n,

�(�) if t(�)� jT (�)\ Sm(�)j > sm(�),

� otherwise.

I is an involution since � and � are inverses of each other and if � = �(�), then

t(�)� jT (�)\ Sm(�)j = �n�1 > �n = t(�) = sm(�)

and if � = �(�), then

t(�) = sm(�) � sm(�) & t(�) = sm(�) � m+ n:

Notice that if � is a �xed point, then t(�) � m + n and sm(�) = m + n. This

means that the partition �� = (2n� 1 +m; 2n� 2+m; : : : ; n+m) is the smallest �xed

point of I with exactly n parts. The weight of �� is given by

w(��) = (�1)nqj��j = (�1)nq 3n
2
�n

2
+nm: (7.10)

Unfortunately, it is not enough for t(�) � m+n and sm(�) = m+n. In order to come up

with a necessary and su�cient condition for � to be a �xed point, we need the following

observation.

If sm(�) = m+ n then Sm(�) will start and �nish

at opposite corners of an n�m+ n rectangle.

Of course this is none other than a simple fact regarding taxicab distances, but using

this observation, we can prove the following crucial lemma.

Lemma 7.4 Let � = (�1 + 2n � 1 +m;�2 + 2n� 2 +m; : : : ; �n + n +m) where �1 �

�2 � � � � � �n � 0. Then � is a �xed point if and only if

�1 � m or �1 = m+ 1 & �n � 1:
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Proof

Let us start by assuming that � is a �xed point. In particular, this means that sm(�) =

m+ n and that Sm(�) cannot be moved, or symbolically,

t(�)� jT (�)\ Sm(�)j � m+ n: (7.11)

Notice that the observation we made above allows us to compute the left-hand side of

(7.11) exactly.

t(�)� jT (�)\ Sm(�)j = �1 + n � 1 (7.12)

Therefore, �1 � m + 1. If �1 � m, then we are done. If �1 = m + 1, then using the

observation again, the left-most cell of Sm(�) occurs in the top row of �, and thus we

must also have that �n � 1.

Now we need to show that this condition is su�cient. If �1 � m, then one of

the stairs in Sm(��) will be used as a landing in Sm(�). This insures that sm(�) = m+n.

It also allows us to use equation (7.12) again to see that

t(�)� jT (�)\ Sm(�)j = �1 + n� 1 � m+ n� 1;

which means that I(�) = �.

In the event that �1 = m+1 and �n � 1, one of the cells in the �rst column of

� will be used as a landing, insuring that sm(�) = m+ n. Again we see that

t(�)� jT (�)\ Sm(�)j = �1 + n � 1 = m+ n;

which means that I(�) = � in this case as well. 2

Using this lemma, we see that any partition � that �ts in an n �m box will

lead to a �xed point, as will any partition ~� that �ts in an n�m+1 box with ~�1 = m+1
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and ~�n � 1. Therefore, the weights of all �xed points with exactly n parts are accounted

for in

w(��)

0
BB@
2
64n+m

m

3
75
q

+ qn+m

2
64n +m� 1

m

3
75
q

1
CCA : (7.13)

Summing (7.13) over all values of n � 0, we see that

Y
n>m

(1� qn) =
X
n�0

(�1)nq 3n
2
�n

2
+nm

2
64n+m� 1

m� 1

3
75
q

1� q2n+m

1� qm
: (7.14)

Multiplying both sides of equation (7.14) by (1� qm) and making a change of variable

m! m+ 1 yields (7.2). 2

One property of Franklin's bijection is that it accounts for all of the cancellation

occurring in the left-hand side of equation (7.4). Unfortunately, this is not always the

case for I . In fact, as soon asm = 3 there is some unexplained cancellation. For example,

the two partitions (14; 13; 12; 11) and (12; 11; 10; 9; 8) are both partitions of 50 and both

are �xed points of I . On the other hand, there are 31,571,191 partitions of 250 with

parts > 10. Of those 31,571,191 partitions, 3,537 are �xed points of I . Of those 3,537

�xed points, just 47 have a positive sign associated with them, and can therefore be

cancelled out.

The text of this chapter, in part or in full, is a reprint of the material as

it appears in Volume 42 of S�eminaire Lotharingien de Combinatorie (The Andrews

Festschrift). The dissertation author was the primary researcher and author.
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