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ABSTRACT OF THE DISSERTATION

Magic square subclasses as linear Diophantine systems

by

Ezra Q. Halleck

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Adriano M. Garsia, Chair

The solution space of a system of linear homogeneous equations with integer coe�cients

over the integers is a Z-module. Geometrically, the solutions form a lattice, the integral

points in a subspace of Qn. Magic squares are n� n matrices with equal row and column

sums; a basis consists of a subset of the permutation matrices. Pandiagonal squares or P -

squares are magic squares with equal broken diagonal sums; we show that a basis consists

of a subset of \octagons", introduced by [And60].

Requiring the solutions of a system of equations to be nonnegative as well as integral

earns the modi�er Diophantine. Geometrically, such a Diophantine set consists of the in-

tegral points of a pointed convex polyhedral cone: the intersection of the non-Diophantine

lattice of integer solutions with the n-dimensional generalization of the nonnegative octant.

Take each solution of a Diophantine set � = (�1; �2; : : : ; �n) and form the monomial

x� = x�11 x
�2
2 : : :x�nn . The formal power series in n variables formed by summing all such

monomials is a rational function [Sta86, Section 4.6].

The solutions appearing in the denominators of a generating function are extreme

or completely fundamental solutions. There is a one-to-one correspondence between these

solutions and the extreme rays emanating from the point of the cone.

For magic squares, the extreme solutions are the n � n permutation matrices, but

the generating function of solutions is unknown in full generality. For P -squares, even

the extreme points are unknown. Our computer investigations have yielded the extreme

points for pandiagonal systems for all n � 7.

Our investigation has included other Diophantine sets of matrices, including W -

squares. We have the generating function for one subclass of P -squares, the linear span

xii



of cyclic matrices.

To decompose a matrix from a magic square subclass, extract as large a copy as

possible of J , the matrix of 1's. The residue is a square on the boundary of the cone. We

decompose the boundary by looking at a cross section polytope.

The ability to immediately move to the boundary is related to the fact that the

associated Diophantine ring is Gorenstein.

xiii



Chapter 1

Linear homogeneous Diophantine

systems and polyhedral cones

1.1 Linear homogeneous Diophantine systems

The solutions of an equation or inequality in n variables are sequences of length n

or n-tuples. The ith element in the sequence is known as the ith component. The adjective

Diophantine is applied to any relation if the solution space is restricted to n-tuples with

nonnegative, integer components. We are interested in linear homogeneous Diophantine

equalities (Diophantine equalities) and nonstrict inequalities (Diophantine inequalities).

Proposition 1.1.1. Systems of Diophantine equalities and inequalities are enumeratively

equivalent.

Proof. Transform the inequality to an equality by placing a new variable, the slack vari-

able, on the side which is smaller. For instance, given 3x+4y � 2z, introduce the variable

w to get 3x+ 4y = 2z + w. Enumerate the solutions to this equality and then ignore the

w component of these solutions.

Conversely, given an equality, we can replace it with a pair of inequalities, e.g.,

3x+ 4y = 2z + 5w is equivalent to

3x+ 4y � 2z + 5w

3x+ 4y � 2z + 5w:

1
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De�nition 1.1.2. A linear homogeneous Diophantine system (Diophantine system) is

a Diophantine system of equations and/or nonstrict inequalities whose coe�cients are

integers.

We do not exclude from consideration an equation or inequality with rational coe�cients,

just multiply by a common denominator.

Remark 1.1.3. Given a Diophantine system Ax = 0, the set of solutions, E, forms a

(commutative) monoid (semigroup with identity) under the operation of component-wise

addition. (0; 0; : : : :0)| {z }
n

serves as the identity element.

1.2 The Cone of Solutions

The solutions to a Diophantine system form a pointed convex polyhedral cone,

the point or apex being the origin. We can project a cone onto the linear space that it

spans. For example, the solutions for 4x+y = 2z, lie in 3-space, but span a 2-dimensional

subspace (Figure 1.1).

(0,0,0)

b(0; 2; 1)

a(1; 0; 2)

�
�
�
�
�
�
�
�
�
�
�
�
�
���

��
��

��
��

��
��

���1
v

v

v

Figure 1.1: cone ab associated with 4x+ y = 2z.

More precisely, the solutions are the integral points inside the cone, as illustrated

in Figure 1.2. For nonhomogeneous systems, the solution space is the Minkowski sum of

a cone and a polytope [Zie95, p.28].

Given a vector j, the set of nonnegative scalar multiples of j that are integral points

is

rayJ = (Q+j \Zn):
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Figure 1.2: Solutions of 4x+ y = 2z as integral points in a cone.

(0,0,0)

(0,2,1)

(1,0,2)

a=(0,4,2)

(2,0,4)

(1,2,3)

(1,4,4)

(2,2,5)

j=(2,4,6)

J

A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

��
��

��
��

��
��

���1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

v

v

v

v

v

v

v

v

v

Figure 1.3: Two rays: A and J. Only A is extreme.
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In Figure 1.3, rayJ = f(0; 0; 0); (1; 2; 3); (2; 4; 6); (3; 6; 9); : : :g is associated with

j = (2; 4; 6) and rayA = f(0; 0; 0); (0; 2; 1); (0; 4; 2); (0; 6; 4); : : :g is with a = (0; 4; 2). More

generally, given a set of points S, the set of �nite nonnegative combinations of elements

from S that are integral points is the positive hull

posS = f
X
j2J

�jaj 2Z
n j aj 2 S; �j 2 Q

+; jJ j <1g:

Given a coneE, rayB is extreme if none of the nonzero elements in B can be expressed as a

nonnegative combination of elements not in B, i.e., if B\pos(EnB) = f0g. In Figure 1.3,

ray A is extreme|any solution not in the ray has a nonzero �rst coordinate|but ray J

is not extreme|(1; 2; 3) = (0; 2; 1)+ (1; 0; 2). We will often refer to a cone by naming its

extreme rays or points on the rays, e.g., the cone ab of Figure 1.1.

The elements of a minimal generating set for the monoid are fundamental solutions.

As one travels from the origin along an extreme ray, the �rst integral point encountered

is a completely fundamental solution. The set of completely fundamental solutions are

not, in general, all the fundamental solutions. A �nite number of additional solutions that

are nonnegative rational (but not integral) combinations of the completely fundamental

solutions may also be needed. For example, the completely fundamental solutions of x +

y = 2z are (2; 0; 1) and (0; 2; 1), but a generating set must also include (1; 1; 1) (Figure 1.4).

A minimal generating set is �nite and unique [Sta86, Section 4.6].
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(0,2,1)

(2,0,1)

(0,4,2)

(4,0,2)(1,1,1)
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Figure 1.4: Cone of solutions for x+ y = 2z.
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1.3 The triangulation of a cone into simplexes

The solution space of x + y = z + w spans a 3-dimensional subspace of R4 and a

representation of its associated cone is drawn in Figure 1.5. A simplicial cone, or simplex
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B(1,0,0,1)

C(0,1,1,0)

Figure 1.5: Cone associated with x+ y = z + w.

for short, is a cone spanned by independent vectors A1; : : : ; An. In Figure 1.5, coneABC,

and rayD are both simplexes, but coneABCD is not a simplex (A+D = B + C).

De�nition 1.3.1. A triangulation � of a cone C is a set of simplicial cones f�ig such

that:

1.
S
i �i = C.

2. If � 2 � then every face of � is in �.

3. If �i, �j 2 �, then �i \ �j is a common face of �i and �j .

For x + y = z + w, we can divide the cone at the plane formed by the rays B and

C. The division results in two 3-dimensional cones: ABC and BCD. The triangulation

� is the set of these two cones, together with all their faces:

� = f0; A; B; C;D;AB;AC;BC;CD;ABC;BCDg:
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1.4 The polytope associated with a cone

In the cone of Figure 1.5, there are 4 extreme rays. Take any plane which cuts

through the cone, intersecting each of the extreme rays at a positive distance from the

origin. The intersection of the plane and the cone is the cross section polytope. In our

example, de�ne the cutting plane by requiring the sum of the components to be equal

to 2, then the cross section polytope is a polygon with vertices a(1; 0; 1; 0), b(1; 0; 0; 1),

c(0; 1; 1; 0) and d(0; 1; 0; 1). Note that dim coneABCD = 3 and dim quad abcd = 2, i.e.,

the dimension of the cross section polytope is one less than the cone. For another example,

the cone of x+ y+ z = v+w is 4-dimensional, but its polytope is a polyhedron|a prism

with triangular base. In Figure 1.6, the commas have been dropped from the points for

display purposes. For instance, vertex 01010 refers to the point (0; 1; 0; 1; 0).

T
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�
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10010
01010

00110

10001
01001

00101

Figure 1.6: Cross section of the cone associated with x+ y + z = v + w.

The original cone is the positive hull of its cross section polytope, e.g.,

coneABCD = pos quad abcd:

1.5 The generating function of solutions

One way to combinatorially decompose a Diophantine system with solution set

E is to list or enumerate the solutions as a sum of monomials. The monomial of a

solution a = (a1; a2; : : : ; an) is x
a = x1

a1x2
a2 � � �xnan : Replacing each solution in E with

its monomial, the generating function

E(x) =
X
a2E

xa:
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For x+ y = z + w,

E = f(0; 0; 0; 0), (1; 0; 1; 0), (1; 0; 0; 1), (0; 1; 1; 0), (0; 1; 0; 1), (2; 0; 1; 1), : : :g

and hence, E(x) = 1 + x1x3 + x1x4 + x2x3 + x2x4 + x1
2x3x4 + � � � .

E(x) is a rational function [Sta86, Theorem 4.6.11]. Two approaches for �nding the

rational function will be presented. Formal power series methods are used in the Elliott-

MacMahon algorithm, for which a discussion and proof are given in Chapter 3. The

polytopal method will be illustrated presently with our examples. For a more complete

presentation see [Sta86, section 4.6].

For 4x+y = 2z (Figure 1.1), the cone is a simplex with generating set the completely

fundamental elements a = (0; 2; 1) and b = (1; 0; 2). Any solution is a unique, nonnegative,

integer combination of a and b. Hence,

E(x) =
X

(m;n)2N�N

xma+nb =
X

(m;n)2N�N

(xa)m(xb)n

=
X

(m;n)2N�N

(x2
2x1)

m(x1x3
2)n =

1X
m=0

(x2
2x1)

m
1X
n=0

(x1x3
2)n

=
1

1� x22x1

1

1� x1x32
=

1

(1� xa)(1� xb)
:

The generating function for a simplex E, with generating set the completely fundamental

solutions a1; a2; : : : ; am, is

E(x) =
1

(1� xa1)(1� xa2) � � �(1� xam)
:

If there are fundamental solutions in addition to the completely fundamental ones, there

is a nontrivial numerator, e.g., the generating function for x+ y = 2z (Figure 1.4) is

E(x) =
1 + x1x2x3

(1� x22x1)(1� x12x3)
:

The monomials which appear are the integral points in the fundamental domain de�ned

by the completely fundamental solutions, a half open parallelogram in this case. (A

fundamental domain tiles the solution space with no overlap.)

For a non-simplicial example, the cone of x + y = z + w has its cross section

triangulated in Figure 1.7. Let the simplex E1 = cone abc, the simplex E2 = cone bcd and

the simplex E3 = cone bc.

If we add the generating functions for E1 and E2, the solutions in their intersection

are counted twice. Since the intersection is precisely the simplex E3, an appropriate
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Figure 1.7: Triangulation of a cross section of posABCD.

subtraction compensates for the duplication.

E(x) = E1(x) + E2(x)� E3(x)

=
1

(1� xa)(1� xb)(1� xc)
+

1

(1� xb)(1� xc)(1� xd)
�

1

(1� xb)(1� xc)
:

Substitute xa = x1x3, x
b = x1x4, x

c = x2x3 and x
d = x2x4, and simplify, to get

E(x) =
1� x1x2x3x4

(1� x1x3)(1� x1x4)(1� x2x3)(1� x2x4)
: (1.5.1)

In general, form the poset of the various simplexes of a triangulation � ordered by

inclusion and adjoin a 1̂. By Mobius inversion [Sta86, p.225]

E(x) = �
X
�2�

�(�; 1̂)E�(x): (1.5.2)

Let d be the dimension of E and let @� be the simplexes on the boundary of E, then by

[Sta86, p.224],

�(�; 1̂) =

8><
>:
(�1)d�dim(�)+1 if � 2 �n@�

0 if � 2 @�:
(1.5.3)

The poset of our example is sketched in Figure 1.8. The only simplexes not on the

boundary are E1 = coneABC, E2 = coneBCD and E3 = coneBC. The Mobius function

for the poset from an adjoined top element 1̂ is calculated using the formula of (1.5.3).

For example,

�(E1; 1̂) = (�1)d�dim(E1)+1 = (�1)3�3+1 = �1:

Similarly, �(E2; 1̂) = �1, �(E3; 1̂) = 1 and other values are 0 (Figure 1.9). Substituting
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a b c d

ab ac bc bd cd

abc bcd

Figure 1.8: Poset of triangulation for x+ y = z + w.

0

0 0 0 0

0 0 1 0 0

-1 -1

Figure 1.9: The Mobius function �(x; 1̂) for the poset of x+ y = z + w.
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into (1.5.2),

E(x) = �
X
�2�

�(�; 1̂)E�(x)

= �
X

�2�n@�

�(�; 1̂)E�(x)

= ��(E1; 1̂)E1(x)� �(E2; 1̂)E2(x)� �(E3; 1̂)E3(x)

= E1(x) + E2(x)� E3(x);

which we had obtained by a more direct reasoning.



Chapter 2

The Diophantine ring

2.1 Introduction

Given k, a �eld of characteristic 0, and E, the set of solutions to a Diophantine

System, let En = fa 2 E : deg(a) = ng; where the degree of a solution is the sum of the

components in the solution.

1. The Diophantine Ring associated with E is

R = k[xa : a 2 E]:

2. The set of monomials of R is M(R) = fxa : a 2 Eg. (M(R) is a vector space basis

of R.)

3. The set of monomials of degree n is Mn(R) = fxa : a 2 Eng.

4. The nth homogeneous subspace of R is Hn(R) = subspace of R spanned by Mn(R).

The number of variables is �nite. Hence, dim(Hn(R)) = jMn(R)j is �nite. Thus, the

Hilbert series of R

FR(t) =
X
n2N

tn dim(Hn(R))

is an element of the formal power series ring k[[t]]. FR(t) is the specialization of E(x)

FR(t) = E(x)jx1!t;:::;xm!t:

11
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Using (1.5.1), the Hilbert series for x+ y = z + w is

FR(t) =
1� x1x2x3x4

(1� x1x3)(1� x1x4)(1� x2x3)(1� x2x4)

����
x1!t;:::;x4!t

=
1� t4

(1� t2)4
: (2.1.1)

2.2 Basic systems and Cohen-Macaulay rings

A �nitely generated, graded ring R is Cohen-Macaulay if there exists a set of

homogeneous polynomials B = f�1; : : : ; �`; �1; : : : ; �mg such that every P 2 R can be

uniquely expressed as

P =
X̀
i=1

�iPi(�1; : : : ; �m) ; Pi 2 k[x1; : : : ; xm]:

B is called a basic system. Each �i is a separator and each �i is a generator.

The ring R associated with a system of linear homogeneous Diophantine equations

is known to be Cohen-Macaulay; the proof is non-constructive and uses deep tools of

algebraic geometry. An algorithm for constructing a basic system for a particular R

would constitute a combinatorial proof that R is Cohen-Macaulay. For the Diophantine

ring R, there is a candidate for a natural set of generators. Our task is to construct an

accompanying set of separators and show that together, they form a basic system.

We use our running example to introduce the natural candidates for generators

and a construction of accompanying separators. Recall that the completely fundamental

solutions are

a = (1; 0; 1; 0) b = (1; 0; 0; 1)

c = (0; 1; 1; 0) d = (0; 1; 0; 1):

To simplify notation, we change variables

y1 = xa = x1x3 y2 = xb = x1x4

y3 = xc = x2x3 y4 = xd = x2x4

and de�ne a new ring R̂ = k[y1; : : : ; y4]. The sole relation a + d = b + c = (1; 1; 1; 1)

becomes y1y4 = y2y3, so

R̂ = k[y1; y2; y3; y4]=(y1y4 � y2y3):
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Using (2.1.1), the Hilbert series is

FR̂(t) = FR(u)ju2!t =
1� u4

(1� u2)4

����
u2!t

=
1� t2

(1� t)4
: (2.2.2)

Relabel the simplex poset arising from a triangulation � (Figure 1.8) using the variables of

R̂|replace a with y1, b with y2, etc| producing monomials organized by rank (Figure 2.1).

1

y
 1

y
 2

y
 3

y
 4

y  y
 1  2

y  y
 1  3

y  y
 2  3

y  y
 2  4

y  y
 3  4

y  y  y
 1  2  3

y  y  y
 2  3  4

Figure 2.1: Rank row monomials for x+ y = z + w.

Our natural set of generators are the sums of the monomials for each rank:

 1 = y1 + y2 + y3 + y4

 2 = y1y2 + y1y3 + y2y3 + y2y4 + y3y4

 3 = y1y2y3 + y2y3y4:

De�nition 2.2.1. A set of homogeneous polynomials f�1; �2; : : : ; �mg is a homogeneous

system of parameters (h.s.o.p.) for R if

1. R has Krull dimension m;

2. R=(�1; �2; : : : ; �m) is a �nite dimensional vector space.

For a Diophantine ring, the Krull dimension is the same as the dimension of the

cone.

Proposition 2.2.2. The following are equivalent:

1. R is Cohen-Macaulay;

2. there exists a system of parameters f�1; : : : ; �mg such that

FR(t) =
FR=(�1;:::;�m)(t)

(1� td1) : : :(1� tdm)
(di = deg(�i));



14

3. for all system of parameters f�1; : : : ; �mg,

FR(t) =
FR=(�1;:::;�m)(t)

(1� td1) : : :(1� tdm)
(di = deg(�i)):

See [Gar80, pp.232{233] for a proof.

Corollary 2.2.3. Given a h.s.o.p. f�1; : : : ; �mg for a Cohen-Macaulay ring R, the set

f�1; : : : ; �`g is a k-basis for R=(�1; : : : ; �m) iff f�1; : : : ; �`; �1; : : : ; �mg is basic.

Using a computer algebra system, such as Macaulay, we �nd that, for our running

example, the rank monomial sums f 1;  2;  3g are indeed a system of parameters and

that F
R̂=( 1; 2; 3)

(t) = 1 + 3t+ 4t2 + 3t3 + t4. Hence,

F
R̂=( 1; 2; 3)

(t)

(1� t)(1� t2)(1� t3)
=

1 + 3t+ 4t2 + 3t3 + t4

(1� t)(1� t2)(1� t3)

=
(1 + t)2(1 + t + t2)

(1� t)(1� t2)(1� t3)

=
1 + t

(1� t)3
=

1� t2

(1� t)4
= F

R̂
(t)

(2.2.3)

(the last equality from (2.2.2)) and by Proposition 2.2.2, the ring R of our running example

is Cohen-Macaulay.

In Section 2.4, we will give a proof of the Cohen-Macaulayness for this example,

independent of the computer data.

2.3 Accompanying separators for x + y = z + w

The �rst barycentric subdivision on a triangulated solution space proceeds in 2

steps.

1. For each simplex of the triangulation, the barycenter is marked with a point and

labeled with the simplex (Figure 2.2).

2. A new simplex in the subdivision corresponds to a chain in the lattice of simplexes

for the original triangulation. For instance, point a is contained in edge ac; fa; acg

is an edge in the barycentric subdivision. Likewise, point a � edge ac � faceabc;

fa; ac; abcg is a face in the subdivision (Figure 2.3).

A shelling of a simplicial complex is a linear ordering of the maximal simplexes so

that the intersection of a simplex Fi with the previous simplexes is nonempty and is a
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Figure 2.2: Simplex barycenters for a triangulation.
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Figure 2.3: New simplexes in the �rst barycentric subdivision.
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stage in a shelling of the boundary complex of Fi [Zie95, De�nition 8.1]. In particular,

the intersection must be connected and pure d � 1-dimensional. In Figure 2.3, we have

labeled the new faces with the numbers 1 to 12 to indicate a shelling. As the shelling

proceeds, adjoin a maximal simplex i and collect the vertices needed to avoid any overlap

with the previous simplexes into a set Fi. For instance when simplex 4 is adjoined, the

edge fac; abcg is already in the existing union of simplexes; the vertex opposite this edge

is c. Hence, F4 = fcg. When simplex 6 is adjoined, the edges fc; abcg and fbc; abcg are

already in the existing union of simplexes; the vertices opposite these edges are bc and c.

Hence, F6 = fc; bcg. The Fi are displayed in Table 2.1.

Simplex Lists of Vertices Fi Separator �i

1 ; 1

2 ac y1y3

3 b y2

4 c y3

5 bc y2y3

6 c; bc y3(y2y3)

7 bcd y2y3y4

8 c; bcd y3(y2y3y4)

9 bd y2y4

10 cd y3y4

11 d y4

12 d; cd y4(y3y4)

Table 2.1: For each simplex, lists of vertices Fi and associated monomial.

If mon(S) = monomial associated with S, for each simplex i, let

�i =
Y
S2Fi

(monS); e.g.,

�6 = (mon c)(mon bc) = y3(y2y3) = y2y3
2 (see Table 2.1).

In the case of the triangulation of a simplex, the monomials �i resulting from a shelling

coincide with the descent monomials of its associated poset. We borrow the name from

this case and call the �i descent monomials. The set of descent monomials, DM , is our
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candidate for the set of separators, which, by Corollary 2.2.3, can be established by showing

that DM is a k-basis for R̂=( 1;  2;  3). For the running example, we have grouped the

descent monomials by degree in Table 2.2.

Degree Monomials # of Monomials

0 1 1

1 y2; y3; y4 3

2 y1y3; y2y3; y2y4; y3y4 4

3 y2y3
2; y3y4

2; y2y3y4 3

4 y2y3
2y4 1

Table 2.2: Descent monomials for the square grouped by degree.

Let CM be the k-basis given by Macaulay. Recall that if C is a set of monomials,

then Cm = fx 2 C : deg x = mg: For each n, we show that the monomials in DMn are

triangularly related to the monomials of CMn. Note that all calculations are done modulo

the ideal ( 1;  2;  3). For degrees 0 and 1 the sets are identical:

DM0 = CM0 = f1g

DM1 = CM1 = fy2; y3; y4g:

For degree 2, the transition matrix between sets is

CM2

y3y4 y2y4 y4
2 y3

2

y3y4 1

DM2 y2y4 0 1

y2y3 �1 �1 �1

y1y3 0 1 1 �1

;

e.g., line 3 results because

y2y3 � �y3y4 � y2y4 � y4
2 mod ( 1;  2;  3):
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For degree 3, the transition matrix is

CM3

y3y4
2 y2y4

2 y3
2y4

y3y4
2 1

DM3 y2y3y4 �1 �1

y2y3
2 0 1 �1

:

For degree 4, DM4 = fy2y3
2y4g, CM4 = fy3

2y4
2g and

y2y3
2y4 � �y3

2y4
2 mod ( 1;  2;  3):

In each case the transition matrices are invertible. Hence, the descent monomials

are a k-basis for R̂=( 1;  2;  3) and f�1; : : : ; �12; 1;  2;  3g is basic.

2.4 The Stanley-Reisner ring of the poset and a transfer of

identities

Recall the poset of the triangulation � (Figure 1.8). For the Diophantine ring R

or rather the isomorphic ring R̂, variables correspond to each vertex of the cross section

polytope. Each simplex becomes a product of variables. In contrast, here we create a new

variable for each simplex, indexing to facilitate a ring homomorphism to the Diophantine

ring, e.g., the simplex abc replaced in Figure 2.1 with y1y2y3 is replaced with x123 (Fig-

ure 2.4). Variables xa and xb are comparable if the indices a and b are comparable in the

1

x
 1

x
 2

x
 3

x
 4

x
 12

x
 13

x
 23

x
 24

x
 34

x
 123

x
 234

Figure 2.4: Variables of the Stanley-Reisner ring of the poset for x+ y = z + w.

face lattice, i.e., if a is contained in b, or vice versa. The Stanley-Reisner ring of a poset
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is

SR = k[x1; x2; : : : ; xn]=J

where J = (xixj j xi incomparable to xj). For the running example,

SR = k[x1; : : : ; x4; x12; : : : ; x34; x123; x234]=J (2.4.4)

J = (x1x2; x1x3; x1x4; x1x23; x1x24; x1x34; x1x234; x2x3; x2x4; x2x13; : : : ; x123x234):

(2.4.5)

SR is known to be Cohen-Macaulay. The rank row monomial sums

�1 = x1 + x2 + x3 + x4

�2 = x12 + x13 + x23 + x24 + x34

�3 = x123 + x234

are a set of generators and the descent monomials (Table 2.3) are an accompanying set

i Face Products Fi SR-Separators "i R̂-Separators �i

1 1 1 1

2 ac x13 y1y3

3 b x2 y2

4 c x3 y3

5 bc x23 y2y3

6 c; bc x3x23 y2y3
2

7 bcd x234 y2y3y4

8 c; bcd x3x234 y2y3
2y4

9 bd x24 y2y4

10 cd x34 y3y4

11 d x4 y4

12 d; cd x4x34 y3y4
2

Table 2.3: Face lists and separators from the two rings.

of separators [Gar80, p.250]. Included in the cited material is an algorithm for expanding
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SR monomials in terms of the basic system; some expansions of degree 3 monomials are

x123 = �3 � x234

x1x13 = x13�1 � x3�2 + x3x23 + x34�1 � x4x34

x1
3 = �1

2(�1 � x2 � x3 � x4):

De�ne the map

' : SR! R̂

xS 7!
Y
i2S

yi

and extend so that ' is a ring homomorphism. For example '(x2x123) = �(x2)'(x123) =

y2(y1y2y3). In particular, the known generators are mapped to the proposed generators

and the known separators to the proposed separators:

�(�i) =  i �("i) = �i:

We transfer the expansions from SR to R̂ by means of �. Error terms are introduced,

but we order the monomials so that error terms for each monomial are monomials which

occur earlier in the ordering. Such an ordering is transfer permitting.

For the nth homogeneous subspace, form the error matrix An by de�ning aij to

be the coe�cient of the monomial j in the error terms for monomial i. An ordering is

transfer permitting if An is lower triangular with zeros on the diagonal for every n.

Order the degree 3 monomials as in Figure 2.5. The abscissa of a pair of tableaux

is the shape of the part of the monomial in y1 and y4. The ordinate is the shape of the

part of the monomial in y2 and y3. We demonstrate with 2 expansions.

1. At the top shape is y1y2y3.

In SR, x123 = �3 � x234;

in R̂, y1y2y3 =  3 � y2y3y4.

The transfer of the expansion from SR involves no error.

2. From a shape later in the order is y3
2y4.

In SR, x3x34 = x34�1 � x4x34;

in R̂, y3
2y4 =

from expansion in SRz }| {
y3y4 1 � y4(y3y4)�

errorz }| {
y2y3

2 � y2y3y4.
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Figure 2.5: Ordering of deg(3) monomials from x+ y = z + w.

The monomial y3
2y4 is marked with an arrow in Figure 2.5. The error terms are

circled and are of shapes which occur earlier in the order.

A similar ordering holds for degrees 0, 1, 2 and 4. Thus, in R̂, all monomials of degree

4 or less can be expressed in terms of f�1; : : : ; �12; 1;  2;  3g. Macaulay indicates that

only monomials of deg(4) or less are in a k-basis. We can conclude that f�1; : : : ; �12g is

a k-basis for R̂=( 1;  2;  3) independent of a direct comparison with the k-basis given by

Macaulay. We are closer to our goal.

Proposition 2.4.1. A spanning set B = f"1; : : : ; "`; �1; : : : ; �mg is basic for R if and only

if

FR(t) =

P
j t

deg("j)

(1� td1) : : :(1� tdm)
(di = deg(�i)): (2.4.6)

See [Gar80, p.232] for a proof.

We have shown that (2.4.6) is ful�lled in (2.2.3). Once shown that our proposed

basic system spans all monomials, not just those of degree 4 or less, Proposition 2.4.1 gives

us our goal.

For the degree 5 monomials, transfer the expansions from SR as before. The

monomials of degree 5 can not be ordered so that the matrix of the error terms is lower

triangular with zeros on the diagonal (see Figure 2.6). However, if we divide the error
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* * * *

0

0 0 0 0

* 0 0 0

* * *

Figure 2.6: Matrix of error terms for the deg(5) monomials of x+ y = z + w.

terms into two parts|the part which is 0 mod ( 1;  2;  3) and the part which is not|

then the monomials can be ordered so that the matrix of the latter is lower triangular

with zeros on the diagonal (see Figure 2.7). Let z be a degree 5 monomial and let < be

0 0 0 0

0

0 0 0 0

* 0 0 0

0 * *

Figure 2.7: Matrix of error terms mod ( 1;  2;  3) for the deg(5) monomials.

the ordering on degree 5 monomials. We assume that all monomials preceding z can be

expanded in terms of the basic set.

error terms of z =
X
zi<z

aizi +
X
j

vj j

ai is an element of k. vj is a polynomial of degree less than 5 and hence, can be expanded

in terms of the basic system. By the induction assumption on the order of the monomials,

zi can be expanded. Thus, z can be expanded in terms of the basic set, which completes

the induction step. As a consequence, since no separators have degree more than 4, all

degree 5 monomials are 0 mod ( 1;  2;  3).
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For n > 5, we induct on the degree of the polynomial, assuming all polynomials

of lower degree can be expanded and all homogeneous polynomials of one degree less are

0 mod ( 1;  2;  3). We can start with just a monomial. A degree n monomial z can

be written as yiv where v is a monomial of degree n � 1. By assumption, v =
P

j pj j,

where pj is a polynomial and deg(pj) < n � 1. Multiplying the expression for v by yi,

z = yiv =
P

j yipj j where deg(yipj) < 1 + (n � 1) = n. By hypothesis, yipj can be

expanded. Thus, z can be expanded in terms of the basic set and is 0 mod ( 1;  2;  3),

completing the induction step.

We have ful�lled our earlier promise of showing that R̂ is Cohen-Macaulay inde-

pendent of the data about a k-basis given by Macaulay, or even the data that f 1;  2;  3g

is a system of parameters.



Chapter 3

The Elliott-MacMahon algorithm

3.1 The crude generating function G(x; �)

The Elliott-MacMahon algorithm (EMA) is a straightforward but computationally

ine�cient way to produce the generating function of solutions E(x). Elliott treated the

one equation case and informally proved its termination [Ell03]. MacMahon extended

the algorithm to Diophantine systems of equations and inequalities [Mac60, Vol.2, Section

VIII]. We present the algorithm for equations. The algorithm for inequalities requires only

obvious modi�cations.

Given a system of equations, Ay = 0, where A is an l by n matrix, form the formal

power series in the variables x; � = x1; : : : ; xn; �1; : : : ; �m

G(x; �) =

nY
j=1

1

1� �1a1j�2a2j � � ��mamjxj
=

nY
j=1

1

1� �Ajxj

where Aj is the jth column of A. G(x; �) is known as the crude generating function for

the system of equations.

Example 3.1.1. For 3x = y + 5z which we rewrite as 3x� y � 5z = 0,

G(x; �) =
1

(1� �3x)(1� ��1y)(1� ��5z)

Example 3.1.2. For the system

x = y + w

x+ y + z = 2v;

G(x; �) =
1

(1� �x)(1� ��1y)(1� z)(1� �2v)(1� ��1w)
;

24
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where � = (�; ).

Proposition 3.1.3.

E(x) = G(x; �)j�=0

Proof.

G(x; �) =

�
1

1� �A1x1

��
1

1� �A2x2

�
� � �

�
1

1� �Anxn

�

=
X
b2N

n

(�A1x1)
b1(�A2x2)

b2 � � �(�Anxn)
bn

=
X
b2N

n

�b1A1+b2A2+���+bnAnxb =
X
b2N

n

�Abxb

Restricting to the �-free part, xb will be in the new expression if and only if Ab = 0

3.2 The key identity and the ternary tree structure

The identity

1

(1� x)(1� y)
=

1

(1� xy)

�
1

(1� x)
+

1

(1� y)
� 1

�
(3.2.1)

is the basis of the algorithm.

We �rst consider the case of one equation which engenders one auxiliary variable �.

The algorithm will extract the part of the crude generating function which is �-free. Let E

be the multiset of nonzero exponents of �, E+ the positive exponents and E� the negative

exponents. The algorithm has a ternary tree structure. At each node, the multiset E

determines whether the node is an endpoint or whether there is a branching. We display

the 4 cases and the actions taken in Table 3.1. Note from the table that a branching

type E+ E� endpoint action

1 empty empty yes leave the expression as is

2 empty non-empty yes set the factors with � to 1

3 non-empty empty yes set the factors with � to 1

4 non-empty non-empty no apply partial expansion

Table 3.1: Cases and actions to be taken at one node.

occurs iff both E+ and E� are non-empty.
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Let M and m be the maximum and minimum of E, respectively (or one of them if

it has several). Apply (3.2.1) to the expression

1

(1� ��M)(1� ��m)

and separate into the three terms:

1

(1� ��M+m)(1� ��M)

1

(1� ��M+m)(1� ��m)

�1

(1� ��M+m)

Combining what had remained of the original expression with each of these three expres-

sions, we have three new problems that are `simpler' in a way that we explain in the proof

of the algorithm's termination. Apply the decision Table 3.1 to each of the three new

expressions. When the tree has been completed, the expressions from all the endpoints

are summed to form the �nal expression. Some of the endpoints may be just a constant. If

the system has l equations, there will be l auxiliary variables: f�1; : : : ; �lg. The algorithm

proceeds by �rst extracting the part which is �1-free, then the part which is �2-free, etc.

