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ABSTRACT OF THE DISSERTATION

Stability properties for q-multiplicities and branching formulas for

representations of the classical groups

by

Jeb Faulkner Willenbring

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Nolan R. Wallach, Chair

By q-multiplicity we mean the generalization of a multiplicity formula for an ir-

reducible representation in a graded space to a generating function for the multiplicity in

the graded components. The q-multiplicity refines the (non graded) multiplicity formula.

The main result of this thesis is a stable range in the space of harmonic polynomials as-

sociated to the (GL(n), O(n)) case of the Kostant-Rallis theorem. In the stable range

the q-multiplicity is deduced from certain symmetric function identities and Littlewood’s

restriction rules. Chapter 3 gives an alternative proof of Littlewood’s restriction rules

from Howe duality and a classification of unitary highest weight modules due to Enright,

Howe and Wallach.

For n ≥ 3, the q-multiplicity for the spherical harmonics is given both for the

(GL(n), O(n)) and the (SL(n), SO(n)) cases. The full q analog of the Kostant-Rallis

theorem is described in detail for the symmetric pair (SL(4), SO(4)). The significance of

this example is that it has implications in the study of entanglement of the mixed 2 qubit

states in quantum computation. In chapter 2, a problem from classical invariant theory

is addressed. Specifically, the complex orthogonal group acts on the n × n matrices by

restricting the adjoint action of GL(n,C). This gives us an action on the ring of complex

valued polynomial functions on the matrices. A combinatorial description of the Hilbert

series for the invariant polynomials under this action is given.

x



Chapter 1

Introduction

There are two parallel themes that are of importance in this thesis. The first is

the interplay between combinatorics and the representation theory of the classical groups.

The second comes from the fact that the structure of certain infinite dimensional repre-

sentations of Lie algebras provides information about finite dimensional representation

theory. In order to be more precise, let W be a completely reducible representation of

a group G. For any irreducible representation V of G, we will call the largest number

of copies of V in a direct sum that can be embedded as a subrepresentation of W . By

Schur’s lemma, this number is equal to the dimension of the space of linear maps between

V and W which commute with the action of G. If W is a graded representation with

the dth graded component denoted W d, the graded multiplicity of V in W is to be the

formal power series,

∑
d≥0

dimHomG(E,W d) qd

Here we take q to be an indeterminate. Observe that the multiplicity of a representation

is the graded multiplicity evaluated at 1. One idea behind this formalization is that often

the multiplicity of a representation has a purely combinatorial meaning and the graded

multiplicity becomes a natural q analog of the (non-graded) multiplicity. This supplies

us with an important interaction between combinatorics and representation theory.

We will now give several examples of this phenomenon. We first need some

notation. Let E be a representation of G. Let P(E) be the representation of G consisting

1
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of the complex valued polynomial functions on E, under the usual action. Observe that

we have a natural grading by degree, and let Pd(E) denote the degree d homogeneous

polynomial functions on E. Lastly, by P(E)G we will mean the G-invariant polynomial

functions.

Consider the case when G is a semi-simple linear algebraic group with Lie

algebra g. G acts by the adjoint representation on g. Let I(g) be the ideal generated by

the G invariant polynomials on g which vanish at the origin. Set:

Id(g) = Pd(g) ∩ I(g)

Let Hd(g) be the G invariant complement of Id(g) in the representation Pd(g). Set:

H(g) =
⊕

d

Hd(g)

In [14], B. Kostant proved that P(g) is a free module over the G-invariant polynomials,

P(g)G. That is to say that,

P(g) = P(g)G ⊗H(g)

Furthermore, Kostant’s result also gives the multiplicity of all irreducible rep-

resentations of G in H(g). Indeed, if T is a maximal torus in G and V is an irreducible

regular (in the sense of algebraic groups) representation of G then the multiplicity of an

irreducible representation V in H(g) is the dimension of the space of T -invariant vectors

in V , denoted V T . In other words,

dimHomG(V,H(g)) = dimV T

The space H(g) has a grading from P(g). Nineteen years later in [9], Hesselink

gave a graded multiplicity as well. Another proof of this graded multiplicity formula is

also given in [20].

