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ABSTRACT OF THE DISSERTATION

Triangulating Teichmüller space using the Ricci flow

by

Graham P. Hazel

Doctor of Philosophy in Mathematics

University of California San Diego, 2004

Professor Justin Roberts, Chair

The behaviour of the Ricci flow on hyperbolic surfaces is investigated via a combi-

natorial analogue first studied by Chow and Luo. The natural cell decompositions

of Teichmüller and moduli spaces of hyperbolic metrics on decorated surfaces give

parameters for and are shown to be compatible with the combinatorial flow. Hence

elegant new proofs of the cell decompositions are obtained, as well as a practical

algorithm for reconstructing a metric on a hyperbolic surface from a point in the

corresponding cell complex.
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Chapter 1

Introduction

The Ricci flow, first introduced by Hamilton [4], is a natural evolution equation

on the space of metrics on a manifold, under which a metric g evolves by

d

dt
g(t) = −2Ricg(t)

where Ricg(t) is the Ricci curvature. Roughly speaking, the action of this flow

is to “even the distribution of curvature” in a manifold—the fixed points of the

(volume-normalised) flow are the geometries of constant Ricci curvature.

Remarkable new results of Perelman [8] [9] [10] show that, for a closed, oriented

3-manifold M equipped with an initial smooth metric g, the singularities (that is,

degenerations of the metric) which appear as the flow evolves are directly related

to the topological sphere and torus decompositions of M . The singularities can be

resolved by performing surgery on the manifold according to these decompositions,

with the flow then continuing on the newly separated pieces. It turns out that

any piece which has no further singularities for all time must have a geometric

structure—a complete, locally homogeneous Riemannian metric—and so must be a

quotient of one of the eight standard 3-dimensional geometries: H3, R3, S3, H2×R,

1
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˜SL(2,R), Nil , Sol and S2 × R. Thus—assuming Perelman’s results are verifed—

the flow not only proves Thurston’s celebrated geometrisation conjecture [11], that

each component of the sphere and torus decomposition of M admits a geometric

structure (which, as an aside, implies the Poincaré conjecture), but it identifies

the decomposition of M and its unique geometric structure, the “best possible”

metric, for you!

In two dimensions, of course, the story is much different. The classical uniformi-

sation theorem holds that every closed surface admits a metric of constant Gauss

curvature +1, 0 or -1, and thus is a quotient of either R2, S2 or H2 by a discrete

group of isometries. This fact is reflected by the behaviour of the two-dimensional

Ricci flow introduced by Hamilton in [5] and defined by

d

dt
g(t) = −2Kg(t)

where K is the Gaussian curvature of the surface (equal to the Ricci curvature

in two dimensions). Hamilton [5] and Chow [2] show that for any closed surface

and any initial Riemannian metric, the Ricci flow exists for all time (that is, never

degenerates), and—after normalising for constant area—the flow converges to a

metric with constant curvature as time goes to infinity. Thus the uniformisation

theorem says that in two dimensions, the topology is never interesting enough to

require a decomposition of the surface into pieces of different geometric types; the

Ricci flow, which never degenerates, agrees.

Sadly, though, this isn’t the whole story, for it turns out that the topology of

a surface isn’t even interesting enough to nail down the “best possible” constant

curvature metric uniquely. For example, a closed surface F of genus g ≥ 2 has a

(6g−6)-dimensional space of such metrics (in a suitable natural sense). So although

the Ricci flow is guaranteed to converge to a metric of constant curvature, which

one it heads towards depends on the choice of initial metric.
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One way to try to understand this is to concentrate not on the Ricci flow

itself, but on a combinatorial analogue. In [3], Chow and Luo study such an

analogous flow on triangulations of closed surfaces, showing that, with suitable

initial conditions, such a flow will converge to a circle packing metric.

However, when our surfaces admit hyperbolic structures and have some kind of

“decoration” (for instance, geodesic boundary or marked points), help is at hand.

There is a natural cell decomposition of the space of hyperbolic structures on such

a surface, with coordinates coming from the intrinsic geometry of the metrics. This

was first shown for the case of surfaces with at least one cusp, by Bowditch and

Epstein [1]. (The cell complex itself was first introduced by Harer [6], but his

coordinates come from quadratic differentials, not from geometry.)

In the thesis we show that this description of the space of hyperbolic struc-

tures is compatible with the Ricci flow, in the following sense. Each cell in the

decomposition corresponds to a different combinatorial blueprint (analogous to a

triangulation), while the simplicial coordinates within the cell give us parameters

for the metric. We show that—when subjected to these constraints—the combi-

natorial Ricci flow of Chow and Luo converges to a unique hyperbolic metric, for

any initial choice of the unconstrained variables.

Hence we obtain elegant new proofs of the cell decompositions of the spaces

of hyperbolic metrics on decorated surfaces. Furthermore, our work suggests a

practical algorithm (given a computer and enough time) for finding the “best

possible” constant curvature metric for a surface, given its coordinates in the cell

decomposition.

In chapter 2 we make definitions, fix notation and introduce concepts relevant

to the whole account. Chapters 3–5 concentrate individually on the three separate

cases (types of surface) we tackle with the combinatorial Ricci flow. Chapter 6

then deals with a further case where we identify a cell decomposition by building
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on our previous work. Finally, chapter 7 contains some comments about our failure

to address the case of closed surfaces.

A good reference for the basic hyperbolic plane geometry used in the calcu-

lational lemmas (containing, for example, derivations of the hyperbolic sine and

cosine rules for triangles) is Thurston’s book [12].



Chapter 2

Some definitions and notation

2.1 Teichmüller space

Let F be a fixed topological surface which admits a hypberbolic structure under

which the boundary of F (if non-empty) is geodesic. Let SF be the space of such

structures.

Definition 2.1. The Teichmüller space T F of F is the quotient of SF by Diff0F ,

the group of diffeomorphisms of F homotopic to the identity via a homotopy taking

the boundary to itself at all times.

Definition 2.2. The moduli space MF of F is the quotient of SF by the whole

diffeomorphism group DiffF .

Definition 2.3. The discrete group MCG(F ) = DiffF
Diff0F

is called the mapping class

group of F and is (in fact, finitely) generated by Dehn twists. A Dehn twist about

an oriented simple closed curve c ⊂ F is a diffeomorphism formed by cutting F

along c, performing a full twist in an annular neighbourhood of one copy of c, then

regluing.

5
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c Dehn twist

Figure 2.1: Dehn twist about c, illustrated by its action on a perpendicular curve

If F is a closed, orientable surface of genus g ≥ 2, the standard method of

finding coordinates for T F is as follows. (For a more complete discussion, see for

instance Thurston’s book [12].)

Pick a set of n = 3g − 3 disjoint, pairwise non-homotopic, essential simple

closed curves Γ = {γ1, ..., γn} which cut F into 2g − 2 pairs of pants. (A “pair of

pants” is a sphere with three open discs removed.)

The Teichmüller space of hyperbolic structures on a pair of pants P is easy to

compute. Given any hyperbolic metric on P , there are unique geodesic “seams”

which cut the pants into two right-angled hexagons which are congruent under

reflection. Since a hyperbolic right-angled hexagon is determined by the lengths of

three alternating sides, the point in Teichmüller space corresponding to a hyper-

bolic metric on P is determined by the ordered triple of boundary lengths under

the metric.

Note that twisting one of the legs of the pants does not alter the point in T P ,

since it is a diffeomorphism homotopic to the identity, with boundary mapped to

itself.

However, when we glue two hyperbolic pairs of pants P1 and P2 together along

a boundary curve c, the twisting does matter—the only way to undo a twist in

P1 ∪c P2 is to cut along c, untwist, and then reglue (that is, perform a Dehn twist

about c).

Consequently, when we glue the 2g − 2 hyperbolic pairs of pants to recover a

point in the Teichmüller space of F , we begin with 6g− 6 parameters (the lengths
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of the boundary curves for each pair of pants), lose 3g− 3 of them (since the pairs

of curves we identify must have equal lengths), but gain 3g − 3 new parameters

to record the twisting information. These boundary lengths and twists are the

Fenchel-Nielsen coordinates for Teichmüller space.

Although this approach makes it easy to see that T F is homeomorphic to the

open ball R6g−6, it has some undesirable features.

First, the coordinates do not arise from intrinsic features of the metric—we have

to choose the set of curves Γ (and in fact some extra data in order to accurately

record the twisting), and the coordinates which result depend on these choices.

Secondly, it is not equivariant with respect to the mapping class group, so we

do not obtain a description of MF . The only Dehn twists whose action can easily

be written down in Fenchel-Nielsen coordinates are those about one of the γi; an

arbitrary Dehn twist, transverse to some of the curves in Γ, will have an action

which is very difficult to describe.

2.2 What we do instead

In each of the cases we study, our goal is to describe the Teichmüller space of

a certain type of hyperbolic surface via a cell decomposition. We start with an

intrinsic method for constructing a distinguished set (a “spine”) on the surface.

Each different possible spine corresponds to a cell in our decomposition; to com-

plete the description, we define coordinates measured relative to the spine within

each cell.
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2.2.1 Constructing the spine

Let F be a surface equipped with a hyperbolic metric. Assume that F has

some kind of “decoration”—for instance, one or more marked points, or a geodesic

boundary. Although in each case the nature of the set B ⊂ F so distinguished

is different, the procedure for obtaining the spine is the same: identify the set of

points Σ ⊂ F which have two or more distinct shortest geodesics to B. (In the

case of hyperbolic cusps we do a little more preliminary work to make sense of

this.)