For Example 3.1.1, the crude generating function G(x; �) = 1=((1 � �3x)(1 �

��1y)(1 � ��5z)). The multiset E = f�5;�1; 3g and the max/min elements M = 3,

m = �5. Applying (3.2.1),

1

(1� �3x)(1� ��5z)
=

1

(1� ��2xz)

�
1

(1� �3x)
+

1

(1� ��5z)
� 1

�

The 3 children are

node E+
i E�i endpoint action

2 f3g f�2;�1g no apply (3.2.1)

30 fg f�5;�2;�1g yes set the factors with � to 1

31 fg f�2;�1g yes set the factors with � to 1

The node numbers refer to the node labels of the ternary tree displayed in Figure 3.1. The

numbering reects the order in which the nodes are created by a depth �rst implementation

of the algorithm. In Figure 3.2, the nodes of the tree are labeled by the multiset, allowing

for the reader to follow the algorithm directly on the tree. If the multiset is empty, the

node is labeled with a zero.

Applying (3.2.1) to the �rst child (a1 = 3, b1 = �2),

1

(1� �3x)(1� ��2xz)
=

1

(1� �x2z)

�
1

(1� �3x)
+

1

(1� ��2xz)
� 1

�
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Figure 3.1: Tree with nodes numbered as they are created.

-5-13

-2-13 -113

123

-112

112

-111

11

-11

1

-1

0

111

12

-2-11

-1-11

-11 1

-1

0

-1-1

-1

-2-1-1

-1-1-11

1

-1

0

-5-2-1

-2-1

Figure 3.2: Tree with nodes labeled by the exponent multiset.
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Its children (grandchildren of the original expression) are

node E+
1i E�1i endpoint action

3 f1; 3g f�1g no apply (3.2.1)

16 f1g f�2;�1g no apply (3.2.1)

26 f1g f�1g no apply (3.2.1)

Combining the expressions corresponding to each endpoint and simplifying gives

E(x) =
1

(1� xy3)(1� x2yz)
+

1

(1� x5z3)(1� x2yz)
�

1

(1� x2yz)

3.3 Termination and an upper bound for a single equation

Theorem 3.3.1. The Elliott-MacMahon algorithm terminates in a �nite number of steps.

Proof. Let E be multiset of exponents of � in the formal power series G(x; �). We show

how the multisets Ei for the children i =1, 2 and 3 are `simpler' than the one for the

parent.

In the third pair, M and m are replaced with M + m, i.e., E3 = E [ fM +

mgnfM;mg. The total number of exponents has decreased by 1. Since the algorithm has

terminated if there is only 1 exponent, we can induct on the size of E and ignore this

term.

Since the �rst 2 children are symmetrical cases, it su�ces to examine just the �rst

child. Let �(M); : : : ; �(1) be the index of the multiset E+, i.e.

E+ = fM;M; : : : ;M| {z }
�(M)

;M � 1;M � 1; : : : ;M � 1| {z }
�(M�1)

; : : : ; 1; 1; : : : ; 1| {z }
�(1)

g:

Similarly, let �(m); : : :�(�1) be the index of the multiset E�. E1 is identical to E, except

that M +m has replaced m. It may lie in either the multiset E+, the multiset E� or

it may be 0. In the last case, we can again apply induction on the number of nonzero

exponents. Since M +m lies strictly between M and m,

1. M1 =M , m1 � m.

2. �1(M) = �(M) and �1(m) < �(m).

In Elliott's words, there is \a diminution : : : of absolute value of a numerically greatest

negative" exponent, \without any compensating increase at the other end of the scale."

[Ell03, p.351]
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Pile the exponents on a number line, like bricks, placing them in their namesake

spots. Figure 3.3 will help us visualize the process. One bulldozer from the left and one

-5 1 2 30-4 -3 -2 -1

Figure 3.3: Birth of a term 2 child in the EM-algorithm.

bulldozer from the right are at work. If term 1 of (3.2.1) is called, the bulldozer on the

left chips the top brick and pushes it into the interior. If term 2 is called, the bulldozer on

the right does a similar job. If term 3 is called, both bulldozers work but the bricks collide

in the air, merging into one brick which again lands in the interior. In this case, we can

apply induction on the number of bricks. The machines always hit the top brick, making

it y somewhere strictly between the two extreme walls. The origin should be thought of

as a bottomless pit. (If a brick is hit onto 0, it falls and is never heard from again). The

work is completed when all the bricks are pushed onto one side of the pit or into it.

Let's get an upper bound on the number of times that a particular brick can be

hit. When the brick is hit, the spot where it lands is eliminated from where it can go in

the future. If a brick is on one of the extreme walls, there are a� 1 positive spots, �b� 1

negative spots and 1 zero spot to which it can land, a � b � 1 spots altogether. Hence,

the brick can be moved a total of a� b� 1 times. A brick not on an extreme wall has an

even smaller upper bound of moves, hence we get

Lemma 3.3.2. If A and B are the multisets of positive and negative exponents of � in the

crude generating function, then an upper bound on the depth of our tree is (jAj+ jBj)(a�

b� 1), where a =max(A) and b =min(B).

For the example 3x = y + 5z of the last section, the depth has an upper bound of

(1 + 2)(3 + 5� 1) = 21.
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If a ternary tree has depth n, then an upper bound on the number of nodes is

1 + 3 + 32 + � � �+ 3n = (3n+1 � 1)=2:

Hence, an upper bound on the number of steps in our algorithm is

3(jAj+jBj)(a�b�1)+1=2 (3.3.2)

(3.3.2) gives an upper bound on the steps of 322=2 for Example 3.1.1; in contrast, there

are only 29 nodes in Figure 3.1. A great improvement on the upper bound can be made

by making a more careful analysis of the depth of the tree.



Chapter 4

Some subclasses of magic squares

4.1 D�urer's magic square

Joseph Leo Koerner argues that Albrecht D�urer articulates in \Melencolia I" (Fig-

ure 4.1) a pivotal moment in the history of subjectivity (and I might add, of science, largely

alchemy at the time). \The Renaissance abstracted inwardness as an inherent quality of

creative genius"[Koe96]. Some objects in the engraving are tools used by Melancholy;

others are achievements of her work. Among the latter is the square

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

This square has many properties.

1. The entries are nonnegative integers.

2. Any row|e.g., 16, 3, 2 and 13|or column|e.g., 16, 5, 9 and 4|sums to 34.

3. The main primary diagonal|16, 10, 7 and 1| and the main secondary diagonal

|4, 6, 11 and 13|sum to 34.

4. The entries of the square are f1; 2; : : : ; 16g.

5. With the center as origin:

(a) entries that are symmetrically located|e.g., 2 and 15, 4 and 13|sum to 17;

31
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Figure 4.1: Albrecht Durer's Melencolia

.
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(b) the entries in each quadrant|e.g., 16, 3, 10 and 5|sum to 34.

6. If we concatenate the middle 2 entries in the bottom row, we get 1514, the date of

the engraving.

A square satisfying properties 1 and 2 is magic. A magic square which satis�es

property 3 is a recreational magic square or R-square. Property 4 earns the modi�er

classic or \normal". Matrices having property 5(a) are anti-symmetric, or \symmetric".

Property 5(b) is generalized in Section 4.4.

Property 6 is typical of recreational uses of the subject. For another recreational

curiosity,

67 1 43

13 37 61

31 73 7

is the 3�3 R-square with smallest index whose entries are prime (allowing 1 to be prime).

The 12�12 square found in [BJ76, p. 35] is the smallest R-square with the �rst consecutive

primes as entries.

Much of the recreational literature consists of procedures for constructing examples

of squares with speci�ed size and properties. For instance, to construct D�urer's square,

begin with

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(4.1.1)

(4.1.1) has equal main primary and secondary sums and is anti-symmetric. Reversing the

entries in each of the 2 main diagonals preserves these properties and picks up equal row

and column sums too, i,e, the resulting square has properties 1{5.

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

(4.1.2)
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Switching the 2 middle columns of (4.1.2) does not a�ect the �rst 5 properties. The

result is D�urer's square. See [BJ76, pp. 6{7] for an extension of this procedure to any n a

multiple of 4.

In contrast to procedures like the one just illustrated which produce examples of

subclasses, we would like to enumerate or combinatorially decompose the set of all squares

that have a particular set of properties. In particular, we are interested in the set of squares

which satisfy properties which translate directly to a system of linear homogeneous equa-

tions like 1{3 and 5. As an aside, we may on occasion address the problem of enumerating

squares with a particular set of entries, e.g., the �rst n2 natural numbers.

4.2 Magic squares: conventions and dimension

Let A be a n� n matrix. n is the order.

Index the entries using the set f0; : : : ; n�1g instead of the usual f1; : : : ; ng, i.e., A =

kaijk
n�1
i;j=0. Indexing in this number theoretic way facilitates the discussion surrounding

various properties of and operations on the squares.

Index the rows of A from top to bottom and the columns from left to right. We

put a hat on the symbols in the case of sets, reserving the symbol without the hat for the

sum of the elements in the respective set.

R̂k(A) = f akj j j = 0; : : : ; n� 1 g Rk(A) =

n�1X
j=0

akj

Ĉk(A) = f aik j i = 0; : : : ; n� 1 g Ck(A) =

n�1X
i=0

aik

A is magic if

R0(A) = R1(A) = � � � = Rn�1(A) = C0(A) = C1(A) = � � �= Cn�1(A):

The common sum is the index. The entries may come from the set of rationals, Q; the set

of integers, Z; or the set of nonnegative integers, Z�0. We use 3 type faces to indicate the

sets of such magic squares:

entries name entries name entries name

Q Mn Z Mn Z�0 Mn.
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For example, Mn is the set of magic squares of order n with entries in Q. We indicate a

restriction to matrices with a particular index by putting in a second index. For instance,

Mn;0 is the set of magic squares of order n and index 0 with entries in Z.

Let J be the square with all entries 1, then

Mn =Mn;0 �QJ: (4.2.3)

Lemma 4.2.1. Mn;0 can be de�ned directly as the set of n � n matrices with rational

entries which satisfy

R0(A) = R1(A) = � � � = Rn�1(A) = C1(A) = � � � = Cn�1(A) = 0: (4.2.4)

Proof. The only equation in the de�nition of magic which is not in (4.2.4) is C0(A) = 0.

From the row sum equations, the sum of all the entries in the matrix is 0. From the other

column sum equations, the sum of all the entries in the columns 1 through n � 1 is 0.

Subtracting these 2 equations, we get that the sum of the elements in column 0 must also

be 0.

Proposition 4.2.2. The 2(n� 1)+ 1 column and row sum equations of (4.2.4) are inde-

pendent from each other. As a consequence,

dimMn;0 = n2 � (2(n� 1) + 1) = (n� 1)2 and dimMn = (n� 1)2 + 1

Proof. Consider the equations in (4.2.4) to be linear functionals on the space of n � n

matrices. Concatenate the rows of each linear functional to get a single vector. Reorder

the entries so that the 0th row and then the remainder of the 0th column are �rst. Form

a matrix by laying down as rows the linear functionals so ordered, choosing �rst the 0th

row sum, then the column sums, and �nally the rest of the row sums; the resulting matrix

is upper triangular with 1's on the diagonal.

The theory of linear homogeneous Diophantine equations, sketched in Chapter 1, tells us

thatMn is a discrete polyhedral cone. De�ne the dimension of a cone to be the dimension

of the linear span of the vectors found in the cone.

Proposition 4.2.3. dimMn = dimMn

Proof. Clearly, dimMn � dimMn. Let

B = fJ; v1; v2; : : : ; vmg;
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be any basis of Mn which respects the direct sum of (4.2.3). It su�ces to produce a new

basis,

B0 = fJ; v01; v
0
2; : : : ; v

0
mg;

all whose elements are in Mn. The components of each vector vi are rational numbers.

Clear denominators by multiplying by the LCD of all the entries. To each of these now

integer vectors, add a large enough multiple of J to get nonnegative entries. The resulting

set of vectors together with J is the desired B0.

As a consequence of Proposition 4.2.2 and Proposition 4.2.3, we get

Corollary 4.2.4.

dimMn = (n� 1)2 + 1

For any order, the magics are a linear combination of permutation matrices. Hence,

the product of any two magic squares is also magic.

Any of the sets of magic squares is invariant under cycling of the rows and/or

columns. Any subclass which is closed under such cycling is torus invariant. The sets of

R-squares are not torus invariant. In what remains of this chapter, we introduce 2 other

torus invariant subclasses, P -squares and W -squares. The intersection of these latter 2

subclasses, the most-perfect pandiagonal magic squares, is the only magic subclass for

which its classic squares have been enumerated [OB98].

4.3 Torus lines and pandiagonal (P -)squares

Fundamental to our discussion is the torus line, also known as a \broken" or \wrap-

ping" line. The 2 most important torus lines are

� A primary diagonal is the set of entries formed by starting at any entry of the square

and moving at a �45� angle with the horizontal, wrapping around the square upon

reaching an edge. If the starting entry is any (i; i) entry, the set is the main primary

diagonal already encountered. The primary diagonal with start (1,2) whose entries
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are numbered in the order that they are visited is0
BBBBBBBB@

0 5 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 3

4 0 0 0 0

1
CCCCCCCCA
:

� A secondary diagonal is the set of entries formed by starting at any entry of the

square and moving at a +45� angle with the horizontal. If the starting point is any

(i; n� 1� i) entry, the set is the main secondary diagonal. In0
BBBBBBBB@

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

1
CCCCCCCCA
;

the entries with a 1 form a secondary diagonal.

However, the angle with the horizontal does not have to be �45�. For example a row is a

torus line which makes a 0� angle with the horizontal. The nonzero entries of the square

below form the line which starts at (0,0) and proceeds by going down one and over 2. The

angle with the horizontal is � arctan 1
2 � �26:57�.0
BBBBB@

1 0 0 0

0 0 2 0

3 0 0 0

0 0 4 0

1
CCCCCA (4.3.5)

We can view lines from various perspectives. Glue together the top and bottom

edges and the left and right edges of the square to form a torus. A line is just the

entries which lie in a \straight" line of the torus. Equivalently, add copies of the original

square and lay them down so that edges are adjacent to the original square. Extend this

inde�nitely. Start at any entry and proceed in a straight line. Require the image of the

same entry to eventually be encountered again. A line is just the set of entries picked up

until this repetition occurs.

The lines encountered so far pick up a full set of n entries from the square, something

that in fact always happens.
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Proposition 4.3.1. A line of an n � n square has n entries.

Proof. By an appropriate torus translation, we may assume that the line starts at (0; 0).

A line terminates when it travels for the �rst time a multiple of n units in each direction,

say (r; s). The line must have traveled through any fraction of (r; s) which is integral. If

we divide (r; s) by n, we obtain a second point on the line since not both r=n and s=n are

divisible by n. In fact, divide by the entire gcd(r; s) to get the point (a; b). In our traverse,

from (0; 0), (a; b) is the �rst point encountered. All subsequent points are the multiples

of this �rst point. For the line to terminate after m steps, ma �n mb �n 0. Since a and b

have no prime factors in common, n must divide m.

In Chapter 11, we will study lines like (4.3.5) in more depth. For now, we restrict to the

rows, columns and �45� diagonals.

To reference speci�c diagonals of a square, we index them from left to right starting

with the upper left entry. As with rows and columns, we put a hat on the symbols in

the case of sets, reserving the symbol without the hat for the sum of the elements in the

respective set.

F̂k(A) = f ai;k+i j i = 0; : : : ; n� 1 g Fk(A) =

n�1X
j=0

ai;k+i

Ŝk(A) = f ai;k�i j i = 0; : : : ; n� 1 g Sk(A) =

n�1X
i=0

ai;k�i

For example, if A has order 5, the entries of the kth secondary diagonal Ŝk(A) correspond

to the entries labeled k in 0
BBBBBBBB@

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

1
CCCCCCCCA
:

A magic square is pandiagonal if all its primary and secondary diagonal sums are

equal, or directly, a n� n matrix is a pandiagonal square or P -square if

R0 = � � � = Rn�1 = C0 = � � � = Cn�1 = F0 = � � � = Fn�1 = S0 = � � � = Sn�1: (4.3.6)

The sets of P -squares of order n with speci�ed matrix entries are
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entries name entries name entries name

Q Pn Z Pn Z�0 Pn.

Call an element of Pn;0 a zero-square or z-square.

As with magic squares, we have the direct sum decomposition

Pn = Pn;0 �QJ: (4.3.7)

For an example of this direct sum decomposition,

A =

16 3 13 2

5 10 8 11

4 15 1 14

9 6 12 7

=
1

2

15 11 9 13

7 3 1 5

9 13 15 11

1 5 7 3

+
17

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

= B +mJ;

where m = 17
2 = (indA)=n. B = 1

2B
0, where B0 is an integral matrix. Note how entries

of B0 that are on a diagonal 2 units apart are opposites, a property which holds only for

z-squares of order 4.

Lemma 4.3.2. Pn;0 can be de�ned directly as the set of n � n matrices with rational

entries which satisfy

R0 = � � � = Rn�1 = C1 = � � �= Cn�1 = F1 = � � � = Fn�1 = S1 = � � �= Sn�1 = 0: (4.3.8)

Proof is identical to that of Lemma 4.2.1.

Theorem 4.3.3. The 2(n� 1)+1 column and row sum equations of (4.3.8) are indepen-

dent from each other and from the diagonal sums. The 2(n � 1) primary and secondary

diagonal sum equations are

1. independent for n odd,

2. have exactly one dependence for n even.

As a consequence,

dimPn =

8><
>:
(n� 2)2 � 1 if n is odd,

(n� 2)2 if n is even.
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Proof. To �nd relations among the equations of (4.3.8), thought of as linear functionals,

set

n�1X
i=0

riRi +

n�1X
i=1

ciCi +

n�1X
i=1

fiFi +

n�1X
i=1

siSi = 0: (4.3.9)

and solve for the coe�cients ri; ci; fi and si. We prove for general n but use n = 3 to

illustrate. Writing out (4.3.9) as a system of equations,

h
r0 r1 r2 c1 c2 f1 f2 s1 s2

i

2
66666666666666666664

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

3
77777777777777777775

= 0:

Multiply on the right by h1; 0 : : : ; 0it to get r0 = 0. Every functional corresponding to a

diagonal or column picks o� exactly one element from each row; multiply on the right by

h�1; : : : ;�1| {z }
n

; 1; : : : ; 1| {z }
n

; 0; : : : ; 0it

to get n(�r0 + r1) = 0 which implies r1 = 0.

2
66666666666666666664

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

3
77777777777777777775

2
66666666666666666664

�1

�1

�1

1

1

1

0

0

0

3
77777777777777777775

=

2
66666666666666666664

�3

3

0

0

0

0

0

0

0

3
77777777777777777775

;

What was done for the 0th and 1st rows can be done for the 0th and ith rows. Hence

ri = 0 for all i.
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Our system is now reduced to columns and diagonals, e.g.,

h
c1 c2 f1 f2 s1 s2

i

2
666666666664

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

3
777777777775
= 0:

Temporarily augment the system by putting in the 0th column and a new variable c0,

which we can set to 0 at any time, to get

h
c0 c1 c2 f1 f2 s1 s2

i

2
666666666666664

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

3
777777777777775

= 0:

We can perform the same series of operations as we did for the rows to show that ci = 0

for all i, e.g., multiply on right by

h�1; 1; 0; : : : ; 0| {z }
n�2

;�1; 1; 0; : : : ; 0| {z }
n�2

; : : :it

to get n(�c0 + c1) = 0 which implies c1 = 0.

If n is odd, there is a transformation of the matrices which preserves pandiagonality

and switches rows and columns with the diagonals (see Theorem 6.1.1), showing that the

fi; si = 0 for all i. For the rest of the proof, assume n is even. We produce a relation and

show that there are no further ones.

Consider the locations of the entries of our matrix to be squares of a checkerboard

with upper left hand square black. We account for the white squares in two ways, by

summing the odd primary diagonals and the odd secondary diagonals;

F1 + F3 + � � �+ Fn�1 = S1 + S3 + � � �+ Sn�1 or
X
i odd

Fi � Si = 0: (4.3.10)

It remains to show that fF2; F3; : : :Fn�1; S1; S2; : : :Sn�1g is independent. To keep the

calculations symmetric, we leave in the F1 and its coe�cient f1, which we can at any
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time, set to 0. Let us explicitly write out the linear combination of functionals of (4.3.9),

only keeping track of the entries that we need.

f1

0
BBBBBBBBBBB@

0 1 � � � 0 0

0 0 � � � 0 0

0 0 � � � 0 0
...

...
. . .

...
...

0 0 � � � 0 1

1 0 � � � 0 0

1
CCCCCCCCCCCA
+ f2

0
BBBBBBBBBBB@

0 0 � � � 0 0

0 0 � � � 0 0

0 0 � � � 0 0
...

...
. . .

...
...

1 0 � � � 0 0

0 1 � � � 0 0

1
CCCCCCCCCCCA
+ � � �

+ fn�1

0
BBBBBBBBBBB@

0 0 � � � 0 1

1 0 � � � 0 0

0 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 0 0

0 0 � � � 1 0

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBBBBB@

� �

fn�1 �

fn�2 fn�3
... �

...

f3 f2

f2 f1

� 0

1
CCCCCCCCCCCCCCA

(4.3.11)

s1

0
BBBBBBBBBBB@

0 1 � � � 0 0

1 0 � � � 0 0

0 0 � � � 0 1
...

...
. . .

...
...

0 0 � � � 0 0

0 0 � � � 0 0

1
CCCCCCCCCCCA
+ s2

0
BBBBBBBBBBB@

0 0 � � � 0 0

0 1 � � � 0 0

1 0 � � � 0 0
...

...
. . .

...
...

0 0 � � � 0 0

0 0 � � � 0 0

1
CCCCCCCCCCCA
+ � � �

+ sn�1

0
BBBBBBBBBBB@

0 0 � � � 0 1

0 0 � � � 1 0

0 0 � � � 0 0

.. .

0 1 � � � 0 0

1 0 � � � 0 0

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBBBBB@

� �

s1 �

s2 s1
... �

...

sn�3 sn�4

sn�2 sn�3

� sn�2

1
CCCCCCCCCCCCCCA

(4.3.12)
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Sum (4.3.11) and (4.3.12) to get0
BBBBBBBBBBBBBB@

� �

fn�1 + s1 �

fn�2 + s2 fn�3 + s1
... �

...

f3 + sn�3 f2 + sn�4

f2 + sn�2 f1 + sn�3

� sn�2

1
CCCCCCCCCCCCCCA

: (4.3.13)

Remembering that the matrix has been set to zero, use the s's in the nonboxed entries to

connect the f 's. From the �rst column, sn�3 = �f3. From the last column, sn�3 = �f1.

Hence, f1 = f3. After n� 4 more of these crisscrosses between the �rst and last columns,

we get two strings of equalities involving ff1; : : : ; fn�1g.

f1 = f3 = f5 = � � � f2 = f4 = f6 = � � � : (4.3.14)

From the boxed entries, we get

0 = f2 = feven: (4.3.15)

Recall that we can set f1 = 0, then fodd also is 0. Substituting 0 for all fi in (4.3.13) and

remembering that the matrix is equal to the zero matrix gives si = 0 for all i.

Proposition 4.3.4. dimPn = dimPn

Proof is again identical to that of the corresponding result for magic squares, Proposi-

tion 4.2.3.

As a consequence of Theorem 4.3.3 and Proposition 4.3.4, we get

Corollary 4.3.5.

dimPn =

8><
>:
(n� 2)2 if n is odd,

(n� 2)2 + 1 if n is even.

In the recreational spirit, could D�urer have replaced the classic magic square in his

engraving with a classic pandiagonal square keeping the 15 and 14 where they are? We

answer this question in Section 8.9.
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4.4 W -squares and semidiagonals

The material in this section, in particular Proposition 4.4.5, is largely based on

[M�ul97a]. A block is a 2� 2 submatrix of adjacent elements. An n� n magic square A is

a W -square if all blocks sum to indW (A) = 4 ind(A)=n. The sets of W -squares of order n

with speci�ed matrix entries are

entries name entries name entries name

Q Wn Z Wn Z�0 Wn.

As usual, we have the direct sum decomposition

Wn =Wn;0 � QJ (4.4.16)

and a proposition identical to Proposition 4.2.3.

Proposition 4.4.1. dimWn = dimWn

Proposition 4.4.2. Nontrivial W -squares are of even order only.

Proof. Suppose the order n is odd. Alternately add and subtract the successive blocks of

the �rst two columns to get 2(a00+ a01) = indW (A). Using torus translations, we get the

semi-blocks a0i + a0;i+1 = indW =2 for i = 0; : : : ; n. Taking an alternating sum of these

semi-blocks, we get 2a00 = indW =2.

A W -square is completely determined by row 0 and the middle n� 2 elements of column

0. Equivalently, a W -square with index 0 is completely determined by the �rst n � 1

elements of row 0 and the middle n � 2 elements of column 0. We claim that, in fact,

these entries can be arbitrarily chosen.

Proposition 4.4.3. For n even,

dimWn;0 = 2n� 3 or equivalently, dimWn = dimWn = 2n� 2:

Proof. It su�ces to show that a square chosen with arbitrary entries in the determining

set above can be �lled out to be a W -square. Use the row 0 equation to get the last

entry in row 0, and the column 0 equation to get the last entry in column 0. Use the block

equations to �ll out the rest of the matrix. We are left to check that the de�ning equations

not used in �lling out the matrix are satis�ed. The blocks used to �ll out the matrix are

precisely the non-wrapping ones. Taking speci�c alternating sums of the non-wrapping
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block equations gives the blocks which involve wrapping. Taking the sum of every other

of the top blocks results in the sum of the rows 0 and 1. Since the elements of row 0 sum

to 0, then so does row 1, ditto for column 1. The other rows and columns are gotten by

repeating the above in rows 1 and 2 and columns 1 and 2, etc.

Let's investigate 2 � 2 submatrices of W -squares not taken from adjacent rows and/or

columns. Using 1 instead of �1 for display purposes,0
BBBBB@

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

1
CCCCCA �

0
BBBBB@

0 0 0 0

0 0 1 1

0 0 1 1

0 0 0 0

1
CCCCCA =

0
BBBBB@

0 0 1 1

0 0 0 0

0 0 1 1

0 0 0 0

1
CCCCCA = 0:

Combining 2 such relations of 4 elements gives us0
BBBBB@

0 1 1 0

0 0 0 0

0 1 1 0

0 0 0 0

1
CCCCCA �

0
BBBBB@

0 0 1 1

0 0 0 0

0 0 1 1

0 0 0 0

1
CCCCCA =

0
BBBBB@

0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0

1
CCCCCA = 0: (4.4.17)

Taking similar combinations of blocks, we get

Lemma 4.4.4. The 2 � 2 submatrix of a W -square formed by taking the intersection of

the pair of rows i1; i2 with the pair of columns j1; j2, has as relation among its entries

relation i1 � i2 mod 2 j1 � j2 mod 2

ai1;j1 + ai1;j2 + ai2;j2 + ai2;j1 = indW 1 1

ai1;j1 + ai1;j2 � ai2;j2 � ai2;j1 = 0 0 1

ai1;j1 � ai1;j2 � ai2;j2 + ai2;j1 = 0 1 0

ai1;j1 � ai1;j2 + ai2;j2 � ai2;j1 = 0 0 0.

For k = 0; 1 and l = 0; : : : ; n� 1, the primary and secondary semidiagonals are

pk;l =
X

i�2k; j�nl+i

ai;j and sk;l =
X

i�2k; j�nl�i

ai;j ;

respectively. For an order 6 example,

p1;3 =

0
BBBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

1
CCCCCCCCCCCA
:
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The use of the words primary and secondary in the names is justi�ed by

Pj = p0;j + p1;j and Sj = s0;j + s1;j :

For example,

P2 =

0
BBBBBBBBBBB@

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBB@

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA
+

0
BBBBBBBBBBB@

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 0

1
CCCCCCCCCCCA

= p0;2 + p1;2:

The sum of the entries in row 0 with second index even is

E = a0;0 + a0;2 + � � �+ a0;n�2;

and with second index odd is

O = a0;1 + a0;3 + � � �+ a0;n�1:

Similarly, the sum the entries in column 0 with �rst index even is

Et = a0;0 + a2;0 + � � �+ an�2;0;

and with �rst index odd is

Ot = a1;0 + a3;0 + � � �+ an�1;0:

Proposition 4.4.5. Let A be a W -square with order n = 2m and indW (A) = t. If e; e1; e2

are even and o; o1; o2 are odd, then

pe1;e2 = se1;e2 = E +Et �ma00;

pe;o = se;o = E � Ot +ma00;

po;e = so;e = O �Et +ma00;

po1;o2 = so1;o2 = �O � Ot +m(t� a00):

In particular, the sums of the entries for 2 semidiagonals are equal provided that their

indices have the same parity, i.e.,

if i = k and j �2 l, then pi;j = pk;l = si;j = sk;l:
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Corollary 4.4.6. Given a W -square A, the primary and secondary diagonal sums with

indices of the same parity are equal, i.e.,

P0 = P2 = � � � = Pn�2 = S0 = S2 = � � � = Sn�2

P1 = P3 = � � � = Pn�1 = S1 = S3 = � � � = Sn�1:

In particular, if P0 = P1, then A is also a P -square.

Proof. Applying Lemma 4.4.4, we get

aij =

8>>>>>>><
>>>>>>>:

�a00 + a0j + ai0 i, j even;

a00 � a0j + ai0 i odd, j even;

a00 + a0j � ai0 i even, j odd;

t � a00 � a0j � ai0 i, j odd:

(4.4.18)

To �nish the proposition, replace each of the summands in the semidiagonals with the

expressions (4.4.18).



Chapter 5

P -squares as a vector space

5.1 Operators and z-square identities

Recall that Pn is the set of P -squares with rational entries and order n. Pn;0

restricts further to P -squares with index 0. Call an element of Pn;0 a zero-square or

z-square.

Given a matrix with entry aij , introduce the commuting operators R, C:

Raij = ai+1;j ; Caij = ai;j+1:

Andress [And60] used R; C to develop a series of z-square identities. For a �xed order n,

the column sum equalities translate as

[n]Raij = (1 + R+R2 +R3 + � � �+Rn�1)aij = 0;

[n]q is known as the q-analog of n. The primary diagonal sum equalities are

[n]RCaij = (1 +RC +R2C2 + R3C3 + � � �+Rn�1Cn�1)aij = 0:

Subtracting the former displayed equation from the latter and factoring, we obtain

(R(C � 1) +R2(C2 � 1) + � � �+ Rn�1(Cn�1 � 1))aij

= R(C � 1)(1+ R(1 + C) + R2(1 + C + C2) + � � �

+Rn�2(1 + C + � � �+ Cn�2))aij = 0 (5.1.1)

Multiply both sides by R�1 to drop R, the �rst factor. Call the last factor Q. Applying

the factor C � 1 to aij �rst, we see that Qaij has no column dependence.

48
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Lemma 5.1.1. If an operator U is constant along any direction in which a matrix has

line sums 0, then it is the 0 operator.

Proof. We will treat the case of the column direction. Any other case is proved analogously.

If Uaij has no column dependence, sum over the column index:

nUaij =

n�1X
k=0

Uaik = U

n�1X
k=0

aik = 0

Applying the lemma to Q, we get

Proposition 5.1.2. As an operator on z-squares,

1 + R(1 + C) +R2(1 + C + C2) + � � �+ Rn�2(1 + C + � � �+ Cn�2) = 0: (5.1.2)

Alternatively, we present an identity as a matrix, which, when dotted with a z-

square, yields 0. Andress [And60, p.145] called (5.1.2) the triangle identity :

Tn =

0
BBBBBBBBBBB@

1 0 0 � � � 0 0

1 1 0 � � � 0 0

1 1 1 � � � 0 0
...

...
...

. . .
...

...

1 1 1 � � � 1 0

0 0 0 � � � 0 0

1
CCCCCCCCCCCA

= 0

Subtracting the transpose of (5.1.2) from (5.1.2), we get

Tn � (Tn)
t =

X
�1<j<i<n�1

RiCj �
X

�1<i<j<n�1

RiCj = 0

or pictorially 0
BBBBBBBBBBB@

0 1 1 � � � 1 0

1 0 1 � � � 1 0

1 1 0 � � � 1 0
...

...
...

. . .
...

...

1 1 1 � � � 0 0

0 0 0 � � � 0 0

1
CCCCCCCCCCCA
: (5.1.3)
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De�ne the square Bk =
P

0�i;j�k R
iCj , e.g.,

Bn�2 =

0
BBBBBBBBBBB@

1 1 � � � 1 0 0

1 1 � � � 1 0 0
...

...
. . .

...
...

...

1 1 � � � 1 0 0

0 0 � � � 0 0 0

0 0 � � � 0 0 0

1
CCCCCCCCCCCA
:

For illustration purposes, �x n = 6, then

B4 =

0
BBBBBBBBBBB@

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA

and B2 =

0
BBBBBBBBBBB@

1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA
:

De�ne the lower hook

Lk =

kX
j=1

RjC0 +

k�1X
j=1

RkCj

and the upper hook

Uk = Ltk;

e.g.,

L4 =

0
BBBBBBBBBBB@

0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 1 1 1 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA

and U2 =

0
BBBBBBBBBBB@

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA
:

Lemma 5.1.3. Li � Ui = (R� C)Bi, i = 1; : : : ; n� 2.
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Proof. Instead of a formal proof, a couple of examples will demonstrate the pattern.

RBn�2 � CBn�2 =

0
BBBBBBBBBBB@

0 0 � � � 0 0 0

1 1 � � � 1 0 0
...

...
. . .

...
...

...

1 1 � � � 1 0 0

1 1 � � � 1 0 0

0 0 � � � 0 0 0

1
CCCCCCCCCCCA
�

0
BBBBBBBBBBB@

0 1 � � � 1 1 0

0 1 � � � 1 1 0
...

...
. . .

...
...

...

0 1 � � � 1 1 0

0 0 � � � 0 0 0

0 0 � � � 0 0 0

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBB@

0 1 � � � 1 1 0

1 0 � � � 0 1 0
...

...
. . .

...
...

...