Another case with a similar flavor is as follows: let θ denote a regular involution

on G with differential at the identity (also denoted by) θ. Let K be the subgroup of G

consisting of the fixed points of θ. Denote the Lie algebra of K by k. We take p to be

the −1 eigenspace of θ.
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Let I(p) be the ideal generated by the K invariant polynomials on p which

vanish at the origin. Set:

Id(p) = Pd(p) ∩ I(p)

Let Hd(p) be the K invariant complement of Id(p) in the representation Pd(p).

Set:

H(p) =
⊕

d

Hd(p)

In [13], B. Kostant and S. Rallis prove the following theorem.

Theorem 1 (Kostant, Rallis) The space of polynomial functions on p is a free module

over the ring of K invariant polynomials. That is,

P(p) ∼= P(p)K ⊗H(p)

and furthermore, as a representation of K, H(p) is equivalent to the representation

algebraically induced from the trivial representation of a subgroup M to K. Where M is

the centralizer in K of an Abelian subalgebra a of g maximal among such algebras both

contained in p and containing only semisimple elements.

A proof of this theorem can be found in [8]. This thesis will address the special

case when G = GL(n,C), θ(g) = (g−1)T and hence K = O(n,C). Let Dn denote the set

of diagonal n× n complex matrices. In this special case, one can show that a = p ∩Dn

and M = K ∩Dn.

The fact that H(p) is an induced representation and Frobenius reciprocity de-

termine the multiplicity of an irreducible representation of K in the space of harmonics.

Indeed, let VM denote the space of M -invariant vectors in V , where V is an irreducible

representation of K. Then,

dimHomK(V,H(p)) = dimVM

The question which will be addressed in the thesis concerns the distribution of

the above multiplicity in the graded components of H(p). This would provide a natural

q-analog of the above multiplicity formula. More specifically, if V λ is an irreducible

representation of K with highest weight λ then we will find

mλ(q) =
∑
d≥0

dimHomK(V λ,Hd) qd
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Here a multiplicity formula is also given, but in general the formula for the graded

multiplicity is not yet known. In [20] an important family of examples is given where

we do have such a graded multiplicity formula. An example of a case not completely

understood is the pair (SL(n,C), SO(n,C)). The first non-trivial example of this case is

when n = 4. [20] gives the graded multiplicity for this case, but the techniques employed

were special to that example. Chapter 6 of this work is in part a recapitulation of [20]

with alternative proofs of some of the theorems.

It is interesting that the n = 4 case is also important for the subject of quantum

computation. In fact, results in this direction have applications to other problems. In

classical invariant theory, they aid in the calculation of Hilbert series, which are graded

multiplicity formulae for the trivial representation. In [20], the Hilbert series is given

for the SO(4,C)-invariants in the polynomial functions on the 4 × 4 complex matrices

under the action of conjugation. This material is also reprinted for the convenience of

the reader in chapter 6. Another direction of research is to generalize this result for all

n. Some progress has been made in this direction and is mentioned in chapter 2.

The purpose of chapter 5 is to address part of the problem of finding the

graded multiplicity in the harmonic polynomials for the (GL(n,C), O(n,C)) case of the

Kostant-Rallis theorem. Specifically, Chapter 5 addresses larger values of n by describing

a certain stable range in which the graded components of the harmonic polynomials can

be completely decomposed. The components in the stable range are precisely those of

degree not greater than bn
2 c. Thus a graded component of degree d is decomposed for

all but finitely many n. The existence of the stable range is a consequence of a new

interpretation of results of Enright, Howe and Wallach, (see [2]) and Howe’s theory of

dual pairs (see [10]). We will summarize this point of view shortly, but first consider

the following consequence of this program in classical invariant theory.