The set Σ forms a graph embedded in F . The interiors of the edges are geodesic

line segments, each of whose points has precisely two distinct shortest geodesics to

B; they connect the vertices, which are the points with three or more such shortest

paths.

Let S be the topological fat-graph—that is, a graph with a cyclic ordering of

the edges at each vertex—corresponding to Σ, which we recover via the embedding

ε : S → F . The geometric spine of F is the pair (S, ε̃), where ε̃ is the homotopy

class of ε. Since the point in Teichmüller space is unchanged if the metric on F

is altered by a diffeomorphism homotopic to the identity, the geometric spine is

well-defined on T F .

Note that we made no choices when building the spine—it really is an intrinsic

feature of the metric on the surface. Furthermore, the construction is equivariant

with respect to the mapping class group in the sense that the combinatorial spine

S (that is, the purely combinatorial data from the geometric spine, without the

embedding) is invariant under any diffeomorphism. So the cell decomposition

of Teichmüller space which results will descend to moduli space in a completely

natural way.
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2.2.2 Further construction: the spinal triangulation

Taking the shortest geodesics from each vertex to B, along with Σ, we obtain

a “spinal triangulation” of F . It is a genuine hyperbolic triangulation in the

case where B consists of marked points; in other cases, F may be dissected into

hyperbolic quadrilaterals, or ideal triangles. From each piece in this geometric

decomposition we read off a coordinate αe associated to the corresponding edge of

the spine. In the case of an actual triangulation, we measure the angle subtended

opposite the spine edge. It is always the case that the pieces on either side of an

edge are reflections of each other (since the two shortest geodesics from a point in

the interior of an edge to B must be interchanged by reflection in the edge), so

given a metric on F these coordinates are well-defined; since they are unaffected

by diffeomorphisms homotopic to the identity, they are well-defined on T F too.

e

αe

cone point

Figure 2.2: A spine on a surface with one marked point

A schematic example of a typical spine is shown in figure 2.2. One of the

triangles in the spinal triangulation is illustrated, along with its angular coordinate

αe. Since each vertex in this example is trivalent (that is, has three incident edges),

each has three distinct shortest geodesics to the marked point. If we were to add
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the rest of these to the picture, we would see the complete spinal triangulation,

consisting of 18 triangles: 9 pairs of mutual reflections, one pair for each edge.

The αe are coordinates on the cell in our decomposition corresponding to the

geometric spine of F . Natural linear constraints—requiring, for example, that

the coordinates around a marked point sum to a specified cone angle—ensure

that the cells are all simplices and of the correct dimension. Note that the top-

dimensional simplices correspond to graphs S with only trivalent vertices. Lower

dimensional simplices have one or more vertices of valency at least four; the faces

of a simplex with combinatorial spine S have combinatorial spines obtained from S

by “elision” of an edge. (That is, the face αe → 0 in a simplex with combinatorial

spine S will have a combinatorial spine formed from S by removing the edge e and

amalgamating its endpoints into a single vertex, as in figure 2.3.)

e elision

Figure 2.3: Elision of an edge e

2.2.3 Reconstruction and combinatorial curvature

The bulk of our work, to demonstrate that the decomposition we obtain really

is the Teichmüller space, consists of showing that knowledge of a geometric spine

(S, ε̃) with coordinates αe is enough to reconstruct a representative metric on F

corresponding to a unique point in T F .



11

Happily, the spine gives us all the combinatorial information of the spinal tri-

angulation: how to glue up the hyperbolic pieces to obtain a metric on F . Unfor-

tunately, the αe do not, a priori, tell us the shapes of the pieces.

Let V be the set of vertices and E the set of edges of S. For each vertex vi ∈ V ,

where 1 ≤ i ≤ n = |V |, define ri to be the length of the shortest geodesics from

vi to B. For each edge e ∈ E, we can build a model of the associated hyperbolic

piece of the spinal triangulation if we know αe, ri and rj, where vi and vj are the

vertices joined by e.

Consequently, given S and the αe, we can make an arbitrary choice for each ri,

construct model hyperbolic pieces and glue them up in the pattern specified by S.

This will produce a “metric” on F with the correct combinatorial spine—except

that the sum σi of angles around each vertex vi may not equal 2π.

Define the combinatorial curvature Ki at the vertex vi to be the defect in the

angle sum: 2π − σi. Our strategy is to show there is a unique choice of the ri

such that the combinatorial curvature at each vertex is zero (that is, each vertex is

“flat”). This ensures that up to diffeomorphism, there is a unique way to construct

a model metric on F with combinatorial spine S and associated coordinates αe.

To reconstruct a representative metric for a point in T F , we simply extend the

embedding ε : S → F to a diffeomorphism η : F → F and apply it to our model

metric.



Chapter 3

A new proof of an old theorem

In this chapter we present a new proof of a theorem of Bowditch and Epstein [1].

Their proof is arguably more direct—they simply show, without extra machinery,

that the map taking an assignment of the variables ri to the cone angles σi is

a diffeomorphism onto a certain convex space containing the point (2π, ..., 2π).

However, it’s also more mysterious; it doesn’t tell you how to find the correct

choice for the ri. We take a more concrete approach, adapting the combinatorial

Ricci flow argument of Chow and Luo in [3] to show the existence of a gradient flow

on the ri which converges to the unique solution with zero combinatorial curvature

at each vertex in the spine.

3.1 Cusped hyberbolic surfaces

A cusp in a hyperbolic surface may be defined as a subset of the surface iso-

metric to the region
{z : Imz ≥ y}
[z 7→ z + c]

12
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in the upper half-plane model of the hyperbolic plane, for some fixed y ∈ R+. Thus

it can be thought of as “a point where the metric becomes infinite.”

h zhorocycle Im    = y

Figure 3.1: A cusp region in the upper half-plane model

Bowditch and Epstein [1] describe the moduli space of hyperbolic surfaces with

at least one cusp. For simplicity, we shall assume here that F has exactly one

cusp. In order to make sense of the spine, we need to work around the infinite

length of geodesics heading into the cusp. We do this by picking a parameter h > 0

and considering F \ C, where the cusp C has horocyclic boundary length h. We

then construct the spine Σ in the usual way; it is the set of points with at least

two distinct shortest geodesics to the horocyclic boundary B. The coordinates

αe are the lengths subtended along the horocycle, and the constraint becomes

2
∑

αe = h. As long as we choose h sufficiently small, our choice will not affect

the combinatorial type of the spine.

Lemma 3.1. The spine Σ of a hyperbolic surface with cusps is a graph embedded
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in the surface, each of whose vertices is at least trivalent and each of whose edges

is a segment of a geodesic.

Proof. This is (contained in) lemma 2.2.1 in [1].

The following lemma is one of the key ingredients in our proof. The first three

statements are used in [1] (see section 4.2)—they tell us in which direction the ri

should flow to head towards the critical point. The new part of the lemma is the

fourth statement (compare [3], lemma 2.3)—this suggests to us how to normalise

in order to obtain a gradient flow.

Lemma 3.2. For a hyperbolic triangle with one ideal vertex, horocyclic coordinate

α, edge lengths ri and angles θi (i = 1, 2),

(a) ∂θi/∂ri < 0

(b) ∂θi/∂rj > 0 for i 6= j

(c) ∂(θi + θj)/∂ri < 0

(d) (∂θ1/∂r2)e
r2 = (∂θ2/∂r1)e

r1

Proof. We work in the upper half-plane model and put the ideal vertex at the

point at infinity (y = ∞), so the sides of the triangle are parallel vertical lines.

For ease of calculation and without loss of generality, fix the horocycle to lie

along the Euclidean line y = 1, with the sides of the triangle along x = ±d, as in

figure 3.2 (where the parenthetical values are Euclidean coordinates in the upper

half-plane).

The hyperbolic distance between points with Euclidean coordinates (x, y) and

(u, v) in this model is given by

cosh−1

(
1 +

(x− u)2 + (y − v)2

2yv

)
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α

θ1

1θ

(0,0)

θ

cusp

r2
r1

2

d(−  ,1)

y
2

d(  ,   )

d(  ,1)

y1
(−  ,   )d

(  ,0)c(−  ,0)d

horocycle    = 1y

Figure 3.2: Hyperbolic triangle with one ideal vertex

Using this, we compute the Euclidean coordinates of the other two vertices of

the triangle. The x-coordinates ±d depend only on α:

α = cosh−1

(
1 +

4d2

2

)

or

d =

√
cosh α− 1

2

while y1 and y2 depend only on r1 and r2, respectively:

ri = cosh−1

(
1 +

(yi − 1)2

2yi

)

or

0 = yi
2 − 2yi cosh ri + 1
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which yields

yi = cosh ri − sinh ri = e−ri

(Note that this solution is valid for all values of ri, positive and negative.)

Now, in the upper half-plane model, the third side of the triangle—the geodesic

between these two vertices—is a circle with centre (c, 0) on the x-axis. Since the

vertices are (Euclideanly) equidistant from this centre, we have

(c + d)2 + e−2r1 = (c− d)2 + e−2r2

which gives

c =
e−2r2 − e−2r1

2
√

2 cosh α− 2

By Euclidean trigonometry in the triangle formed by (c, 0), (−d, y1) and (−d, 0),

we obtain

cot θ1 =
c + d

e−r1
=

e−2r2+r1 − e−r1 + er1(2 cosh α− 2)

2
√

2 cosh α− 2
(3.1)

so
∂ cot θ1

∂r1

=
e−2r2+r1 + e−r1 + er1(2 cosh α− 2)

2
√

2 cosh α− 2
> 0

and
∂ cot θ1

∂r2

= − e−2r2+r1

√
2 cosh α− 2

< 0

which give us the first two statements in the lemma.