1 0 � � � 0 1 0

1 1 � � � 1 0 0

0 0 � � � 0 0 0

1
CCCCCCCCCCCA

= Ln�2 � Un�2:

In the case of n = 6,

RB3 � CB3 =

0
BBBBBBBBBBB@

0 0 0 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA
�

0
BBBBBBBBBBB@

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBB@

0 1 1 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA

= L3 � U3:

Returning to (5.1.3),

Tn � T tn =
X
i�0

(RC)i(Ln�2�2i � Un�2�2i) =
X
i�0

(RC)i(R� C)Bn�2�2i
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= (R� C)
X
i�0

(RC)iBn�2�2i = 0;

the second equality a consequence of Lemma 5.1.3. We see that

Q =
X
i�0

(RC)iBn�2�2i

has no dependence along a secondary diagonal. By Lemma 5.1.1, Q = 0.

Proposition 5.1.4. As an operator on z-squares,X
i�0

(RC)iBn�2�2i = 0: (5.1.4)

(5.1.4) is the square pyramid identity, a name fully appreciated upon glancing at

the n = 7 case: 0
BBBBBBBBBBBBBB@

1 1 1 1 1 0 0

1 2 2 2 1 0 0

1 2 3 2 1 0 0

1 2 2 2 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

= 0: (5.1.5)

The square pyramid identity is actually part of a family of identities, which Andress

[And60, p.150] calls complementary squares and which we call complementary pyramids.

The kth square pyramid of order n is

sPk;n =
X
i�0

(RC)iBk�2i:

Using this notation, (5.1.4) says sPn�2;n = 0. To get the second member of the family,

translate and rotate the triangle Tn so that its right angle is in the upper left corner and

subtract from sPn�2;n. For n = 7, we get0
BBBBBBBBBBBBBB@

0 0 0 0 0 1 0

0 1 1 1 0 0 0

0 1 2 1 1 0 0

0 1 1 2 1 0 0

0 0 1 1 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

:
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Adding the diagonal Sn�2 and translating 1 unit up and 1 unit to the left, we get for

n = 7, 0
BBBBBBBBBBBBBB@

1 1 1 1 0 0 0

1 2 2 1 0 0 0

1 2 2 1 0 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

= 0: (5.1.6)

For general n, the result is

Proposition 5.1.5. As an operator on z-squares,

X
i�0

(RC)iBn�3�2i + (RC)n�2 = 0: (5.1.7)

De�ne the kth complementary pyramids of order n to be the block matrix

cPk;n =

0
BBBBB@

sPk;k

0

sPn�2�k;n�2�k

0

1
CCCCCA :

Using this notation, (5.1.4) says cPn�2;n = 0 and (5.1.7) says cPn�3;n = 0.

Proposition 5.1.6. As an operator on z-squares, the complementary pyramids

cPk;n = 0;

for k = n � 2; n� 3; : : : ;
�
n�2
2

�
.

Proof. De�ne Jkl to be the matrix of 1's of size k � l. Induct on k down by 2 from n � 2

and n� 3; the base cases being Proposition 5.1.4 and Proposition 5.1.5, respectively. For

ease of presentation, we set l = n� 2� k. Start with

cPk;n =

0
BBBBB@

sPk;k

0

sPl;l

0

1
CCCCCA
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and subtract the �rst k rows of 1's0
BBBBBBBBBBB@

0 0 0

0 sPk�2 0 �Jk;l+2

0 0 0

0

sPl

0

1
CCCCCCCCCCCA
:

Add the last l + 2 columns of 1's0
BBBBB@

0

sPk�2

0

sPl+2

1
CCCCCA

and complete the induction step by translating one unit up and one unit to left.

For n odd, there is one additional identity. De�ne a ip f over the 0th column

fF (R;C) = F (R;C�1). Start with the triangle Tn and move the (0; 0)th entry of the

matrix to the center. Using the n = 7 case to illustrate,

T7 =

0
BBBBBBBBBBBBBB@

1 0 0 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 1 1

1
CCCCCCCCCCCCCCA

:

Translate Tn u = n�3
2 units up and to the right one unit: R�uCTn. Multiply by (1� f),

i.e., subtract the negative of its ip, to get

R�uCTn � fR�uCTn = (1� f)R�uCTn = 0: (5.1.8)
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Again turning to the n = 7 case, R�2CT7 � fR�2CT7 =0
BBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 1

1 0 0 0 1 1 1

1 1 0 0 1 1 1

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 1

1 1 1 0 0 1 1

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 1 1 0 1 1 0

1 1 1 0 1 1 1

0 1 1 0 1 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

:

(5.1.9)

The result is a �lled isosceles right triangle with the hypotenuse taking up the middle n�2

entries of column 1, together with the negative of its ip. De�ne the right elbow

Ek = Ek(R;C) = Ck +

kX
i=1

(R+ R�1)Ck�i

and its ip over the 0th column, the left elbow

fEk = Ek(R;C
�1):

For n = 5,

E2 =

0
BBBBBBBB@

0 0 1

1

1

1

0 0 1

1
CCCCCCCCA

and fE2 =

0
BBBBBBBB@

1 0 0

1

1

1

1 0 0

1
CCCCCCCCA
:

In terms of elbows, (5.1.9) is

(1� f)(C(E2+E1 +E0)):

The diamond with side length k is

Dk =
X

�k�i�j;i+j�k

RiCj :

For n = 5,

D2 =

0
BBBBBBBB@

1

1 1 1

1 1 1 1 1

1 1 1

1

1
CCCCCCCCA
:
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Lemma 5.1.7.

(C � C�1)Dk = (1� f)(C(Ek +Ek�1)) = C(Ek +Ek�1)� C�1(fEk + fEk�1):

Proof. A diamond minus an identical diamond shifted 2 units to the left results in two

right elbows from the original diamond and two left elbows from the shifted diamond.

We illustrate with n = 9, k = 3, not displaying the �rst and last rows, since they are

identically zero. CD3 � C�1D3 =0
BBBBBBBBBBBBBB@

0 0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 0

0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 0 0 0

1
CCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBB@

0 0 0 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0

1
CCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBB@

0 0 0 1 0 1 0 0 0

0 0 1 1 0 1 1 0 0

0 1 1 0 0 0 1 1 0

1 1 0 0 0 0 0 1 1

0 1 1 0 0 0 1 1 0

0 0 1 1 0 1 1 0 0

0 0 0 1 0 1 0 0 0

1
CCCCCCCCCCCCCCA

;

which as claimed is C(E3 +E2)� C�1(fE3 + fE2).

Continuing with (5.1.8), set k = n�3
2 to get

(1� f)R�uCTn = (1� f)(C(Ek +Ek�1 + Ek�2 + � � �+ E0))

= (1� f)(C(Ek +Ek�1)) + (1� f)(C(Ek�2 +Ek�3)) + � � �

= (C � C�1)Dk + (C � C�1)Dk�2 + (C � C�1)Dk�4 + � � �

= (C � C�1)(Dk +Dk�2 +Dk�4 + � � � ); (5.1.10)
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the third equality uses Lemma 5.1.7. De�ne the diamond step pyramid to be

dsPk;n = Dk +Dk�2 +Dk�4 + � � � :

To illustrate, we select k = 4 and n = 9;

dsP4;9 = D4 +D2 +D0 =

0
BBBBBBBBBBBBBBBBBBB@

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 2 1 1 0 0

0 1 1 2 2 2 1 1 0

1 1 2 2 3 2 2 1 1

0 1 1 2 2 2 1 1 0

0 0 1 1 2 1 1 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCA

:

Since Tn = 0, (5.1.10) says

(C � C�1)dsPk;n = 0; for k =
n� 3

2
; (5.1.11)

or in words, dsPk;n, as an operator on z-squares, is constant for alternate entries in the

column direction.

Lemma 5.1.8. Given an operator Q on a matrix M of order n odd. If Q is constant for

alternating entries in a direction for which M has line sums 0, then Q is the 0 operator.

Proof. Since repeatedly collecting every other entry eventually wraps around the matrix

to engulf every entry in the line, Q is in fact constant for all entries in the given direction;

apply Lemma 5.1.1.

Applying Lemma 5.1.8 to (5.1.11), we get

Proposition 5.1.9. For n odd, k = n�3
2 , the diamond step pyramid

dsPk;n = 0

as an operator on z-squares.
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For n = 7, k = 2, Proposition 5.1.9 translates as

dsP2;7 =

0
BBBBBBBBBBBBBB@

0

1

1 1 1

0 1 1 2 1 1 0

1 1 1

1

0

1
CCCCCCCCCCCCCCA

= 0:

5.2 The rings R̂, ~R and the octagonal matrix

De�ne the rings

bR =Z[R;C]=(Rn� 1; Cn � 1) and eR = Q[R;C]=(Rn� 1; Cn � 1):

Since Rn � 1 is not irreducible, eR ( bR) is not an integral domain. There is a vector space

(Z-module) isomorphism between (integral) n � n matrices and elements of eR ( bR). The
map taking a matrix A = kaijk

n�1
i;j=0 into the polynomial is

A(R;C) =

n�1X
i;j=0

aijR
iCj :

We recover the matrix A by applying A(R;C) as an operator to the unit matrix

u =

0
BBBBBBBB@

1 0 0 � � � 0

0 0 0 � � � 0

0 0 0 � � � 0
...

...
... � � �

...

0 0 0 � � � 0

1
CCCCCCCCA
;

i.e., A(R;C)u = A. The image of a (integral) z-square of order n is a (integral) z-

polynomial of order n (a z-square is integral if and only if the corresponding z-polynomial

is integral).

Proposition 5.2.1. The (integral) z-polynomials of order n form an ideal in eR ( bR).
Proof. The product of a (integral) polynomial P (R;C) and a (integral) z-polynomial

A(R;C) corresponds, in the realm of matrices, to a (integral) linear combination of trans-

lates of a z-square A. Since the set of (integral) z-squares is invariant under translation,
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each of the translates will also be a (integral) z-square. Since the (integral) z-squares form

a vector space (Z-module), this (integral) combination is itself a (integral) z-square.

The octagonal matrix or octagon

o =

0
BBBBBBBBBBBBBB@

1 1

1 1

1 1

1 1

0

.. .

0

1
CCCCCCCCCCCCCCA

has rotational symmetry and \dihedral antisymmetry", meaning that a ip over one of

the vertical, horizontal or diagonal axes placed in the center of the nonzero part of the

matrix results in the negative of the original. Divide the octagon into pairs of opposite

sides. The polynomial of the horizontal pieces of the octagon is0
BBBBB@

1 1

0 0

0 0

1 1

1
CCCCCA (R;C) = (C � C2)(1�R3) = (1� C)(1�R)(C + RC +R2C):

The vertical pieces are the negative of the transpose of the horizontal pieces; the polyno-

mial of the vertical pieces is obtained from that of the horizontal pieces by switching R

and C and taking the negative:

(1� C)(1�R)(�R�RC �RC2):

Adding the polynomials of the horizontal and vertical pieces and taking out the 2 common

factors, we get

(1� C)(1�R)(C �R+R2C �RC2);

which factors further to give us

o(R;C) = (1� C)(1� R)(C �R)(1� RC): (5.2.12)

In Table 5.1, we list the 7 non-identity dihedral operations, the corresponding operations

on the polynomials and the e�ect of the operations applied to o, modulo appropriate

translations. We demonstrate with the horizontal ip.
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Operation Image of R Image of C Result
�
2 rotation C R�1 o

� rotation R�1 C�1 o
3�
2
rotation C�1 R o

vertical ip R C�1 �o

horizontal ip R�1 C �o

primary diagonal ip C R �o

secondary diagonal ip C�1 R�1 �o

Table 5.1: Dihedral operations on the octagon.

o(R�1; C) = (1� C)(1�R�1)(C �R�1)(1� R�1C):

Multiply by R3 to get (1 � C)(R� 1)(CR� 1)(R � C). 3 sign changes are required to

return to o(R;C).

Proposition 5.2.2. A integral z-polynomial A(R;C) is

1. divisible by (1�R)(1� C);

2. divisible in bR by the product of any 2 of the 4 factors of o(R;C)

(a) if n odd,

(b) except (R� C)(1�RC) if n even.

Corollary 5.2.3. A z-polynomial A(R;C) is divisible by any single factor of o(R;C) in

the ring bR.
We will see in Section 5.4 that A(R;C) is in fact divisible in bR by the entire o(R;C).

Proof. De�ne the column generating function

Aj(R) =

n�1X
i=0

aijR
i:

Since A has equal column sums,

Aj(1) =

n�1X
i=0

aij = 0: (5.2.13)

Grouping the terms in the polynomial according to powers of C,

A(R;C) = A0(R)1 + A1(R)C + � � �+ An�1(R)C
n�1:
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Setting R = 1 and using (5.2.13),

A(1; C) = A0(1)1 +A1(1)C + � � �+ An�1(1)C
n�1

= 0(1) + 0(C) + � � �+ 0(Cn�1) = 0:

Hence, 1�R divides A(R;C). By the symmetry of R and C, 1�C also divides A(R;C).

Working with the polynomial in bR corresponds to working with the matrix on the

torus; the matrix A can be deformed by translating sections n units in the horizontal

direction and/or n units in the vertical direction. If the resulting con�guration has lines

unbroken in a particular direction, then the variation of A(R;C) corresponding to this

con�guration is divisible by the factor corresponding to this direction. For example, we

claim that the con�guration

a00 a01 � � � a0;n�1

a11 � � � a1;n�1 a1;0
. . .

...
...

. . .

an�1;n�1 an�1;0 � � � an�1;n�2

is divisible by both 1� C and by 1�RC.

A(R;C) =

n�1X
i;j=0

ai;i+jR
iCi+j =

n�1X
i;j=0

ai;i+j(RC)
iCj ; (5.2.14)

where the indices of a are calculated modulo n. Setting R = C�1, we get

A(C�1; C) =

n�1X
j=0

(a0j + a1;1+j + � � �+ an�1;n�1+j)C
j =

n�1X
j=0

Pj(A)C
j;

where Pj(A) is the sum of the entries in the jth primary diagonal of A. Since A has

primary diagonal sums 0, Pj(A) = 0, 8j and hence, A(C�1; C) = 0. Thus, 1�RC divides

this A(R;C). Setting C = 1 in (5.2.14), we get

A(R; 1) =

n�1X
i=0

0
@n�1X
j=0

ai;i+j

1
ARi =

n�1X
i=0

(Ri(A))R
i;

where Ri(A) is the sum of the entries in the ith row of A. Since A has row sums 0,

Ri(A) = 0, 8i and hence, A(R; 1) = 0. Thus, 1� C divides this same A(R;C).
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The only remaining case which is not analogous to the 2 cases already covered

is the divisibility by (R � C)(1 � RC) in the case n is odd, which is proved using the

con�guration

a0;n�1

. .
. . . .

an�2;1 � � � an�1;n�3

an�1;0 � � � an�1;n�1 � � � an�1;n�2

a0;1 � � � a0;n�3
. . . . .

.

an�2;n�1

:

Note that the indices of adjacent diagonals di�er by 2, but since n is odd, all diagonals

eventually occur, e.g., the secondary diagonals are, from left to right,

fSn�1; S1; S3; : : : ; Sn�2; S0; S2; : : : ; Sn�3g:

5.3 Octagonal matrices as a spanning set of Pn;0

Denote a translate of the octagon o as

oij = RiCj�1o:

and call any such matrix an octagonal matrix or an octagon.

In this section we will show that any z-polynomial is divisible by the octagonal

polynomial o(R;C). As a byproduct, the octagonal matrices will be shown to span Pn;0,

the set of z-squares. All results of this section have been taken from the Mathematics

Magazine article [And60], written by Andress in 1960. Today, a computer algebra system

can be used to easily program his algorithm.

A particular instance of Proposition 5.2.1, we rephrase Theorem 4 of [And60] as

Proposition 5.3.1. Given any polynomial P (R;C), the product of P and the octagonal

polynomial o(R;C) is a z-polynomial.

Andress provided a converse of Proposition 5.3.1. To get it, Andress divides a z-

polynomial A(R;C) by each factor of o(R;C), one at a time, cleverly choosing a particular
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quotient at each step which is itself the polynomial of a z-square. Call any such quotient

a z-square quotient. More speci�cally, Andress takes any quotient by one of the factors,

which we know to exist by Corollary 5.2.3, and uses it to produce another quotient that is

a polynomial multiple of the original polynomial A(R;C). By Proposition 5.2.1, this new

quotient is a z-polynomial.

Recall the already introduced q analog of n

[n]q = 1 + q + q2 + � � �+ qn�1:

Let B(R;C) be any quotient of A(R;C) by 1�R. If

B0(R;C) = (1� n�1[n]R)B(R;C):

then

(1�R)B0(R;C) = (1� R)B(R;C)� n�1(1�R)[n]RB(R;C)

= A(R;C)� n�1(1� Rn)B(R;C) = A(R;C);

the last equality holds since we are working in eR. Hence, B0(R;C) is also a quotient of

A(R;C) by 1� R. Since [n]1 = n,

(1� n�1[n]R) = f(R)(1�R);

for some polynomial f . In [And60, (24)], Andress gives an incorrect expression for f(x);

it should instead be

f(x) =
�
(n� 1) + (n� 2)x+ � � �+ xn�2

�
=n: (5.3.15)

Putting together some of the previously displayed equations,

A(R;C)=(1�R) = B0(R;C) = (1� n�1[n]R)B(R;C)

= f(R)(1� R)B(R;C) = f(R)A(R;C);

which is a z-polynomial by Proposition 5.2.1. We have found a z-square quotient. Likewise,

f(C)A(R;C) is a z-square quotient of A(R;C) by 1� C.

Substituting � = RC into (5.2.14), we get

A(R;C) =

n�1X
i;j=0

ai;i+j(RC)
iCj = A0(�;C);
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where A0(1; C) = 0. As when we divided by 1� R,

A(R;C)=(1�RC) = A0(�;C)=(1� �) = f(�)A0(�;C) = f(RC)A(R;C);

we conclude that f(RC)A(R;C) is a z-square quotient of A(R;C) by 1� RC.

Using another massage on the torus of the z-square A,

a0;n�1 a00 � � � a0;n�2

. .
. ...

... . .
.

an�2;1 � � � an�2;n�1 an�2;0

an�1;0 an�1;1 � � � an�1;n�1

;

let � = R=C to get

A(R;C) =

n�1X
i;j=0

ai;j�i(R=C)
iCj = A0(�;C);

where A0(1; C) = 0. Hence,

A(R;C)=(1� R=C) = A0(�;C)=(1� �) = f(�)A0(�;C) = f(R=C)A(R;C);

or equivalently,

A(R;C)=(C� R) = C�1f(R=C)A(R;C):

Since the degree of f is n�2, we produce a polynomial by multiplying by Cn (in detail, since

we are working in the ring eR, we can add to the above polynomial the Cn � 1 multiple

of itself). We conclude that Cn�1f(R=C)A(R;C) is a polynomial z-square quotient of

A(R;C) by C � R. We have shown

Proposition 5.3.2. Given a z-square A and f(x) de�ned by (5.3.15), let

A00(R;C) = Cn�1f(R)f(C)f(RC)f(R=C)A(R;C)

then A00(R;C) is a particular quotient in the ring eR of A(R;C) by o(R;C), which is itself

a z-polynomial.

A(R;C) = A00(R;C)o(R;C) means that any z-square can be written as a Q linear

combination of octagons.

Corollary 5.3.3. The octagons of order n span Pn;0, the space of z-squares of order n.

In Proposition 5.4.1, we improve on this corollary by showing that we can work

over Z.
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5.4 A Z-module basis of octagons for Pn;0

Select the n� 3� n� 1 upper left block of octagonal matrices

O0
n = foij j 0 � i � n� 4; 0 � j � n� 2g

and de�ne

On =

8><
>:
O0
n n odd;

O0
n [ fon�3;n�1g n even.

Proposition 5.4.1. On is a Z-module basis for Pn;0, the set of integral z-squares.

Corollary 5.4.2. Any integral z-polynomial A(R;C) is divisible by o in bR.
Proof. By Theorem 4.3.3,

dimZn = dim Vn =

8><
>:
(n� 2)2 � 1 = (n� 1)(n� 3) if n odd,

(n� 2)2 = (n� 1)(n� 3) + 1 if n even.

Hence, On has the proper cardinality. To show independence and integrality, the result is

almost immediate for n odd. For n even, the result will depend on an intricate induction.

Given any matrix A = kaijk
n�1
i=0 de�ne the subset of entries written as a vector

A = faij j 0 � i � n� 4; 0 � j � n� 2g

and

A0 =

8><
>:
A n odd;

A [ fan�3;n�1g n even.

Assume n odd. Extract the subset O0 from each octagon O�On and lay it down

as the row of a matrix, then the resulting matrix Dn is upper triangular with 1's down

the main diagonal. Suppose that we have decomposed a z-square A in terms of On,

i.e., A = On:v, where v is the vector of coe�cients of the octagonal matrices in the

decomposition. If we focus on the pivot entries, then v:Dn = A0. To obtain v, apply D�1
n

to A0 on the right. The triangularity with 1's on the diagonal for Dn means that D�1
n is

integral. Hence, the coe�cients of the decomposition are integral, and the proof in the
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case n odd is complete. We demonstrate the decomposition with

A =

0
BBBBBBBB@

12 6 0 11 7

1 12 3 11 5

4 10 4 2 8

3 2 9 5 9

10 6 8 7 1

1
CCCCCCCCA
: (5.4.16)

Extract the 2� 4 upper right submatrix from each matrix in O5 and lay it down as a row

of

D5 =

0
BBBBBBBBBBBBBBBB@

1 1 0 0 0 0 1 0

0 1 1 0 1 0 0 1

0 0 1 1 0 1 0 0

0 0 0 1 1 0 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

:

Extract the 2 � 4 upper right submatrix from (5.4.16) and multiply on the right by D�1
5

to get

h�6; 0; 11; 7; 12; 3;�11;�5i:

0
BBBBBBBBBBBBBBBB@

1 1 1 1 0 1 1 0

0 1 1 1 0 1 2 1

0 0 1 1 1 0 1 1

0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

= h�6;�6; 5; 12;�6; 2; 9; 10i:

Hence, the Z-module decomposition of (5.4.16) is0
BBBBBBBB@

12 6 0 11 7

1 12 3 11 5

4 10 4 2 8

3 2 9 5 9

10 6 8 7 1

1
CCCCCCCCA

= �12

0
BBBBBBBB@

1 1 0 0 0

0 0 1 0 1

0 0 1 0 1

1 1 0 0 0

0 0 0 0 0

1
CCCCCCCCA
� 18

0
BBBBBBBB@

0 1 1 0 0

1 0 0 1 0

1 0 0 1 0

0 1 1 0 0

0 0 0 0 0

1
CCCCCCCCA
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�18

0
BBBBBBBB@

0 0 1 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

1
CCCCCCCCA
� 7

0
BBBBBBBB@

0 0 0 1 1

1 0 1 0 0

1 0 1 0 0

0 0 0 1 1

0 0 0 0 0

1
CCCCCCCCA
� 10

0
BBBBBBBB@

0 0 0 0 0

1 1 0 0 0

0 0 1 0 1

0 0 1 0 1

1 1 0 0 0

1
CCCCCCCCA

�16

0
BBBBBBBB@

0 0 0 0 0

0 1 1 0 0

1 0 0 1 0

1 0 0 1 0

0 1 1 0 0

1
CCCCCCCCA
� 8

0
BBBBBBBB@

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 1 0

1
CCCCCCCCA
� 1

0
BBBBBBBB@

0 0 0 0 0

0 0 0 1 1

1 0 1 0 0

1 0 1 0 0

0 0 0 1 1

1
CCCCCCCCA
:

In terms of polynomials,

A(R;C) = Cn�1(�12� 18C � 18C2 � 7C3 � 10R� 16RC � 8RC2 � 1RC3)o(R;C):

Assume n even. To �nish the proof, it su�ces to show that jDnj = 1. The rest of

the proof would then follow exactly as it did for n odd. Dn is almost upper triangular:

Dn =

0
BBBBBBBB@

1 � � � � � �

0 1 � � � � �
...

...
. . .

...
...

0 0 � � � 1 �

1 0 � � � 0 1

1
CCCCCCCCA
:

De�ne D�
n to be the (n � 1)(n � 3) � (n � 1)(n � 3) upper right submatrix of Dn. To

evaluate jDnj, expand along the last row: jDnj = 1� jD�
nj : If we can show that jD�

nj = 0,

then we will have shown that jDnj = 1 as desired. We proceed by induction on n.

D4 =

0
BBBBB@

1 1 0 1

0 1 1 1

0 0 1 0

1 0 0 1

1
CCCCCA

and hence,

D�
4 =

0
BB@
1 0 1

1 1 1

0 1 0

1
CCA :



68

If v4 = h1; 1; 1i, then v4:D
�
4 = 0. Thus, D�

4 has a nontrivial column null-space, completing

the base case.

Inductively de�ne a vector vn, represented as a n� 3�n� 1 matrix, in terms of an

already de�ned vector vn�2. To do so, �rst augment vn�2 with 0's around the boundary

and denote it with bvn�2, e.g.,

bv4 =
0
BB@

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

1
CCA :

Next, de�ne the vector wn to be the n � 3� n � 1 matrix of rows of 1's alternating with

rows of 0's, e.g.,

w8 =

0
BBBBBBBB@

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1
CCCCCCCCA
:

Last, de�ne the vector yn to be the n� 3� n� 1 matrix with 0's except for the last row,

which is 1's alternating with 0's indented from the right and left 2 units, e.g.,

y8 =

0
BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 1 0 0

1
CCCCCCCCA
:

Putting the pieces together, recursively de�ne

vn = bvn�2 + wn + yn:

For example,

v6 =

0
BB@
1 1 1 1 1

0 1 1 1 0

1 1 2 1 1

1
CCA ; v8 =

0
BBBBBBBB@

1 1 1 1 1 1 1

0 1 1 1 1 1 0

1 1 2 2 2 1 1

0 1 1 2 1 1 0

1 1 2 1 2 1 1

1
CCCCCCCCA
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and

v10 =

0
BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 0

1 1 2 2 2 2 2 1 1

0 1 1 2 2 2 1 1 0

1 1 2 2 3 2 2 1 1

0 1 1 2 1 2 1 1 0

1 1 2 1 2 1 2 1 1

1
CCCCCCCCCCCCCCA

:

We claim that vn is a nontrivial vector in the column null-space of D�
n.

The image of one of the vectors vn, wn and bvn dotted with O0
n can be written as

a n � n matrix, the image matrix. D�
n is a matrix which is a selection of columns of O0

n.

Hence, the image of one of the vectors vn, wn and bvn, dotted with D�
n is a selection of

entries from the image matrix. Call these entries pivot images. The location of the pivot

images are marked with � for n = 4 in0
BBBBB@

� � � �

� � � �

� � � �

� � � �

1
CCCCCA

and for n = 6 in 0
BBBBBBBBBBB@

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

1
CCCCCCCCCCCA
:

The induction assumption means that vn:D
�
n = 0, i.e., vn:O

0
n is 0 for the n � 3 � n � 1

pivot images.

Due to the antisymmetric nature of the octagons and the vertical symmetry of vn,

vn:O
0
n is antisymmetric. Hence, we can focus on the left side of the image matrices, an

observation that simpli�es the proof.

The stamp of a unit vector is the set of locations of the images of the dot product

of this unit vector with O0
n and is contained in the 4 � 4 square 1 unit to the left, 2
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units to the right and 3 units down from the namesake location. The stamp of a vector

is the union of the stamps of each nonzero component of the vector. We now work in the

\n + 2" environment to complete the induction step. bvn has no stamp in the top row.

Using the induction assumption, we claim that bvn:O0
n+2 is in addition 0 for the block of

size n� 3� n � 2 horizontally centered and 1 unit down from the top. For example,

v̂4:O
0
6 =

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1

0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

:

In the \n" environment, the images in this block only came from octagons with indices

above and to their left. There is no wrap around contribution to these entries. In contrast,

the images in the 2nd column, i.e., column 1, were in column 0 in the \n" environment

and hence had wrap around contributions from the octagons with column index n� 2.

wn+2:O
0
n+2 is the sum of the �rst n

2 even-indexed rows of octagons less the n+ 1st

octagon in each of these rows. Since the octagons with row index 2i sum to 0,

wn+2:O
0
n+2 = �

n
2
�1X
i=0

o2i;n+1:

Since the octagons with column index n + 1 sum to 0,

wn+2:O
0
n+2 = on;n+1 +

n
2
�1X
i=0

o2i+1;n+1:

O0
n+2 does not include these octagons in its row space, but we can temporarily put them in

and work with On+2 instead. From the above expansion, the augmented version of wn+2,

w�n+2, could then be written as the matrix with 0's alternating with 1's in the rightmost

column and 0's elsewhere plus a 1 in the n; n+ 1 spot.

Lemma 5.4.3. The dot product of a column (row) of 1's alternating with 0's with O0
n is

the vertical (horizontal) checkerboard pattern of 4 adjacent columns (rows) of alternating

1's and �1's. Each \square" in the checkerboard has width 2 and height 1 (width1 and
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height 2). We illustrate in the row case:

� � � 1 �1 1 � � �

� � � 1 �1 1 � � �

� � � �1 1 �1 � � �

� � � �1 1 �1 � � �

:

In the case of rows, the checkerboard starts in the namesake row and extends down. In

the case of columns, the checkerboard starts 1 unit to the left of the namesake column and

extends to the right. In both cases, the plus signs are in sync with the locations of the 1's

in the preimage.

We demonstrate the checkerboard with w8. w
�
8 is essentially a vector of alternating

0's and 1's in column n+ 1, with the 1's in the odd indexed rows. The location of a 1 in

the n; n+ 1 spot destroys the pattern in the �rst and last 2 rows.

w8:O
0
8 = w�8O8 =

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

:

The stamp of yn+2 is in the last 4 rows of which only the fourth to last row, row n � 2

has pivot images in its stamp.

To complete the induction step and show that

vn+2:D
�
n+2 = 0;

it su�ces to show, for the pivot images, that

1. in columns 0 and 1, rows 1 to n, bvn:O0
n+2 is the opposite of wn+2:O

0
n+2 ;

2. in row n� 1, columns 2 to n
2 + 1, bvn:O0

n+2 is the opposite of yn+2:O
0
n+2.

The top and bottom few entries of a column and the leftmost and rightmost few entries

of a row are endpoints. Only the �rst 2 nonzero columns of bvn have a stamp in the �rst

2 columns of bvn:O0
n+2. The second column of bvn is a column of 1's, which we know to be
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0, except near the endpoints. The �rst column of bvn is an alternating column of 1's and

by Lemma 5.4.3, has an image in column's 0 and 1 of alternating horizontal pairs of 1's

and �1's, except near the endpoints. The horizontal pairs of 1's are in the odd-indexed

rows, precisely the opposite of wn+2:O
0
n+2. At the endpoints, a quick check shows that

they match up there too, atleast for the pivot images and the image (n� 1; 0), which, due

to the antisymmetry, gives us the result for the pivot image (n� 1; n+ 1).

The last 3 nonzero rows of of bvn are the only part of bvn which has a stamp in row

n � 1. If we subtract o� rows of 1's and almost rows of 1's, the defects of which only

impact near the end of the row, we are left with an alternating pattern of 1's and 0's:0
BB@

0 0 0 0 0 1 0 1 � � �

0 0 0 0 1 0 1 0 � � �

0 0 0 1 0 1 0 1 � � �

1
CCA :

If we throw in yn+2, it adds a new row to the above pattern:0
BBBBB@

0 0 0 0 0 1 0 1 � � �

0 0 0 0 1 0 1 0 � � �

0 0 0 1 0 1 0 1 � � �

0 0 1 0 1 0 1 0 � � �

1
CCCCCA :

The progressively indented nature of this pattern going up is a result of the additions

of yn+2, yn, yn�2 and yn�4 in the recursive de�nition of vn+2: By Lemma 5.4.3, the

contribution to the row n � 2 of bvn:O0
n+2 from the �rst row of alternating 1's will cancel

with the contribution from that of the 3rd row. The 2nd and 4th row contributions also

will cancel, leaving another easy check near the endpoints.



Chapter 6

Pandiagonal symmetries

6.1 De�nition and theorem

A pandiagonal symmetry is a permutation of the entries in a square which preserves

the set of columns, rows, primary and secondary diagonals, thought of as one big set. For

a particular order, there may be other symmetries which preserve the set of P -squares. In

fact, in Section 8.2, we present additional symmetries for order 4.

An a�ne transformation on the matrix coordinates sends�
i

j

�
7!

�
ai+ bj + i0

ci+ dj + j0

�
= Q

�
i

j

�
+

�
i0

j0

�
where Q =

2
4a b

c d

3
5 :

The transformation is linear when the a�ne part, hi0; j0i, is 0. When the linear part is the

identity, the transformation is a torus translation � i0;j0 . � i0;0 is a row translation. �0;j0 is

a column translation. The group of torus translations is a direct product of the row and

column translations.

An example of a linear transformation is

Q

�
i

j

�
=

2
41 0

0 �1

3
5�i

j

�
=

�
i

�j

�
:

Q preserves the rows, reverses the columns 1; : : : ; n�1 and switches the primary diagonals

0; 1; : : : ; n� 1 with the secondary diagonals 0; n� 1; : : : ; 1 as illustrated below.0
BBBBB@

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1
CCCCCA)

0
BBBBB@

0 3 2 1

3 2 1 0

2 1 0 3

1 0 3 2

1
CCCCCA

73
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Theorem 6.1.1. Any pandiagonal symmetry is an a�ne transformation with the linear

part taken from the following list:

for any n 8<
:
2
4� 0

0 �

3
5 ;
2
4� 0

0 ��

3
5 ;
2
40 �

� 0

3
5 ;
2
4 0 �

�� 0

3
5 : gcd(�; n) = 1

9=
; (6.1.1)

additionally, for n odd8<
:
2
4� �

� ��

3
5 ;
2
4� ��

� �

3
5 ;
2
4 � �

�� �

3
5 ;
2
4�� �

� �

3
5 : gcd(�; n) = 1

9=
; (6.1.2)

Recall the Euler phi function,

'(n) = #f i j 0 � i � n � 1 and gcd(i; n) = 1 g:

Corollary 6.1.2.