Consider the action of the complex orthogonal group O(n) on the n×nmatrices,

Mn, by restricting the adjoint action of GL(n,C). This action gives us an action on

the ring of complex valued polynomial functions on the n × n matrices, P(Mn). The

polynomials of degree d, denoted Pd(Mn) form a finite dimensional representation of

O(n) and provide a graded module structure on P(Mn) as well as the subring of invariant

polynomials, P(Mn)O(n).

We can study this example by decomposing the n×n matrices into a direct sum
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of symmetric, SMn and antisymmetric, AMn subspaces. The dimension of Pd(Mn)O(n)

would follow from a complete graded decomposition of P(AMn) and P(SMn). In the

former, the results of Hesselink (see [9]), imply such a graded decomposition, while in the

latter a graded decomposition, which refines the non-graded decomposition is essentially

the program just described. This is one reason that this case is the emphasis of this

thesis.

From another point of view, it is shown in chapter 2 that for 0 ≤ d ≤ n,

dimPd(Mn)O(n) is equal to the coefficient of qd in,

∏
k≥1

(
1

1− qk

)ck

Where ck is the number of k vertex cyclic graphs with directed edges counted up to

dihedral symmetry. The above formula gives a combinatorial interpretation of the Hilbert

series for this ring.

An important observation for these types of questions is that often the represen-

tation we consider is the restriction of a representation of a larger group. This fact pro-

vides a connection with another problem. Given an irreducible representation of a group,

how does it decompose if we restrict the action to a subgroup? Of particular importance

are the representations of GL(n) = GL(n,C). In [15] and [16], Littlewood gives a for-

mula for the multiplicity of an irreducible representation of the group O(n) = O(n,C) in

certain irreducible representations of GL(n). Results in chapter 3 give insight into when

such formulae exist and what can be said in more generality. Littlewood’s restriction

formulae have received recent attention from another point of view in [7] and [6].

The problem of decomposing an irreducible, regular, GL(n) representation into

irreducible (regular) O(n) representations by recasting the statement to one of infinite

dimensional representation theory. Let {Eµ}µ∈E and {F λ}λ∈F be representatives of the

equivalence classes of irreducible regular representations of O(n) and GL(n) respectively.

In [8] it is explained how to take these index sets to be non-negative integer partitions

with at most n parts. For λ ∈ F and µ ∈ E , define the non-negative integer bλµ to be the

multiplicity of the representation Eµ in the representation F λ restricted to O(n).

Mn×m denotes the representation of O(n) on the n × m matrices defined by

matrix multiplication on the left. This fact in turn gives us a representation of O(n) on
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P(M∗
n×m). The algebra of operators commuting with the image of this representation

is generated by a set of polynomial coefficient differential operators. These, under the

usual bracket, span a Lie algebra isomorphic to the rank m symplectic Lie algebra,

sp(m) = sp(m,C).

The significance of studying the algebra of operators commuting with a repre-

sentation is given by a theorem known as the ”double commutant theorem” (see [8]). The

double commutant theorem gives us a pairing of the irreducible sp(m) representations,

denoted Eµ, in P(M∗
n×m) with the irreducible regular representations of the group O(n),

occurring in P(M∗
n×m). The pairing in this case is part of Roger Howe’s general duality

theory (see [10]). For a recent treatment of these results see [8]. As an O(n) × sp(m)

representation the space P(M∗
n×m) is a multiplicity free space. Indeed,

P(M∗
n×m) =

⊕
µ

Eµ ⊗ Eµ (1.1)

In this light, the isotypic component of an irreducible O(n) representation has

the structure of an sp(m) representation. The irreducible sp(m)-representations in this

space are (infinite dimensional) unitary highest weight representations. The interesting

fact is that they have a structure which implies a new interpretation of the numbers bλµ.