The third statement is also clear since lengthening a side increases the area

of the triangle, which in hyperbolic geometry is equal to π minus the sum of its

angles.

Finally, we observe that

∂ cot θ1

∂θ1

= − 1

sin2 θ1
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Via more trigonometry, we see

− sin2 θ1 = − e−2r1

(c + d)2 + e−2r1

By the equation we used to find the centre of the circle, this can be rewritten

− e−2r1

1
2
[(c + d)2 + (c− d)2 + e−2r1 + e−2r2 ]

and hence

∂θ1

∂r2

=
∂ cot θ1

∂r2

∂ cot θ1

∂θ1

=
2e−2r2−r1

√
2 cosh α− 2(c2 + d2 + e−2r1 + e−2r2)

Since c2 is symmetrical in r1 and r2, so is the whole denominator of this expres-

sion; if we multiply by a factor of er2 the numerator is too. The final statement in

the lemma follows, and this completes the proof.

Note that we have also shown that the partial derivatives are elementary func-

tions in ri (that is, obtained from the ri via composition of polynomials, exponen-

tials, logarithms, trigonometric functions and basic arithmetic operations).

Furthermore, the equation (3.1) used in the proof above is enough to establish

the following result, which we shall need later.

Scholium 3.3. In a triangle as in lemma 3.1, for any ε > 0 there exists a number

L so that when r1 > L, θ1 < ε.

3.2 Constructing the gradient flow

We now construct the gradient flow as per [3] section 3.

Definition 3.4. The cusped combinatorial Ricci flow is given by

dri(t)

dt
= −Kie

ri(t)
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Proposition 3.5. The Ricci flow (3.4) is the negative gradient flow of a strictly

convex function.

Proof. Let ui = −e−ri , so that dui/dri = e−ri , and let U = (−∞, 0)n. Under this

change of variable, the Ricci flow becomes

dui

dt
= −Ki

which is a gradient flow in u.

To see this, consider the final statement in lemma 3.2. The change of variable

converts
∂Ki

∂rj

erj =
∂Kj

∂ri

eri

to
∂Ki

∂uj

=
∂Kj

∂ui

Thus the 1-form
∑n

i=1 Kidui is closed in the (simply connected) space U , al-

lowing us to define a function f(u) =
∫ u

a

∑n
i=1 Kidui, where a is any point in U .

Clearly ∂f(u)/∂ui = Ki, so the Ricci flow is the negative gradient flow of the

function f .

It remains to show that f(u) : U → R is strictly convex. To this end, consider

the Hessian of f . Let

aij =
∂2f

∂ui∂uj

=
∂Ki

∂uj

Note that

aii = −
∑
j∼i

∂θj
i

∂ri

eri

where the sum is over indices j such that vj is adjacent to vi, and θj
i is the sum of

the angles at vi in the triangles whose non-ideal vertices are vi and vj. Also

aij = −
∑
e>i,j

∂θe
i

∂rj

erj (i 6= j)
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where the sum is over all edges joining vi and vj, and θe
i is the sum of the angles

at vi in the triangles on the edge e.

By lemma 3.2, aii > 0 and aij ≤ 0 (aij < 0 if vi is adjacent to vj). Also,

(∂θe
i /∂ri)e

ri + (∂θe
i /∂rj)e

rj < 0 if i, j < e. Summing over all such inequalities at

the vertex vi, we conclude that
∑n

j=1 aij > 0. Since aii > 0 and aij ≤ 0, it follows

that aii >
∑

j 6=i |aij|.
Finally, to establish the proposition, we appeal to the following result from

linear algebra.

Lemma 3.6. Suppose A = [aij]n×n is a symmetric matrix. If aii >
∑

j 6=i |aij| for

all indices i, then A is positive definite.

A proof of this statement is given in [3] (the first part of lemma 3.11); we don’t

repeat it here. This completes the proof of the proposition.

Corollary 3.7. The map sending the side lengths (r1, ..., rn) to the corresponding

curvatures (K1, ..., Kn) is injective. Thus if the zero curvature solution exists, it is

unique.

The corollary follows from the strict convexity of f , since for a smooth strictly

convex function defined on an open convex set, the map sending a point to its

gradient is always injective.

3.3 Existence and convergence of the flow

We now investigate the evolution of the flow more thoroughly, again follow-

ing [3] very closely.

Proposition 3.8. Under the Ricci flow (3.4), the curvature Ki(t) evolves according
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to
dKi

dt
=

∑
j∼i

Cij(Kj −Ki)−BiKi

where Cij and Bi are positive elementary functions in r1, ..., rn. Furthermore,

Cij = Cji.

Proof. We proceed by focusing on the angles θ1 and θ2 in one triangle. Consider a

single triangle flow under which all other ri are fixed, so K1 and K2 are functions

of only r1 and r2, which still evolve according to the Ricci flow. We show that

under the single triangle flow, the evolution of θ1 satisfies

dθ1

dt
= −A12(K2 −K1) + A1K1

(and similarly for θ2), where A1, A2 and A12 = A21 are positive-valued elementary

functions in r1 and r2.

To this end, by the chain rule we have

dθ1

dt
=

∂θ1

∂r1

dr1

dt
+

∂θ1

∂r2

dr2

dt

= −∂θ1

∂r1

er1K1 − ∂θ1

∂r2

er2K2

= −∂θ1

∂r2

er2(K2 −K1)−
(

∂θ1

∂r1

er1 +
∂θ1

∂r2

er2

)
K1

By lemma 3.2 we can rewrite

∂θ1

∂r1

er1 +
∂θ1

∂r2

er2 =
∂θ1

∂r1

er1 +
∂θ2

∂r1

er1 = er1
∂(θ1 + θ2)

∂r1

and the last partial derivative is negative.

Define

Ai = −eri
∂(θ1 + θ2)

∂ri

, Aij =
∂θi

∂rj

erj (i 6= j)
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We have Ai > 0. By lemma 3.2, Aij is a positive elementary function and Aij = Aji.

Hence we have our claim.

The proposition now follows, since the total flow is simply a sum of single

triangle flows flows—that is

dKi

dt
= −

∑
j∼i

dθj
i

dt

This proposition has an immediate consequence.

Corollary 3.9 (The maximum principle). Let r(t) = (r1(t), ..., rn(t)) be a solu-

tion of the Ricci flow (3.4) in an interval. Define M(t) = max(K1(t), ..., Kn(t), 0)

and m(t) = min(K1(t), ..., Kn(t), 0).

Then M(t) is non-increasing in t and m(t) is non-decreasing in t.

First of all, we use the maximum principle to obtain the following.

Proposition 3.10. For any initial assignment of edge lengths r(0) ∈ Rn, the

solution to the Ricci flow (3.4) exists for all time t ≥ 0.

Proof. We need to show that r(t) remains bounded away from ±∞ for finite t. By

the change of variable we used to construct the gradient flow, ui(t) = −e−ri(t), we

know that
d(e−ri(t))

dt
= Ki(t)

The angle sum at a vertex must be positive, so Ki < 2π and we see immediately

that

e−ri(t) < c + 2πt

where c is a constant. Therefore ri(t) is bounded away from −∞ for finite t.
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On the other hand, suppose (seeking a contradiction) that ri(t) is not bounded

above. By scholium 3.3, as ri → ∞, the angles in the triangles at vi will become

arbitrarily small, so σi → 0 and Ki → 2π. But this contradicts the maximum

principle: the fact that M(t) < 2π is non-increasing.

Hence for finite t, ri(t) is bounded away from ±∞ and the solution to the Ricci

flow exists for all time.

The maximum principle describes the flow qualitatively—the flow “remains

bounded.” The following two propositions in combination describe the quanti-

tative behaviour of the flow: that it converges exponentially quickly. First, we

establish that the map taking edge lengths to the corresponding curvatures is

proper (compare [1] proposition 4.5); then we use this boundedness in the space

of edge lengths to prove the convergence.

Proposition 3.11. If r(t) ∈ Rn for each t ∈ [0,∞) is an assignment of edge

lengths ri so that lim inft→∞ Ki(r(t)) ≥ 0 and lim supt→∞ Ki(r(t)) < 2π for all

indices i, then the set {r(t)|t ∈ [0,∞)} lies in a compact region in Rn.

Proof. By scholium 3.3 and lim supn→∞ Ki(r(t)) < 2π, ri(t) is bounded from above.

To see that ri(t) is bounded from below, suppose otherwise that it contains

a subsequence {ri(tj)|j ∈ N} converging to −∞. Let I be the non-empty sub-

set of indices so that limj→∞ ri(tj) = −∞ for i ∈ I and limj→∞ ri(tj) is fi-

nite for i /∈ I. Since lim infj→∞ Ki(r(tj)) ≥ 0 for all indices i, it follows that

limj→∞
∑

i∈I Ki(r(tj)) ≥ 0.

On the other hand, in triangles where r1 → −∞ and r2 remains finite, θ1 → π;

in triangles where r1 and r2 both → −∞, θ1 +θ2 → π. So limj→∞
∑

i∈I σi(r(tj)) =

2π|EI |, where EI is the set of edges incident on vi for some i ∈ I. Since |EI | ≥ 3
2
|I|

(every vertex in the spine is at least trivalent), we have limj→∞
∑

i∈I σi(r(tj)) ≥
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3π|I|. Rewriting, using Ki = 2π − σi, we obtain limj→∞
∑

i∈I Ki(r(tj)) ≤ −π|I|,
a contradiction. This completes the proof.