#fpandiagonal symmetriesg =

8><
>:
8'(n)n2 for n odd,

4'(n)n2 for n even.

The additional operations for the odd P -squares are the ones which switch the rows

and columns with the primary and secondary diagonals.

Below, we give a proof that the a�ne transformations listed in Theorem 6.1.1

are precisely the a�ne transformations on the indices which are pandiagonal symmetries.

The more tedious proof that these are in fact all the pandiagonal symmetries is given in

Section 6.2.

Partial proof of Theorem 6.1.1. Call each element in the the set of columns, rows, primary

diagonals and secondary diagonals a line. Our goal is to determine which a�ne transfor-

mations send each line to some other line. The torus translations � i0;j0 clearly preserve

the set of lines. Restrict to the linear part. Linear transformations, by their nature, send

sets of parallel lines to other sets of parallel line, e.g., a linear transformation can send

the rows to columns, but can not send one of the rows to a column and another row to a

diagonal. We use the following symbols for the kinds of lines:

columns j rows � primary diagonals n secondary diagonals =
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Let us �rst examine, for each kind of line, what is required for it to be mapped to another

kind of line.

From j Slope of j is
�
1
0

�
and Q

�
1
0

�
=
�
a
c

�
.

image of j slope of image consequence

j
�
1
0

�
c = 0

�
�
0
1

�
a = 0

n
�
1
1

�
a = c

=
�
1
�1

�
a = �c

From � Slope of � is
�
0
1

�
and Q

�
0
1

�
=
�
b
d

�
.

image of � slope of image consequence

j
�
1
0

�
d = 0

�
�0
1

�
b = 0

n
�
1
1

�
b = d

=
�
1
�1

�
b = �d

From n Slope of n is
�
1
1

�
and Q

�
1
1

�
=
�
a+b
c+d

�
.

image of n slope of image consequence

j
�
1
0

�
c = �d

�
�0
1

�
a = �b

n
�
1
1

�
a+ b = c+ d

=
�
1
�1

�
a+ b+ c+ d = 0

From = Slope of = is
� 1
�1

�
and Q

�1
0

�
=
�
a�b
c�d

�
.

image of = slope of image consequence

j
�
1
0

�
c = d

�
�0
1

�
a = b

n
�1
1

�
a+ d = b+ c

=
�
1
�1

�
a+ c = b+ d
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To n From j � n =

j c = 0 d = 0 c = �d c = d

� a = 0 b = 0 a = �b a = b

n a = c b = d a+ b = c+ d a+ d = b+ c

= a = �c b = �d a+ b+ c+ d = 0 a+ c = b+ d

Table 6.1: Requirements for one type of line to be mapped to another.

We summarize the above investigation as Table 6.1.

From the 4! = 24 possibilities, corresponding to the permutations of the 4 types of

lines, the number can be cut down to 8 with the following lemma.

Lemma 6.1.3. In a linear transformation of the matrix indices, the rows and columns

are either sent to the rows and columns as a set or to the diagonals, i.e., if we place the

rows and columns as opposite vertices of a square with the 2 types of diagonals occupying

the other vertices, then the possible permutations correspond at most to the dihedral action

on this square.

Proof of Lemma. Let us see what happens when we switch, for example � and n, keeping

the other 2 types of lines �xed. From Table 6.1, c = 0, b = d, a = �b and a + c = b+ d,

which implies that b = d = �a, and 3a = 0. In addition Q must be invertible. Hence,

Q =

2
4a �a

0 �a

3
5, and gcd(�a2; n) = 1, which is equivalent to requiring that gcd(a; n) = 1.

This is a contradiction unless n = 3, but as we will see in Proposition 7.2.1, there are no

nontrivial P -squares of degree 3.

While the other cases could be treated similarly, we give a geometric explanation

that covers all the cases. If the rows and columns are sent to lets say the rows and primary

diagonals, then the primary diagonals, using the parallelogram rule, are sent to the lines

which are at a 22.5 degrees below the horizontal. Such lines are not among the 4 types in

our set, except in the case n = 3, where they are the secondary diagonals. Since nontrivial

pandiagonal squares occur only for n > 3, we can safely assume that n > 3.

We use 1 line notation to denote permutations, e.g., �nj= refers to the permutation j�n= 7!

�nj=.

j � n= From Table 6.1, c = 0, b = 0, a + b = c+ d and a + c = b+ d, which implies that
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b = c = 0, and a = d. Hence,

Q =

2
4a 0

0 a

3
5 ;

where a2 is invertible mod n, i.e., gcd(a2; n) = 1, which is equivalent to requiring

that gcd(a; n) = 1.

j � =n c = 0, b = 0, a+ b+ c+ d = 0 and a+ d = b+ c, which implies that b = c = 0, and

a = �d. Hence,

Q =

2
4a 0

0 �a

3
5 ;

where �a2 is invertible mod n, i.e., gcd(�a2; n) = 1, which again is equivalent to

requiring that gcd(a; n) = 1.

�jn= a = 0, d = 0, a + b = c + d and a + c = b + d, which implies that a = d = 0, and

b = c. Hence,

Q =

2
40 b

b 0

3
5 ;

where �b2 is invertible mod n, i.e., gcd(b; n) = 1.

�j=n a = 0, d = 0, a+ b+ c+ d = 0 and a+ d = b+ c, which implies that a = d = 0, and

b = �c. Hence,

Q =

2
4 0 b

�b 0

3
5 ;

where b2 is invertible mod n, i.e., gcd(b; n) = 1.

n=j� c = �d, a = b, a = c and b = �d, which implies that a = b = c = �d. Hence,

Q =

2
4a a

a �a

3
5 ;

where �2a2 is invertible mod n, i.e., gcd(a; n) = 1 and n is odd.
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n=� j a = c, b = �d, a = �b and c = d, which implies that a = �b = c = d. Hence,

Q =

2
4a �a

a a

3
5, where 2a2 is invertible mod n, i.e., gcd(a; n) = 1 and n is odd.

=nj� a = �c, b = d, c = �d and a = b , which implies that a = b = �c = d. Hence,

Q =

2
4 a a

�a a

3
5 ;

where 2a2 is invertible mod n, i.e., gcd(a; n) = 1 and n is odd.

=n � j a = �c, b = d, a = �b and c = d , which implies that a = �b = �c = �d. Hence,

Q =

2
4�a a

a a

3
5 ;

where �2a2 is invertible mod n, i.e., gcd(a; n) = 1 and n is odd.

6.2 Completion of proof for Theorem 6.1.1

We �rst look at transformations that still take types of lines to types of lines. There

are 24 permutations of the 4 types of lines. We use the 8 permutations for n odd and 4

permutations for n even of Theorem 6.1.1 to carve the 24 permutations into orbits. The

following table lists the orbits for n odd as rows. For n even, each of the orbits is divided

in 2. This division is indicated by the double vertical line.

j � n= j � =n �jn= �j=n n=j� n=� j =nj� =n � j

jn � = j=� n �nj= �=jn nj=� n � =j =jn� =� nj

=� nj n � =j =jn� nj=� �=jn j=� n �nj= jn � =

We need only look at one representative from each of the orbits.

j � n= The most general permutation of M = mij to �(M) such that � : j� 7! j� is

�(M) = m�(i)�(j) for some �(i); �(j)2 Sn. The condition that � : n 7! n is

9! 2 Sn such that 8i; j, �(i)� �(j) = !(i� j): (6.2.3)



79

Specialize (6.2.3), by replacing i and j:

i j resulting condition

k 0 �(k) � �(0) = !(k)

k + 1 1 �(k+ 1) � �(1) = !(k)

0 k �(0) � �(k) = !(�k)

1 k + 1 �(1) � �(k + 1) = !(�k):

(6.2.4)

The �rst 2 rows of (6.2.4) imply

�(k+ 1) = �(k) + (�(1)� �(0)):

If we begin with k = 0 and iterate, we get

�(k) = �(0) + k(�(1)� �(0)) (6.2.5)

Similarly, the last 2 rows of (6.2.4) imply

�(k) = �(0) + k(�(1)� �(0)): (6.2.6)

(6.2.5) and (6.2.6) together imply that � is in fact an a�ne transformation on the

indices of the square.

all remaining orbits for n even We take care of n even for the rest of the chart with

the following lemma.

Lemma 6.2.1. If � is a permutation of the entries of M , of size n even, which

carries lines to lines, then the images of the diagonals must also be diagonals.

Proof. Recall that we can divide an even length square up into black and white

squares like a checkerboard. Diagonals are either completely black or completely

white. A primary diagonal and a secondary diagonal have either 0 or 2 entries in

common, depending on whether their respective colors are di�erent or are the same.

More formally, the system of equations

i� j = a

i+ j = b

has 2 solutions in common if a and b have the same parity and 0 solutions if they

have di�erent parity. � is a bijective map; the images of these 2 diagonals must also

have 0 or 2 entries in common, forcing them to also be diagonals.
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Hence, for the remainder of this section, we may assume n is odd. In particular,

only 2 orbits remain.

jn � = The most general permutation of M = mij to �(M) such that � : j= 7! j� is

�(M) = m�(i+j)�(j) for some �(i); �(j) 2 Sn. The additional condition that � : � 7!

n is

9! 2 Sn such that 8i; j, �(i+ j) + �(j) = !(i): (6.2.7)

Specialize (6.2.7), by replacing i and j:

i j resulting condition

k 0 �(k) + �(0) = !(k)

k 1 �(k + 1) + �(1) = !(k)

k + 1 �1 �(k) + �(�1) = !(k + 1):

(6.2.8)

The �rst 2 rows of (6.2.8) imply

�(k + 1)� �(k) = �(0)� �(1);

which, as before, implies that � is a�ne. Similarly, the �rst and third rows of (6.2.8)

imply

!(k+ 1)� !(k) = �(�1)� �(0)

and ! is a�ne.

The a�neness of � and ! together imply the a�neness of � . The a�neness of � and

� in turn imply the a�neness of �.

=� nj The most general permutation of M = mij to �(M) such that � : �= 7! �j is

�(M) = m�(i)�(i+j) for some �(i); �(j)2 Sn. The additional condition that � : j 7! =

is

9! 2 Sn such that 8i; j, �(i) + �(i+ j) = !(j): (6.2.9)

Specialize (6.2.9), by replacing i and j:

i j resulting condition

0 k �(0) + �(k) = !(k)

1 k �(1) + �(k + 1) = !(k)

�1 k + 1 �(�1) + �(k) = !(k + 1):

(6.2.10)



81

The �rst 2 rows of (6.2.10) imply

�(k + 1)� �(k) = �(0)� �(1);

i.e., � is a�ne. Similarly, the �rst and third rows of (6.2.10) imply

!(k + 1)� !(k) = �(�1)� �(0)

and ! is a�ne.

The a�neness of � and ! together imply the a�neness of �. The a�neness of � and

� in turn imply the a�neness of �.

We lastly need to consider the possibility of mapping parallel lines to nonparallel

lines or, in the language of the previous section, mapping 2 lines of the same type to 2

lines of di�erent types. If n is odd, two nonparallel lines meet in exactly one entry. Hence,

for n odd, such a mapping would mean mapping 2n entries to 2n�1 entries, contradicting

the bijective nature of gp. For n even, Lemma 6.2.1 has the corollary that rows and

columns are mapped to rows and columns. If 2 rows are mapped to a row and column, we

would again have 2n entries mapping to 2n � 1 entries. Hence, we have j� 7! j� or �j.

Moreover, if a nonparallel map exists, we can compose, if it is the latter, with one of the

known maps which switch rows and columns, resulting in nonparallel map which sends

j� 7! j�. Hence, we assume that rows are mapped to rows and columns are mapped to

columns.

A row, which alternates in color, is sent to a row. Hence, the set of primary diag-

onals are sent to a set of diagonals, half of which are black and half are white. Moreover,

in this image, the diagonals of one color must be of the same type, since otherwise there

would be an intersection, violating the bijectivity. For obvious reasons, one type of di-

agonal changes color iff the other does too. Let us list out the possibilities then use the

existing symmetry to reduce the number of cases we need to consider. Let n, n, =, = stand

for the white and black primary diagonals, and white and black secondary diagonals, re-

spectively. There are 3 independent decisions each with 2 choices to be made. First, the

black primaries can be mapped to primaries or secondaries. Second, the white primaries

can be mapped to primaries or secondaries. Third, we decide whether there is a color

swap or not. The images of the secondaries will be forced. To tabulate, nn== may be
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mapped to

nn== nn== n==n n==n

=nn= =nn= ==nn ==nn

The �rst 2 entries in the �rst row and the last 2 entries in the second row do not involve

sending parallels to nonparallels so we eliminate them from our consideration. By com-

posing with a torus translation we can reduce to the case where there is no color swap.

Finally, a reection over the line x = 0 switches primary and secondary diagonals. Hence

we need only consider the case nn== is mapped to n==n. Recall that we are requiring

j� to map to j�. Hence, � is of the form �(M) = ~M , where ~mi;j = m�(i);�(j), for some

�; � 2 Sn. Let white have the 0; 0 location.

The condition n is mapped to n implies that

9! 2 Sf0;2;:::;n�2g such that 8i; j i� j even, �(i)� �(j) = !(i� j): (6.2.11)

Let k be an even number. Specialize (6.2.11) by replacing i and j:

i j resulting condition

k 0 �(k) � �(0) = !(k)

k + 2 2 �(k + 2) � �(2) = !(k)

0 k �(0) � �(k) = !(�k)

2 k + 2 �(2) � �(k + 2) = !(�k):

The �rst 2 rows imply

�(k+ 2)� �(k) = �(2)� �(0)
def
= a:

Similarly, the last 2 rows imply �(k + 2)� �(k) = �(2)� �(0). Set k = 0 to get

�(2)� �(0) = a: (6.2.12)

If we begin with k = 0 and iterate, we get

�(2m) = �(0) +ma and �(2m) = �(0) +ma:
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Let k be an odd number. Specialize (6.2.11) by replacing i and j:

i j resulting condition

k 1 �(k) � �(1) = !(k � 1)

k + 2 3 �(k+ 2) � �(3) = !(k � 1)

1 k �(1) � �(k) = !(1� k)

3 k + 2 �(3) � �(k + 2) = !(1� k)

:

The �rst 2 rows imply �(k + 2)� �(k) = �(3) � �(1). De�ne b = �(3)� �(1). The last

2 rows imply �(k + 2) � �(k) = �(3)� �(1). Setting k = 1, we get that �(3)� �(1) = b

also. Begin with k = 1 and iterate to get

�(2m+ 1) = �(1)+mb and �(2m+ 1) = �(1) +mb:

The condition n is mapped to = implies that

9� 2 Sf1;3;:::;n�1g such that 8i; j i+ j odd, �(i)� �(j) = �(i+ j): (6.2.13)

Let k be an even number. Specialize (6.2.13) by replacing i and j:

i j resulting condition

k 3 �(k) � �(3) = �(k + 3)

k + 2 1 �(k+ 2) � �(1) = �(k + 3):

Subtracting the rows, �(k + 2)� �(k) = �(1)� �(3) = �b. Setting k = 0 and comparing

with (6.2.12), we get that a = �b. We summarize our �ndings as:

�(2m) = �(0)+ma

�(2m+ 1) = �(1)�ma

�(2m) = �(0) +ma

�(2m+ 1) = �(1)�ma:
(6.2.14)

We plug the expressions of (6.2.14) into the de�nition for ! found in (6.2.11).

!(i� j) = �(i)� �(j) =

8><
>:
�(0)� �(0) + i�j

2 a i; j even;

�(1)� �(1)� i�j
2 a i; j odd.

(6.2.15)

These 2 de�nitions must be equivalent. Specializing to i� j = 0, we get

�(0)� �(0) = �(1)� �(1): (6.2.16)
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We also plug (6.2.14) into the de�nitions for � found in (6.2.13).

�(i� j) = �(i) + �(j) =

8><
>:
�(1) + �(0) + j�i�1

2
a i odd, j even;

�(0) + �(1) + i�j�1
2

a i even, j odd.
(6.2.17)

These 2 de�nitions must be equivalent. Specializing to i� j = 1, we get

�(1) + �(0)� a = �(0) + �(1): (6.2.18)

Rearranging (6.2.18),

a+ �(0)� �(0) = �(1)� �(1)

and subtracting (6.2.16), we obtain a = 0, which shows that the permutations ! and �

de�ned by (6.2.11) and (6.2.13) can not exist. Hence, for any n, no map exists which

sends lines to lines and 2 parallel lines to nonparallel lines. This completes the proof for

Theorem 6.1.1.



Chapter 7

Order 3 squares

7.1 Magic squares of order 3 and cyclic squares

Given the coe�cient matrix C of a linear system of equations, only certain sets of

columns may be used as pivoting columns to row reduce C. If C is of rank r, these sets

are precisely those corresponding to nonzero r� r subdeterminants D. A set of variables

S which corresponds to the complement of one of these sets of columns is a determining

set. If, in addition, D = �1, S is a monic determining set: any integer solution to the

system can be expressed as an integer combination of the variables in S.

Recall that Mn is the set of magic squares of order n with nonnegative integer

entries. The entries not marked x are a monic determining set for M3:

a x b

x c x

d x e

:

Proposition 7.1.1. Every magic square of order 3 may be written in the form

0
BB@

a d+ e� c b

b+ e� c c a+ d� c

d a+ b� c e

1
CCA : (7.1.1)

Proof. Using the dihedral symmetry, it su�ces to �nd an expression for the 0,1th entry

in terms of the claimed determining set. Such an expression follows immediately from the

85
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Y relation

1 0 1

1 0 1

1 0 1

�

1 1 1

1 1 1

0 0 0

=

0 1 0

0 1 0

1 0 1

= 0:

A cyclic square of order n has a start a and a step b. In the 0th row, place a 1 in

the ath column and 0's elsewhere. In the 1st row, place a 1 in the a+ bth column. In the

2nd row, place a 1 in the a+2bth column. In the ith row, place a 1 in the a+ ibth column.

Cba = k�(j �n a+ ib)kn�1i;j=0 (7.1.2)

Corollary 7.1.2. Every magic square of order 3 with vanishing 1,1th entry may be written

in the form

a d+ e b

b+ e 0 a+ d

d a+ b e

In other words these matrices are arbitrary nonnegative integral linear combinations of the

following 4 cyclic matrices,

C1
1 =

0 1 0

0 0 1

1 0 0

; C1
2 =

0 0 1

1 0 0

0 1 0

;

C2
0 =

1 0 0

0 0 1

0 1 0

; C2
1 =

0 1 0

1 0 0

0 0 1

:

(7.1.3)

As a result,

X
A2M3 s.t. a1;1=0

X(A) =
1

(1�X(C1
1))(1�X(C1

2))(1�X(C2
0))(1�X(C2

1))
: (7.1.4)

Let a cycle be a full set of cyclics of the same step, e.g. fC1
0 , C

1
1 , C

1
2g. Notice that

fC1
1 , C

1
2 , C

2
0 , C

2
1g is a maximal set of cyclics which does not contain a cycle.
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Recall that J is the matrix with all entries 1. Any A 2 M3 may be decomposed

into two magics

A = min(A)J + (A�min(A)J) = min(A)J + A�; (7.1.5)

where A� has a zero entry in say the i; jth location. Let � = � i�1;j�1, then ��1 moves the 0

entry to the 1,1th position. Using Corollary 7.1.2, decompose ��1(A�) into a nonnegative

integer combination of C1
1 , C

1
2 , C

2
0 , and C

2
1 . Applying � to both sides gives a decomposition

for A�.

Proposition 7.1.3. The set of cyclic matrices of a given step is invariant under the group

of torus translations.

Proof. Set the order to n. Applying the column translation �0;k to Cba, is equivalent to

adding k to the start a, i.e.,

�0;k(Cba) = Cba+k:

To analyze row translations, we introduce new notation. The row sequence of a

cyclic is the ordered list recording the columns of the nonzero entries as one descends the

matrix by row. For the cyclic Cba, the sequence is

(a; b+ a; b(2)+ a; : : : ; b(n� 1) + a):

If the sequence of A is (a0; a1; : : : ; an�1), then

�k;0(A) = (a�k; a�k+1; : : : ; a0; a1; : : : ; a�k�1);

where the subscript is as usual calculated modulo n. For our particular sequence,

�k;0(Ca) = (b(�k) + a; b(�k+ 1) + a; : : :; a; b+ a; : : : ; b(�k� 1) + a))

= Cbb(�k)+a:

To a zero in the i; jth position, there is a unique set of 4 cyclics, 2 of step 1 and 2 of step

2, called an admissible set. There are 9 such sets. Conversely, there are
�
3
2

��
3
2

�
= 9 sets of

cyclics that do not contain a cycle. Hence, by the pigeonhole principle,

Lemma 7.1.4. The 9 admissible 4-tuples are precisely the 4-tuples of cyclics that do not

contain a cycle.
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This places us in a position to prove our basic result.

Theorem 7.1.5. Every magic square A 2M3 may be uniquely written as

A = jJ + a0C
1
0 + a1C

1
1 + a2C

1
2 + b0C

2
0 + b1C

2
1 + b2C

2
2 (7.1.6)

where j is an arbitrary integer � 0 and a0, a1, a2, b0, b1, and b2 are integers � 0 subject

to the condition that

0 = a0a1a2 = b0b1b2 (7.1.7)

or equivalently

X
A2M3

X(A) =
1

1�X(J)

2Y
i=1

�
1

(1�X(Ci0))(1�X(Ci1))

+
X(Ci2)

(1�X(Ci0))(1�X(Ci2))
+

X(Ci1)X(Ci2)

(1�X(Ci1))(1�X(Ci2))

�
: (7.1.8)

In particular, the generating function for the index is

X
A2D3

tindA =
1

1� t3

�
1 + t + t2

(1� t)2

�2

=
(1 + t + t2)

(1� t)5

Proof of Theorem. (7.1.6) and (7.1.7) follow from what has been said. We derive (7.1.8)

geometrically. (7.1.6) and (7.1.7) imply that A� is the direct product of 2 cones, each of

whose cross sections is a triangle with the interior removed. Let UVW be one of these

triangles. To perform a shelling of the boundary of cone UVW , pick any of the integral

points on the cone UV arbitrarily. Hence

1

(1�X(U))(1�X(V ))

To avoid an overlap, the integral points chosen from UW must have a positive W compo-

nent,

X(W )

(1�X(U))(1�X(W ))
:

Similarly, the integral points chosen from VW must have positive V and W components,

X(V )X(W )

(1�X(V ))(1�X(W ))
:
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Let 4d be the simplex of dimension d. The cross section of M3 is the dual of the

direct product 42�42. The Schlegel diagram of42�42, with 9 vertices and 6 facets, is

easy to sketch. Begin with 3 triangles in parallel, the middle one smaller than the outer 2

(Figure 7.1). Finish by connecting the corresponding vertices of the triangles (Figure 7.2).

Figure 7.1: 3 triangles in parallel.

For the dual of 42 � 42, (42 � 42)
�, begin with 2 linked triangles (Figure 7.3).

Complete by constructing edges between each of the vertices of one of the triangles with all

the vertices of the other triangle, i.e., form the complete graph on 6 vertices (Figure 7.4).

The 6 vertices correspond to the 6 cyclics, the 9 facets each correspond to an entry

of the matrix set equal to 0. Each facet is a tetrahedron with an admissible set as vertices.

One remarkable thing about this polytope is that it is neighborly, meaning that all pairs

of vertices are connected with an edge, yet it is not a simplex. This phenomenon does not

occur in dimension 3.
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Figure 7.2: Schlegel diagram for 42 �42.

Figure 7.3: 2 linked triangles.
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Figure 7.4: Schlegel diagram for (42 �42)
�.

7.2 P -squares of orders 2 and 3 and reduction of order

Given a permutation � = (�0; �1; : : : ; �n�1) 2 Sn = Sf0;:::;n�1g, its matrix is

m(�) = k�(j = �i)k
n�1
i;j=0

It is well known that any magic square may be written uniquely as a nonnegative integral

linear combination of permutation matrices, i.e.,

A =
X
�2Sn

a�m(�): (7.2.9)

For order 3, this fact is a consequence of Theorem 7.1.5.

We can view (7.2.9) as a change of variables. Any fa�g by de�nition translates into

a matrix with equal row and column sums. To solve the Diophantine system, fa�g needs

to satisfy equations gotten by substituting (7.2.9) into the equal diagonal sum equations.

The number of equations is reduced by a factor of 2, and for orders 2 and 3, the number

of variables also is reduced. If we lexicographically order the permutations, then for order

2 matrices, we get

A =

0
@a1 a2

a2 a1

1
A :
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Equal diagonals means a1 = a2, i.e.,

A = a1

0
@1 1

1 1

1
A :

For order 3,

A =

0
BB@
a1 + a2 a3 + a4 a5 + a6

a3 + a5 a1 + a6 a2 + a4

a4 + a6 a2 + a5 a1 + a3

1
CCA : (7.2.10)

Equal primary diagonals means

3a1 + a2 + a3 + a6 = 3a4 + a2 + a3 + a6 = 3a5 + a2 + a3 + a6;

forcing a1 = a4 = a5. Similarly, equal secondary diagonal sums forces a2 = a3 = a6 and

A =

0
BB@
a1 + a2 a2 + a1 a1 + a2

a2 + a1 a1 + a2 a2 + a1

a1 + a2 a2 + a1 a1 + a2

1
CCA = a1

0
BB@
1 1 1

1 1 1

1 1 1

1
CCA+ a2

0
BB@
1 1 1

1 1 1

1 1 1

1
CCA :

A trivial square is a multiple of J , the matrix with all entries 1.

Proposition 7.2.1. There are only trivial P -squares of orders 2 and 3.

Given a matrix A of order n = mq, de�ne the reduction of A to order m, to be

A #m= kbijk
m�1
i;j=0 where

bij =

n�1X
k;l=0

�(k �m i and l �m j)akl:

Proposition 7.2.2. If A is a P -square of order n = mq, then A #m is also pandiagonal.

Proof. Note that

Rt(B) =

n�1X
k=0

�(u �m t)Ru(A) = qRt(A):

Since the row sums of A are equal then so are the row sums of B. By the symmetry of

the construction, the same is true for column sums.

For the primary diagonal sums, we need to be clever in how we order the indices.

Note that br;s is the sum of ak;l whose indices are listed in the matrix formed as follows.
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Multiply m times the Cartesian product of f0; : : : ; q � 1g with itself, then add (r; s) to

each entry. The result is

0
BBBBBBBBB@

r; s r;m+ s � � � r; (q� 1)m+ s

m+ r; s m+ r;m+ s � � � m+ r; (q� 1)m+ s

...
...

...

(q � 1)m+ r; s (q � 1)m+ r;m+ s � � � (q � 1)m+ r; (q� 1)m+ s

1
CCCCCCCCCA

: (7.2.11)

Reorder by listing as rows the primary diagonals of (7.2.11) to get

0
BBBBBBBBB@

r; s m+ r;m+ s � � � (q � 1)m+ r; (q� 1)m+ s

r;m+ s m+ r; 2m+ s � � � (q � 1)m+ r; s

...
...

...

r; (q� 1)m+ s m+ r; s � � � (q � 1)m+ r; (q� 2)m+ s

1
CCCCCCCCCA

: (7.2.12)

Returning to the primary diagonal sums, use (7.2.12) with r replaced with i and s with

i+ t to get

F t(B) =

m�1X
i=0

bi;i+t

=

m�1X
i=0

ai;(i+t) + am+i;m+(i+t) + � � �+ a(q�1)m+i;(q�1)m+(i+t)

+ ai;m+(i+t) + am+i;2m+(i+t) + � � �+ a(q�1)m+i;(i+t)

...

+ ai;(q�1)m+(i+t) + am+i;(i+t) + � � �+ a(q�1)m+i;(q�2)m+(i+t)

=

m�1X
i=0

ai;i+(t) + am+i;m+i+(t) + : : : + a(q�1)m+i;(q�1)m+i+(t)

+ ai;i+(m+t) + am+i;m+i+(m+t) + � � �+ a(q�1)m+i;(q�1)m+i+(m+t)

...

+ ai;i+((q�1)m+t) + am+i;m+i+((q�1)m+t) + : : :

+ a(q�1)m+i;(q�1)m+i+((q�1)m+t)

and summing each row over i,

= Ft(A) + Fm+t(A) + � � �+ F(q�1)m+t(A) = qFt(A):

Since the primary diagonal sums of A are equal, then so are those of B.
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The reduction construction is symmetric and hence does not a�ect the symmetry

between the 2 types of diagonals. So the secondary diagonal sums are also equal.

Corollary 7.2.3. 1. If A 2 P2q with q odd, then indA is even.

2. If A 2 P3q with q not divisible by 3, then indA is divisible by 3.

Proof. Since m is 2 or 3, Proposition 7.2.1 implies that B = A #m must be trivial.

q indA = indB = tm, t an integer. q is not divisible by m, m prime, implies indA is

divisible by m (m is prime).

7.3 R-magic squares of order 3 and the cross-polytope

Let Rn be the set of R-magic matrices of order n with nonnegative entries. Since

the 6 cyclics (=6 permutation matrices) generate the space of magic squares, we use as

starting point (7.2.10) and set the main primary diagonal sum equal to the �rst row sum

to get

3a1 + a2 + a3 + a6 = a1 + a2 + a3 + a4 + a5 + a6; i.e.,

2a1 = a4 + a5: (7.3.13)

Setting the main secondary diagonal sum equal to the �rst row sum,

a1 + a4 + a5 + 3a6 = a1 + a2 + a3 + a4 + a5 + a6; i.e.,

2a6 = a2 + a3: (7.3.14)

Multiplying (7.2.10) by 2 and substituting in (7.3.13) and (7.3.14), we get

2A =

0
BB@
2a2 + a4 + a5 2a3 + 2a4 2a5 + a2 + a3

2a3 + 2a5 a2 + a3 + a4 + a5 2a2 + 2a4

2a4 + a2 + a3 2a2 + 2a5 2a3 + a4 + a5

1
CCA

= a2

2 0 1

0 1 2

1 2 0

+ a3

0 2 1

2 1 0

1 0 2

+ a4

1 2 0

0 1 2

2 0 1

+ a5

1 0 2

2 1 0

0 2 1
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De�ne these new matrices to be B;C;D and E respectively. Dividing by 2,

A =
a2

2
B +

a3

2
C +

a4

2
D +

a5

2
E:

B;C;D and E are not independent: B + C = D + E = 2J . Focusing on the 0,2th entry

forces a2+a3 to be even, similarly a4+a5 must be even. Conversely, if a2+a3 and a4+a5

are even, then A is integral.

As in the case of the pandiagonals of order 4 and the magics of order 3, extract

a multiple of the trivial leaving A�. This time we need not examine where is the zero.

Neither both a2 and a3 are present, nor both a4 and a5. Hence, a2, a3, a4 and a5 are all

even. There are no other conditions. We have proven

Theorem 7.3.1. Let

B =

2 0 1

0 1 2

1 2 0

; C =

0 2 1

2 1 0

1 0 2

; D =

1 2 0

0 1 2

2 0 1

and E =

1 0 2

2 1 0

0 2 1

:

Then every R-magic square A 2 R3 may be uniquely written as

A = jJ + bB + cC + dD + eE; (7.3.15)

where j is an arbitrary integer � 0 and b, c, d, and e are integers � 0 subject to the

condition that

0 = bc = de (7.3.16)

or equivalently

X
A2R3

X(A) =
1

1�X(J)

�
1

1�X(B)
+

X(C)

1�X(C)

��
1

1�X(D)
+

X(E)

1�X(E)

�
: (7.3.17)

In particular, the generating function for the index is

X
A2R3

tindA =
1

1� t3

�
1 + t3

1� t3

�2

=
(1 + t3)2

(1� t3)3
:

Corollary 7.3.2. There is a one to one correspondence between

1. R-magic squares of order 3, whose minimal entry is in the 0,1th location;
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2. squares of order 3 whose rows and columns are arithmetic progressions.

Proof. Any R-magic square which satis�es condition 1 will be an arbitrary combination

of J , B and E. The entries are as follows:0
BB@
m+ 2b+ e m m+ b+ 2e

m+ 2e m+ b+ e m+ 2b

m+ b m+ 2b+ 2e m+ e

1
CCA :

To get the square of arithmetic progressions, rearrange the terms.0
BB@

m m+ b m+ 2b

m+ e m+ b+ e m+ 2b+ e

m+ 2e m+ b+ 2e m+ 2b+ 2e

1
CCA

The cross section of the cone P

CSc(P ) = fA 2 P j ind(A) = c g:

Since B;C;D;E and J all have index 3, they all lie on CS3(R3). Note that J is the

midpoint of BC and also of DE. Subtract J from B and D:

B � J =

1 1 0

1 0 1

0 1 1

; D � J =

0 1 1

1 0 1

1 1 0

: (7.3.18)

A regular d-cross-polytope is the convex hull of the d pairs of points on d orthogonal lines

intersecting in a common point O which are a distance D from O. The 2 and 3-cross-

polytopes are the square and octahedron, respectively.

Since the inner product (B � J;D� J) = 0, the cross section CS3(R3) is a 2-cross-

polytope, with center J and with B and C, D and E at opposite corners.

Finding a R-magic square of order 3 with distinct entries which are perfect squares

is one of Richard Guy's unsolved problems [Guy94]. In [Rob96], John Robertson uses the

equivalence of Corollary 7.3.2 to connect this unsolved problem to the existence of some

triples of rational right triangles which is in turn connected to a condition on elliptic curves

of the form y2 = x3 � n2x, where n is the geometric mean of the legs of a Pythagorean

triple.

Unlike the magics, the R-magic squares are not closed under matrix multiplication.

However, van den Essen [vdE90], using the Cayley-Hamilton theorem, has shown that the

odd powers of order 3 magics are magic.



Chapter 8

P -squares of order 4

8.1 Strongly magic squares

Padmakumar [Pad97] calls a R-square which is also a W -square a strongly magic

square. We shall show that, in the case n = 4, the notions of strongly magic and pandi-

agonal are equivalent.

Proposition 8.1.1. Let A be a 4� 4 square. A is strongly magic iff A is pandiagonal.