There is a rich literature on the structure of these representations, much of

which can be traced back to [2]. A careful survey of this theory will give great insight

into the restriction problem. One reason for this opinion is a consequence of the following

line of reasoning. GL(n) acts on Mn×m by left multiplication while GL(m) acts by right

multiplication. As a GL(n) × GL(m) representation, P(M∗
n×m) is a multiplicity free

space decomposing as,

P(M∗
n×m) =

⊕
λ

F λ ⊗ F λ (1.2)

In the above decomposition, F λ is the irreducible representation of GL(n,C)

with highest weight λ. Observe that if we restrict the action of the first GL(n) to the

orthogonal group and write out the decomposition, we obtain,

P(M∗
n×m) =

⊕
λ

(⊕
µ

bλµE
µ

)
⊗ F λ (1.3)
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Reordering the summands in the above leads us to a new decomposition of the

space on the left.

P(M∗
n×m) =

⊕
µ

(
Eµ ⊗

⊕
λ

bλµF
λ

)
(1.4)

GL(m) is contained in the commutant of the algebra generated by the image of

the O(n) action, thus we have an action of GL(m) on the modules Eµ. This deduction

gives an expression for the GL(m) decomposition of these sp(m) representations, Eµ

occurring in P(M∗
n×m). Indeed,

Eµ =
⊕

λ

bλµ F
λ (1.5)

This interpretation of the modules Eµ allows for the development of the stable

range of chapter 5 mentioned earlier. It is important to note the special case when

m = 1, gives the classical example of decomposing the polynomials on the standard

representation of O(n) into spherical harmonics. More specifically, let the Laplacian be

defined by,

∆ =
n∑

i=1

∂2

∂xi
2

We now define the degree d spherical harmonics,

Hd(Cn) =
{
f ∈ P d(Cn)|∆(f) = 0

}
We will abbreviate Hd = Hd(Cn).

The fact that the spherical harmonics are contained in the polynomials on the

standard representation provides additional structure. In chapter 4 a theorem is proven

which implies a graded multiplicity formula for the spherical harmonics in the space H(p)

for both the (SL(n), SO(n)) and the (GL(n), O(n)) case of the Kostant-Rallis theorem.

In the former we have,∑
k,d≥0

dimHomSO(n,C)(Hk,Hd(p)) qd tk =
1 + tnq(

n
2)∏

1≤i≤n−1(1− qit2)
.

While in the latter we have,∑
k,d≥0

dimHomO(n,C)(Hk,Hd(p)) qd tk =
1∏

1≤i≤n−1(1− qit2)
.



Chapter 2

Stable result

2.1 The Problem

Let’s recall the standard notation. Let Mn denote the vector space of n × n

matrices with entries from C. Let GLn the group of invertible matrices in Mn, and

denote by On the subgroup of GLn consisting of orthogonal matrices, that is,

On =
{
g ∈ GLn|gT g = I

}
Denote the ring of polynomial functions on Mn by P(Mn). On acts linearly on

Mn by conjugation, which gives a linear group action on P(Mn) by, g.f (X) = f(g−1Xg)

for g ∈ On, X ∈ Mn. Let P(Mn)On be the ring of invariants under this action. This

action does not change the degree of f so we have a grading,

P(Mn) =
⊕
d≥0

Pd(Mn) (2.1)

where we take Pd(Mn) to be the degree d homogeneous polynomials on Mn. This also

gives us a grading on the invariants of the action. Our problem is to find an explicit

form for the Hilbert series of invariants. Let,

Hn(q) =
∑
d≥0

dimPd(Mn)
On
qd (2.2)

8
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Where: P(Mn)On denotes the space of invariant polynomials of homogeneous

degree d. For notation we will also define,

H(q, t) =
∑
n≥0

Hn(q)tn (2.3)

Expressing these formal power series in a simpler form is the subject of this work. Specif-

ically, Hn(q) is to be written as a rational function of the form,

Hn(q) =
a0 + a1q + a2q

2 + · · ·+ arq
r∏

1≤i≤k(1− qei)
(2.4)

Where: k, r, ai, and ei, are non-negative integers depending only on n. In

general, k is the Krull dimension of the ring of invariants. Or equivalently, the dimension

of the variety defined by the invariant polynomials without constant term.