Proposition 3.12. Suppose r(t) for t ∈ [0,∞) is a solution to the Ricci flow so

that the set {r(t)|t ∈ [0,∞)} lies in a compact region in Rn. Then r(t) converges

exponentially fast to a limit R whose curvature at each vertex is zero.

Proof. Since the coefficient Bi in proposition 3.8 is an elementary function in

r1, ..., rn and is always positive, it follows from the compactness assumption that

there exist two positive constants c1 and c2 so that

c1 ≤ Bi(r1(t), ..., rn(t)) ≤ c2

for all time t ≥ 0. By proposition 3.8 we obtain

dM(t)

dt
≤ −c1M(t)

and
dm(t)

dt
≥ −c2m(t)

Thus there are two constants c3 > 0 and c4 > 0 so that

c5e
−c3t ≤ m(t) ≤ M(t) ≤ c6e

−c4t

and hence the curvature Ki(t) converges exponentially fast to zero.

This in turn implies that
∫ t

0
Ki(s)ds converges exponentially fast to some con-

stant. Since the Ricci flow can be integrated to

e−ri(t) =

∫ t

0

Ki(s)ds + e−ri(0)

and ri remains bounded in a compact region, it follows that the right-hand side

remains positive, so limt→∞ ri(t) = Ri exists and ri(t) converges to Ri exponentially

fast.
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We now have everything we need to prove the following.

Theorem 3.13. For any initial assignment r(0) of the ri, the combinatorial Ricci

flow (3.4) converges exponentially quickly to the unique solution with zero combi-

natorial curvature.

Corollary 3.14. For a given combinatorial spine S and any choice of coordinates

αe satisfying 2
∑

αe = h there is a unique way (up to diffeomorphism) to recon-

struct a cusped hyperbolic metric on F with combinatorial spine S and associated

coordinates αe.

Proof. First, we demonstrate the existence of the zero curvature solution.

Pick an initial assignment of the ri, r(0), with all ri(0) sufficiently large so that

each Ki is close to 2π (possible by scholium 3.3). This ensures that Ki(0) ≥ 0.

Let r(t) be a solution for t ≥ 0 to the Ricci flow with initial value r(0). By the

maximum principle we have Ki(t) ≥ 0 for all t ≥ 0, and also lim supt→∞ Ki(t) < 2π.

Thus by proposition 3.11 the set {r(t)|t ∈ [0,∞)} lies in a compact region in

Rn. It then follows by proposition 3.12 that r(t) converges exponentially fast to

a solution with zero curvature. In particular, a zero curvature solution exists.

This, combined with corollary 3.7—giving us the uniqueness of the zero curvature

solution—is enough to establish corollary 3.14, the original theorem of Bowditch

and Epstein.

Secondly, we show the convergence of the flow from any initial assignment of

the ri. Here we apply proposition 3.5—that the Ricci flow is the negative gradient

flow of the strictly convex function f in the transformed variable u.

Recall that a continuously differentiable function h : X → R satisfies the

Palais–Smale condition (originally defined in [7]) if for each sequence xn such that

h(xn) is bounded and |∇h(xn)| → 0, there exists a convergent subsequence xnk
.

Furthermore, if h satisfies the Palais–Smale condition, is bounded from below and
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has non-degenerate critical points, all its negative gradient lines must converge to

a critical point.

We already know, by the above existence argument, that f has a unique critical

point, which must be a minimum by convexity. So f is bounded from below and

the critical point is non-degenerate.

To verify the Palais–Smale condition, take a sequence of points {u(tj)|j ∈ N}
in U = (−∞, 0)n so that the gradient of f at u(tj) converges to zero. Let the

untransformed points corresponding to u(tj) be r(tj). Then we have that the

curvature Ki(r(tj)) tends to zero for all indices i as j → ∞. By an argument

analogous to proposition 3.11, this implies that the set {r(tj)|j ∈ N} lies in a

compact region in Rn. This in turn implies that {u(tj)} contains a convergent

subsequence in U . Hence the Palais–Smale condition holds, and all the gradient

lines converge to the critical point.

Finally, since every gradient line converges to the unique minimum of f , it

follows that for any initial r(0) ∈ Rn, the set {r(t)|t ∈ (0,∞)} lies in a compact

region in Rn. Hence by proposition 3.12 again we see that the convergence from

any initial choice of edge lengths is exponentially fast.

Theorem 3.15. For a given geometric spine (S, ε̃) and any choice of coordinates

αe satisfying 2
∑

αe = h there is a unique way (up to diffeomorphism homotopic to

the identity) to reconstruct a cusped hyperbolic metric on F with geometric spine

(S, ε̃) and associated coordinates αe.

Proof. Construct the model metric with combinatorial spine S as in corollary 3.14,

and pick an embedding ε : S → F in the homotopy class ε̃. Since we are only con-

cerned about the resulting metric up to diffeomorphism homotopic to the identity,

which embedding we choose is immaterial. The complement F \ ε(S) is homeo-

morphic to an open disc with a point (the cusp) removed, so up to diffeomorphism
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homotopic to the identity there is a unique way to extend ε to a diffeomorphism

η : F → F . Clearly, the metric we obtain by applying η to our model metric

will have geometric spine (S, ε̃) and coordinates αe, and up to diffeomorphism

homotopic to the identity it is unique.

3.4 Conclusion: the cell complexes

We have proved everything we need to completely describe the Teichmüller and

moduli spaces T cusp
g,1 and Mcusp

g,1 of hyperbolic surfaces of genus g with one cusp.

Definition 3.16. Let Cg,1 be a cell complex constructed as follows. Take one

simplex C(S,ε̃) for each geometric spine (S, ε̃) which can occur in a hyperbolic surface

of genus g with one cusp. For a spine of combinatorial type S, a graph with vertices

VS and edges ES, C(S,ε̃) is (|ES|−1)-dimensional, with simplicial coordinates equal

to the horocyclic lengths αe. The conditions αe > 0 and 2
∑

e αe = h ensure that

C(S,ε̃) is an open simplex.

The Euler characteristic tells us 2 − 2g − 1 = |VS| − |ES|, and C(S,ε̃) will have

biggest dimension when all the vertices are trivalent. In this case 1−2g = −|E|/3,

so |E| = 6g − 3 and C(S,ε̃) is (6g − 4)-dimensional. (There will be one (6g − 4)-

dimensional cell for each connected trivalent graph with 4g− 2 vertices and 6g− 3

edges which can be embedded in the surface so that no edge or pair of edges bounds

a disc.) The smallest dimension will occur when |VS| = 1, |E| = 2g and C(S,ε̃) is

(2g − 1)-dimensional.

Finally, the attaching maps for Cg,1 are defined as follows. A (k−1)-dimensional

cell C(S1,ε̃1) in Cg,1 is the face of a k-dimensional cell C(S2,ε̃2) if S1 can be obtained

from S2 by removing an edge “homotopically”—that is, removing an edge e0 with

two distinct endpoints, which we amalgamate into a single vertex, in a way which
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is compatible with the homotopy classes of embeddings ε̃1 and ε̃2 in some suitable

natural sense. Then the cell C(S1,ε̃1) is the face αe0 = 0 in the closure of C(S2,ε̃2),

and we glue it in place by identifying the remaining coordinates {αe|e 6= e0} with

the simplicial coordinates on C(S1,ε̃1).

Theorem 3.17. The Teichmüller space T cusp
g,1 is homeomorphic to the cell complex

Cg,1.

Proof. Let the map Φg,1 : T cusp
g,1 → Cg,1 be defined by mapping a metric on F with

geometric spine (S, ε̃) and associated coordinates αe to the point with simplicial

coordinates αe in the simplex C(S,ε̃) ⊂ Cg,1. Transforming the metric on F by a

diffeomorphism homotopic to the identity changes neither the combinatorial type

of its spine S, nor the homotopy class of embedding ε : S → F , nor the coordinates

αe, so Φg,1 is well-defined on Teichmüller space.

The existence part of theorem 3.15 shows that Φg,1 is surjective; the uniqueness

part shows that it is injective and Φ−1
g,1 is well-defined. This completes the proof.

Theorem 3.18. The moduli space Mcusp
g,1 is homeomorphic to the quotient of Cg,1

by the relation ρ which identifies two points in Cg,1 if and only if the combinatorial

spine types of their respective cells are the same, and their simplical coordinates

are equal.

Proof. The action of the mapping class group on Teichmüller space only affects

the embedding of the combinatorial spine S of a metric into F , not S itself or the

simplicial coordinates. Hence it is exactly the action of the relation ρ (“forgetting

the embedding”) on Cg,1, and dividing by this relation will produce the moduli

space.

Note that in the one-cusped case the parameter h is an overall scale factor, so

it does not affect the homeomorphism type of the Teichmüller or moduli spaces.
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When there are c > 1 cusps, the simplicial complex we get by imposing the

overall scaling condition 2
∑

e αe = h is not homeomorphic to T cusp
g,c , but rather to

T cusp
g,c × Ic−1. To see the Teichmüller space we need to make further (arbitrary)

choices and impose a length condition for each individual horocycle. Each such

extra condition will be linear in a subset of the αe, so we end up with a codimension

c− 1 slice through the simplicial complex.



Chapter 4

Closed surfaces

We consider the case of a closed surface with marked points—these allow us to

define the spine in the usual way, by considering the number of distinct shortest

geodesics to a marked point. The Ricci flow works similarly to the previous chapter;

the differences are that our variables ri are now bounded by 0 and +∞, and that

there are non-zero angles at the marked points when we glue up triangles (as

opposed to the zero angles of 1-ideal triangles at cusps)—consequently, we need to

be more careful about whether or not the flow can ever reach a solution where the

angle sum at each vertex of the spine is equal to 2π.