Proof. Suppose that A is strongly magic. To show that A is pandiagonal, by symmetry,

it su�ces to show that the entries in the diagonals labeled 1 and 2 each sum to the index.0
BBBBB@

o 2 1 o

o o 2 1

1 o o 2

2 1 o o

1
CCCCCA

We take care of diagonal 1 quickly. The entries marked with 1 in the matrix below

correspond to a pair of blocks. 0
BBBBB@

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

1
CCCCCA

97
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Subtract o� the principal secondary diagonal to get0
BBBBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCCCA

which is precisely the diagonal 1. Note how the matrix is shorthand for the linear functional

which operates by dot product on A, thought of as a vector.

Adding (4.4.17) and the principal secondary diagonal, we get

0
BBBBB@

0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0

1
CCCCCA +

0
BBBBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCCCA =

0
BBBBB@

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1
CCCCCA

which is precisely the 2nd diagonal we needed to show, �nishing the forward direction of

the proposition.

To show P -squares of order 4 are strongly magic, recall that any of the sets of

P -squares is torus invariant. Hence, it su�ces to show that just one of the blocks sums

to the index. Take the �rst 2 rows and columns and subtract a matrix which is the sum

of the principal secondary diagonal and the 2nd primary diagonal.0
BBBBB@

2 2 1 1

2 2 1 1

1 1 0 0

1 1 0 0

1
CCCCCA �

0
BBBBB@

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

1
CCCCCA =

0
BBBBB@

2 2 0 0

2 2 0 0

0 0 0 0

0 0 0 0

1
CCCCCA

Divide by 2 to get the desired identity.

8.2 Identities and strongly magic symmetries

Call a 2� 2 submatrix of A which is made of nonadjacent entries an antiblock. In

Section 7.2, we de�ned the reduction of a P -square A #2: each entry consists of the sum

of the entries of an antiblock of A. If the index of A is I , then A #2 is the I multiple of

the trivial by Proposition 7.2.1. Hence,
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Lemma 8.2.1. Given a P -square of order 4, the entries of an antiblock sum to the index,

e.g., 0
BBBBB@

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

1
CCCCCA = I:

If we combine this lemma with the last part of Lemma 4.4.4, we get

Lemma 8.2.2. Any 2 entries of an order 4 P -square, both indices of which di�er by 2,

sum to { = I=2, e.g., 0
BBBBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

1
CCCCCA = {:

Call any 2 such entries a diagonal jump. From Corollary 4.4.6, it follows that Lemma 8.2.2

characterizes when a W -square of order 4 is a P -square:

Proposition 8.2.3. An order 4 W -square is a P -square iff the entries of any diagonal

jump sum to {.

The W -square de�nition gives us 16 new sets of 4 elements which sum to the index|the

blocks|and Lemma 8.2.1 give us 4 sets with the same property|the antiblocks.

We de�ne a new symmetry which maps the rows to a set of 8 blocks, and the

columns to the other 8 blocks. Together with the pandiagonal symmetries, this additional

symmetry generates a group of symmetries which has the pandiagonal symmetries as an

index 3 subgroup. Send row R̂0 to the block in the upper left corner, row R̂1 to the lower

left corner, R̂2 to the lower right corner and R̂3 to the upper right corner:0
BBBBB@

a b c d

e f g h

i j k l

m n o p

1
CCCCCA)

0
BBBBB@

a b n m

d c o p

h g k l

e f j i

1
CCCCCA : (8.2.1)

Note that diagonals P̂1, P̂3, Ŝ0 and Ŝ2 are mapped to the antiblocks.

The second iteration of this map produces a representative of another nontrivial

coset for the factor group of all the symmetries modulo the pandiagonal symmetries.
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An alternate representative of this second nontrivial coset is a similar mapping to 8.2.1.

Images of rows R̂0 and R̂2 are the same, but the images of rows R̂1 and R̂3 are switched,

i.e., R̂1 is mapped to the upper right corner and R̂3 is mapped to the lower left corner:0
BBBBB@

a b c d

e f g h

i j k l

m n o p

1
CCCCCA)

0
BBBBB@

a b f e

d c g h

p o k l

m n j i

1
CCCCCA : (8.2.2)

Now the secondary diagonals Ŝ1, Ŝ3 and the and the primary diagonals P̂0 and P̂2 are

mapped to the antiblocks. Any symmetry which is not pandiagonal is strongly magic.

Let Gs be the group of all symmetries, i.e., the union of the pandiagonal and

strongly magic symmetries. We claim that Gs, with cardinality 3 � 4'(4) � 16 = 384,

contains all possible symmetries. As proof, we independently show in Section 8.9 that

there are exactly 384 classical P -squares of order 4.

Let Gs0 be the subgroup of Gs of index 16 and order 24 which leaves the 0,0 entry

�xed.

8.3 Labelings of 4-cubes

M�uller [M�ul97b] has given a geometric interpretation of the symmetries. Label the

16 vertices of a 4-cube so that each of the 2-faces sums to the same number. Such a labeled

4-cube will be called a W4-cube.

Proposition 8.3.1. W4-cubes are in one-to-one correspondence with W -squares of order

4.

Proof. The correspondence can be represented as the matrix

0000 0100 0110 0010

0001 0101 0111 0011

1001 1101 1111 1011

1000 1100 1110 1010

The entry 1011, for example, is shorthand for the coordinate (1,0,1,1). If the coordinates
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Figure 8.1: Labeled 4-cube (based on M�uller [M�ul97b])

4-sets in square plane in 4-cube for corresponding faces

rows XY

columns UZ

blocks a, c, i, k XZ

with b, d, j, l Y Z

upper-left e, g, m, o UX

corners f , h, n, p UY

Table 8.1: 4-sets in square and plane of 4-cube for corresponding faces.

are U , X , Y and Z, the same correspondence is represented by

a b c d

e f g h

i j k l

m n o p

and the 4-cube of Figure 8.3.

In Table 8.1, we show the correspondence between the blocks, rows and columns of

the square and the faces parallel to the
�
4
2

�
= 6 planes of the 4-cube.

Figure 8.3 demonstrates how movement around the square corresponds to movement on

the 4-cube. The direction of the arrows corresponds to traveling in the positive direction
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Figure 8.2: Tiling of square to show correspondence with 4-cube.
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parallel to the axis indicated by the label. Horizontal travel entails alternately moving

parallel to the X-axis and the Y -axis. Vertical travel entails alternately moving parallel

to the Z-axis and the U -axis. Moving in the block with upper-left corner the 0,0-entry

entails alternately moving parallel to the X-axis and the Z-axis, etc.

The correspondence between 4-cubes and squares of order 4 can also be shown

geometrically. In Figure 8.3, we present a Schlegel diagram of the 4-cube, consisting of

an inner 3-cube connected vertex to corresponding vertex with an identically positioned

outer 3-cube. The X , Y and Z-axes are as the usual ones in both inner and outer cubes.

Figure 8.3: A Schlegel diagram of the 4-cube

.

The U -axis corresponds to traveling from the inner cube to the outer cube. In Figure 8.4,

we place a torus into the Schlegel diagram. To make the edge map clear, we present in

Figure 8.5 a sequence of images showing the transformation of a partitioned torus into the

Schlegel diagram of the 4-cube. The faces parallel to the XY -plane correspond to circles

which demonstrate that a �lled torus is not homotopic to a point, i.e., big circles around

the top, the outside, the inside and bottom of the torus. In the square, these are the 4

rows. The faces parallel to the UZ-plane correspond to 4 circles each of which cuts the



104

Figure 8.4: Inserting a torus into the 4-cube.
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Figure 8.5: Transforming the arcs of a partitioned torus into the edges of a 4-cube.
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tube part of the torus. In the square, these are the 4 columns. The other 16 faces of the

4-cube correspond to faces of the partitioned torus. In the square, these are the 16 blocks.

A diagonal jump corresponds to a pair of antipodally located points in the 4-cube.

Following Proposition 8.2.3, we de�ne P4-cubes to be W4-cubes whose antipodal vertices

sum to { = I=2. If we �x the vertex labeled a, and situate the 4 coordinate axes there,

then the 24 permutations of these axes correspond to elements of Gs0.

8.4 Bicyclics

Recall the de�nition of a cyclic square (7.1.2). In this chapter, we work primarily

with cyclics of step 2; let Ca = C2
a. The 4 cyclics of step 2 are

C0 =

0
BBBBB@

1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

1
CCCCCA ; C1 =

0
BBBBB@

0 1 0 0

0 0 0 1

0 1 0 0

0 0 0 1

1
CCCCCA ;

C2 =

0
BBBBB@

0 0 1 0

1 0 0 0

0 0 1 0

1 0 0 0

1
CCCCCA ; C3 =

0
BBBBB@

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1
CCCCCA :

(8.4.3)

Notice that none of these cyclics is pandiagonal. By their construction, cyclic squares of

any step have equal row sums. However, more is true for these particular cyclics.

Proposition 8.4.1. The step 2 cyclics of order 4, listed in (8.4.3), have equal primary

and secondary diagonal sums.

Proof. A primary diagonal may be de�ned by

F̂k(A) = f aij j j �4 k + i g:

Making the substitutions and eliminating j,

Fk(Cl) =

3X
i;j=0

�(j �4 k + i)�(j �4 l + 2i)

=

3X
i;j=0

�(k + i �4 l + 2i) =

3X
i;j=0

�(i �4 k � l):
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For a given k and l, the last equivalence is true for exactly one i. Hence, the primary

diagonal sums are equal.

A secondary diagonal may be de�ned by

Ŝk(A) = f aij j j �4 k � i g:

Hence

Sk(Cl) =

3X
i;j=0

�(j �4 k � i)�(j �4 l + 2i)

=

3X
i;j=0

�(k � i �4 l+ 2i) =

3X
i;j=0

�(i �4 l � k):

Hence, the secondary diagonal sums are equal as well.

Note that if 2 matrices have the same pandiagonal property, such as equal row sums, then

the sum also has that same property. Hence, to �nd a P -square of order 4, it su�ces to

sum 2 cyclics so that the sum has equal column sums.

A glance at the cyclics shows that if the start is even, then the sum of the entries

in an even column is 2 and the sum of the entries in an odd column is 0. Likewise, if the

start is odd, then the sum of the entries in an odd column is 2 and the sum of the entries

in an even column is 0. Hence by summing a cyclic with an even start with a cyclic with

an odd start, the result is a P -square. We record this discussion as

Proposition 8.4.2. If e is an even number and o is an odd number, then

Be;o = Ce + Co

is pandiagonal of index 2. Be;o is a bicyclic of order 4.

For example,

C2 + C3 =

0
BBBBB@

0 0 1 0

1 0 0 0

0 0 1 0

1 0 0 0

1
CCCCCA+

0
BBBBB@

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1
CCCCCA =

0
BBBBB@

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

1
CCCCCA = B2;3:

The cyclics of a particular step are invariant under the torus translations by Proposi-

tion 7.1.3, an easy consequence of which is

Corollary 8.4.3. The set of bicyclics of a �xed step is invariant under torus translations.
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The transpose of a cyclic Ca is the tcyclic
tCa. The transpose of a bicyclic Ba is

the tbicyclic tBa. The tcyclics and tbicyclics of a �xed step are also invariant under torus

translations.

8.5 A determining set and decomposition of P4

Mark each of the entries in the union of the 0th row, column, primary and secondary

diagonals with an x and the remaining 4 entries with o.0
BBBBB@

x x x x

x x o x

x o x o

x x o x

1
CCCCCA

The set consisting of a00 and the 4 entries marked with o is monic determining.

Proposition 8.5.1. The �ve elements a00, a23, a21, a32 and a12 form a monic determin-

ing set. If

a00 = �, a23 = a, a21 = b, a32 = c and a12 = d;

then every P -square in P4 may be written in the form0
BBBBB@

� b+ c+ d� 2� a+ b� � a+ c+ d� 2�

a+ b+ d� 2� a+ c� � d b+ c� �

c+ d� � b a + b+ c+ d� 3� a

a+ b+ c� 2� a+ d� � c b+ d� �

1
CCCCCA : (8.5.4)

Corollary 8.5.2. Every P -square in P4 with vanishing 0,0th entry may be written in the

form 0
BBBBB@

0 b+ c+ d a+ b a+ c+ d

a+ b+ d a+ c d b+ c

c+ d b a+ b+ c+ d a

a+ b+ c a+ d c b+ d

1
CCCCCA : (8.5.5)

In other words these pandiagonals are arbitrary nonnegative integral linear combinations
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of the following four matrices, where tA stands for the transpose of A,

B2;3 =

0
BBBBB@

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

1
CCCCCA ; B2;1 =

0
BBBBB@

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1

1
CCCCCA ;

tB2;3 =

0
BBBBB@

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1
CCCCCA ; tB2;1 =

0
BBBBB@

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

1
CCCCCA :

(8.5.6)

In particular,

X
A2P4 s.t. a00=0

X(A) =
1

1�X(B2;3)

1

1�X(B2;1)

1

1�X(tB2;3)

1

1�X(tB2;1)
: (8.5.7)

The matrices are the bicyclics and transpose bicyclics de�ned in Section 8.4.

Lemma 8.5.3. Let (; ) stand for the usual dot product. Given any steps b; c such that

bc � 1 is invertible (in particular, when b = c = 2 and n = 4), the cyclics, tcyclics,

bicyclics and tbicyclics have the following inner products:

1. (Cbj0; C
b
i0
) =

8><
>:
0 for j0 6= i0

n for j0 = i0;

2. (Cbj0;
tC

c
i0
) = 1 for any j0 and i0;

3. (Bbr;s; B
b
u;v) = n�(r = u) + n�(s = v);

4. (Bbr;s;
tB

c
u;v) = 4 for any r; s; u; v.

Proof. Part 1. is true for any b and n. For Part 2., solve simultaneously

j �n j0 + bi

i �n i0 + cj;

which implies

bi� j �n �j0

�i+ cj �n �i0:

The determinant of the system is bc� 1. Hence, for any b; c such that bc� 1 is invertible,

there is a unique solution for i and j, i.e., a unique location where Cbj0 and
tCci0 are both
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1. To get Parts 3. and 4., expand the bicyclics into cyclics, use the linearity of the dot

product, and apply Parts 1. and 2. of the lemma.

Proof of Corollary. Set � = 0 in (8.5.4) to get (8.5.5). Decompose (8.5.5) by extracting

the coe�cients of a, b, c and d. Then this subset of P4 is the nonnegative integral linear

span of LfB2;3; B2;1;
tB2;3;

tB2;1g. Let

B = fB2;3; B2;1;
tB2;3;

tB2;1g

D = fB2;3 �B0;1; B2;1 � B0;3;
tB2;3 �

tB0;1;
tB2;1 �

tB0;3g:

Using Lemma 8.5.3,

(B2;3 � B0;1;
tB2;3) = (B2;3;

tB2;3)� (B0;1;
tB2;3) = 4� 4 = 0

and

(B2;3 � B0;1; B2;1) = (B2;3; B2;1)� (B0;1; B2;1) = (4 + 0)� (0 + 4) = 0:

The other dot products are similar. We can conclude that an appropriate scalar multiple

of D is a dual basis to B. In particular, we get the independence of the 4 matrices of B,

which implies (8.5.7).

Recall the 8 symmetry operations de�ned in Section 6.1. Note that2
40 �1

1 0

3
5�0

1

�
=

�
�1

0

�
:

Hence, a30 is in the same orbit as a01. Via similar hand calculations or a computer

program, label the orbits of the entries under the linear symmetries sequentially as they

appear from top to bottom, left to right, to get0
BBBBB@

1 2 3 2

2 4 5 4

3 5 6 5

2 4 5 4

1
CCCCCA :

Note that the claimed determining set is the union of the orbits marked 1 and 5. If we

add the strongly magic symmetries, then the orbits 3 and 4 are combined into one larger

orbit.
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8.6 Proof of Proposition 8.5.1

Our strategy for proving Proposition 8.5.1 is to use as tools the lemmas from

Section 8.2 and express the pivot elements in terms of the determining set.

Proof. For the moment, let's add { = 1
2 indA to our set of determining entries. The entries

divided up into orbits under all symmetries which �x the 0,0th entry are0
BBBBB@

1 2 3 2

2 3 4 3

3 4 5 4

2 3 4 3

1
CCCCCA

Use Lemma 8.2.2 to get the entries for the 2nd and 5th orbits:0
BBBBB@

� {� a 3 {� b

{� c 3 d 3

3 b {� � a

{� d 3 c 3

1
CCCCCA

To get the entries for the 3rd orbit use either a block or a generalized diagonal. For

instance, for a0;2 use R0 and for a1;1 use the block in the upper left corner.

0
BBBBB@

� {� a a+ b� � {� b

{� c a+ c� � d b+ c� �

c+ d� � b {� � a

{� d a+ d� � c b+ d� �

1
CCCCCA

To get an expression for {, use any row or column with { appearing only once. For instance,

the 3rd column gives a+ b+ c+ d� 2�+ { = I = 2{. Subtracting { from both sides gives

{ = a+ b+ c+ d� 2�:

Substituting this expression for { back into the previous matrix gives (8.5.4). Alternatively,

we could have gotten expressions for just one representative from orbits 2 and 3 and applied

the symmetries to get the other entries of the orbits. For example,

a0;2 = a+ b� �

= a2;3 + a2;1 � a0;0:
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Apply the matrix

0
@0 1

1 0

1
A to the indices to get

a2;0 = a3;2 + a1;2 � a0;0

= c+ d� �:

8.7 Admissible sets and the generating function

Designate the 4-tuple of 2 bicyclics and 2 tbicyclics which is the image of (8.5.6)

under � i;j as the i; jth admissible 4-tuple.

The proof of Proposition 7.1.3 contains the seeds for a calculation of the admissibles.

A column translation of j adds j to the start of a cyclic. A row translation of i adds 2i to

the start. Hence the start increases by 2i+ j.

To get the 2 bicyclics associated with i; j, appropriately combine the cyclics with

starts taken from adding 2i+ j to the set f1; 2; 3g. To get a compact display, we show the

complement, i.e., the start which is not allowed.0
BBBBB@

0 1 2 3

2 3 0 1

0 1 2 3

2 3 0 1

1
CCCCCA

For example, the 2 bicyclics associated with the 0,1th entry are those that do not have

the cyclic with start 1, namely B0;3 and B2;3.

The 0,0th entry of the matrix of (8.5.5) is the only entry which is identically 0.

The 2 bicyclics associated with i; j are precisely those which have a 0 in the i; jth entry.

Each i; jth admissible has only the i; jth entry where all its constituents are 0. Hence, the

16 admissibles are distinct.

Recall that

J =

0
BBBBB@

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1
CCCCCA :

De�ne the opposite of a bicyclic Ba;b to be Bop
a;b = J � Ba;b. Note that Bop

a;b =

Ba�2;b�2.
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Lemma 8.7.1. The 16 admissible 4-tuples are precisely the 4-tuples which do not have

any opposites.

Proof. The admissibles have a common zero. The opposites do not. Hence, the admissibles

are contained in the set of 4-tuples with no opposites. There are
�
2
1

�4
= 16 4-tuples with

no opposites. By the pigeonhole principle, the two sets are the same.

To deal with the most general P -squares in P4, we need some notation. Let min(A)

denote the minimum entry in a matrix A. This given, any pandiagonal A 2 P4 may be

decomposed as:

A = min(A)J + (A�min(A)J) = min(A)J + A�: (8.7.8)

A� will have a zero entry in some location, say the i; jth location. Applying ��i;�j

moves that entry to the 00th position. Using Proposition 8.5.1, decompose ��i;�j(A�)

into a nonnegative integer combination of B2;3, B2;1,
tB2;3 and tB2;1. To express A� as

a nonnegative integer combination of the matrices of the i; jth admissible 4- tuple, apply

� i;j to this decomposition.

This places us in a position to prove our basic result for P -squares in P4.

Theorem 8.7.2. Every pandiagonal A 2 P4 may be uniquely written as

A = jJ +A�;

A� = b01B0;1 + b03B0;3 + b12B2;1 + b23B2;3

+ c01
tB0;1 + c03

tB0;3 + c12
tB2;1 + c23

tB2;3; (8.7.9)

where j is an arbitrary integer � 0 and bij, ckl are integers � 0 subject to the condition

that

0 = b01b23 = b03b12

= c01c23 = c03c12:
(8.7.10)

We deduce that X
A2P4

X(A) =
1

1�X(J)

�
1

1�X(B2;3)
+

X(B0;1)

1�X(B0;1)

�
�

1

1�X(B2;1)
+

X(B0;3)

1�X(B0;3)

�
�

1

1�X(tB2;3)
+

X(tB0;1)

1�X(tB0;1)

�
�

1

1�X(tB2;1)
+

X(tB0;3)

1�X(tB0;3)

�
:

(8.7.11)
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In particular, the generating function for the index is

X
A2P4

tindA =
1

1� t4

�
1 + t2

1� t2

�4

=
(1 + t2)3

(1� t2)5
:

Proof. The decomposition of A� described after (8.7.8) implies that A� is an arbitrary

nonnegative linear combination of the matrices of an admissible set, which by Lemma 8.7.1

is equivalent to a 4-tuple with no opposite bicyclics. Hence, we get the basic decomposition

of (8.7.9) including the conditions of (8.7.10). Moreover, since A� has a zero say at i; j,

there are exactly 2 bicyclics and 2 tbicyclics which are 0 at i; j. Since no cancellation is

possible, any expansion of type (8.7.9) must have support a subset of the admissible set.

By Corollary 8.5.2, the expansion will be unique.

The generating function for one pair of bicyclics fB;Bopg is

X(B)

1�X(B)
+

X(Bop)

1�X(Bop)
+ 1:

(8.7.11) follows by noting that the con�guration of one pair of opposite bicyclics is inde-

pendent from the con�guration of another.

8.8 The cross section of the cone as a cross-polytope

Proposition 8.8.1. Let | = J=2, then CS2(P4), the cross section polytope, is a 4-

crosspolytope with center |. Each of the 16 facets is a tetrahedron with an admissible

set as vertices.

Proof. Subtracting | from each of the 4 bicyclics and 4 tbicyclics gives 4 pairs of opposite

vectors of equal length. We need to show that a vector B1� | from one pair is orthogonal

to a vector B2 � | from another pair. Note that

(|; |) = (
J

2
;
J

2
) =

1

4
(J; J) = 4

(|; B1) =
1

2
(J; B1) = 4:

Hence

(B1 � |; B2 � |) = (B1; B2)� (B1; |)� (B2; |) + (|; |)

= (B1; B2)� 4� 4 + 4 = (B1; B2)� 4:
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Thus, we have reduced the problem to showing that (B1; B2) = 4.

By type, we mean either bicyclic or transpose bicyclic.

B1 and B2 are of the same type Then B1 and B2 share exactly one subscript. Part 3

of Lemma 8.5.3 implies that (B1; B2) = 4.

B1 and B2 are of di�erent types Part 4 of Lemma 8.5.3 applies.

A Schlegel diagram consists of a tetrahedron �tted dually inside another tetrahedron. (See

Figure 8.6). There are 2
�
4
2

�
edges of the outer and inner tetrahedrons, plus 4 � 3 edges

Figure 8.6: Tetrahedron dually �tted inside larger tetrahedron.

which connect vertices on the outer tetrahedron to vertices of the adjacent triangle of the

dual inner tetrahedron (see Figure 8.7). The group of symmetries for the 4-crosspolytope

is the hyperoctahedral group of order 24(4!) = 16(24) = 384. The pairs of opposite vertices

can be permuted. Sign changes correspond to switching one pair of opposite vertices. Let
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Figure 8.7: 30 of the 36 facets of the hexagon�hexagon.

us call vertices of (8.5.6) 1, 2, 3 and 4.0
BBBBB@

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

1
CCCCCA

0
BBBBB@

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1

1
CCCCCA

0
BBBBB@

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1
CCCCCA

0
BBBBB@

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

1
CCCCCA

1 2 3 4

(8.8.12)

The opposites are 1, 2, 3, and 4. The hyperoctahedral group is generated by the

adjacent transpositions 2134, 1324 and 1243, together with a sign change 1234.

The linear pandiagonal symmetry acting on the indices with2
41 0

0 �1

3
5

switches the columns 1 and 3 of each matrix. It corresponds to the transposition 2134.

The linear pandiagonal symmetry acting on the indices with2
4�1 0

0 1

3
5
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switches the rows 1 and 3 of each matrix. It corresponds to the transposition 1243.

Note that if we apply the transposition 1243 and then the 3 cycle 1342, we get the

transposition 1324. Hence, it su�ces to show what corresponds to the 3 cycle 1342. The

strongly magic symmetry (8.2.1) acts on vertices 1, 2, 3 and 4 precisely in this fashion.

As you can see, the subgroup of order 24 which involves no sign changes corresponds

precisely to the group generated by the linear pandiagonal symmetries and the strongly

magic symmetry (8.2.1).

The sign changes require the torus translations. �0;2 and then a ip over the y-axis,

corresponds to 1234. Although that �nishes a description of a generating set, the other

sign changes are very similar. For instance, �0;2 and then a ip over the line one unit

above the y-axis corresponds to 1234.

8.9 Classical pandiagonals

A classical matrix A has entries f0; : : : ; n2� 1g. Apply a torus translation to place

the 0 in the upper left hand corner. If n = 4, the resulting matrix is a nonnegative linear

combination of the matrices of (8.5.6). Encode the entries of the matrix (8.5.5) with the

01 words of length 4: 0
BBBBB@

0000 1110 0110 1101

1011 0101 1000 0110

1100 0010 1111 0001

0111 1001 0100 1010

1
CCCCCA : (8.9.13)

The (i; j)th entry of (8.5.5) is the dot product of the (i; j)th entry of (8.9.13) with

(d; c; b; a). For instance, the 0,1th entry of (8.5.5) is 1110:(d; c; b; a) = b + c + d. No-

tice that all the binary numbers from 0 to 15 appear in (8.9.13). Hence, assigning a, b, c

and d to a permutation of the numbers 1, 2, 4 and 8, and substituting into (8.5.5) gives a

matrix with entries the numbers from 0 to 15.

Conversely, let's construct a P -square from (8.5.5) with the entries from 0 to 15.

Since a, b, c or d are each positive, we must assign the 1 to a, b, c or d, say a. (8.5.5)

becomes 0
BBBBB@

0 b+ c+ d 1 + b 1 + c+ d

1 + b+ d 1 + c d b+ c

c+ d b 1 + b+ c+ d 1

1 + b+ c 1 + d c b+ d

1
CCCCCA :
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To get the 2 in the matrix we must assign it to one of the other letters, say b:0
BBBBB@

0 2 + c+ d 3 1 + c+ d

3 + d 1 + c d 2 + c

c+ d 2 3 + c+ d 1

3 + c 1 + d c 2 + d

1
CCCCCA :

Similarly, we are forced to assign the 4 to one of c or d, say c,0
BBBBB@

0 6 + d 3 5 + d

3 + d 5 d 6

4 + d 2 7 + d 1

7 1 + d 4 2 + d

1
CCCCCA

and the 8 to the last letter, d, 0
BBBBB@

0 14 3 13

11 5 8 6

12 2 15 1

7 9 4 10

1
CCCCCA : (8.9.14)

Since the set of entries of (8.5.5) is symmetric in a, b, c and d, a P -square with vanishing

0,0th entry and with entries 0 to 15 must assign a, b, c and d with a permutation of the

numbers 1, 2, 4 and 8.

To get a set of representatives for the orbits under the pandiagonal symmetries,

we study the subgroup of pandiagonal symmetries which �x the 0,0th entry. In general

they are the set of matrices given by (6.1.1) which act linearly on the indices. � can be 1

or -1. The group of 8 matrices obtained by making this substitution is isomorphic to the

dihedral group d4. How does this group act on the entries which fall in the locations a, b,

c and d of (8.5.5)?

The action is the necklace group as is illustrated with the action of the symmetries

on the order 4 classical P -square

0 14 3 13

11 5 8 6

12 2 15 1

7 9 4 10

from (8.9.14). The elements of the determining set are boxed. For the action of the non-

identity pandiagonal symmetries which �x the 0,0th entry, see Table 8.2. To get distinct
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index

operator

e�ect on

matrix
new matrix

e�ect on entries

1, 2, 4 & 8

|||| ||||| |||||||{ |||||||

�
0 1

1 0

�
transposes

matrix

0 11 12 7

14 5 2 9

3 8 15 4

13 6 1 10

y = �x reection

�
1 0

0 1

�
reverses

last 3 cols

0 13 3 14

11 6 8 5

12 1 15 2

7 10 4 9

y-axis reection

�
1 0

0 1

�
reverses

last 3 rows

0 14 3 13

7 9 4 10

12 2 15 1

11 5 8 6

x-axis reection

�
1 0

0 1

� reverses

last 3 rows

& last 3 cols

0 13 3 14

7 10 4 9

12 1 15 2

11 6 8 5

180� rotation

�
0 1

1 0

� reverses

last 3 rows

& cols, then

transposes

0 7 12 11

13 10 1 6

3 4 15 8

14 9 2 5

y = x reection

�
0 1

1 0

� reverses

last 3 cols

of transpose

0 7 12 11

14 9 2 5

3 4 15 8

13 10 1 6

90� rotation

�
0 1

1 0

� reverses

last 3 rows

of transpose

0 11 12 7

13 6 1 10

3 8 15 4

14 5 2 9

270� rotation

Table 8.2: Action of the non-identity pandiagonal symmetries which �x the 0,0th entry

on the order 4 classical P -square (8.9.14).
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representatives, we enumerate necklaces with 4 distinct beads, labeled 1, 2, 4 and 8. Using

one of the rotations, move the 1 bead to the a location.

b = 2 2 could be assigned to b. If the bead labeled 4 has been assigned to the d location,

an x-axis reection moves the 4 bead to the c location while keeping the 1 and 2

beads assigned to the a and b locations �xed. Hence this case gives one necklace.

b 6= 2 If the 2 is assigned to the d location, again use the x-axis reection to move it to

the c location while keeping the 1 assigned to the a. The 4 bead could be assigned

to either of the remaining locations, giving rise to 2 new distinct necklaces.

Making the appropriate substitutions, the following 3 matrices are orbit represen-

tatives: 0
BBBBB@

0 14 3 13

11 5 8 6

12 2 15 1

7 9 4 10

1
CCCCCA ;

0
BBBBB@

0 14 5 11

13 3 8 6

10 4 15 1

7 9 2 12

1
CCCCCA ;

0
BBBBB@

0 14 9 7

13 3 4 10

6 8 15 1

11 5 2 12

1
CCCCCA :

To get the usual classical pandiagonals, we add a copy of the trivial.

Proposition 8.9.1. Up to the pandiagonal symmetries, there are 3 classical pandiagonals:0
BBBBB@

1 15 4 14

12 6 9 7

13 3 16 2

8 10 5 11

1
CCCCCA ;

0
BBBBB@

1 15 6 12

14 4 9 7

11 5 16 2

8 10 3 13

1
CCCCCA ;

0
BBBBB@

1 15 10 8

14 4 5 11

7 9 16 2

12 6 3 13

1
CCCCCA :

Note that the second two matrices are precisely the images of the strongly magic

symmetries (8.2.1) and (8.2.2) applied to the �rst matrix.

Returning to the question asked at the end of Section 4.3, we would like to get

15 and 14 to be adjacent in the same row. The torus translations can not change the

adjacency, thought of in a torus sense.

Lemma 8.9.2. A set of coset representatives for the pandiagonal symmetries modulo the

torus translations is the 8 square symmetries.

Proof. We have the correct number. Since the set is a group and since only the identity

is a torus translation, the 8 symmetries must be a set of representatives.
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Hence, it su�ces to look at the e�ect of the 8 square symmetries. By inspection,

none of these 8 symmetries applied to the 3 representatives can place 15 and 14 adjacent

in the same row.

Note however, that there are adjacencies via diagonals in the 2nd and 3rd cases.

Tipping these squares 45� and using pandiagonal symmetries to move the 15 and 14 down

to the 2nd to last row, we get

16

2 3

11 13 6

5 8 12 9

10 1 7

15 14

4

16

2 3

7 13 10

9 12 8 5

6 1 11

15 14

4

:



Chapter 9

W -squares of order 4

9.1 Identities and symmetries

We need one more identity:

Lemma 9.1.1. In a W -square of order 4, the sum of the entries of any 2 horizontally or

vertically adjacent diagonal jumps is equal to the index.

Proof. From Lemma 4.4.4,0
BBBBB@

0 1 1 0

0 0 0 0

0 1 1 0

0 0 0 0

1
CCCCCA +

0
BBBBB@

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

1
CCCCCA =

0
BBBBB@

0 1 1 0

0 0 0 0

1 0 0 1

0 0 0 0

1
CCCCCA : (9.1.1)

Let i; j denote a horizontally adjacent pair; (i; j) is the pair of coordinates for the left

element of the adjacent pair in the top 2 rows, e.g., (9.1.1) is 0; 1. Similarly, let ji; j

denote a vertically adjacent pair; (i; j) is the pair of coordinates for the top element of the

adjacent pair in the left 2 columns, e.g.,

j3; 0 =

0
BBBBB@

1 0 0 0

0 0 1 0

0 0 1 0

1 0 0 0

1
CCCCCA :

There are 8 identities of each type.

122
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Figure 9.1: Antipodally identi�ed 5-cube (based on M�uller [M�ul97b]).

The symmetry group for W -squares of order 4 is larger than that for P -squares.

Wolfgang M�uller [M�ul97b] showed how the notion of a labeled 5-cube is helpful in iden-

tifying all the symmetries. Take the 4-cube of Proposition 8.3.1 and extend to another

dimension. A 5-cube has 32 vertices, but we need only 16 labels since we identify antipodal

vertices. Again we take the generic matrix0
BBBBB@

a b c d

e f g h

i j k l

m n o p

1
CCCCCA (9.1.2)

and map letter-to-letter to the antipodally identi�ed 5-cube in Figure 9.1. A 5-cube is a

W5-cube if the labels of each of the 80 2-faces have the same sum.

Proposition 9.1.2. Antipodally identi�ed W5-cubes are in one-to-one correspondence

with W -squares.