Note that for n = 1, 2, or 3 it is not hard to study the invariants directly because

the representations of the orthogonal group in low rank are well understood.

H1(q) =
1

1− q
(2.5)

H2(q) =
1

(1− q)(1− q2)2
(2.6)

H3(q) =
1 + q6

(1− q)(1− q2)2(1− q3)2(1− q4)
(2.7)

We refer the reader to [20] for the highly non-trivial and interesting case of

SO(4).

2.2 Littlewood-Richardson coefficients

Irreducible regular representations of the group GLn (or for any connected

reductive linear algebraic group for that matter) are indexed by highest weight vectors.

The highest weight vectors for polynomial representations of GLn are in one to one

correspondence with non-negative integer partitions. For a detailed development see [8].

The irreducible regular representation of GLn indexed by λ = (λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn)

will be denoted by F λ. The sum of the parts of a partition λ is denoted by |λ|, while

the number of parts is l(λ).
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Definition 1 Let Fµ and F ν be irreducible GLn representations with highest weights µ

and ν respectfully. Define the coefficients {Nλ
µ ν} by,

Fµ ⊗ F ν =
⊕

λ

Nλ
µ νF

λ

The numbers Nλ
µ,ν are called the Littlewood-Richardson coefficients. Although,

these numbers are often defined as the structure constants for multiplication of the Schur

basis of the ring of symmetric functions. We will discuss this point somewhat further

in chapter 5. In the following we will derive yet another characterization in terms of

representations of the symmetric group. This is a consequence of Schur-Weyl duality.

The irreducible representations of the symmetric group are in bijective corre-

spondence with the partitions of m. A precise indexing of the representations of Sm is

given by the Young symmetrizers (see [8], [4], [18], [17], [19], [11] etc.) So to each parti-

tion λ of m we can associate an irreducible representation, Uλ of Sm. The correspondence

is implicitly stated in the following theorem:

Theorem 2 (Schur-Weyl Duality) Sm acts on
⊗mCn by permutation of the tensor

factors while GLn acts on the same space diagonally. As a GLn×Sm representation we

have, ⊗m
Cn =

⊕
λ : |λ| = m

l(λ) ≤ n

F λ ⊗ Uλ (2.8)

Where the Uλ are irreducible representations of Sm.

We now begin an argument establishing the interpretation of the Littlewood-Richardson

coefficients in terms of the representations of the symmetric groups. First we set m =

m1 +m2 for some non-negative integers m1 and m2 and apply theorem 2 to
⊗m1Cn and⊗m2Cn.

⊗m1+m2Cn = (
⊕

µ : |µ| = m1

l(µ) ≤ n

Fµ ⊗ Uµ)⊗ (
⊕

ν : |ν| = m2

l(ν) ≤ n

F ν ⊗ Uν) (2.9)

Next we expand the product and view
⊗m1+m2 Cn as a GLn × GLn × Sm1 × Sm2 rep-

resentation.
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⊗m1+m2Cn =
⊕
µ, ν

|µ| = m1

|ν| = m2

l(µ), l(ν) ≤ n

Fµ ⊗ F ν ⊗ Uµ ⊗ Uν (2.10)

Restrict the action of GLn × GLn to the diagonal GLn and decompose into

irreducible GLn × Sm1 × Sm2 representations. The isotypic component of the GLn

representation F λ then has the structure of an Sm1 × Sm2 representation. That is,

⊗m1+m2Cn =
⊕
µ, ν, λ

|µ| = m1, |ν| = m2

|λ| = m1 + m2

l(λ), l(µ), l(ν) ≤ n

Nλ
µν (Uµ ⊗ Uν)⊗ F λ (2.11)

Of course we also view
⊗m1+m2Cn as an GLn × Sm1+m2 representation, and

then the isotypic component of the GLn representation F λ has the structure of an (irre-

ducible) Sm1+m2 representation.