4.1 Cone manifolds

For our purposes, a cone manifold is a topological surface equipped with a

hyperbolic (cone) metric so that all but a finite number of cone points P =

{p1, ..., pm} have a neighbourhood locally isometric to a piece of the hyperbolic

plane H2. The cone points themselves have respective cone angles {γ1, ..., γm} so

that a neighbourhood of pi is isometric to a hyperbolic cone with angle sum γi

29
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around the cone point.

Note that a cone manifold with all cone angles equal to 2π is a closed surface

with marked points. We are simply considering a slightly more general situation.

We construct the spine Σ for a cone manifold in the usual way—it is precisely

the set of points having at least two distinct shortest geodesics to a cone point.

Lemma 4.1. The spine Σ of a cone manifold is a graph embedded in the surface,

each of whose vertices is at least trivalent and each of whose edges is a segment of

a geodesic.

Proof. We prove the following:

(a) any point x /∈ Σ—that is, having a unique shortest geodesic to a cone

point—lies in an open neighbourhood Nx ⊂ Σ, all of whose points have unique

shortest geodesics to a cone point (the same cone point which is closest to x).

(b) if x ∈ Σ has precisely two shortest geodesics to (possibly the same) cone

point(s), then it lies in an open neighbourhood Nx such that Nx ∩ Σ is an open

geodesic arc, all of whose points have precisely two shortest geodesics to cone

points.

(c) if x ∈ Σ has more than two shortest geodesics to cone points, then it lies in

an open neighbourhood Nx, every other point of which has at most two shortest

geodesics to cone points.

Proof of (a). Suppose the unique shortest geodesic from x to a cone point c

has length L, and the next shortest has length L′ > L. Take an open horocyclic

neighbourhood Nx of radius δ = 1
2
(L′ −L) > 0 about x. For any point y ∈ Nx, by

the triangle inequality there is a geodesic path from y to c with length less than

L + δ. Again by the triangle inequality, any other geodesic path from y to a cone

point has length greater than L′ − δ. But we chose δ such that L + δ = L′ − δ, so

this establishes statement (a).
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Proof of (b). By the same argument as part (a), there is an open horocyclic

neighbourhood Nx about x for which the only possible shortest geodesics to cone

points are perturbations of the shortest geodesics from x. Now, at least locally,

where there are no other cone points near enough to interfere, the locus of points

equidistant from the two cone points closest to x (or possibly the same cone point

in two different directions) is a geodesic—the fixed set of the reflection which

interchanges the cone points. This proves part (b).

Proof of (c). Again, there is an open horocyclic neighbourhood Nx about x

for which the only possible shortest geodesics to cone points are perturbations of

those from x. Working locally, as in part (b), the set points equidistant to three

or more cone points (counting the same point reached in different directions a

suitable number of times) is a single point, since it has to be fixed by two different

reflections. Hence we have part (c).

Finally, we observe that topologically, F \Σ is a disjoint union of m open discs,

since a simple closed curve all of whose points have a unique shortest geodesic to

the same cone point is necessarily null homotopic, via the straight line homotopy

which retracts the curve to the cone point. This shows, in particular, that Σ is

non-empty; parts (a), (b) and (c) show that it has the composition claimed in the

statement of the lemma.

This graph, along with the shortest geodesics from its vertices to the cone

points, forms a triangulation of the surface; the coordinates we measure are the

angles αe subtended at the cone points. Therefore, the basic lemma we need (which

functions exactly as lemma 3.1 did in the previous chapter) addresses triangles with

a fixed angle α.

Lemma 4.2. For a hyperbolic triangle with one fixed angle α > 0 formed between

two sides of lengths r1 and r2, with adjacent angles θ1 and θ2,
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(a) ∂θi/∂ri < 0

(b) ∂θi/∂rj > 0 for i 6= j

(c) ∂(θi + θj)/∂ri < 0

(d) (∂θ1/∂r2) sinh r2 = (∂θ2/∂r1) sinh r1

1r

2r

cone point

x

α

2θ

1θ

Figure 4.1: Hyperbolic triangle with one fixed angle

Proof. As in figure 4.1, let x be the length of the third side of the triangle. By the

hyperbolic sine rule we have

sin α

sinh x
=

sin θ1

sinh r2

(4.1)

By the hyperbolic cosine rule,

cosh x = cosh r1 cosh r2 − sinh r1 sinh r2 cos α (4.2)

and

cos θ1 =
cosh x cosh r1 − cosh r2

sinh x sinh r1

(4.3)
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Via (4.1), (4.2) and the identity cosh2− sinh2 = 1, we see

sin θ1 =
sin α sinh r2

sinh x
=

sin α sinh r2√
(cosh r1 cosh r2 − sinh r1 sinh r2 cos α)2 − 1

(4.4)

From (4.2), (4.3) and cosh2− sinh2 = 1,

cos θ1 =
cosh2 r1 cosh r2 − cosh r1 sinh r1 sinh r2 cos α− cosh r2

sinh r1

√
(cosh r1 cosh r2 − sinh r1 sinh r2 cos α)2 − 1

=
sinh r1 cosh r2 − cosh r1 sinh r2 cos α√

(cosh r1 cosh r2 − sinh r1 sinh r2 cos α)2 − 1

Combining these, we obtain

cot θ1 =
cos θ1

sin θ1

=
sinh r1 cosh r2 − cosh r1 sinh r2 cos α

sin α sinh r2

so
∂(cot θ1)

∂r1

=
cosh r1 cosh r2 − sinh r1 sinh r2 cos α

sin α sinh r2

Since cos α < 1, the numerator of this expression is strictly greater than

cosh r1 cosh r2 − sinh r1 sinh r2 = cosh(r1 − r2) ≥ 1

The denominator is also greater than zero, so the quotient is likewise and part

(a) follows.

We also have, after cancellation and cosh2− sinh2 = 1,

∂(cot θ1)

∂r2

= − sinh r1

sin α sinh2 r2

< 0

which establishes part (b).

Again, part (c) is clear since lengthening one of the ri increases the area of the

triangle, and thus decreases the sum of its angles.

Finally, as in lemma 3.1,

∂(cot θ1)

∂θ1

= − 1

sin2 θ1
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so substituting equation (4.4) above and using the chain rule, we find that

∂θ1

∂r2

=
sin α sinh r1

(cosh r1 cosh r2 − sinh r1 sinh r2 cos α)2 − 1

If we multiply by sinh r2, this expression is symmetrical in r1 and r2, so part

(d) follows.

Lemma 4.3. In a triangle as in lemma 4.2, for any ε > 0 there exists a number

L so that when r1 > L, θ1 < ε.

Proof. We have, as above,

cot θ1 =
cos θ1

sin θ1

=
sinh r1 cosh r2 − cosh r1 sinh r2 cos α

sin α sinh r2

=
(sinh r1 cosh r2 − cosh r1 sinh r2) + (1− cos α) cosh r1 sinh r2

sin α sinh r2

=
sinh(r1 − r2)

sin α sinh r2

+
(1− cos α) cosh r1

sin α

Noting that for r1, r2 > 0, sinh(r1 − r2)/ sinh r2 > −1, we complete the proof by

taking L sufficiently large so that

cosh L >
cot ε sin α + 1

1− cos α

4.2 Gradient flow revisited

Definition 4.4. The marked point combinatorial Ricci flow is given by

dri(t)

dt
= −Ki sinh ri(t)

Proposition 4.5. The Ricci flow (4.4) is the negative gradient flow of a strictly

convex function.
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Proof. Let ui = ln tanh(ri/2), so that dui/dri = 1
sinh ri

. This change of variable

maps (0,∞)n to the same space as before, U = (−∞, 0)n. The proposition now

follows by the same proof given in the last chapter—the change of variable converts

the Ricci flow to a gradient flow in u:

dui

dt
= −Ki

Corollary 4.6. The map sending the side lengths (r1, ..., rn) to the corresponding

curvatures (K1, ..., Kn) is injective.

Proposition 4.7. Under the Ricci flow (4.4), the curvature Ki(t) evolves according

to
dKi

dt
=

∑
j∼i

Cij(Kj −Ki)−BiKi

where Cij and Bi are positive elementary functions in r1, ..., rn. Furthermore,

Cij = Cji.

Proof. Once again, the proof given in the last chapter obtains here, with the ap-

propriate normalising factor sinh ri (rather than eri).

Corollary 4.8 (The maximum principle). Let r(t) = (r1(t), ..., rn(t)) be a solu-

tion of the Ricci flow (4.4) in an interval. Define M(t) = max(K1(t), ..., Kn(t), 0)

and m(t) = min(K1(t), ..., Kn(t), 0).

Then M(t) is non-increasing in t and m(t) is non-decreasing in t.

Proposition 4.9. For any initial assignment of edge lengths r(0) ∈ (0,∞)n, the

solution to the Ricci flow (4.4) exists for all time t ≥ 0.
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Proof. We need to show that r(t) is bounded away from 0 and ∞ for finite t. Here

the change of variable ui = ln tanh(ri/2) gives us

d(ln coth(ri(t)/2))

dt
= Ki(t)

so since Ki < 2π we have

coth ri(t)/2 < ce2πt

for some constant c, and ri is bounded away from 0 for finite t.

Now by lemma 4.3, if ri → ∞ then σi → 0 and Ki → 2π, contradicting the

non-increasing nature of M(t) < 2π. Hence ri is bounded above and r(t) exists for

all t.