Proof. Since the 5-cube is antipodally identi�ed, there are in fact only 40 distinct faces.
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adjacent diagonal jumps plane to which faces

in 5-cube are parallel

je, jf , jm, jn UV -plane

a, e, c, g V X-plane

b, f , d, h V Y -plane

ja, jb, ji, jj V Z-plane

Table 9.1: Correspondence between adjacent diagonal jumps and faces of the 5-cube.

The 4 rows, 4 columns and 16 blocks correspond to the same faces as before. The 16

adjacent diagonal jumps of Lemma 9.1.1 account for the remaining faces as listed in

Table 9.1. Instead of coordinates, we refer to entries using the letters in the generic

matrix (9.1.2). e refers to the set of 4 elements e; f; o; p:0
BBBBB@

a b c d

e f g h

i j k l

m n o p

1
CCCCCA :

jm refers to the set of 4 elements a;m; g; k:0
BBBBB@

a b c d

e f g h

i j k l

m n o p

1
CCCCCA :

The symmetry group of our antipodally identi�ed 5-cube is the factor group of the full

symmetry group of the 5-cube modulo the order 2 group which switches antipodes. This

symmetry group modulo the 384 symmetries of the 4-cube has as coset representatives

the cyclic group which cycles the 5 coordinate axes with say a as the origin.

One of the entries of the matrix is the origin. 5 of the entries correspond to the

axes. The remaining entries correspond to the
�
5
2

�
= 10 joins of axes. Making these

substitutions, we get 0
BBBBB@

O X X; Y Y

Z X;Z U; V Y; Z

U; Z V; Y V V;X

U U;X V; Z U; Y

1
CCCCCA :
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With the axes alphabetically ordered, cyclically permute the axes, substituting into the

above matrix. Replace the axes and joins of axes with their corresponding lowercase letters

to get a representative of a generator for the factor group of new symmetries modulo the

384 previous symmetries: 0
BBBBB@

a d h e

m p l i

g f b c

k j n o

1
CCCCCA :

The rows correspond to the XY -plane which has been replaced by the Y Z-plane, i.e.,

by the blocks with upper-left corners d, l, b and j, respectively, which in turn has been

replaced with the UZ-plane, i.e., the columns. The columns have in turn been replaced

by the UV -plane, i.e., the vertical pairs of diagonal jumps with uppermost upper entries,

m, f , n and e, respectively. These 4-tuples have been replaced by the V X-plane, i.e., the

horizontal pairs of diagonal jumps with leftmost left entries a, e, c and g, respectively,

which in turn have been replaced by the rows. We summarize our �ndings.

Proposition 9.1.3. There are atleast 24�5! = 1920 W -symmetries for order 4, of which

120 leave �xed the 0,0th entry.

If we independently show that there are precisely this number of classical W -squares

of order 4, then we could conclude that these are indeed all possible symmetries.

9.2 Completely fundamental elements

In addition to the 8 bicyclics anchoring the P -squares, there are 2 additional bi-

cyclics and 16 new objects, which I shall call tricyclics, although they are not the sum of

3 cyclics.

The new bicyclics are B1
0;2 and B

1
1;3. If we checkerboard the square, these are the

black squares as one of the objects and the white squares as the other object. By de�nition,

the row sums of cyclics are equal. Since 1 is prime to anything, the column sums are also

equal. Since every block contains exactly 2 black squares and 2 white squares, all the

block sums are also equal.

A tricyclic Tc;t is a combination of the step 2 cyclic of start c, Cc, the step 2

transpose cyclic of start t, tCt plus the antiblock needed so that the sum has equal row

and column sums. A cyclic has equal row sums, but for step 2, only odd columns have
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entries if the start is odd and only even columns have entries if the start is even. Likewise,

a transpose cyclic has equal column sums, but for step 2, only odd rows have entries if

the start is odd and only even rows have entries if the start is even.

Let's name the antiblock with upper-leftmost entry i; j as ABi;j The following table

shows how the various ingredients are put together. As usual, e; e1; e2 are even numbers

and o; o1; o2 are odd numbers.

tricyclic cyclic transpose cyclic antiblock

Te1;e2 Ce1
tCe2 AB1;1

To;e Co
tCe AB0;1

Te;o Ce
tCo AB0;1

To1;o2 Co1
tCo2 AB0;0

For example,

T0;0 =

0
BBBBB@

1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

1
CCCCCA+

0
BBBBB@

1 0 1 0

0 0 0 0

0 1 0 1

0 0 0 0

1
CCCCCA+

0
BBBBB@

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

1
CCCCCA

=

0
BBBBB@

2 0 1 0

0 1 1 1

1 1 0 1

0 1 1 1

1
CCCCCA

and

T0;3 =

0
BBBBB@

1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

1
CCCCCA+

0
BBBBB@

0 0 0 0

0 1 0 1

0 0 0 0

1 0 1 0

1
CCCCCA+

0
BBBBB@

0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0

1
CCCCCA

=

0
BBBBB@

1 1 0 1

0 1 1 1

1 1 0 1

1 0 2 0

1
CCCCCA :

Note how tricyclics have by construction equal row and column sums. In addition, since

each of the ingredients has equal block sums, so do the tricyclics. Thus,

Proposition 9.2.1. Tricyclics are W -squares.
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9.3 Determining sets and an equivalent problem

There is one more dimension of freedom for W -squares of order 4 than there is for

the P -squares. Hence, determining sets will have 6 elements. The obvious determining

set is the hook shape, the 6 entries marked a; : : : ; f :0
BBBBB@

a b c d

e � � �

f � � �

� � � �

1
CCCCCA :

Note that the shape is not symmetric. Use the block and column sums to �ll in the rest

of the matrix:0
BBBBB@

a b c d

e c+ d� e a� c+ e b+ c� e

f a+ b� f �a + c+ f a+ d� f

b+ c+ d� e� f �b+ e + f a+ b+ d� e� f �d+ e+ f

1
CCCCCA

= a

0
BBBBB@

1 0 0 0

0 0 1 0

0 1 1 1

0 0 1 0

1
CCCCCA + b

0
BBBBB@

0 1 0 0

0 0 0 1

0 1 0 0

1 1 1 0

1
CCCCCA + c

0
BBBBB@

0 0 1 0

0 1 1 1

0 0 1 0

1 0 0 0

1
CCCCCA

+ d

0
BBBBB@

0 0 0 1

0 1 0 0

0 0 0 1

1 0 1 1

1
CCCCCA + e

0
BBBBB@

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

1
CCCCCA + f

0
BBBBB@

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1
CCCCCA

Two symmetrical shapes that give similar decompositions are0
BBBBB@

a b c �

d e � �

f � � �

� � � �

1
CCCCCA and

0
BBBBB@

a b � �

c d e �

� f � �

� � � �

1
CCCCCA :

This time the decomposition is similar to but more complicated than the hook shape.

If we take the diagonally symmetric shape used in the pandiagonal decomposition
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and add the entry in the middle of the cross, we get0
BBBBB@

a � � �

� � b �

� c d e

� � f �

1
CCCCCA :

Multiplying by 2 to avoid fractions and using the various identities available:

2a
�a + b+ c

+d� e+ f

a� b+ c

+d+ e� f

�a + b� c

+d+ e+ f

�a + b+ c

+d+ e� f

a� b� c

+d+ e+ f
2b

a� b+ c

+d� e+ f

a+ b� c

+d� e+ f
2c 2d 2e

�a � b+ c

+d+ e+ f

a+ b� c

+d+ e� f
2f

a+ b+ c

+d� e� f

= a

0
BBBBB@

2 1 1 1

1 1 0 1

1 0 0 0

1 1 0 1

1
CCCCCA + b

0
BBBBB@

0 1 1 1

1 1 2 1

1 0 0 0

1 1 0 1

1
CCCCCA + c

0
BBBBB@

0 1 1 1

1 1 0 1

1 2 0 0

1 1 0 1

1
CCCCCA

+ d

0
BBBBB@

0 1 1 1

1 1 0 1

1 0 2 0

1 1 0 1

1
CCCCCA + e

0
BBBBB@

0 1 1 1

1 1 0 1

1 0 0 2

1 1 0 1

1
CCCCCA + f

0
BBBBB@

0 1 1 1

1 1 0 1

1 0 0 0

1 1 2 1

1
CCCCCA :

Note that in the decomposition, all the matrices are translates of one another except for the

matrix accompanying d. Beginning with a W -square A 2 W4, decompose by identifying

the minimum of all the entries, say j. Let A0 = A� jJ ; note that A0 is another W -square

with atleast one entry 0. We can use a torus translation to move that 0 to the d spot.

Hence, we assume that the d location is 0. Setting d = 0, the resulting matrix is:0
BBBBB@

2a �a+ b+ c� e+ f a� b+ c+ e� f �a+ b� c+ e+ f

�a + b+ c+ e � f a � b� c+ e + f 2b a� b+ c� e+ f

a+ b� c� e+ f 2c 0 2e

�a � b+ c+ e + f a + b� c+ e � f 2f a+ b+ c� e� f

1
CCCCCA :
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If we divide by 2, the resulting matrix will have entries the 5 remaining variables plus 10

entries which consist of all 10 ways to sum 3 elements from a 5 element set and subtract

the remaining 2 elements, dividing the �nal result by 2. Remembering to take account of

the fact that we have multiplied the matrix by 2, we can restate the problem as follows:

Proposition 9.3.1. The decomposition of the space of W -squares with 1 entry set to 0 is

equivalent to �nding 5 nonnegative integers such that each sum of 3 of the numbers minus

the other 2 is even and nonnegative.

9.4 A geometric decomposition of the solutions space

From the data given by cdd([FP96]), an implementation of the Double Description

Method of Motzkin et al.([MRTT53]), there are 16 facets, each corresponding to one of

the entries set to 0. Once a multiple of the trivial has been extracted, one can assume

that the solution is in one of the facets.

For ease of presentation, we assume that all vertices have been scaled appropriately

so that they all lie on the same cross section of the cone. Each facet consists of 5 linearly

independent bicyclics and 5 linearly independent tricyclics. The facets of a facet consist

of 10 bipyramids formed by 3 bicyclics as base plus two tricyclics as the opposite points

of the bipyramid.

Each facet has as center the average of the 5 bicyclics or the 5 tricyclics. In addition,

each bicyclic has a complement among the tricyclics, i.e., the bicyclics can be paired up

with the tricyclics so that the average of each pair is the center.

Let's look at the facet corresponding to the 0,0th entry set to 0. The center of this

facet is 0
BBBBB@

0 2 1 2

2 1 1 1

1 1 2 1

2 1 1 1

1
CCCCCA :

From the standpoint of the 0,0 entry, the 2's are precisely in the 5 entries which correspond
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to adjacent vertices on the 5-cube. The bicyclics and transpose bicyclics in this facet are0
BBBBB@

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1

1
CCCCCA

0
BBBBB@

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

1
CCCCCA

0
BBBBB@

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

1
CCCCCA

0
BBBBB@

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1
CCCCCA

0
BBBBB@

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

1
CCCCCA

B2
2;1 B2

2;3
tB2

2;1
tB2

2;3 B1
1;3

:

The tricyclics, written in the order to complement the above bicyclics, are0
BBBBB@

0 1 0 2

1 1 1 0

1 0 1 1

1 1 1 0

1
CCCCCA

0
BBBBB@

0 2 0 1

1 0 1 1

1 1 1 0

1 0 1 1

1
CCCCCA

0
BBBBB@

0 1 1 1

1 1 0 1

0 1 1 1

2 0 1 0

1
CCCCCA

0
BBBBB@

0 1 1 1

2 0 1 0

0 1 1 1

1 1 0 1

1
CCCCCA

0
BBBBB@

0 1 1 1

1 1 0 1

1 0 2 0

1 1 0 1

1
CCCCCA

T3;2 T1;2 T2;3 T2;1 T2;2

:

The 2's again appear, from the standpoint of the 0,0 entry, in precisely the entries corre-

sponding to the adjacent vertices on the 5-cube. Also notice that the tricyclic with a 2

in the i; j spot is matched precisely with the bicyclic in this facet that has a 0 at the i; j

spot.

Proposition 9.4.1. Removing the maximal multiple of the center of a facet results in an

element on the boundary of the facet, i.e., on one of the bipyramids.

Proof. We use the facet corresponding to a 0 in the 0,0 entry for ease of presentation. We

claim that removing a maximal multiple of the facet's center results in a matrix with an

additional entry that is 0. Removing such a maximal multiple could conceivably leave a

1 in one or several of the 5 adjacent vertices (to the 0,0 entry on the cube). Suppose, for

example that there is a 1 in the 0,3 entry, then the matrix must be precisely one of the 4

bicyclics or 4 tricyclics that has a 1 in this entry. This matrix has a 0 in some entry other

than the 0,0 spot. Hence our claim.

Having another 0 entry means that we are on the boundary with another facet.

What are the possibilities for the intersection of 2 facets? If the 0 entries de�ning each

of the facets are not adjacent vertices on the 5 cube, then the intersection is one of the

bipyramids. If the 0 entries are adjacent on the 5-cube, then the intersection corresponds

to a single bicyclic. An example of the former case is the facets corresponding to the 0,0

entry and the 0,2 entry being 0. The intersection of these 2 facets corresponds to the

bipyramid consisting of the 3 bicyclics tB2
2;1,

tB2
2;3 and B

1
1;3 and the 2 tricyclics T3;2 and
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T1;2. An example of the latter is the facets corresponding to the 0,0 entry and the 2,2

entry being 0. The single element in the intersection is the bicyclic B1
1;3.

For a triangulation, take the bipyramids of each facet. Break each bipyramid into 2

tetrahedrons and join each of the resulting tetrahedrons with the center of the facet in

question. Already we can get a count of the maximal faces of this triangulation. There

are
�
5
3

�
= 10 bipyramids for each facet, or 20 tetrahedrons. Hence, there are 20�16 = 320

maximal faces in this triangulation.

Once a polytope has been triangulated into simplexes, a decomposition can be

performed using inclusion-exclusion. We get quite a mess, but we can specialize to the

index by replacing bicyclics with t2, tricyclics with t3, etc. The index generating function

for one of the facets is

1 + 2 t2 + 4 t3 + 3 t4 + 3 t5 + 4 t6 + 2 t7 + t9

(1� t2)3(1� t3)(1� t5)
=

1� 2 t+ 4 t2 � 2 t3 + t4

(1� t)2 (1� t2)2 (1� t3)
:

The index generating function for the entire solution space is

1 + 7 t2 + 15 t3 + 23 t4 + 40 t5 + 49 t6 + 50 t7 + 49 t8 + � � �+ t14

(1� t2)3(1� t3)(1� t4)(1� t5)

=
1� 3 t+ 11 t2 � 10 t3 + 11 t4 � 3 t5 + t6

(1� t)3 (1� t2)2 (1� t3)
:

Since the associated ring is Gorenstein, the degree of the polynomial in the numerator is

less than or equal to the degree of the denominator minus the degree of the center and

the numerator is a symmetric polynomial.



Chapter 10

P -squares of order 5

10.1 The key identity and matrix decomposition

To unlock the structure of order 5, the following single relation su�ces:

Proposition 10.1.1. For all A = kaijk 2 P5,

a00 + a11 = a24 + a42 or pictorially

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

1
CCCCCCCCA

= 0: (10.1.1)

Proof. Using Proposition 5.1.5, begin with �cP2;5 and add S1:0
BBBBBBBB@

1 1 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

1
CCCCCCCCA
�

0
BBBBBBBB@

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

1
CCCCCCCCA
:

Going from order 4 to order 5, the number of pandiagonals for a given index has increased,

but the symmetries have increased even faster, greatly enhancing the scope of any identity.

Applying the symmetries to identity (10.1.1) gives a family of identities with which to

decompose the whole matrix. We show a few members of the family to give a feeling

for the scope of the identity. There are 8'(5) = 32 linear transformations of the indices.

132
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However, because of the y = �x symmetry of the identity, there are only 16 distinct

images. We list 4 of them. The new identities are named for the location of the second

-1. Using this naming scheme, (10.1.1) is R11.

name
linear transformation

on indices
identity

R01

�
3 2

3 3

�
0
BBBB@
1 1 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

1
CCCCA = 0

R02

�
1 4

1 1

�
0
BBBB@
1 0 1 0 0

0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 0

1
CCCCA = 0

R03

�
4 1

4 4

�
0
BBBB@
1 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

1
CCCCA = 0

R04

�
2 2

2 2

�
0
BBBB@
1 0 0 0 1

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1
CCCCA = 0

Applying the linear transformations on the indices, the entries break up into 3

orbits 0
BBBBBBBB@

1 2 2 2 2

2 2 3 3 2

2 3 2 2 3

2 3 2 2 3

2 2 3 3 2

1
CCCCCCCCA
:

Notice that there are 16 locations in the orbit labeled 2, con�rming our statement earlier

about the number of identities in the family of (10.1.1). We claim that the orbits marked
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1 and 3 are a determining set, whose elements we label as follows:0
BBBBBBBB@

� 2 2 2 2

2 2 a b 2

2 h 2 2 c

2 g 2 2 d

2 2 f e 2

1
CCCCCCCCA
:

(10.1.1) can be rewritten as a11 = c+ f ��. To get the expressions for the other elements

in the second orbit, apply the linear transformations to the indices of (10.1.1) and solve

for the image of the a11. The result is

Proposition 10.1.2. Every P -square in P can be written in the form0
BBBBBBBB@

� b+ e� � g + h� � c+ d� � a+ f � �

d+ g � � c+ f � � a b e+ h � �

a+ b� � h d+ e� � f + g � � c

e + f � � g b+ c� � a+ h � � d

c+ h� � a+ d� � f e b+ g � �

1
CCCCCCCCA
:

Setting � to 0, we get as a corollary

Corollary 10.1.3. Every P -square in P with vanishing a00 entry may be uniquely written

as 0
BBBBBBBB@

0 b+ e g + h c+ d a+ f

d+ g c+ f a b e+ h

a+ b h d+ e f + g c

e+ f g b+ c a+ h d

c+ h a+ d f e b+ g

1
CCCCCCCCA

(10.1.2)

where fa; b; : : : ; hg are arbitrary nonnegative integers. In other words, any such matrix is

a nonnegative integral combination of the 8 linearly independent cyclic matrices

fCji j i = 1; : : : ; 4; j = 2; 3 g; (10.1.3)

where i is the start and j is the step (see (7.1.2) for the de�nition). In particular,

X
A2P5 s.t. a00=0

X(A) =

4Y
i=1

3Y
j=2

1

1�X(Cji )
: (10.1.4)

Proof of Corollary. For each C
j
i , there is one entry where it is the only matrix among

(10.1.3) which contributes to the sum found in (10.1.2), showing the independence of the

8 cyclic matrices Cji , which implies the generating function (10.1.4).
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10.2 The generating function and geometry for P5

Recall that

J =

0
BBBBBBBB@

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1
CCCCCCCCA
:

Given A 2 P5, let m = min(A) and A� = A�mJ . A� will have a zero entry somewhere

and is in P5. Using a torus translation � , we can move that entry to the a00 position.

Use Corollary 10.1.3 to decompose �A�. We deduce that A� may be decomposed into a

sum of torus translates of the matrices fCji j i = 1; : : : ; 4; j = 2; 3 g. These translates

are easily identi�ed; by Proposition 7.1.3, the set of cyclic matrices of step l is invariant

under torus translations. Call a set of 8 cyclics which is the image of (10.1.3) under a

torus translation admissible. Each of the 25 admissible sets corresponds to precisely those

8 cyclics which are 0 in a �xed entry of the matrix. We are ready for the basic result of

order 5 pandiagonals.

Theorem 10.2.1. Every P -square A 2 P5 may be uniquely written as

A = mJ +

4X
i=0

ciC
2
i + diC

3
i ; (10.2.5)

where m is an arbitrary integer � 0 and ci, di are integers � 0 subject to the condition

that

0 = c0c1c2c3c4 = d0d1d2d3d4: (10.2.6)

We deduce that

X
A2P5

X(A) =
1

1�X(J)

1�X(C2
0)X(C2

1)X(C2
2)X(C2

3)X(C2
4)

(1�X(C2
0))(1�X(C2

1))(1�X(C2
2))(1�X(C2

3))(1�X(C2
4))

1�X(C3
0)X(C3

1)X(C3
2)X(C3

3)X(C3
4)

(1�X(C3
0))(1�X(C3

1))(1�X(C3
2))(1�X(C3

3))(1�X(C3
4))

: (10.2.7)
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In particular, the generating function for the index is

X
A2P5

tindA =
1

1� t5

�
1� t5

(1� t)5

�2

=
1 + t+ t2 + t3 + t4

(1� t)9
:

Proof. The decomposition of A� described before the statement of the theorem implies

that A� is an arbitrary nonnegative linear combination of the matrices of an admissible

set which is equivalent to a 8-tuple with no cycles. Hence, we get the basic decomposition

of (10.2.5) including the conditions of (10.2.6). Moreover, since A� has a zero say at i; j,

there are exactly 4 cyclics of step 2 and 4 cyclics of step 3 which are 0 at i; j. Since

no cycles are present, any expansion of type (10.2.5) must have support a subset of the

admissible set. By Corollary 10.1.3, the expansion will be unique.

Extracting the multiple of J corresponds to 1
1�X(J) in the generating function.

What remains, A�, has 2 independent parts, a non-cycle combination of step 2 cyclics and

a non-cycle combination of step 3 cyclics. Fix a step j and let Ci = C
j
i . Without any

restriction, the generating function is

GFI =
1

(1�X(C0))(1�X(C1))(1�X(C2))(1�X(C3))(1�X(C4))
:

Forcing a cycle, the generating function is

GFII =
X(C0)X(C1)X(C2)X(C3)X(C4)

(1�X(C0))(1�X(C1))(1�X(C2))(1�X(C3))(1�X(C4))
:

Hence, the generating function which prevents any cycle is the di�erence

GFI �GFII =
1�X(C0)X(C1)X(C2)X(C3)X(C4)

(1�X(C0))(1�X(C1))(1�X(C2))(1�X(C3))(1�X(C4))
:

(10.2.7) follows by combining the parts coinciding with the multiple of J , the step 2

non-cycle and the step 3 non-cycle.

The structure revealed by the generating function is also present in the geometry of

the cone. Let Ĵ = J=order. Recall that the cyclics of a �xed step are mutually orthogonal.

Hence,

Lemma 10.2.2. The cyclics for a �xed step b and order n, fCi j i = 0; : : : ; n � 1 g are

the vertices of a n� 1-simplex with center Ĵ, denoted by 4b
n.
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2 cyclics of di�erent steps, Cb and Cc, share exactly one nonzero entry provided

the system

j �n i1 + bi

j �n i2 + ci
or

j � bi �n i1

j � ci �n i2

has a unique solution. This is true iff the determinant of the system, b� c, is invertible.

Lemma 10.2.3. Given 2 cyclics of order n of di�erent steps, Cb and Cc, where b� c is

invertible modulo n (for n prime, b 6= c, that is always the case), then Cj � Ĵ and Ck � Ĵ

are orthogonal.

Proof.

(Cj � Ĵ ; Ck � Ĵ) = (Cj ; Ck)� (Ĵ ; Ck)� (Cj ; Ĵ)� (Ĵ ; Ĵ) = 1� 1� 1 + 1 = 0

Lemma 10.2.2 and Lemma 10.2.3 imply

Proposition 10.2.4. The cross section of P5

CS1(P5) = (42
5 � Ĵ)� (43

5 � Ĵ) + Ĵ :

In other words, the CS1(P5) is the internal direct product of the two simplexes 42
5 and

43
5, but where the product operation is performed with center Ĵ.

10.3 Classical pandiagonals

Let A be a classical pandiagonal with entries 0; 1; : : : ; 24. Apply a torus translation

to place the 0 in the upper left hand corner. The resulting matrix is a nonnegative linear

combination of the matrices of (10.1.3). Due to how cyclics of the same and di�erent steps

interact, the set of entries of the matrix (10.1.2) is the cross product of the set f0; a; c; e; gg

with the set f0; b; d; f; hg, with the entries of each resulting ordered pair added, a process

which can be expressed with polynomials:

(1 + xa + xc + xe + xg)(1 + xb + xd + xf + xh) = 1 + x+ x2 + � � �+ x24:

Note that

(1 + x+ x2 + x3 + x4)(1 + x5 + x10 + x15 + x20) = 1 + x+ x2 + � � �+ x24:
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Hence, if we set fa; c; e; gg equal to a permutation of f1; 2; 3; 4g and fb; d; f; hg to a per-

mutation of f5; 10; 15; 20g (or vice versa), we will get a classical order 5 pandiagonal. For

the converse, we use

Lemma 10.3.1. For any prime p,

1. 1 + x+ x2 + � � �+ xp�1 is irreducible;

2. 1 + xp + x2p + � � �+ x(p�1)p is irreducible.

Proof.

(x� 1)(1 + x+ � � �+ xp�1) = xp � 1 = (y + 1)p � 1

= yp +

�
p

1

�
yp�1 +

�
p

2

�
yp�2 + � � �+ py

= y(yp�1 +

�
p

1

�
yp�2 +

�
p

2

�
yp�3 + � � �+ p)

Zeroing in on the second factor of the last expansion, p divides all the non-leading terms

and p2 does not divide the constant term. By the Eisenstein criterion, this polynomial is

irreducible. Irreducibility is not a�ected by linear substitution; replace y with x�1 to get

that 1 + x+ x2 + � � �+ xp�1 also is irreducible.

For the second polynomial, I was unable to �nd a way to use the Eisenstein criterion.

Instead, we cite an elementary result from algebraic number theory [Mar77, p.17]: let !

be a primitive mth root of unity, then Q[w] has degree '(m). '(p2) = p2 � p. Hence the

second polynomial is irreducible.

Summarizing the above discussion, we get

Proposition 10.3.2. A classical pandiagonal square of order 5 with vanishing 0,0 entry

is formed precisely by using (10.1.2), setting fa; c; e; gg equal to a permutation of f1; 2; 3; 4g

and fb; d; f; hg to a permutation of f5; 10; 15; 20g (or vice versa).

To get a set of representatives up to symmetry, we study the subgroup of pandiag-

onal symmetries which �x the 0,0th entry. They are the set of matrices given by (6.1.1)

which act linearly on the indices. � can be 1, 2, 3 or 4. The group of 32 matrices ob-

tained acts in a complicated fashion on the entries marked a; b; : : : ; h. A big simpli�cation

arises by using information we already have, namely that either fa; c; e; gg or fb; d; f; hg

is f1; 2; 3; 4g. Hence, we can look at the subgroup of index 2 which �xes fa; c; e; gg. We

list in Table 10.3 the 16 elements of this subgroup and their action on the determining
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index operator action on a; c; e; g action on b; d; f; h�
1 0

0 1

�
identity identity

�
2 0

0 2

�
rotates to right 90� rotates to left 90�

�
3 0

0 3

�
rotates to left 90� rotates to right 90�

�
4 0

0 4

�
rotates 180� rotates 180�

�
0 1

4 0

�
rotates to right 90� rotates to right 90�

�
0 4

1 0

�
rotates to left 90� rotates to left 90�

�
0 2

3 0

�
rotates 180� identity

�
0 3

2 0

�
identity rotates 180�

�
1 1

4 1

�
rotates to left 90� rotates 180�

�
2 2

3 2

�
identity rotates to right 90�

�
3 3

2 3

�
rotates 180� rotates to left 90�

�
4 4

1 4

�
rotates to right 90� identity

�
1 4

1 1

�
rotates 180� rotates to right 90�

�
2 3

2 2

�
rotates to left 90� identity

�
3 2

3 3

�
rotates to right 90� rotates 180�

�
4 1

4 4

�
identity rotates to left 90�

Table 10.1: Action of pandiagonal symmetries on a classic order 5 matrix
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set, showing that the action of the subgroup is the cross product of the rotation group

on a; c; e; g with the rotation group on b; d; f; h. To get a set of 36 representatives up to

symmetry, set a to 1 and b to 5, then c; e; g is an arbitrary permutation of 2; 3; 4 and d; f; h

is an arbitrary permutation of 10; 15; 20.



Chapter 11

Generalized diagonals and very

magic squares

11.1 The number of generalized diagonals for a �xed order

The results of the �rst 3 sections of this chapter have been taken largely from

[Knu68]. A generalized diagonal is the set of entries of a square matrix of size n which

satis�es an equation of the form ax + by �n c, where gcd(a; b; n) = 1. A slope (a; b) is

legitimate if gcd(a; b; n) = 1. Unless stated otherwise, a slope is assumed to be legitimate.

The GCD condition is necessary to ensure a full n elements in the set. As is customary,

an equation will often denote the solutions to the equation.

The n diagonals in the set

fax+ by �n c j 0 � c � n � 1g

constitute the family of diagonals corresponding to and denoted by the slope (a; b). Ac-

tually a family is not identi�ed by a unique slope. 2 slopes determine the same family of

diagonals iff they di�er by a factor which is prime to n. Call 2 such slopes equivalent. Let

 (n) = #ffamilies of diagonals of order ng

= #finequivalent slopesg = #flegitimate slopesg='(n):
(11.1.1)

Proposition 11.1.1. If n = p
i1
1 p

i2
2 : : : p

im
m , then

 (n) = n

�
p1 + 1

p1

��
p2 + 1

p2

�
: : :

�
pm + 1

pm

�
:
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Proof. Let  0(n) = #flegitimate slopes for order ng. By (11.1.1),  0(n) =  (n)'(n).

Recall that

'(n) = n

�
p1 � 1

p1

��
p2 � 1

p2

�
: : :

�
pm � 1

pm

�
:

Hence, we can alternatively show that

 0(n) =

�
n

�
p1 + 1

p1

��
p2 + 1

p2

�
: : :

�
pm + 1

pm

��
'(n)

= n2
�
p21 � 1

p21

��
p22 � 1

p22

�
: : :

�
p2m � 1

p2m

�
:

(11.1.2)

Any illegitimate slope is divisible by a prime pi. There are (n=pi)
2 such slopes for

each prime factor pi. If
Pm

i=1(n=pi)
2 is subtracted from n2, the total number of slopes,

the slopes that are divisible by atleast 2 primes are subtracted multiple times. Hence, we

have to add them back. Continuing with this analysis, called inclusion-exclusion, we get

 0(n) = n2 �
mX
i=1

(
n

pi
)2 +

X
1�i<j�m

(
n

pipj
)2 � � � � � (

n

p1p2 : : : pm
)2

= n2
�
1�

1

p21

��
1�

1

p22

�
: : :

�
1�

1

p2m

�
:

11.2 The Fourier transform and very magic squares

Given a matrix A = kAijk of order n and a primitive nth root of unity !, de�ne

the Fourier transform to be a = kaklk, where

akl =
X

0�i;j�n�1

!�(ik+jl)Aij :

Proposition 11.2.1.

Aij =
1

n2

X
0�k;l�n�1

!ik+jlakl: (11.2.3)
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Proof.

X
0�k;l�n�1

!ik+jlakl =
X

0�k;l�n�1

!ik+jl
X

0�r;s�n�1

!�(rk+sl)Ars

=
X

0�r;s�n�1

Ars
X

0�k;l�n�1

!k(i�r)+l(j�s)

=
X

0�r;s�n�1

Ars

n�1X
k=0

!k(i�r)
n�1X
l=0

!l(j�s)

=
X

0�r;s�n�1

Ars (n�(r = i)) (n�(s = j)) = n2Aij :

Given a matrix in the linear span of the generalized diagonals, the transform indicates the

contribution from the various families of diagonals as follows. Let Aij = �(k0i+ l0j = c)

for some �xed constant c and slope (k0; l0).

akl =
X

0�i;j�n�1

!�(ik+jl)�(k0i+ l0j = c)

=
X

i;jjk0i+l0j=c

!�(ik+jl) =

8><
>:
0 if (k; l) 6= d(k0; l0) for all d;

n!�dc if (k; l) = d(k0; l0),

from which we gleam

1. The transform of a diagonal has nonzero entries precisely on the n multiples of the

slope.

2. All diagonals of a family are mapped to the same diagonal.

3. Since A 7! a is reversible by Proposition 11.2.1, the information needed to sort out

the individual diagonals of a family must be encoded into this diagonal; in fact, the

entries are the one dimensional discrete Fourier transform.

A very magic square is a matrix all of whose generalized diagonals sum to the same

quantity, called the index. We quickly dispense with these squares.

Proposition 11.2.2. Very magic squares are trivial.
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Proof. Given a very magic matrix A with order n and index s, let (k; l) = d(k0; l0), where

(k0; l0) is a legitimate slope.

akl =
X

0�i;j�n�1

!�(ik+jl)Aij

=

n�1X
c=0

!�dc
X

fi;jjk0i+l0j=cg

Aij

= s

n�1X
c=0

!�dc =

8><
>:
ns if d = 0;

0 if d 6= 0.

Hence, a reduces to the matrix with one nonzero entry, namely the 0,0th entry with

value ns. Applying the inverse transform (11.2.3), the sum reduces to a single term and

Ai;j = s=n.

11.3 Semi-very magic squares

A semi-very magic square (k; l) or semi-very for short is a matrix, whose generalized

diagonals not in the family (k; l) sum to the same quantity, called the index.

Proposition 11.3.1. For any primitive nth root of unity !, the matrix A of order n

de�ned by

Aij = !ik+jl

is semi-very (k; l).

To prove the proposition, we need a variant of the Chinese Remainder Theorem:

Lemma 11.3.2. Given n = q1q2 : : : qm, where q1, q2, : : : , qm are pairwise relatively

prime, set bt = q̂
'(qt)
t for each t then bt �qt 1 (by Euler's theorem) and bu �qt 0 for all

u 6= t. Having chosen such a set, given any x, x �qu xu, 1 � u � m, iff

x �n b1x1 + b2x2 + � � �+ bmxm:

We call �nding such a sum decomposing into coordinates.