⊗m1+m2Cn =
⊕

λ : |λ| = m1 + m2

l(λ) ≤ n

Uλ ⊗ F λ (2.12)

We are lead to the following rule for restricting an irreducible Sm1+m2 repre-

sentation to the subgroup Sm1 × Sm2 .

Res
Sm1+m2

Sm1 × Sm2

Uλ =
⊕
µ, ν

|µ| = m1

|ν| = m2

Nλ
µνUµ ⊗ Uν (2.13)

By Frobenius reciprocity for finite groups we can restate the above in terms of

induced representations as,

Ind
Sm1+m2

Sm1 × Sm2

Uµ ⊗ Uν =
⊕

λ

|λ| = m1 + m2

Nλ
µνUλ (2.14)
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2.3 The symmetric pair (GLn, On)

As an On representation, the conjugation action on Mn is equivalent to the

diagonal action of On on the the space Cn ⊗ Cn. This is a consequence of the fact that

the standard representation of On is equivalent to its dual. In order to understand the

space P(Mn) as a graded On representation we will investigate the restriction of the

standard GLn×GLn action on Cn⊗Cn to the diagonal GLn (that is, {(g, g)|g ∈ GLn}),
and then restricted to the group On. For this we will use the following special case of

the Carton-Helgason theorem.

Theorem 3 Let F λ denote the irreducible finite dimensional representation of the group

GLn with highest weight λ. Then,

dim (F λ)On = 1 if λ has all even parts.

= 0 otherwise

This theorem follows from the fact that (GLn, On) is a symmetric pair, see

[8], chapters 11 and 12. So the dimension of the On invariant space in Pd(Mn) can be

computed from a complete GLn decomposition. We begin this program by asserting the

following result sometimes referred to as Cauchy’s identity or the Chauchy-Littlewood

identity (see [4]), but which is also an instance of Roger Howe’s theory of dual pairs (see

[10]).

Theorem 4 The standard action of GLn×GLn on Cn⊗Cn defines an action on Pd(Cn⊗
Cn) by,

(g, h)f (x⊗ y) = f(g−1x⊗ h−1y)

for (g, h) ∈ GLn×GLn and f a degree d homogeneous polynomial function on Cn⊗Cn.

Under this action the space of functions decomposes as,

Pd(Cn ⊗ Cn) =
⊕

λ : l(λ) ≤ n

|λ| = d

(F λ)∗ ⊗ (F λ)∗

We will now need to restrict the action from GLn ×GLn to the diagonal GLn.

This is exactly the problem of finding the decomposition of a tensor product of an

irreducible GLn representation with itself.
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Using theorems 3, and 4, we can write an expression for the Hilbert series

defined in section 2.1 as follows,

P(Cn ⊗ Cn)On =
⊕

µ:l(µ)≤n

(Fµ∗ ⊗ Fµ∗)On (2.15)

=
⊕

µ:l(µ)≤n

(Fµ ⊗ Fµ)On (2.16)

=
⊕

µ,ν:l(µ),l(ν)≤n

Nν
µ µ(F ν)On (2.17)

=
⊕

µ,λ:l(µ),l(ν)≤n

N2λ
µ µ(F 2λ)

On (2.18)

Note that 2λ means double all the parts of λ. Theorem 3 then implies,

Hn(q) =
∑

λ,µ:l(λ),l(µ)≤n

N2λ
µµq

|λ|

=
∑

λ,µ:l(λ),l(µ)≤n

N2λ
µµq

|µ|

 (2.19)

The second equality is a consequence of the fact that if Nλ
µν 6= 0 then |µ|+ |ν| =

|λ|. It is interesting to point out that, if µ is a partition of n, and N2λ
µµ 6= 0 then λ must

be a partition of n as well, hence λ can have at most n parts. This implies the following

result.

Theorem 5 (Stability range for invariants) For d, n ≥ 0,

dimPd(Mn)
On ≤

∑
λ,µ:|λ|=|µ|=d

N2λ
µµ (2.20)

with equality holding if and only if d ≤ n.