We now encounter the biggest difference between the cusped and marked point

cases. The first of the two propositions we use to ascertain the convergence of

the flow is more complicated—the problem being that if the αe are collectively

“too big” there will be too much angle concentrated at the marked points and not

enough left over for the angle sums σi at the vertices to all be flat. Consequently

we need an extra condition on the sums of the αe—if this condition is violated the

flow will not converge in (0,∞)n; instead, one or more of the ri will tend to zero.

Proposition 4.10. Let S be a combinatorial spine for a cone manifold, with as-

sociated coordinates αe. Suppose that for any non-empty subset of indices I ⊂
{1, ..., n}, the sum of the coordinates over edges incident at some vi with i ∈ I

satisfies the condition
∑

e<I π − αe > π|I|.
Then if r(t) ∈ (0,∞)n for each t ∈ [0,∞) is an assignment of edge lengths ri so

that lim inft→∞ Ki(r(t)) ≥ 0 and lim supt→∞ Ki(r(t)) < 2π for all indices i, then

the set {r(t)|t ∈ [0,∞)} lies in a compact region in (0,∞)n.

Proof. The proof works exactly as proposition 3.10; the extra condition in the

statement ensures that we obtain the contradiction we need.
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By lemma 4.3 and lim supn→∞ Ki(r(t)) < 2π, ri(t) is bounded from above.

To see that ri(t) is bounded from below, suppose otherwise that it contains

a subsequence {ri(tj)|j ∈ N} converging to 0. Let I be the non-empty subset of

indices so that limj→∞ ri(tj) = 0 for i ∈ I and limj→∞ ri(tj) > 0 for i /∈ I. Since

lim infj→∞ Ki(r(tj)) ≥ 0 for all indices i, it follows that limj→∞
∑

i∈I Ki(r(tj)) ≥ 0.

On the other hand, if the triangle on the edge e has r1 → 0 and r2 9 0, θ1 →
π−αe; if instead r1 and r2 both → 0, θ1 +θ2 → π−αe. So limj→∞

∑
i∈I σi(r(tj)) =

∑
e<I 2(π − αe) (since there are two copies of the triangle on an edge). Rewriting,

using Ki = 2π− σi, we obtain limj→∞
∑

i∈I Ki(r(tj)) = 2π|I| − 2
∑

e<I π−αe. By

the condition on the αe, this gives us limj→∞
∑

i∈I Ki(r(tj)) < 0, a contradiction.

This completes the proof.

Proposition 4.11. Suppose r(t) for t ∈ [0,∞) is a solution to the Ricci flow

so that the set {r(t)|t ∈ [0,∞)} lies in a compact region in (0,∞)n. Then r(t)

converges exponentially fast to a limit R whose curvature at each vertex is zero.

Proof. The argument is identical to that in the previous chapter, with the marked

point Ricci flow integrating to

coth(ri(t)/2) = ce
∫ t
0 Ki(s)ds

Theorem 4.12. If
∑

e<I π−αe > π|I| for all sets of indices I ⊂ {1, ..., n} then for

any initial assignment r(0) of the ri, the combinatorial Ricci flow (4.4) converges

exponentially quickly to the unique solution with zero combinatorial curvature.

Corollary 4.13. For a given combinatorial spine S and any choice of coordinates

αe, there is a way to reconstruct a hyperbolic cone metric on F with spine S and

coordinates αe if and only if
∑

e<I π − αe > π|I| for all non-empty sets of indices
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I ⊂ {1, ..., n}. Furthermore, when this reconstruction exists it is unique (up to

diffeomorphism).

Proof. The proof of the theorem and the “if” part of the corollary are exactly as

in chapter 3. To see the “only if” part, suppose otherwise that there is a set of

indices I ⊂ {1, ..., n} with
∑

e<I π − αe ≤ π|I|. Note that since ri ∈ (0,∞), all

the hyperbolic triangles have positive area and thus angle sum ∆e < π. It follows

that
∑

i∈I σi ≤ 2
∑

e<I ∆e − αe < 2
∑

e<I π− αe ≤ 2π|I|, so the curvatures Ki can

never all be zero. Thus there exists no cone manifold with the given spine type

and coordinates.

Theorem 4.14. For a given geometric spine (S, ε̃) and any choice of coordinates

αe there is a way to reconstruct a hyperbolic cone metric on F with geometric spine

(S, ε̃) and associated coordinates αe if and only if
∑

e<I π − αe > π|I| for all non-

empty sets of indices I ⊂ {1, ..., n}. Furthermore, when this reconstruction exists

it is unique up to diffeomorphism homotopic to the identity.

Proof. The theorem follows exactly as in the previous chapter: the complement

F \ ε(S) is homeomorphic to a disjoint union of open discs, so again there is a

unique extension to a diffeomorphism η : F → F . Apply η to the model met-

ric from corollary 4.13 to obtain a representative metric which is unique up to

diffeomorphism homotopic to the identity.

4.3 The cell complex

We can now describe the Teichmüller and moduli spaces T m.p.
g,m,Γ and Mm.p.

g,m,Γ of

cone manifolds of genus g with m cone points and total cone angle Γ.

Definition 4.15. Let Cg,m,Γ be a “truncated” cell complex constructed as follows.

Take one simplex C(S,ε̃) for each (S, ε̃) which can appear as the geometric spine of
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a cone manifold of genus g with m marked points. For a spine of combinatorial

type S with vertices VS and edges ES, CS is (|ES|−1)-dimensional, with simplicial

coordinates equal to the angles subtended at the marked points αe. We impose

an overall scaling condition 2
∑

e αe = Γ, which, along with αe > 0, ensures that

C(S,ε̃) is an open simplex.

We now “truncate” each simplex by imposing the condition
∑

e<I π−αe > π|I|
for each non-empty set of indices I ⊂ {1, ..., |VS|}.

The attaching maps for Cg,m,Γ are defined in the same way as before: a (k−1)-

dimensional cell C(S1,ε̃) in Cg,m,Γ is the face of a k-dimensional cell C(S2,ε̃) if S1

can be obtained from S2 by removing an edge e0 “homotopically.” Since the face

corresponds to αe0 = 0, the truncating planes are compatible with the gluing: in

the limit αe0 → 0, if e0 < I,
∑

e<I π − αe > π|I| if and only if
∑

e<I,e6=e0
π − αe >

π(|I| − 1).

Theorem 4.16. The Teichmüller space T m.p.
g,m,Γ is homeomorphic to the truncated

cell complex Cg,m,Γ.

Proof. Let the map Φg,m,Γ : T m.p.
g,m,Γ → Cg,m,Γ be defined by mapping a cone manifold

F with geometric spine (S, ε̃) and associated coordinates αe to the point with

simplicial coordinates αe in the simplex C(S,ε̃) ⊂ Cg,m,Γ. Again, transforming the

metric on F by a diffeomorphism homotopic to the identity changes neither the

combinatorial type of its spine S, nor the homotopy class of embedding ε : S → F ,

nor the coordinates αe, so Φg,m,Γ is well-defined on Teichmüller space.

The existence part of theorem 4.14 shows that Φg,m,Γ is surjective; the unique-

ness part shows that it is injective and Φ−1
g,m,Γ is well-defined. This completes the

proof.

Theorem 4.17. The moduli space Mm.p.
g,m,Γ is homeomorphic to the quotient of

Cg,m,Γ by the relation ρ which identifies two points in Cg,m,Γ if and only if the
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combinatorial spine types of their respective cells are the same, and their simplicial

coordinates are equal.

Finally, to obtain the Teichmüller and moduli spaces of cone manifolds with

m > 1 marked points and individually prescribed cone angles, we apply the addi-

tional linear constraints on the spine coordinates to take codimension m− 1 slices

through the simplicial complexes T m.p.
g,m,Γ and Mm.p.

g,m,Γ.



Chapter 5

Surfaces with geodesic boundary

The third and final case we tackle with the combinatorial Ricci flow is that

of hyperbolic surfaces with geodesic boundary. We construct the spine in the

usual way: it is the set of points having at least two distinct shortest (necessarily

geodesic) paths to the boundary. Since the locus of points equidistant to two

geodesics is itself a geodesic (because—at least locally—there is a reflection which

interchanges them), the geometric spine is once again an embedded graph whose

edges are geodesic line segments.

Adding in the shortest paths from the vertices of the spine to the boundary

we obtain not a triangulation, but rather a “quadrilateralation”—the pieces are

hyperbolic quadrilaterals with two right-angles at the boundary. The coordinates

αe we measure are the side lengths along the boundary.

The only significant difference in the result from the cusped case of chapter 3

is that the overall scale factor is no longer an arbitrary choice (recall we had to

choose the total horocyclic length of the truncated cusps), but the actual total

length of the geodesic boundary.

41
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5.1 How this case differs from the others

Rather than repeat a series of near-identical results, we instead note the differ-

ences between this case and those already proven. The biggest such is that we need

a new lemma about the quadrilateral pieces, and another to serve the function of

scholium 3.2.

Lemma 5.1. For a hyperbolic quadrilateral with one fixed side of length α > 0

meeting sides of lengths r1 and r2 at right angles, and with adjacent angles θ1 and

θ2,

(a) ∂θi/∂ri < 0

(b) ∂θi/∂rj > 0 for i 6= j

(c) ∂(θi + θj)/∂ri < 0

(d) (∂θ1/∂r2) cosh r2 = (∂θ2/∂r1) cosh r1

1

2θ

2r

r

y

x1

γ

θ

β

α
geodesic boundary

Figure 5.1: Hyperbolic quadrilateral with one fixed side
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Proof. As in figure 5.1, let y be the length of the fourth side, and let x be the

length of the diagonal forming a triangle with the fixed side and the side of length

r2. Further, let β be the angle in this triangle opposite r2, and let γ = π/2 − β,

the angle opposite the side of length y in the triangle of side lengths y, r1, x.