Proof.
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Case 1(n = pe) Let ri + sj = c be a diagonal. Either p 6 jr or p 6 js. WLOG assume

p 6 jr, then 9t such that rt �n 1. Multiplying the equation by t, we get an equivalent

equation i + s0j = c0. Hence we can assume r = 1. The sum of the entries in the

diagonal is

X
i+js�nc

Aij =
X

i+js�nc

!ik+jl =
X

i+js�nc

!(c�js)k+jl

= !ck
X

i+js�nc

!j(l�sk)

which is 0 unless l = sk. If so, (k; l) = (k; sk) = k(r; s), which implies that p 6 jk

since gcd(k; l; n) = 1. Thus (r; s) = k�1(k; l), which implies that (r; s) is equivalent

to (k; l).

Case 2(n = pe11 p
e2
2 : : : pemm ) Let qt = pett and q̂t =

Q
u6=t qu. Using Lemma 11.3.2 to de-

compose i and j into coordinates,

X
ir+js�nc

Aij =
X

i+js�nc

!ik+jl

=
X

ir+js�nc

!k(b1i1+b2i2+���bmim)+l(b1j1+b2j2+���bmjm)

=
X

ir+js�nc

!b1(ki1+lj1)+���bm(kim+ljm)

=
X

ir+js�nc

!
ki1+lj1
1 � � �!kim+ljm

m :

In the last equality, we have set !u = !bu . To determine the conditions on the

coordinates of i and j, take the condition ir + js �n c and modulo qu to get riu +

sju �qu c. The converse is also true. Hence, we can divide the sum as follows:

X
ir+js�nc

Aij =
X

ri1+sj1�q1 c

!
ki1+lj1
1 � � �

X
rim+sjm�qm c

!kim+ljm
m : (11.3.4)

To be nonzero, each of the sums must be nonzero. Since !t = !bt = !q̂
'(qt)
t ,

!
qt
t = !q̂

'(qt)
t qt = !

nq̂
'(qt)�1
t

t = (!nt )
q̂
'(qt)�1
t = 1:

Also, since there are no factors of pt in q̂t, there is no smaller power of !t which

equals one. Hence, !t is a primitive qtth root of unity. Applying the result from
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case 1 for each of the sums of (11.3.4), 9yu, such that (r; s) �qu yu(k; l). Setting

y = b1y1 + b2y2 + � � � + bmym and applying Lemma 11.3.2 one last time, we get

(r; s)�n y(k; l).

Corollary 11.3.3. There are non-trivial, integral, semi-very magic squares for each order

and slope.

Proof. Each matrix of Proposition 11.3.1 is complex, whose real part is not constant.

Adding an appropriate multiple of the trivial matrix to this real part, we obtain a positive,

real, nontrivial solution. Thus the cone of nonnegative solutions must have a nontrivial

extreme ray. Since our system of equations has integral coe�cients, this extreme ray must

contain an integral solution.



Chapter 12

Pandiagonal permutations and

cyclic squares

12.1 P -perms and a recursive algorithm

De�ne a sequence � to be an ordered list of n elements taken from f0; : : : ; n �

1g; the ith element speci�es the column placement of the single 1 in the ith row of its

representation as a square

m(�) = k�(j = �i)k
n�1
i;j=0:

We will often identify the squares that originate from sequences with the sequences them-

selves or vice versa. Hence, Cba, the cyclic squares introduced in Section 7.1, are sequences.

Permutations are other examples of sequences.

Remark 12.1.1. A sequence is a permutation iff it has no duplication iff its range is the

full set.

Magic squares from Mn of index 1 are precisely the permutation matrices of order

n. For the permutations which are in a particular subset, e.g., W -squares, we use an

appropriate pre�x, e.g., W -permutations. Actually, the W -squares are a bad example.

Since none of the extreme rays for W -squares of order 4 are permutation matrices, there

are no W -permutations of order 4. Since the indW (A) would have to have a non-integral

fraction of the index which is 1, neither are there W -permutations of order more than 4.

We con�ne our investigation to permutations which are also P -squares, i.e., P -

permutations or P -perms for short. Let � = (0; 1; : : : ; n� 1).

147



148

Proposition 12.1.2. A permutation � is pandiagonal iff both � + � mod n and � � �

mod n are permutations.

Proof. � is primary diagonal iff

Pk(�) =

n�1X
i=0

n�1X
j=0

�(j = �i)�(j = i+ k) = 1 8k

()
n�1X
i=0

�(i+ k = �i) = 1 8k ()
n�1X
i=0

�(k = �i � i) = 1 8k

iff ��� is a permutation. Similarly, � is secondary diagonal iff �+� is a permutation.

We combine Remark 12.1.1 with Proposition 12.1.2 to compute recursively the P -perms

of a �xed order. Having constructed

�0; �1; : : : ; �i�1

choose �i (if possible) as one of the values in f0; 1; : : : ; n � 1g that are di�erent mod n

than any of the numbers

�0 �1 : : : �i�1

�0 � i �1 + 1� i : : : �i�1 + (i� 1)� i

�0 + i �1 � 1 + i : : : �i�1 � (i� 1) + i:

Checking against the �rst row assures that a permutation is being created, against the

second row assures secondary diagonality, and against the last row assures primary diag-

onality.

In performing a computer search, there are several additional measures that can

be taken. By cycling the columns, we can assume that the �rst element of the sequence

is 0. By performing a combination of dihedral operations and torus translations, we

can assume that the 2nd element is between 2 and bn�22 c. We are really interested in

a representative for each orbit under the pandiagonal symmetries, hence more sophisti-

cated measures are possible which take into account these symmetries. See for example

work done on 8 non-attacking queens on a chess-board [Wil85, p.36]. By Corollary 7.2.3,

there are no P -perms for orders that are singly even and for orders that are multiples

of 3 but not 9. Hence, the orders up to 30 that a computer search should examine are

f7; 8; 9; 11; 13; 16; 17; 19; 20; 23; 25; 27; 28; 29g. A preliminary search has shown that there

are no P -perms for orders 8 and 9. For orders 7 and 11, the only P -perms are cyclic

squares. For order 13 with �(0) = 0, there are 10 cyclic and 338 noncyclic P -perms.
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12.2 Cyclic squares and a generalized Euler ' function

The principal examples of P -perms are a subset of the cyclic squares.

Proposition 12.2.1. A cyclic square Cba is

1. a permutation iff (b; n) = 1;

2. secondary diagonal iff (b+ 1; n) = 1;

3. primary diagonal iff (b� 1; n) = 1;

4. a P -perm iff (b; n) = (b+ 1; n) = (b� 1; n) = 1.

If condition 4 holds, the square is P -cyclic and b is superprime to n, denoted ((b; n) = 1.

Corollary 12.2.2. For prime p > 3, Cba of order p is P -cyclic, i.e., ((b; p) = 1 iff

b 2 f2; 3; : : : ; p� 2g:

Proof. Treat the cyclic square as a sequence. If (b; n) = d 6= 1, bnd is divisible by n and

the sequence will be periodic with period n
d
.

Conversely, if (b; n) = 1 and a + bi = a + bj for some i; j. Then b(i � j) �n 0.

Divide by b to get i �n j. This completes part 1.

By Proposition 12.1.2, a sequence is secondary diagonal iff its progressive cyclic

shift to the right, i.e., its sum with � is a permutation. Now use part 1.

Similarly, a sequence is primary diagonal iff its progressive cyclic shift to the left,

i.e., its di�erence with � is a permutation. Again use part 1.

To facilitate additional discussion of the cyclics, let

Cn(b) = fCba of order n j a = 0; : : : ; n� 1g and Cn = fCn(b) j ((b; n) = 1g:

Corollary 12.2.2 implies that jCpj = p(p � 3) for p prime. What is the corresponding

statement for composite n? To answer the question, we present an extension of the Euler

phi function. Given S �Zn, let

BS(n) = fb j 0 � b < n; (b+ x; n) = 1 8x 2 Sg;

and 'S(n) = jBS(n)j. To recover the Euler phi function, set S = f0g. We are interested

in 'S when S = f�1; 0; 1g.



150

Proposition 12.2.3. For p prime,

1. 'S(p) = p� jSj if p > maxS �minS;

2. 'S(p
k) = 'S(p)p

k�1;

3. 'S is multiplicative, i.e., (m;n) = 1) 'S(mn) = 'S(m)'S(n).

Corollary 12.2.4. Given the distinct prime powers factorization n = pk11 p
k2
2 : : : p

k`
` ,

'S(n) = 'S(p1)p
k1�1
1 'S(p2)p

k2�1
2 : : :'S(p`)p

k`�1
`

= n
'S(p1)

p1

'S(p2)

p2
: : :

'S(p`)

p`
:

Proof.

For Part 1, BS(p) is the complement of �S in f0; : : : ; p� 1g.

For Part 2, BS(p
k) = fb+ cp j b 2 BS(p); 0 � c < pk�1g.

For Part 3, by the Fundamental Theorem of Arithmetic, 9�; � 2 Z such that

m�+ n� = 1. Let

B = fbm�+ b0n� mod mn j b 2 BS(n); b
0 2 BS(m)g:

We claim that B = BS(mn).

(�) For bm�+ b0n� 2 B, and x 2 S,

(bm�+ b0n� + x;m) = (b0n� + x;m) = (b0(1�m�) + x;m) = (b0 + x;m) = 1;

the last equality holds since b0 2 BS(m). Similarly, (bm�+ b0n� + x; n) = 1.

Since (m;n) = 1, (bm�+ b0n� + x;mn) = 1.

(�) Given a 2 BS(mn). Let

b �n a; 0 � b < n

b0 �m a; 0 � b0 < m:

We claim a �mn bm�+ b0n�.

a� bm�� b0n� = a � bm�� b0(1�m�) = a� b0 �m(b+ b0)�:

Since mja� b0, we get

mj(a� bm�� b0n�):

Similarly, nj(a�bm��b0n�), and hence, mnj(a�bm��b0n�), which completes the claim.

Given x 2 S, (b + x; n) = (a + x; n)j(a+ x;mn) = 1. Hence, (b + x; n) = 1 and

b 2 BS(n). Similarly, b0 2 BS(m).



151

Let '0 = 'f�1;0;1g. By direct calculation, '0(2) = '0(3) = 0. For p > 3 prime, by

Proposition 12.2.3, Part 1, '0(p) = p� 3. Substituting into Corollary 12.2.4, we get

Proposition 12.2.5. Let n = pk11 p
k2
2 : : :pk`` be the usual prime factorization of n, then

'0(n) =

8><
>:
0 if n is divisible by 2 or 3;

np1�3p1

p2�3
p2

: : : p`�3p`
otherwise:

Corollary 12.2.6. P -cyclics exist for a given order n iff n is not divisible by 2 or 3.

12.3 The orbits of P -cyclics under pandiagonal symmetries

To determine the orbits of P -cyclics under pandiagonal symmetries, apply the

matrices (6.1.1) and (6.1.2) to the displacement vector
�1
b

�
and normalize so that the

top component is 1.2
4�

��

3
5�1

b

�
= �

�
1

�b

�
2
4 �

��

3
5�1

b

�
= �

�
�b

1

�
= ��b

�
1

�b�1

�
2
4�� ��

� �

3
5�1

b

�
= �

�
�(b� 1)

b+ 1

�
= ��(b� 1)

�
1
b+1

�(b�1)

�
2
4 � �

�� ��

3
5�1

b

�
= �

�
b+ 1

�(b� 1)

�
= �(b+ 1)

�
1

�(b�1)
b+1

�

Hence, the orbit for the P -cyclics of step b is

f�b;�b�1;�
b+ 1

b� 1
;�

b� 1

b+ 1
g:

We next investigate when these set of steps contain duplication.

� Setting b = �b, we get 2b = 0 which implies b = 0 since n is odd. However, we have

excluded b = 0 from consideration.

� Setting b = b�1, we get b2 = 1 which implies b = �1. Again, we have excluded these

values of b from consideration.

� Setting b equal to �b�1, � b+1
b�1 , or

b�1
b+1 , we get b

2 = �1. Such b's exist iff
p
�1 2Zn.
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� Setting b = b+1
b�1

, we get b2 � 2b� 1 = 0 which implies b = 1�
p
2. Such b's exist iff

p
2 2Zn.

� Setting b = � b�1
b+1 we get b2 + 2b� 1 = 0 which implies b = �1�

p
2. Such b's exist

iff
p
2 2Zn.

We gather from our investigation that if
p
�1 2Zn and if b is either of these roots, then

b = �b�1 = �
b+ 1

b� 1
=
b� 1

b+ 1
and � b = b�1 =

b+ 1

b� 1
= �

b� 1

b+ 1
:

If
p
2 2Zn and if b is either of these roots +1, then

b =
b+ 1

b� 1
; �b = �

b+ 1

b� 1
; b�1 =

b� 1

b+ 1
and � b�1 = �

b� 1

b+ 1
:

When is
p
�1 or

p
2 2Zn? We restrict our investigation further to n prime, which

by previous exclusion means n > 3 prime. Using quadratic reciprocity,

�
�1

n

�
= (�1)

n�1
2 =

8><
>:
1 n �4 1

�1 n �4 3

and

�
2

n

�
= (�1)

n2�1
8 =

8><
>:
1 n �8 1; 7

�1 n �8 3; 5

where
�
x
n

�
is the Legendre symbol. To summarize,

n mod 8 existence n mod 8 existence

1
p
�1,

p
2 5

p
�1

3 neither 7
p
2

.

We next check possible duplication among our 6 candidate b's, f�
p
�1g;�1 �

p
2. For

odd n, �
p
�1 can not coincide, likewise 1�

p
2 and �1�

p
2. We next pair o�

p
�1 with

1 +
p
2:

�1 = 3 + 2
p
2)

p
2 = �2) 2 = 4) 0 = 2:

Similarly for all other pairs which include
p
�1. Finally, we pair 1�

p
2 with �1��

p
2.

All such cases require n = 2. We can conclude

Proposition 12.3.1. Under pandiagonal symmetries, the orbits of P -cyclics of order n >

3 prime are of cardinality 8, except for at most 1 orbit of cardinality 4 and/or 1 orbit of

cardinality 2 (Table 12.1).
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mod n # orbits of size 8 # orbits of size 4 # orbits of size 2

1 n�9
8 1 1

3 n�3
8

0 0

5 n�5
8 0 1

7 n�7
8 1 0

Table 12.1: The P -cyclic orbit con�guration under pandiagonal symmetries for n > 3

prime.



Chapter 13

Linear span of cyclic P -squares for

prime order

13.1 Generating series for order 7

Denote by Cn the nonnegative integer span of the pandiagonal cyclic matrices of

order n. From Proposition 12.2.5, we know that Cn is empty iff n is divisible by 2 or 3.

For the moment, we will restrict to the case when n is prime. One of the consequences

of Theorem 10.2.1 is that P5 = C5. This single fact is responsible for the beauty and

simplicity of our solution of the 5 case. In this section, we consider C7. The generalization

to arbitrary order will follow easily.

The pandiagonal cyclics of order 7 have steps 2, 3, 4 and 5. For k = 0; : : : ; 6, let

Ak = k�(j �7 k + 2i)k6i;j=0; Bk = k�(j �7 k + 3i)k6i;j=0;

Ck = k�(j �7 k + 4i)k6i;j=0; Dk = k�(j �7 k + 5i)k6i;j=0:

C7 consists of all nonnegative integral linear combinations of these 28 matrices. Letting

ak, bk, ck and dk denote generic nonnegative integer coe�cients, we get for any matrix

154
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E 2 C7, E = A +B + C +D, where

A =

6X
k=0

akAk =

0
BBBBBBBBBBBBBB@

a0 a1 a2 a3 a4 a5 a6

a5 a6 a0 a1 a2 a3 a4

a3 a4 a5 a6 a0 a1 a2

a1 a2 a3 a4 a5 a6 a0

a6 a0 a1 a2 a3 a4 a5

a4 a5 a6 a0 a1 a2 a3

a2 a3 a4 a5 a6 a0 a1

1
CCCCCCCCCCCCCCA

; B =

6X
k=0

bkBk =

0
BBBBBBBBBBBBBB@

b0 b1 b2 b3 b4 b5 b6

b4 b5 b6 b0 b1 b2 b3

b1 b2 b3 b4 b5 b6 b0

b5 b6 b0 b1 b2 b3 b4

b2 b3 b4 b5 b6 b0 b1

b6 b0 b1 b2 b3 b4 b5

b3 b4 b5 b6 b0 b1 b2

1
CCCCCCCCCCCCCCA

;

C =

6X
k=0

ckCk =

0
BBBBBBBBBBBBBB@

c0 c1 c2 c3 c4 c5 c6

c3 c4 c5 c6 c0 c1 c2

c6 c0 c1 c2 c3 c4 c5

c2 c3 c4 c5 c6 c0 c1

c5 c6 c0 c1 c2 c3 c4

c1 c2 c3 c4 c5 c6 c0

c4 c5 c6 c0 c1 c2 c3

1
CCCCCCCCCCCCCCA

; D =

6X
k=0

dkDk =

0
BBBBBBBBBBBBBB@

d0 d1 d2 d3 d4 d5 d6

d2 d3 d4 d5 d6 d0 d1

d4 d5 d6 d0 d1 d2 d3

d6 d0 d1 d2 d3 d4 d5

d1 d2 d3 d4 d5 d6 d0

d3 d4 d5 d6 d0 d1 d2

d5 d6 d0 d1 d2 d3 d4

1
CCCCCCCCCCCCCCA

:

Of course the expansion just described is not unique; we have the relations

6X
k=0

Ak =

6X
k=0

Bk =

6X
k=0

Ck =

6X
k=0

Dk = J =

0
BBBBBBBBBBBBBB@

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCA

: (13.1.1)

To state the main result of the section we need some auxiliary facts and de�nitions.

To begin, let us call \admissible" any 24tuple of matrices obtained by removing one element

from each of the cyclic classes. The admissible 24tuple obtained by removing Ah, Bk , Cl

and Am, will be denoted by fAh; Bk; Cl; Amgc. Let us treat the matrices as vectors with

49 components. Cyclics of the same step are orthogonal with respect to the usual dot

product. The discussion preceding Lemma 10.2.3 shows that cyclics of steps b and c have

dot product 1 provided that b�c is invertible modulo n. For n prime, all nonzero elements

are invertible. We record these facts as
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Lemma 13.1.1. Let fArg be the set of cyclics of step a and fBrg be the set of cyclics of

step b.

(Ar; As) =

8><
>:
n if r = s

0 if r 6= s

;

and provided b� c is invertible modulo n,

(Ar; Bs) = 1 for all r; s:

Proposition 13.1.2. The matrices of an admissible set fAh; Bk; Cl; Amg
c are linearly

independent, or equivalently, an expansion

E =

6X
i=0;i6=h

aiAi +

6X
i=0;i6=k

biBi +

6X
i=0;i6=l

ciCi +

6X
i=0;i6=m

diDi

is unique. In fact,

f(Ai �Ah)=7; i 6= h; (Bi �Bk)=7; i 6= k; (Ci� Cl)=7; i 6= l; (Di�Dk)=7; i 6= mg (13.1.2)

is a dual basis to fAh; Bk; Cl; Amg
c, i.e.,

ai = (Ai �Ah; E)=7 bi = (Bi �Bk ; E)=7

ci = (Ci � Cl; E)=7 di = (Di �Dm; E)=7:

Proof. If fAig and fBjg are as in Lemma 13.1.1,

(Aj ; Ai �Ah)=7 =

8>>>><
>>>>:

1 if j = i;

�1 if j = h;

0 otherwise;

and for any i and j,

(Bj ; Ai � Ah) = (Bj ; Ai)� (Bj ; Ah) = 1� 1 = 0:

If there is a relation among fAh; Bk; Cl; Amgc, then taking the dot product with each

element of (13.1.2), shows that each coe�cient is 0, a contradiction.

By de�nition, a matrix E 2 C7 can be expressed in the form

E =

6X
i=0

aiAi +

6X
j=0

bjBj +

6X
k=0

ckCk +

6X
l=0

dlDl (13.1.3)

with the coe�cients ai; bj; ck; dl nonnegative integers. Because of (13.1.1), these coe�-

cients are not uniquely determined by E. However, something almost as strong is true.
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Lemma 13.1.3. Within a particular step, the coe�cients in the expansion (13.1.3) are

determined up to an additive constant.

Proof. Apply the dot product with Ai to the expansion in (13.1.3):

(Ai; E) = 7ai +

6X
j=0

bj +

6X
k=0

ck +

6X
l=0

dl: (13.1.4)

In particular, when i = 0,

(A0; E) = 7a0 +

6X
j=0

bj +

6X
k=0

ck +

6X
l=0

dl: (13.1.5)

Subtracting (13.1.5) from (13.1.4) and dividing by 7, we derive that

ai � a0 = (E;Ai �A0)=7:

Note the use of Ai � A0 introduced with (13.1.2). The same relations hold for the other

steps.

We are now in a position to establish the main result of the section.

Theorem 13.1.4. Every matrix E 2 C7 has a unique expansion of the form

E = mJ +

6X
i=0

aiAi +

6X
j=0

bjBj +

6X
k=0

ckCk +

6X
l=0

dlDl (13.1.6)

with ai; bj; ck; dl nonnegative integers, subject to the condition that atleast one ai, one bj,

one ck and one dl is zero. As a consequence,

X
E2C7

X(E) =
1

1�X(J)

 
1�

Q6
i=0X(Ai)Q6

i=0

�
1�X(Ai)

�
! 

1�
Q6
i=0X(Bi)Q6

i=0

�
1�X(Bi)

�
!

 
1�

Q6
i=0X(Ci)Q6

i=0

�
1�X(Ci)

�
! 

1�
Q6
i=0X(Di)Q6

i=0

�
1�X(Di)

�
!
:

Proof. Given an expansion (13.1.3), set

a = minf ai j i = 0; : : : ; 6 g; b = minf bi j i = 0; : : : ; 6 g;

c = minf ci j i = 0; : : : ; 6 g; d = minf di j i = 0; : : : ; 6 g:

Extract copies of the trivial to get

E = (a+ b+ c+ d)J

+

6X
i=0

(ai � a)Ai +

6X
j=0

(bj � b)Bj +

6X
k=0

(ck � c)Ck +

6X
l=0

(dl � d)Dl: (13.1.7)
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The new coe�cients are nonnegative yet atleast one new coe�cient from each step is 0.

Hence, (13.1.7) demonstrates the existence of the expansion in (13.1.6).

Setting the minimal coe�cients for each step to 0 �xes the constant referred to in

Lemma 13.1.3. Hence, the resulting expansion is unique.

The generating function follows by a similar argument to that found in the proof

of Theorem 10.2.1.

Using Lemma 10.2.2 and Lemma 10.2.3 together with the notation de�ned there,

we get

Proposition 13.1.5. The cross section of C7 de�ned by setting the index to 1 is

CS1(C7) = (42
7 � Ĵ)� (43

7 � Ĵ)� (44
7 � Ĵ)� (45

7 � Ĵ) + Ĵ :

In other words, the CS1(C7) is the product of the four simplexes 42
7, 4

3
7, 4

4
7, 4

5
7, but

where the product operation is performed with center Ĵ.

For classical order 7 pandiagonals, further restrict to those in the linear span of 2

types of steps, then the material in the beginning of Section 10.3 has an exact analogue.

To get a count of such pandiagonals which have the 0 in the upper left corner, we select

an ordered pair of steps and then a permutation of the numbers 1, 2, 3, 4, 5 and 6 for the

�rst step and a permutation of 7, 14, 21, 28, 35 and 42 for the second step. There are

4(3)(6!)2 such matrices. There are 8�(7) = 48 symmetries. Hence, there are 9(5!)2 such

pandiagonals up to symmetry. How many classical pandiagonals in C7 there are in general

is an open question.

13.2 Generating series for general prime order

The pandiagonal cyclics of order p have steps 2; 3; : : : ; p� 2. For k = 0; : : : ; p� 1,

m = 2; : : : ; p� 2 let

Amk = k�(j �p k +mi)kp�1i;j=0:

Cp consists of all nonnegative integral linear combinations of these (p � 3)p matrices.

Letting ak;m denote generic nonnegative integer coe�cients, we get for any matrix A 2 Cp,

A =
X

ak;mA
m
k : (13.2.8)
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Of course the expansion just described is not unique; we have the relations, for all n;m,

p�1X
k=0

Amk =

p�1X
k=0

Ank = J (13.2.9)

where J is the trivial matrix of all 1's.

Call \admissible" any (p � 1)(p � 3)tuple of matrices obtained by removing one

element from each of the cyclic classes. The admissible (p � 1)(p � 3)tuple obtained by

removing A2
k2
; A3

k3
; : : : ; A

p�2
kp�2

, will be denoted by fA2
k2
; A3

k3
; : : : ; A

p�2
kp�2

gc. Let us treat the

matrices as vectors with p2 components.

Proposition 13.2.1. The matrices of an admissible set fA2
k2
; A3

k3
; : : : ; A

p�2
kp�2

gc are lin-

early independent, or equivalently, an expansion

A =

p�2X
m=2

p�1X
k=0; k 6=km

ak;mA
m
k

is unique. In fact,

f(Amk �Amkm)=p; k 6= kmg (13.2.10)

is a dual basis to fA2
k2
; A3

k3
; : : : ; A

p�2
kp�2

gc, i.e.,

ak;m = (Amk � Amkm ; A)=p:

We are now in a position to establish the main result of the section.

Theorem 13.2.2. Every matrix A 2 Cp has a unique expansion of the form

A = mJ +
X

ak;mA
m
k (13.2.11)

with ak;m nonnegative integers, subject to the condition that atleast one ak;m for each m

is zero. As a consequence,

X
A2Cp

X(A) =
1

1�X(J)

p�2Y
m=2

 
1�

Qp�1
k=0X(Amk )Qp�1

k=0

�
1�X(Amk )

�
!
:

Proof. Given an expansion (13.2.8), set

am = minf ak;m j k = 0; : : : ; p� 1 g:

Extract copies of the trivial to get

A = (a2 + a3 + � � �+ ap�2)J +

p�2X
m=2

p�1X
k=0

(ak;m � am)A
m
k :
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As for the geometry, using Lemma 10.2.2 and Lemma 10.2.3 together with the

notation de�ned there, we get

Proposition 13.2.3. The cross section of Cp de�ned by requiring the index to be 1 is

CS1(Cp) =

p�2Y
m=2

(4m
p � Ĵ) + Ĵ :

In other words, the CS1(Cp) is the product of the p� 3 simplexes 42
p; : : : ;4

p�2
p , but where

the product operation is performed with center Ĵ .

For classical order p pandiagonals, further restrict to those in the linear span of 2

types of steps, then the material in the beginning of Section 10.3 has an exact analogue. To

enumerate such pandiagonals which have the 0 in the upper left corner, select an ordered

pair of steps and then a permutation of the numbers 1; 2; : : : ; p� 1 for the �rst step and a

permutation of p; 2p; : : : ; (p� 1)p for the second step. There are (p� 2)(p� 3)((p� 1)!)2

such matrices. There are 8�(p) = 8(p � 1) symmetries. Hence, there are (p � 1)(p �

2)(p � 3)((p � 2)!)2=8 such pandiagonals up to symmetry. Enumeration of all classical

pandiagonals in Cp is an open question.



Chapter 14

Linear span of cyclic P -squares for

prime power order

Prime powers can be decomposed with a similar approach to that of primes. For

demonstration purposes, we will present and sketch a proof for the solution spaces of

orders 25 and 125. Finally, we will present the results for the general case.

14.1 Generating series for order 25

The pandiagonal cyclics of order 25 have steps 2, 3, 7, 8, 12, 13, 17, 18, 22 and 23.

The sum of each of the cyclics for a particular step still equals the trivial, but there is a

�ner relation.

De�nition 14.1.1. The compound cyclic of step a and start r is

Ma
r = k�(j �5 ai+ r)k:

For r = 0; : : : ; 4, we get the additional relations

M2
r =

4X
i=0

C2
r+5i =

4X
i=0

C7
r+5i = � � � =

4X
i=0

C22
r+5i

and

M3
r =

4X
i=0

C3
r+5i =

4X
i=0

C8
r+5i = � � � =

4X
i=0

C23
r+5i:

The subset of cyclics which appears in a sum is a mod 5 subclass of cyclic matrices, e.g.,

residue r = 3 gives a subclass of step 7 cyclics, fC7
3 ; C

7
8 ; : : : ; C

7
23g. Call \admissible" any

161
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10� 5� 4tuple of matrices obtained by removing one element from each of the cyclic mod

5 subclasses. The admissible 200tuple, obtained by removing C2
i2;0
; C2

i2;1
; : : : ; C23

i23;4
from a

list of all 250 cyclics, will be denoted by

fC2
i2;0
; C2

i2;1
; : : : ; C23

i23;4
gc:

Treating the matrices as vectors with 625 components, di�erent cyclics of the same

step are orthogonal with respect to the usual dot product. The discussion preceding

Lemma 10.2.3 shows that cyclics of steps a and b have dot product 1 provided that a� b

is invertible modulo n. For n a p prime power, all elements prime to p are invertible. If

a� b is not prime to p, then the dot product depends on the di�erence of the starts r� s.

When n is the square of a prime p, we record the needed dot products as:

Lemma 14.1.2.

(Car ; C
a
s ) =

8><
>:
n if r = s;

0 if r 6= s:

For a 6= b,

(Car ; C
b
s) =

8>>>><
>>>>:

1 if p 6 ja� b;

0 if pja� b but 6 jr � s;

p if pja� b and jr � s:

Proposition 14.1.3. The matrices of an admissible set

fC2
i2;0
; C2

i2;1
; : : : ; C23

i23;4
gc

are linearly independent, or equivalently, an expansion

E =
X

a2f2;3;7;:::;23g

24X
i=0;i6=ia;0;ia;1;:::;ia;4

ci;aC
a
i

is unique. In fact,

f(Cai � Caia;r )=25; i 6= ia;r; i �5 r; r = 0; : : : ; 4; a 2 f2; 3; 7; : : : ; 23gg (14.1.1)

is a dual basis to fC2
i2;0
; C2

i2;1
; : : : ; C23

i23;4
gc, i.e.,

ci;a = (Cai � Caia;r ; E)=25; i �5 r:
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Proof. The proof follows by breaking the situation into cases and using Lemma 14.1.2.

For example, let's look at the case a �5 b and i �5 s. By the way we chose our candidates

for a dual basis, i �5 ia;r and using the transitivity of congruence, s �5 ia;r. Hence,

(Cbs ; C
a
i � Caia;r)=25 = ((Cbs; C

a
i )� (Cbs ; C

a
ia;r))=25 = (5� 5)=25 = 0:

We are now in a position to establish the main result of the section.

Theorem 14.1.4. Every matrix E 2 C25 has a unique expansion of the form

E = mJ +

4X
r=0

�
mr;2M

2
r +mr;3M

3
r

�
+

24X
i=0

X
a2f2;3;7;:::;23g

ci;aC
a
i ; (14.1.2)

where m is an arbitrary integer � 0, and mr;2, mr;3 and ci;a are integers � 0, such that

4Y
r=0

mr;2 =

4Y
r=0

mr;3 = 0;

Y
i�5r

ci;a = 0 8a 2 f2; 3; 7; : : : ; 23g and r = 0; : : : ; 4:

We deduce that

X
E2C25

X(E) =
1

1�X(J)

1�X(M2
0)X(M2

1 )X(M2
2)X(M2

3)X(M2
4 )

(1�X(M2
0 ))(1�X(M2

1 ))(1�X(M2
2 ))(1�X(M2

3 ))(1�X(M2
4 ))

1�X(M3
0)X(M3

1 )X(M3
2)X(M3

3)X(M3
4 )

(1�X(M3
0 ))(1�X(M3

1 ))(1�X(M3
2 ))(1�X(M3

3 ))(1�X(M3
4 ))Y

a2f2;3;7;:::;23g

�
1�X(Ca0)X(Ca5)X(Ca10)X(Ca15)X(Ca20)

(1�X(Ca0))(1�X(Ca5))(1�X(Ca10))(1�X(Ca15))(1�X(Ca20))

1�X(Ca1)X(Ca6)X(Ca11)X(Ca16)X(Ca21)

(1�X(Ca1))(1�X(Ca6))(1�X(Ca11))(1�X(Ca16))(1�X(Ca21))

...

1�X(Ca4)X(Ca9)X(Ca14)X(Ca19)X(Ca24)

(1�X(Ca4))(1�X(Ca9))(1�X(Ca14))(1�X(Ca19))(1�X(Ca24))

�
: (14.1.3)

In particular, the generating function for the index is

X
A2C125

tindA =
1

1� t25

�
1� t25

(1� t5)5

�2 �
1� t5

(1� t)5

�50

=
(1� t25)(1� t5)40

(1� t)250
:
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Proof. Extract the maximum possible copy of the trivial as possible. Take what's left and

divide the entries based on locations congruent modulo 5. Take the minimum for each of

these sets. Compound cyclics interact like cyclics for order 5. Hence, use Theorem 10.2.1

to decompose this compound cyclic part.

What remains is compound cyclic-free. Use Proposition 14.1.3 to decompose this

part. The generating function follows from the same reasoning as used in the proof of

Theorem 10.2.1.

14.2 Generating series for order 125

We iterate the procedure performed with order 25. In addition to the relations

gotten from the trivial and from M2
r and M3

r , we get even �ner relations from N2
r , N

3
r ,

N7
r , N

8
r , : : : , N

23
r , for r = 0; 1; : : : ; 24, where

De�nition 14.2.1. The compound cyclic of step a and start r

Na
r = k�(j �25 ai+ r)k:

For r = 0; : : : ; 24, we get the additional relations

N2
r =

4X
i=0

C2
r+25i =

4X
i=0

C27
r+25i = � � � =

4X
i=0

C102
r+25i

N3
r =

4X
i=0

C3
r+25i =

4X
i=0

C28
r+25i = � � � =

4X
i=0

C103
r+25i

...