For d > n the exact dimension is a subject of investigation. Consider the formal

power series,

H̃(q, t) =
∑
λ,µ

N2λ
µµq

|λ|tl(λ)
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Figure 2.1: An element in C4

and for m ≥ 0, set dm(t) = H̃(q, t)|qm (which is a polynomial in the t with non-negative

integer coefficients. Now observe,

H(q, t) =
∑

λ,µ,n:l(λ),l(µ)≤n

N2λ
µµq

|λ|tn (2.21)

=
1

1− t

∑
λ,µ

N2λ
µµq

|λ|tl(λ) (2.22)

=
H̃(q, t)
1− t

. (2.23)

2.4 A Combinatorial Result.

Equation 2.19 defines a generating function which is a rational function. This

rational function is what we wish to compute. Unfortunately, a closed form expression

is not available yet, however, if we drop the length conditions on the partitions λ and µ

something more can be said.

A directed cycle is a (unlabeled) cyclic graph with its edges oriented. That is,

an unlabeled directed graph with cyclic underlying graph. Let Ck denote the set of k

vertex directed cycles, and Dm denote the set of (not necessarily connected) directed k

vertex graphs in which each component is a directed cycle. It is helpful to introduce

some easy terminology. Here we shall call a directed edge an arc. The arrow end of an

arc will be called the head, while the other end will be called the tail. Note that we will

allow the one or two arc cases, so an arc joining a vertex to itself is a directed cycle, as

well as the case of two arcs joining a pair of vertices. An example of an element in C4 is

shown in figure 2.1, while an example of an element in D11 is shown in figure 2.2

The elements of Dm are multisubsets of ∪Ci. Set dm = |Dm|, and ck = |Ck|. It
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Figure 2.3: An example of an element in LD10

is instructive to check that,

∑
m≥0

dmq
m =

∏
k≥1

(
1

1− qk

)ck

(2.24)

LDm will denote the set of graphs from Dm with each arc labeled by an element

of the set {1, 2, . . . ,m} such that each label is used exactly once. An example of an

element in LD10 is shown in figure 2.3.

Let Ir be the set of involutions on the set {1, 2, . . . , r}, and let Ĩr be the subset

of Ir consisting of involutions which do not have fixed points. Our strategy is to set

up a bijective correspondence between LDm and Ĩ2m, The bijective correspondence is
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Figure 2.4: Arcs between the vertices paired by the involution.
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Figure 2.5: An arrow from vertex i to vertex i+n

proven shortly. First we illuminate the idea of the proof by an example. Consider the

involution,

(1 2)(3 4)(5 15)(6 8)(7 12)(9 20)(10 19)(11 14)(13 17)(16 18)

(Here we are using the disjoint cycle representation.) Now we will describe how

this involution corresponds to figure 2.3. Write the numbers from 1 to 10 in a row and

above them write the numbers from 11 to 20. Next, connect each number with its image

under the involution, as shown in figure 2.4.

In the diagram above draw and arrow from each number to the number directly

above it, see figure 2.5.

Each number in the top row labels the head of an arc, while each number in the



17

u
7

12

u
2

1

u17 13

u11

14

u
3

4

-
�

�
�

�
���

�
�

�
�

��	

A
A

A
A

AAK

@
@

@
@

@@R u
u

��* HHY

u
u

��*

��� u
6

6 8

16 18

19 10

9 20

15
5

Figure 2.6: Collapsed arcs in figure 2.5

bottom row labels the tail of an arc. Next, identify the pairs of vertices in the diagram

whenever a vertex is connected to another. The resulting picture will be an element of

D10 which has each arc labeled by a pair (i, i+10), where i labels the tail of the arc and

i+ 10 labels the head of the arc. See figure 2.6.

Note that nothing is lost if one relabels the arc (i, i+10) with just i. This com-

pletes the correspondence for this example. The following is a more precise description.