We proceed by obtaining a “sine rule” and a “cosine rule” for this particular

type of right-angled hyperbolic quadrilateral.

First we obtain the “sine rule.” By the hyperbolic cosine rule for triangles,

sin γ = cos β =
cosh x cosh α− cosh r2

sinh x sinh α

and thus by the hyperbolic sine rule for triangles,

sin θ1

sinh x
=

sin γ

sinh y
=

cosh x cosh α− cosh r2

sinh x sinh α sinh y

From the hyperbolic cosine rule for a right-angled triangle, cosh x = cosh α cosh r2.

Substituting in for cosh x we obtain the “sine rule” for hyperbolic quadrilaterals

(the second equality by symmetry):

sinh y

sinh α
=

cosh r2

sin θ1

=
cosh r1

sin θ2

Now we prove the “cosine rule.” By the sine rule for hyperbolic triangles,

sin β

sinh r2

=
1

sinh x

so

cos γ =
sinh r2

sinh x

By the cosine rule for hyperbolic triangles, we have

cosh y = cosh r1 cosh x− sinh r1 sinh x cos γ
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which together with the above expression for cos γ gives us the “cosine rule” for

hyperbolic triangles:

cosh y = cosh r1 cosh r2 cosh α− sinh r1 sinh r2

We now complete the proof by using these rules to obtain an expression for θ1.

By the hyperbolic cosine rule for triangles, we have

cosh x = cosh r1 cosh y − sinh r1 sinh y cos θ1

Using cosh x = cosh α cosh r2 and the above formulae for cosh y and sinh y, we

end up with

cot θ1 = coth α sinh r1 − cosh r1 sinh r2

sinh α cosh r2

Differentiating with respect to r1, we get

∂(cot θ1)

∂r1

= coth α cosh r1 − sinh r1 sinh r2

sinh α cosh r2

> 0

which establishes part (a).

With respect to r2, the partial derivative is

∂(cot θ1)

∂r2

= − cosh r1

sinh α cosh2 r2

< 0

and part (b) follows.

Again, part (c) is clear since lengthening a side increases the area of the quadri-

lateral, so decreases the sum of its angles.

For part (d), we have by the “sine rule” that

1
∂(cot θ1)

∂θ1

= − sin2 θ1 = −cosh2 r2 sinh2 α

sinh2 y

By the “cosine rule” and cosh2 y − sinh2 y = 1,

sinh2 y = (cosh r1 cosh r2 cosh α− sinh r1 sinh r2)
2 − 1
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so the final result, by the chain rule, is

∂θ1

∂r2

=
sinh α cosh r1

(cosh r1 cosh r2 cosh α− sinh r1 sinh r2)2 − 1

This expression is symmetrical in r1 and r2, except for the factor of cosh r1 in

the numerator, so the result follows.

Lemma 5.2. For a hyperbolic quadrilateral as in lemma 5.1, for any ε > 0 there

exists a number L so that when r1 > L, θ1 < ε.

Proof. We have

cot θ1 = coth α sinh r1 − cosh r1 sinh r2

sinh α cosh r2

so

cot θ1 >
1

sinh α
(cosh α sinh r1 − cosh r1) =

er1(cosh α− 1)− 2e−r1

2 sinh α

Since α > 0, cosh α > 1, so we can choose L sufficiently large that

eL >
2 sinh α cot ε + 2

cosh α− 1

and we are done.

Now we define the new Ricci flow, using the normalising factor indicated by

lemma 5.1.

Definition 5.3. The geodesic boundary combinatorial Ricci flow is given by

dri(t)

dt
= −Ki cosh ri(t)

To prove that (5.3) is the negative gradient flow of a strictly convex function,

we use the change of variable ui = sin−1(tanh ri). (Our space U = (0, π/2)n is

different from before, but this is irrelevant.)
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The rest of the argument of chapter 3 now obtains, allowing only that the

normalising factor should be cosh ri (not eri), and that the ri live in (0,∞)n, as in

chapter 4 (not Rn).

Skipping straight to the end, we obtain characterisations of T g.b.
g,b,λ and Mg.b.

g,b,λ,

the Teichmüller and moduli spaces of hyperbolic surfaces of genus g with b closed

geodesic boundary components and total boundary length λ.

Definition 5.4. Let Cg,b,λ be a cell complex constructed as follows. Take one

simplex C(S,ε̃) for each (S, ε̃) which can appear as the geometric spine of a hyperbolic

surface of genus g with boundary consisting of b closed geodesics. The conditions

αe > 0 and 2
∑

e αe = λ ensure that C(S,ε̃) is an open simplex. Define the attaching

maps in the usual way, by identifying a (k − 1)-simplex corresponding to αe0 = 0

in the closure of a k-simplex as the appropriate face of that k-simplex.

Theorem 5.5. The Teichmüller space T g.b.
g,b,λ is homeomorphic to the cell complex

Cg,b,λ. The moduli space Mg.b.
g,b,λ is homeomorphic to the quotient of Cg,b,λ by the

relation which identifies two points if and only if the geometric spines corresponding

to their respective simplices have the same combinatorial type, and their coordinates

within those simplices are equal.



Chapter 6

Surfaces with polygonal geodesic

boundary

In this chapter we do something a little different—we use the theorem about

cone manifolds we proved in chapter 4 to investigate the Teichmüller and moduli

spaces of hyperbolic surface metrics which have polygonal geodesic boundary.

Definition 6.1. A hyperbolic metric with polygonal geodesic boundary on a topo-

logical surface F (with non-empty boundary ∂F ) is a hyperbolic metric under

which each component of ∂F is composed of a finite number of geodesic arcs. Points

where two ends of geodesic boundary arc meet need not have a neighbourhood lo-

cally isometric to a hyperbolic half-plane, only to a “hypberbolic half-cone”—that

is, we allow the angle sum at those points to differ from π.

47
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6.1 Polygonal boundaries and cone points

6.1.1 Reflection...

Suppose G is a closed, orientable topological surface. Choose a set of simple

closed curves C = {c1, ..., cn} embedded in G which disconnects G into two pieces,

each of genus g. Also pick a topological reflection σ : G → G which acts by

swapping the two pieces, keeping C fixed. Any hyperbolic metric or hyperbolic cone

metric h on G has a well-defined induced reflection σ∗(h), which is also a (cone)

metric on G. Furthermore, if h1 and h2 are diffeomorphic via a diffeomorphism

φ isotopic to the identity, then so are σ∗(h1) and σ∗(h2), via the conjugated map

σ∗ ◦ φ ◦ (σ∗)−1. Hence σ∗ is a well-defined involution acting on the Teichmüller

space of (cone) metrics on G.

6.1.2 ...and doubling

Fix a topological surface F of genus g with a non-empty boundary ∂F of b

components. The topological double DF of F is formed by gluing two copies F+

and F− of F together, identifying their boundaries via the identity map. DF is a

closed topological surface with genus g′ = 2g + b− 1.

Now let C = {c1, ..., cb} be the images of the boundary components of F+ (and,

necessarily, F−, since the boundaries are identified) under the inclusions i± : F± →
DF . C is a set of simple closed curves embedded in DF . Let σ : DF → DF be

the topological reflection which interchanges F+ and F− via the identity, keeping

C fixed.

Now suppose F is equipped with h, a hyperbolic metric with polygonal geodesic

boundary. The geometric double of the pair (F, h) is the pair (DF, Dh), where DF

is the topological double of F and Dh is a hyperbolic cone metric on DF , formed
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from h as follows. On the interior of one copy of F , F+ ⊂ DF say, let Dh be the

metric induced by the inclusion, i∗+(h)|IntF+ . At each point in the boundary ∂F+

(identified with ∂F− in DF ), we take the half-plane (or half-cone) neighbourhood

given by h and glue it to its (canonical) reflection to obtain the metric Dh at that

point. We now extend this reflection process, using the reflection σ to induce the

metric on IntF− from the metric we already have on IntF+.

We see that under Dh all but a finite number of points will have neighbourhoods

locally isometric to the hyperbolic plane; the exceptions (the points which were

formerly “half-cone points” in the boundary of F ) will have neighbourhoods locally

isometric to hyperbolic cones, and we see that Dh is indeed a cone metric.

6.2 A theorem

Let F be as above, which fixes also the double DF and the reflection σ : DF →
DF . Our strategy is to identify the Teichmüller space of hyperbolic metrics with

polygonal geodesic boundary on F by describing how the Teichmüller space of their

doubles sits inside the Teichmüller space of hyperbolic cone metrics on DF . To

close, we shall then note that everything we do at the level of Teichmüller space is

equivariant under the action of the mapping class group, so the same construction

descends to moduli space.

Theorem 6.2. The Teichmüller space of hyperbolic metrics with polygonal geodesic

boundary and total half-cone angle Γ on F , T p.g.b.
g,b,Γ , is homeomorphic to the subset

Tσ of T m.p.
g′,b,2Γ(DF ) which is fixed by the action of σ∗.

Proof. Let φ : T p.g.b.
g,b,Γ → T m.p.

g′,b,2Γ(DF ) be the map which sends a metric h with

polygonal boundary on F to its double Dh on DF . If two such metrics h and

h′ are in the same Teichmüller class, they are related by a diffeomorphism of F
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homotopic to the identity via a homotopy which fixes the boundary—so Dh and

Dh′ are certainly related by a diffeomorphism homotopic to the identity, and φ is

well-defined.

Futhermore, by construction Dh is fixed by σ, so the Teichmüller class of Dh

is fixed by σ∗ and φ : T p.g.b.
g,b,Γ → Tσ.