N2
r =

4X
i=0

C23
r+25i =

4X
i=0

C48
r+25i = � � � =

4X
i=0

C123
r+25i:

The subset of cyclics which appears in a sum is a mod 25 subclass of cyclic ma-

trices, e.g., residue r = 14 gives a subclass of step 32 cyclics, fC32
14; C

32
39 ; : : : ; C

32
114g. Call

\admissible" any 50 � 25 � 4tuple of matrices obtained by removing one element from

each of the cyclic mod 25 subclasses. The admissible 5000tuple, obtained by removing

C2
i2;0
; C2

i2;1
; : : : ; C123

i123;24
from a list of all 6250 cyclics, will be denoted by

fC2
i2;0
; C2

i2;1
; : : : ; C123

i123;24
gc:

Treating the matrices as vectors with 15,625 components, di�erent cyclics of the

same step are orthogonal with respect to the usual dot product. The discussion preceding
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Lemma 10.2.3 shows that cyclics of steps a and b have dot product 1 provided that a� b

is invertible modulo n. For n a p prime power, all elements prime to p are invertible. If

a� b is not prime to p, then the dot product depends on the di�erence of the starts r� s.

When n is the cube of a prime p, we record the needed dot products as:

Lemma 14.2.2.

(Car ; C
a
s ) =

8><
>:
n if r = s;

0 if r 6= s:

For a 6= b,

(Car ; C
b
s) =

8>>>>>>><
>>>>>>>:

1 if p 6 ja� b;

0 if pja� b but 6 jr� s or p2ja� b but 6 jr� s;

p if pja� b and jr� s but p2 6 ja� b;

p2 if p2ja� b and jr � s.

Proposition 14.2.3. The matrices of an admissible set

fC2
i2;0
; C2

i2;1
; : : : ; C123

i123;24
gc

are linearly independent, or equivalently, an expansion

E =
X

a2f2;3;7;:::;123g

124X
i=0;i6=ia;0;ia;1;:::;ia;24

ci;aC
a
i

is unique. In fact,

f(Cai � Caia;r )=125; i 6= ia;r; i �25 r; r = 0; : : : ; 24; a 2 f2; 3; 7; : : : ; 123gg (14.2.4)

is a dual basis to fC2
i2;0
; C2

i2;1
; : : : ; C123

i123;24
gc, i.e.,

ci;a = (Cai � Caia;r ; E)=125; i �25 r:

Proof. The proof follows by breaking the situation into cases and using Lemma 14.2.2. For

example, let's look at the case a �25 b and i �25 s. By the way we chose our candidates

for a dual basis, i �25 ia;r and using the transitivity of congruence, s �25 ia;r. Hence,

(Cbs ; C
a
i � Caia;r )=125 = ((Cbs; C

a
i )� (Cbs ; C

a
ia;r))=125 = (25� 25)=125 = 0:
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We are now in a position to establish the main result of the section.

Theorem 14.2.4. Every matrix E 2 C125 has a unique expansion of the form

E = mJ +

4X
r=0

�
mr;2M

2
r +mr;3M

3
r

�

+

24X
r=0

�
nr;2N

2
r + nr;3N

3
r + � � �+ nr;23N

23
r

�
+

124X
i=0

X
a2f2;3;7;:::;123g

ci;aC
a
i ; (14.2.5)

where m is an arbitrary integer � 0, mr;2, mr;3, nr;2, nr;3, : : : , nr;23 and ci;a are integers

� 0, subject to the condition that

4Y
r=0

mr;2 =

4Y
r=0

mr;3 = 0;

4Y
i=0

n5i+r;2 =

4Y
i=0

n5i+r;3 = � � � =
4Y
i=0

n5i+r;23 = 0; r = 0; : : : ; 4

Y
i�25r

ci;a = 0 8a 2 f2; 3; 7; : : : ; 123g and r = 0; : : : ; 24:
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We deduce that

X
E2C125

X(E) =
1

1�X(J)

1�X(M2
0)X(M2

1 )X(M2
2)X(M2

3)X(M2
4 )

(1�X(M2
0 ))(1�X(M2

1 ))(1�X(M2
2 ))(1�X(M2

3 ))(1�X(M2
4 ))

1�X(M3
0)X(M3

1 )X(M3
2)X(M3

3)X(M3
4 )

(1�X(M3
0 ))(1�X(M3

1 ))(1�X(M3
2 ))(1�X(M3

3 ))(1�X(M3
4 ))

1�X(N2
0)X(N2

5) : : :X(N2
20)

(1�X(N2
0 ))(1�X(N2

5)) : : :(1�X(N2
20))

1�X(N2
1)X(N2

6) : : :X(N2
21)

(1�X(N2
1 ))(1�X(N2

6)) : : :(1�X(N2
21))

...

1�X(N2
4)X(N2

9) : : :X(N2
24)

(1�X(N2
4 ))(1�X(N2

9)) : : :(1�X(N2
24))

1�X(N3
0)X(N3

5) : : :X(N3
20)

(1�X(N3
0 ))(1�X(N3

5)) : : :(1�X(N3
20))

...

1�X(N23
4 )X(N23

9 ) : : :X(N23
24)

(1�X(N23
4 ))(1�X(N23

9 )) : : :(1�X(N23
24))Y

a2f2;3;7;:::;123g

�
1�X(Ca0)X(Ca25)X(Ca50)X(Ca75)X(Ca100)

(1�X(Ca0))(1�X(Ca25))(1�X(Ca50))(1�X(Ca75))(1�X(Ca100))

1�X(Ca1)X(Ca26)X(Ca51)X(Ca76)X(Ca101)

(1�X(Ca1))(1�X(Ca26))(1�X(Ca51))(1�X(Ca76))(1�X(Ca101))

...

1�X(Ca24)X(Ca49)X(Ca74)X(Ca99)X(Ca124)

(1�X(Ca24))(1�X(Ca49))(1�X(Ca74))(1�X(Ca99))(1�X(Ca124))

�
: (14.2.6)

In particular, the generating function for the index is

X
A2C125

tindA =
1

1� t125

�
1� t125

(1� t25)5

�2�
1� t25

(1� t5)5

�50�
1� t5

(1� t)5

�1250

=
(1� t125)(1� t25)40(1� t5)1000

(1� t)6250
:

Proof. Extract the maximum possible copy of the trivial as possible. Take what's left

and divide the entries based on locations congruent modulo 5. Take the minimum for

each of these sets. M -Compound cyclics interact like cyclics for order 5. Hence, use

Theorem 10.2.1 to decompose this M -compound cyclic part.
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Take what's left and divide the entries based on locations congruent modulo 25.

Take the minimum for each of these sets. N -Compound cyclics interact like cyclics for

order 25. Hence, use Theorem 14.1.4 to decompose this N -compound cyclic part.

What remains is compound cyclic-free. Use Proposition 14.2.3 to decompose this

part. The generating function follows from the same reasoning as used in the proof of

Theorem 10.2.1.

14.3 Result for general prime power

We present notation which allow us to formalize the iterations introduced in the

previous 2 sections.

Let C(q) stand for the set of starts of cyclics of order q, e.g.,

C(25) = f2; 3; 7; 8; 12; 13; 17; 18; 22; 23g:

Let's de�ne the compound cyclic of step a, start r and modulus pk to be

Ma
r (p

k) =
�(j �pk ai+ r)

:
Compound cyclics are de�ned for a 2 C(pk), r = 0; : : : ; pk, and k = 1; : : : ; n� 1.

Theorem 14.3.1. Every matrix E 2 Cpn has a unique expansion of the form

E = mJ +
X

a2C(p)

p�1X
r=0

mr;a;1M
a
r (p) +

X
a2C(p2)

p2�1X
r=0

mr;a;2M
a
r (p

2)

+ � � �+
X

a2C(pn�1)

pn�1�1X
r=0

mr;a;n�1M
a
r (p

n�1) +

pn�1X
i=0

X
a2C(n�1)

ci;aC
a
i ; (14.3.7)

where m is an arbitrary integer � 0, mr;a;k, ci;a are integers � 0, subject to the condition

that

pk�1Y
r=0

mr;a;k = 0; 8a 2 C(pk); k = 1; : : : ; n� 1

Y
i�

pn�1 r

ci;a = 0 8a 2 C(pn) and r = 0; : : : ; pn�1 � 1:
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We deduce that

X
E2Cpn

X(E) =
1

1�X(J)

n�1Y
k=1

Y
a2C(pk)

4Y
r=0

1�
Q
i�

pk�1 r
X(Ma

i )Q
i�

pk�1 r
(1�X(Ma

i ))

Y
a2C(pn)

4Y
r=0

1�
Q
i�

pn�1 r
X(Cai )Q

i�
pn�1 r

(1�X(Cai ))
:

In particular, the generating function specialized to the index is

X
A2Cpn

tindA

=
1

1� tp
n

�
1� tp

n

(1� tp
n�1

)p

�c(p) 
1� tp

n�1

(1� tp
n�2

)p

!c(p2)p
: : :

�
1� tp

(1� t)p

�c(pn)pn�1

=
(1� tp

n

)(1� tp
n�1

)(c(p
2)�c(p))p : : : (1� tp)(c(p

n)�c(pn�1))pn�1

(1� t)c(p
n)pn

where c(q) = jC(q)j.



Chapter 15

Linear span of cyclic P -squares for

composite order

Composite orders require more sophisticated techniques than primes and prime

powers. We present the solution space of order 35 cyclics, a model for the general case.

15.1 Generating series for order 35

The pandiagonal cyclics of order 35 have steps 2, 3, 12, 17, 18, 23, 32 and 33. The

sum of each of the cyclics for a particular step still equals the trivial, but there are �ner

relations.

The compound cyclic of step a, start r and modulus 5 is

Ma
r = k�(j �5 ai+ r)k:

For the residues r = 0; : : : ; 4, we get some relations associated with the modulus 5 com-

pound cyclics,

M2
r =

4X
i=0

C2
r+5i =

4X
i=0

C12
r+5i =

4X
i=0

C17
r+5i =

4X
i=0

C32
r+5i

and

M3
r =

4X
i=0

C3
r+5i =

4X
i=0

C18
r+5i =

4X
i=0

C23
r+5i =

4X
i=0

C33
r+5i:

The subset of cyclics which appears in a sum is a mod 5 subclass of cyclic matrices, e.g.,

residue r = 3 gives a subclass of step 12 cyclics, fC12
3 ; C

12
8 ; : : : ; C

12
33g.

170



171

The compound cyclic of step a, start r and modulus 7 is

Na
r = k�(j �7 ai+ r)k:

For the residues r = 0; : : : ; 6, the associated relations are

N2
r =

6X
i=0

C2
r+7i =

6X
i=0

C23
r+7i N3

r =

6X
i=0

C3
r+7i =

6X
i=0

C17
r+7i

and

N4
r =

6X
i=0

C18
r+7i =

6X
i=0

C32
r+7i N5

r =

6X
i=0

C12
r+7i =

6X
i=0

C33
r+7i:

The subset of cyclics which appears in a sum is a mod 7 subclass of cyclic matrices, e.g.,

residue r = 3 gives a subclass of step 17 cyclics, fC17
3 ; C

17
10; : : : ; C

17
31g.

For composite order n, there is no unique way to decompose an element of E 2 Cn.

Instead, we give a canonical such decomposition. Extract a multiple of the trivial by

as usual looking for the minimum of entries. Next, extract multiples of the modulus 5

compound cyclics, then the modulus 7 compound cyclics. The extracted compound-cyclics

are an admissible compound-cyclic set, a 2� 4 + 4� 6-tuple of compound-cyclics formed

by taking the complement of a 2 + 4-tuple of compound-cyclics

fM2
i2
;M3

i3
; N2

j2
; N3

j3
; N4

j4
; N5

j5
g:

Proposition 15.1.1. An admissible compound-cyclic set is independent. In fact, (Ma
r �

Ma
ia
)=245, r = 0; : : : ; 4, r 6= ia, a = 2; 3, (Na

r �N
a
ja
)=175, r = 0; : : : ; 6, r 6= ja, a = 2; : : : ; 5,

is a dual basis to

fM2
i2
;M3

i3
; N2

j2
; N3

j3
; N4

j4
; N5

j5
gc:

Proof. The nonzero elements which appear in a particular row of M c
r are at the locations

fa; a+ 5; : : : ; a+ 30g. The nonzero elements which appear in a particular row of Nd
s are

at the locations fb; b+7; : : : ; b+28g. Finding the intersection of these 2 sets is equivalent

to solving the simultaneous set of equations modulo 35

x �5 a

x �7 b:
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By the Chinese remainder theorem, there is a unique solution for each such system. Hence,

(Ma
r ; N

b
s) = 35 8r; s; a; b

A modulus 5 compound-cyclic is 7�7 copies of an order 5 cyclic. A modulus 7 compound-

cyclic is 5� 5 copies of an order 7 cyclic. Hence, we can use the results from Chapter 13

for relations within each of the modulus 5 and modulus 7 compound-cyclic parts.

Corollary 15.1.2. The generating function for the compound-cyclic part is

1

1�X(J)

1�X(M2
0)X(M2

1 )X(M2
2)X(M2

3)X(M2
4 )

(1�X(M2
0 ))(1�X(M2

1 ))(1�X(M2
2 ))(1�X(M2

3 ))(1�X(M2
4 ))

1�X(M3
0)X(M3

1 )X(M3
2)X(M3

3)X(M3
4 )

(1�X(M3
0 ))(1�X(M3

1 ))(1�X(M3
2 ))(1�X(M3

3 ))(1�X(M3
4 ))

1�X(N2
0)X(N2

1) � � �X(N2
6)

(1�X(N2
0))(1�X(N2

1)) � � �(1�X(N2
6))

...

1�X(N5
0)X(N5

1) � � �X(N5
6)

(1�X(N5
0 ))(1�X(N5

1)) � � �(1�X(N5
6 ))

:

(15.1.1)

What's left is compound-cyclic-free. The generating function requires an operation

\�". De�ne
Q
i2AX(Ci)�

Q
i2BX(Ci) =

Q
i2A[BX(Ci). In words, the \�" eliminates any

duplication.

Proposition 15.1.3. The generating function for the compound-cyclic-free part has as

numerator

Y
a2f2;3;12;17;18;23;32;33g

(((1�X(Ca0)X(Ca5) : : :X(Ca30))

(1�X(Ca1)X(Ca6) : : :X(Ca31)) : : :(1�X(Ca4)X(Ca9) : : :X(Ca34))) �

((1�X(Ca0)X(Ca7) : : :X(Ca28))(1�X(Ca1)X(Ca8) : : :X(Ca29)) : : :

(1�X(Ca6)X(Ca13) : : :X(Ca34))))

and denominator

Y
a2f2;3;12;17;18;23;32;33g

34Y
r=0

(1�X(Car )):
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After programming the star operation, Mathematica outputs:

Corollary 15.1.4. The generating function for the compound-cyclic-free part restricted

to cyclics of one particular step, specialized to the index has as numerator

1� 7 t5 � 5 t7 + 21 t10 + 35 t11 + 10 t14 � 140 t15� 70 t17

+175 t19 + 245 t20 � 10 t21 � 455 t23� 231 t25+ 350 t26+ 455 t27

+5 t28 � 595 t29 + 112 t30 + 245 t32 � 175 t33 + 35 t34 � t35 =

(1� t)7(1 + 7 t+ 28 t2 + 84 t3 + 210 t4 + 455 t5 + 875 t6 + 1515 t7

+2380 t8 + 3395 t9 + 4375 t10+ 5040 t11+ 5075 t12+ 4235 t13+ 2505 t14

+175 t15 � 2170 t16 � 3815 t17 � 4235 t18� 3395 t19� 1785 t20

�200 t21 + 735 t22 + 840 t23 + 455 t24 + 84 t25� 42 t26 � 28 t27 + t28)

and as denominator (1� t)35.

The generating function for the entire compound-cyclic-free part specialized to the

index is the 8th power of the above. Putting the pieces together,

Proposition 15.1.5. The generating function for C35, specialized to the index, is

(1� t35)6(1� 7 t5 � 5 t7 + 21 t10 + 35 t11 + 10 t14 � 140 t15 � � � � � t35)8

(1� t35)(1� t7)10(1� t5)28(1� t)280
:

Proof of Proposition 15.1.3. The conditions that an expression be compound-cyclic-free

in one step are independent from those of another step. Hence, we need only consider a

�xed step.

Within a �xed step, the generating function follows from inclusion-exclusion. Since

inclusion-exclusion involves union, the \�" operation takes care of overlap. Note that the

\�" operation is not needed within compound-cyclics of the same type since those sets are

disjoint.

15.2 Generating series for general composite orders

Factor the order n into a product of maximal prime powers. Take each of these

prime powers and extract the composite-cyclics modulo that prime power. The Chinese

remainder theorem shows as in the proof of Proposition 15.1.1 that the composite-cyclics

modulo one prime power are independent of the composite-cyclics modulo another. Hence,
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the generating function for the composite-cyclic part is the product of the generating

functions for each of the composite-cyclics modulo one of the prime powers.

Since the composite-cyclics modulo a prime power are just multiple copies of cyclics

with prime power order, such a generating function follows from the material of Chapter 14.

For the composite-cyclic-free part, use the \*" operation between the products of the

cyclics in the numerator which arise from compound-cyclics of di�erent moduli.



Chapter 16

Order 6, 7 and 8 examples

16.1 Bicyclic squares of order 2m: general facts

Since the order n is a power of 2, all odd numbers are prime to n.

De�nition 16.1.1. Given an even start e, an odd start o, and a singly even step a,

Bae;o = Cae + Cao is a bicyclic.

Denote by Bn the nonnegative integer span of the order n pandiagonal bicyclic and

transpose bicyclic matrices. In the next section, we present the generating function for

the bicyclic space of order 8.

Proposition 16.1.2. Bicyclics are pandiagonal.

Proof. By de�nition, cyclics have equal row sums. Since a� 1 and a+ 1 are prime to n,

Cae and Cao are primary and secondary diagonal by Proposition 12.2.1 Parts 2 and 3.

j �n ai + e clearly has no solution for j odd. For j even, divide j, a, e and n by

two. Since a is singly even, a=2 is invertible. For a �xed even j, there is a unique i modulo

n=2 or exactly 2 i's modulo n. Hence, Cae hits every even column twice. Similarly, Cao hits

every odd column twice. (If j is odd, subtract o from both sides of j �n ai+ o. j � o is

even and we can again divide the whole equation by 2.)

Proposition 16.1.3. Bn is invariant under pandiagonal symmetries.

Proof. Under toric translations, the cyclics of a particular step are invariant and the

parities of the starts of a bicyclic remain the same or switch. Hence, the bicyclics are

invariant under toric translations.

175
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The linear symmetries are2
4� 0

0 �

3
5

2
4� 0

0 ��

3
5

2
4� 0

0 �

3
5

2
40 �

� 0

3
5

2
4 0 �

�� 0

3
5

for all � odd.

Given the cyclic Car , �(j �n ai+ r), the �rst matrix gives us �(��1j �n a�
�1i+ r)

or �(j �n ai+�r), i.e., the start is multiplied by �. Since � is odd, the parity is una�ected.

The second matrix gives us �(���1j �n a�
�1i+ r) or �(j �n �ai��r). The step

is multiplied by �1 and the start is multiplied by ��. Since a is singly even, then so is

the new step �a. � is odd which implies that �� is too; hence the parity of the start is

una�ected.

The other matrices are just the composition of a previously considered case and

the matrix 2
40 1

1 0

3
5

which transposes the matrix. Since transpose cyclics are included in our space, we get

closure under these matrices too.

16.2 The bicyclic squares of order 8

The step of an order 8 bicyclic can be either 2 or 6. Once the step is chosen, there

are 4 choices for e and 4 choices for o. We need to �nd the relations among the bicyclics

and transpose bicyclics.

Solving simultaneously

j �n 2i+ r

j �n 6i+ s;

we get

(C2
r ; C

6
s ) =

8><
>:
0 4 6 jr� s;

4 4jr� s:

(16.2.1)
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As a consequence, we get

(B2
e1;o1

; B6
e2;o2

) =

8>>>><
>>>>:

0 4 6 je1 � e2; 4 6 jo1 � o2;

4 4 6 je1 � e2; 4jo1 � o2 or 4je1 � e2; 4 6 jo1 � o2;

8 4je1 � e2; 4jo1 � o2:

(16.2.2)

As was done for the linear span of the cyclics, we de�ne compound objects which we

extract �rst, leaving a compound-free part. Each of the compound objects, which we shall

call a compound bicyclic, can be thought of either as the sum of 2 compound cyclics of

di�erent parity or as the sum of 2 bicyclics. We shall call such a pair of bicyclics compound

complements.

De�nition 16.2.1. The compound cyclic modulo 4 with start r and step 2 is

CCr = �(j �4 ai+ r):

The compound bicyclic modulo 4 with starts e and o and step 2 is

CBe;o = CCe + CCo:

Recall that

CCr = Car + Car+4;

for r = 0; 1; 2; 3, a = 2; 6. In a similar vein, we get

CBe;o = Bae;o +Bae+4;o+4

CBe;o = Bae;o+4 + Bae+4;o;

for e = 0; 2, o = 1; 3, a = 2; 6.

An order 8 compound bicyclic is 4 copies of an order 4 bicyclic juxtaposed to get

an order 8 matrix. Hence, we can use Theorem 8.7.2 for the generating function of the

space of compound bicyclics and compound tbicyclics. What's left is compound-free.

Proposition 16.2.2. The bicyclics of order 8 in a compound-free set are independent.

Proof. For a �xed bicyclic, the conditions of divisibility by 4 in (16.2.2) will be the same

for a bicyclic of a di�erent step and its complement, allowing us to apply the collection of

each bicyclic minus its complement as linear functionals to separate the bicyclics of step 2

from those of step 6. Lemma 8.5.3 allows us to separate the bicyclics from the transpose
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bicyclics using the same linear functionals. Hence, it su�ces to show the independence

of the compound-free within one step. The entire set of bicyclics for a particular step is

none other than the direct product of the space of odd cyclics and the space of the even

cyclics for that step. A basis for this space is the tensor product of bases for each of the

spaces. The cyclics of a �xed step are orthogonal. Since the compound-free are a subset

of this set, they are certainly independent.

Corollary 16.2.3. The generating function for the compound-free subset of B8 isQ
a2f2;6g; e2f0;2g; o2f1;3;5;7g

�
1�X(CBae;o)X(CBae+4;o+4)

� �
1�X(tCB

a
e;o)X(tCB

a
e+4;o+4)

�
Q
a2f2;6g; e2f0;2;4;6g; o2f1;3;5;7g

�
1�X(CBae;o)

� �
1�X(tCBa

e;o)
�

Specializing to the index, we get

(1� t4)32

(1� t2)64
=

�
1 + t2

1� t2

�32

:

Combining with the compound-cyclics, we get

Corollary 16.2.4. The generating function specialized to the index for B8 is

X
A2B8

tindA =
1

1� t8

�
1 + t4

1� t4

�4�
1 + t2

1� t2

�32

:

16.3 P -squares and most-perfect squares

Our methods have not yet yielded decompositions for P6 and P7. Computer exper-

imentation reveals that each space has several 100's of thousands of extreme rays. Up to

symmetry, the number reduces down in both cases to around 1000 with a wide spectrum

of orders. For order 6, there are 265,536 extreme rays. Up to pandiagonal symmetries,

there are 960 completely fundamental elements. Enumerating the completely fundamental

element representatives with regards to the size of the stabilizer, we get

order of stabilizer 1 2 4

# 889 61 72.

As a check, 265536 = 889 � 288 + 61 � 144 + 10 � 72. Enumerating with regards to the

indices,

index 6 12 18 24 30 36

# 384 385 145 36 8 2.
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Most perfect squares are magic squares that are both W -squares and P -squares.

By Corollary 4.4.6, only an additional equation which links two diagonals with index of

di�erent parity is needed to obtain the space of most-perfect squares from W -squares.

Hence, the dimension of the space of most-perfect squares of order n is 2n� 3. Computer

experimentation has shown that there are 918 extreme rays for n = 6 and 10568 extreme

rays for n = 8, with 250 and 2496 extreme rays in a facet, respectively. For order 6, there

is an additional symmetry which is not pandiagonal.

Proposition 16.3.1. An order 6 most perfect square which has 3 consecutive columns

(rows) reversed remains a most perfect square.

Proof. Using the torus transformations, we can assume that the �rst 3 columns have been

reversed. Use "0" to indicate the objects in the transformed square. The transformation

leaves the sets of rows and columns invariant. The blocks of 4 squares will still have equal

sums, e.g., the 3rd upper block is an alternating sum of the �rst 3 original blocks. By

Corollary 4.4.6, it su�ces to show that 1 diagonal has a sum equal to a previous diagonal.

In terms of the entries of the original square, P 00 is0
BBBBBBBBBBB@

a0

b

c0

d

e

f

1
CCCCCCCCCCCA

By Lemma 4.4.4, a0 + c0 is equal to the a+ c of the diagonal P00
BBBBBBBBBBB@

a

b

c

d

e

f

1
CCCCCCCCCCCA

of the original square.

Up to symmetry, including this new most perfect symmetry, there are 5 extreme rays for

order 6, with indices, 6,6,12,12 and 24:
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0
BBBBBB@

0 0 1 1 2 2

2 2 1 1 0 0

0 0 1 1 2 2

2 2 1 1 0 0

0 0 1 1 2 2

2 2 1 1 0 0

1
CCCCCCA

0
BBBBBB@

0 1 0 2 1 2

1 2 1 1 0 1

1 0 1 1 2 1

1 2 1 1 0 1

1 0 1 1 2 1

2 1 2 0 1 0

1
CCCCCCA

012112212 0812028

0
BBBBBB@

0 0 3 3 3 3

3 5 0 2 0 2

0 0 3 3 3 3

4 4 1 1 1 1

0 0 3 3 3 3

5 3 2 0 2 0

1
CCCCCCA

0
BBBBBB@

0 2 3 2 3 2

3 3 0 3 0 3

0 2 3 2 3 2

3 3 0 3 0 3

0 2 3 2 3 2

6 0 3 0 3 0

1
CCCCCCA

01014243144252 010293166

0
BBBBBB@

0 0 5 6 7 6

7 9 2 3 0 3

0 0 5 6 7 6

7 9 2 3 0 3

0 0 5 6 7 6

10 6 5 0 3 0

1
CCCCCCA

010223554677592(10).

16.4 Jump W -squares of order 6

Recall that in P -squares of order 4, nonadjacent elements in a diagonal sum to half

the index. We say that a square of order n, even, is diagonally jump or jump for short

if elements that are located a distance n=2 along any diagonal sum to 2
n
times the index.

Let JWn denote the set of jump W -squares of order n with nonnegative integer entries.

For order 6, there is only one completely fundamental square up to torus translation and

dihedral operations: 0
BBBBBBBBBBB@

2 1 0 2 1 0

0 1 2 0 1 2

2 1 0 2 1 0

0 1 2 0 1 2

2 1 0 2 1 0

0 1 2 0 1 2

1
CCCCCCCCCCCA
:

We classify the completely fundamental squares by whether the rows of 1's are horizontal,

as above, or vertical. There are 6 of each type.
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To decompose a jump W -square A, proceed as usual by �nding the minimal value

of the entries, m, and subtracting mJ from A to get AO. With at least one entry 0, AO

will be on at least one of the facets. The cross section polytope is a hexagon�hexagon

centered at J ; each hexagon is a composed of one type of completely fundamental square.

Each facet of the cross section polytope is a tetrahedron with 2 horizontal and 2 vertical

completely fundamental squares. Instead of a Schlegel diagram, we depict the �gure by

cutting one of the hexagons and straightening it out on the y-axis. The other hexagon is

left undistorted but projected onto the xz-plane. (See Figure 16.1). If we now connect

Figure 16.1: 2 perpendicular hexagons, one \straightened" onto the y axis.

each vertex in one of the hexagons with the vertices of the other hexagon, we get 30 of the

facets (see Figure 16.2). The other 6 facets are formed by rejoining the hexagon which has

been cut. Denote the 6 horizontal completely fundamental squares by fH0;1; : : : ; H3;2g,

where indices indicate respectively the locations of the �rst 0 and and the �rst 2 in row

0. The example is H2;0. Similarly list the 6 vertical extremes as fV0;1; : : : ; H2;0g, where

the indices correspond respectively to the locations of the �rst 0 and the �rst 2 in column

0. Two extremes of the same type are adjacent iff one of their indices is the same. Two

extremes of the same type are opposite iff their indices are the reverse of one another.

Proposition 16.4.1. The generating function for diagonally jump W -squares of order 6
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Figure 16.2: 30 of the 36 facets of the hexagon�hexagon.

is

X
A2JP6

X(A) =
1

1�X(J)�
1

(1�X(H0;1))(1�X(H0;2))
+

X(H1;2)

(1�X(H0;2))(1�X(H1;2))
+ : : :

+
X(H2;1)

(1�X(H2;0))(1�X(H2;1))
+

X(H0;1)X(H2;1)

(1�X(H0;1))(1�X(H2;1))

�
�

1

(1�X(V0;1))(1�X(V0;2))
+

X(V1;2)

(1�X(V0;2))(1�X(V1;2))
+ : : :

+
X(V2;1)

(1�X(v2;0))(1�X(V2;1))
+

X(V0;1)X(V2;1)

(1�X(V0;1))(1�X(V2;1))

�
(16.4.3)

In particular, the generating function specialized to the index is

X
A2JP6

tindA =
1

1� t6

�
1 + 4t6 + t12

(1� t6)2

�2

=
(1 + 4t6 + t12)2

(1� t6)5
:

Proof. It remains to check whether there are any other fundamental squares within a facet

besides the completely fundamental. Restricting to a facet, the index of the subgroup

generated by the completely fundamental jump squares in the group of all jump squares is
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the GCD of all the 4� 4 subdeterminants of the 4 completely fundamental which de�ne a

facet written as row vectors. A quick look at a group of 4 completely fundamental squares

which de�ne a facet

2 1 0 2 1 0 0 1 2 0 1 2 2 � � �
2 0 1 2 0 1 0 2 1 0 2 1 2 � � �
2 0 2 0 2 0 0 2 0 2 0 2 1 � � �
2 0 2 0 2 0 1 1 1 1 1 1 0 � � �

reveals that the GCD is 1, e.g., choose columns 2,6,7 and 13.

16.5 Jump W -squares of order 8

For jump W -squares of order 8, the completely fundamental squares up to dihedral

operations and torus translation are

0
BBBBBBBBBBBBBBBB@

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1
CCCCCCCCCCCCCCCCA

and

0
BBBBBBBBBBBBBBBB@

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1
CCCCCCCCCCCCCCCCA

;

but the pandiagonal symmetry de�ned by the index operator

2
43 0

0 3

3
5 is an involution which

transforms each matrix above into the other. Hence, up to pandiagonal symmetries, there

is again only one completely fundamental square.

Denote the 8 completely fundamental squares with horizontal blocks of 1's of size 2,

such as the �rst one above, with fH20; : : : ; H27g and the 8 completely fundamental squares

with horizontal blocks of 1's of size 4, such as the second one above, with fH40; : : : ; H47g,

the index in each case identifying the start of the block of consecutive 1's in row 0. The

remaining 16 fundamental elements have vertical blocks of 1's of size 2 and 4 and are

denoted with fV 20; : : : ; V 27g and fV 40; : : : ; V 47g, respectively, the index in each case

identifying the start of the block of consecutive 1's in row 0. . To decompose a square A,

extract a multiple of the trivial J to get A0, a square which is located on the boundary.

Each facet of the cross section polytope is the direct product of a cube with 8 horizontal
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extreme rays and a cube of 8 vertical extreme rays. For an example of the extreme rays

of such a cube, we have

H41 =

0
BBBBBBBBBBBBBBBB@

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

1
CCCCCCCCCCCCCCCCA

H23 =

0
BBBBBBBBBBBBBBBB@

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

1
CCCCCCCCCCCCCCCCA

H42 =

0
BBBBBBBBBBBBBBBB@

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

1
CCCCCCCCCCCCCCCCA

H43 =

0
BBBBBBBBBBBBBBBB@

0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

H24

0
BBBBBBBBBBBBBBBB@

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0

1
CCCCCCCCCCCCCCCCA

H44 =

0
BBBBBBBBBBBBBBBB@

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1
CCCCCCCCCCCCCCCCA
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H21 =

0
BBBBBBBBBBBBBBBB@

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

1
CCCCCCCCCCCCCCCCA

H26 =

0
BBBBBBBBBBBBBBBB@

0 1 0 0 1 0 1 1

1 0 1 1 0 1 0 0

0 1 0 0 1 0 1 1

1 0 1 1 0 1 0 0

0 1 0 0 1 0 1 1

1 0 1 1 0 1 0 0

0 1 0 0 1 0 1 1

1 0 1 1 0 1 0 0

1
CCCCCCCCCCCCCCCCA

:

The squares have been presented above so that adjacencies are preserved, see Figure 16.3.

Notice that any 2 opposite vertices of the cube sum to

H41

H42

H24

H21

H23

H43

H46

H24

Figure 16.3: A horizontal cube in a facet for jump W -squares of order 8.
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C =

0
BBBBBBBBBBBBBBBB@

0 1 1 1 2 1 1 1

2 1 1 1 0 1 1 1

0 1 1 1 2 1 1 1

2 1 1 1 0 1 1 1

0 1 1 1 2 1 1 1

2 1 1 1 0 1 1 1

0 1 1 1 2 1 1 1

2 1 1 1 0 1 1 1

1
CCCCCCCCCCCCCCCCA

:

By removing any multiples of C, we are assured of being on the boundary of the cube.

The GCD of the 4 � 4 subdeterminants formed from 3 adjacent vertices of the cube and

C is 1. To get the generating function for the facet, it remains to shell the cube. Instead

of getting an explicit form for the generating function, I will instead sketch the process

and derive the generating function specialized to the index. Since the index is always a

multiple of 4, let u = t4, where the power of t is keeping track of the index. We begin

the shelling with the top of a cube, which is a square: 1+u
(1�u)3

. Triangulating the sides of

the cube so that the triangles adjacent to the top have no common edges, we add 4u
(1�u)3

.

The remaining 4 triangles of the sides and �rst triangle of the bottom contribute 5u2

(1�u)3 .

The last triangle in the bottom contributes u3

(1�u)3
. Adding C back into the picture and

remembering that we are looking at only half of a direct product, we conclude that the

generating function specialized to the index for a facet of jump W -squares of order 8 is

1

(1� u2)2
(1 + 5u+ 5u2 + u3)2

(1� u)6
;

with u replaced by t4.
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