We now want to define an inverse for φ—we want to know how to construct an

(essentially unique) representative hyperbolic metric with polygonal boundary on

F from a Teichmüller class of metric on DF which is fixed by σ∗.

Observe first that σ acts on the set of geometric spines for DF , and that

σ(S, ε̃) = (S, ε̃) if and only if S comes equipped with an involution ι of its vertices

(fixing none of them) such that there is an isomorphism of graphs ιS ∼= S, and

ι is compatible with σ and the homotopy class of embedding, that is σ(εS) is

homotopic to ε(ιS).

In other words, σ∗ is a simplicial map on the cell decomposition of T m.p.
g′,b,2Γ(DF ),

and we need only concern ourselves with simplices corresponding to geometric

spines with the above symmetry property—the set fixed by σ∗ does not intersect

any other simplices.

Within such a fixed simplex, the set Tσ is precisely those points with coordinates

αe fixed by ι, that is, satisfying αι(e) = αe for all edges e ∈ E. This is a trivial

condition on the set of edges Efix ⊂ E whose vertices are sent to each other under

ι, but a codimension 1 condition for each pair of edges e, e′ ∈ Eswap ⊂ E which are

interchanged by ι.

Now suppose that (S, ε̃) and αe are the geometric spine and associated coor-

dinates for a point in Tσ. We know by the work done in chapter 4 that for any

initial assignment of lengths ri(0) between the vertices and marked points, the

combinatorial Ricci flow will converge to the unique solution with flat curvature

at the vertices, and we obtain a metric which is unique up to diffeomorphism of
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DF .

However, we also know that any point in Tσ has a spine and coordinates with

the symmetry discussed above. So let us choose initial lengths ri(0) such that

ri(0) = rj(0) if ιvi = vj. As a consequence of this choice, by the symmetry of the

spine—and thus the gluing of the hyperbolic pieces to form a metric—we see that

if ιvi = vj, Ki(0) = Kj(0). But by the definition of the Ricci flow, the evolution of

ri at time t only depends on Ki(t) and ri(t), so this in turn implies that if ιvi = vj,

ri(t) = rj(t) for all t. Finally, we see that the limiting solution—the assignment

Ri of lengths which furnishes us with the required metric—satisfies Ri = Rj for

i, j with ιvi = vj.

Once we have this symmetric model metric, act on it in the same way as before

with a diffeomorphic extension η : DF → DF of ε, to obtain a representative of

the required Teichmüller class.

Let us examine the metric we have constructed more closely. For each pair of

edges e, e′ ∈ Eswap which are interchanged by ι, a hyperbolic triangle on e with

opposite vertex p will have a reflection on e′ incident at the same marked point.

On the other hand, for each edge e ∈ Efix fixed by ι, a hyperbolic triangle on e with

opposite vertex p will be equilaterial, since the edge lengths framing the angle αe

must be equal. Hence the geodesic arc from p perpendicular to e splits the triangle

into two pieces (mutual reflections), and hits p′ (possibly equal to p), the vertex

opposite e in the other direction.

It is clear that along with the cone points, these geodesic arcs for e ∈ Efix

form the fixed set of the reflection σ on DF . (The compatibility of ε, ι and σ

ensures that η doesn’t affect this property.) Hence, by the definition of σ, they are

(topologically) isotopic to the set of closed curves C, and thus disconnect DF into

two pieces, each diffeomorphic to F . Furthermore, the boundary of each piece is

polygonally geodesic, and by symmetry, the angle sum at the half-cone points is Γ
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for each side. So the restriction of our metric on DF to either side is a hyperbolic

metric with polygonal geodesic boundary and total half-cone angle Γ on F . In

fact, since the metric is fixed by σ, which restricts to a diffeomorphism from F+

to F−, the metric is the same on both sides. Hence we have a well-defined point

in T p.g.b.
g,b,Γ —this is φ−1((S, ε̃), αe).

Clearly φ ◦ φ−1 is the identity: φ is well-defined, so for a suitable metric in

Tσ, φ(φ−1((S, ε̃), αe)) is represented by the double of the metric we obtain by the

process above. But by the construction, this is precisely the metric characterised

by (S, ε̃) and αe.

On the other hand, since φ is well-defined and the reconstruction process is

unique, φ−1 ◦ φ is also the identity.

Furthermore, it is easy to see that both φ and φ−1 are continuous. Hence φ is

a homeomorphism whose existence proves the theorem.



Chapter 7

Closed surfaces: an open question

Ideally, we would like to be able to use methods similar to those in previous

cases to obtain a simplicial decomposition of the Teichmüller and moduli spaces

of a closed surface—not least because the existence of such a decomposition is

an open question. Unfortunately, for a closed surface there is no immediately

apparent distinguished set B (no marked points or boundary), and consequently

no obviously analogous way to construct a spine as an intrinsic feature of the

metric.

Even more worryingly, a heuristic dimension count using the Euler charac-

teristic suggests that the thing we are looking for should not exist. The Euler

characteristic of a surface of genus g is 2 − 2g, while the Euler characteristic of a

graph is v − e + f , where v, e, and f are the numbers of vertices, edges and faces.

In the case of a closed surface with m marked points, f = m, and, as usual, a spine

in a top-dimensional simplex will have only trivalent vertices, so v = 2
3
e. Hence

such a spine satisfies 2− 2g = −1
3
e + m, and has 6g − 6 + 3m edges. This is what

we expect, since there is one linear constraint for each marked point (the sum of

the incident angles), and the dimension of the Teichmüller space is 6g − 6 + 2m.
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All of which suggests that for a closed surface, we need to construct a graph with

no faces! Clearly that goal is hopeless.

However, we can make a few comments concerning the first step towards a

possible solution.

7.1 A fibration

There is a natural projection from the space of hyperbolic metrics with one

marked point on a surface to the space of hyperbolic metrics with no marking,

whose action is simply to “forget the marked point.” This gives us a projection

between the corresponding Teichmüller spaces, so one way to try to investigate

the case of no marking would be to study how the fibre of this projection over a

metric on a closed surface intersects the cells of the Teichmüller space of metrics

with one marked point.

At least locally, this process gives us sets of coordinates for the Teichmüller

space of the closed surface, since it turns out that the fibre above a generic metric h

must make a transverse intersection with a cell of codimension two upstairs. There

will be a neighbourhood about h within which perturbed metrics h′ intersect the

same cell, so the simplicial coordinates on that cell are local coordinates on the

Teichmüller space of the surface about the metric h.

Unfortunately, the good news ends there. The fibre above a metric will gener-

ally intersect many cells of codimension two (or higher), and we have a choice of lo-

cal sets of coordinates—which transform to each other in a complicated way. Even

worse, these cellular intersections glue together in a singular fashion—essentially

because the cells of codimension at least two sit in the whole complex in a messy,

twisted way—so there is no way to produce a simplicial complex from this process.

In short, there seems to be no way to parlay this approach into a satisfactory
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decompositon.

7.2 An alternative set of coordinates

Let us reconsider the case of a surface with marked points. Recall that we

constructed the spinal triangulation on the surface and took as coordinates the

angles incident at the marked points. We did so because they gave us nice simplicial

coordinates on the cells of our decomposition, but they are not the unique set of

coordinates we could have chosen.

Definition 7.1. Let the perpendicular coordinate ae corresponding to an edge

e ∈ E of a spine be the length of the geodesic arc which is perpendicular to e and

joins the (not necessarily unique) pair of marked points from which any point in e

is equidistant.

Given the perpendicular coordinates corresponding to a spine, we can certainly

reconstruct the metric uniquely. In fact the proof of the reconstuction is more-

or-less trivial—but the coordinates we obtain are not simplicial, and the natural

constraints we want to impose become ungainly.

7.3 An intrinsic spine?

We close with a speculative conjecture about how we might proceed.

Definition 7.2. Suppose F is a closed surface equipped with a hyperbolic metric.

Define a function f : F → N assigning to a point x the number of distinct shortest

geodesic arcs (of positive length) from x to itself. Let B be the set of points b for

which f(b) ≥ 3.
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This definition of B is intrinsic to the metric in the sense we require, and since

the condition on f is a codimension two condition, B will be a set of discrete

points.

Hence, exactly as in the case of a surface with marked points, we can construct

an intrinsic spine, using the set B as our “decoration.” The problem with this

approach is that we end up with too many coordinates (edges) in the spine, and

it is not clear how to express the extra constraints we have (that the points in B

have three or more shortest geodesic arcs back to themselves) in a way which is

compatible with the simplicial coordinates.

However, the constraints do seem to be at least partially compatible with per-

pendicular coordinates. In the generic case, a point b ∈ B will have three shortest

geodesic arcs to itself. Suppose that the edges perpendicular to these arcs all ap-

pear in the spine. Then the constraint on b is that the perpendicular coordinates

corresponding to these three edges are equal—a very simple condition.

Furthermore, as the metric on F varies, we can imagine the spine type chang-

ing. One way in which it could change is that two points in B, each with three

shortest geodesic arcs to itself, become closer together, eventually merging (in-

stantaneously) in a “codimension one” metric having one point with four unique

geodesic arcs to itself. This corresponds to the perpendicular coordinate of the

edge equidistant from these two points tending to zero—again, a simple condition.

The challenge, then, would be to identify a natural set of coordinates. In

a perfect world, such a description would combine the simplicial nature of the

angular coordinates with the ease of expressing the constraints afforded by the

perpendicular coordinates. If such a thing could be unearthed it would reveal a

beautiful, hitherto unseen structure woven into the Teichmüller and moduli spaces

of a closed surface.
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