Lemma 1 There exists a bijective map Θ : LDm −→ Ĩ2m

Proof:

Given g ∈ LDm we will make an involution σ ∈ Ĩ2m as follows, pick k ∈
{1, . . . , 2m}, we will define the value of σ at k in two cases. The two cases are 1 ≤ k ≤ m

and m+ 1 ≤ k ≤ 2m.

CASE 1: If 1 ≤ k ≤ m then find the arc labeled by k if the tail of arc k is attached to

the tail of arc j then define, σ(k) = j. On the other hand, if the tail of arc k is attached

to the head of arc j then define, σ(k) = j +m.

CASE 2: If m+ 1 ≤ k ≤ 2m then find the arc labeled by k−m if the head of arc m− k
is attached to the tail of arc j then define, σ(k) = j. On the other hand, if the head of

arc k −m is attached to the head of arc j then define, σ(k) = j +m.
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It can be checked that σ is an involution in S2m. We will now describe the

inverse correspondence. Given an involution σ create an element of LDm by starting

with m non-joined arcs labeled with the numbers 1 through m. We will now use the

values of σ(k) and σ(k+n) to identify the vertices. Identify the vertices at the head and

tail of arc k and arc j according to the following four cases:

σ(k) = j Identify the tail of arc k with the tail of arc j.

σ(k) = j +m Identify the tail of arc k with the head of arc j.

σ(k +m) = j Identify the head of arc k with the tail of arc j.

σ(k +m) = j +m Identify the head of arc k with the head of arc j.

Q.E.D.

The following theorem establishes that the polynomials dm(t) defined in the

last section are a t-analog of the numbers dm.

Theorem 6 ∑
λ,µ

N2λ
µµq

|µ| =
∏
k≥1

(
1

1− qk

)ck

Proof:

For a partition λ of m, let Uλ denote the irreducible representation of Sm.

Recall that the Littlewood-Richardson coefficients can be defined equivalently by,

Ind
Sm1+m2

Sm1 × Sm2

(Uν ⊗ Uµ) =
⊕

λ

Nλ
µνUλ (2.25)

Let ∆Sm denote the diagonally embedded copy of Sm in Sm×Sm. By relabeling

the letters in the second copy of Sm we will embed Sm × Sm in S2m. Hence, view both

∆Sm and Sm × Sm as subgroups of S2m. The representation of S2m induced from the

trivial representation of ∆Sm can be decomposed into irreducible representations as

follows:
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Ind
S2m

∆Sm

1 = Ind
S2m

Sm × Sm

Ind
Sm × Sm

∆Sm

1

 (2.26)

= Ind
S2m

Sm × Sm

(⊕
µ

Uµ ⊗ Uµ

)
(2.27)

=
⊕

µ

Ind
S2m

Sm × Sm

(Uµ ⊗ Uµ) (2.28)

=
⊕
λ,µ

Nλ
µµ Uλ (2.29)

Note that here 1 denotes the trivial representation. The above computation first

uses the fact that induction of representations is transitive in equation 2.26. Then it is

observed that representations of the symmetric group are self dual (this is because every

permutation is conjugate to its inverse), so by Schur’s lemma we obtain, equation 2.27.

After noting that induction distributes across the direct sums, we use the (equivalent)

definition of the Littlewood-Richardson coefficients in 2.25.

Let τ be the element of S2m with disjoint cycle representation

(1 2)(3 4) . . . (i i+ 1) . . . (2m− 1 2m)

Define Hm to be the centralizer group of τ in S2m. Hm is isomorphic to the Weyl group

Bm (or Cm). An important fact explained in [17], chapter VII, section 2 (page 402) is,

Ind
S2m

Hm

1 =
⊕

λ:|λ|=m

U2λ (2.30)

Equation 2.29 and equation 2.30 lead us to a formula which is a consequence

of only Schur’s Lemma,
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∑
λ,µ:|λ|=|µ|=m

N2λ
µµ = dimHomS2m

Ind
S2m

Hm

1, Ind
S2m

∆Sm

1

 (2.31)

= dimHom∆Sm

1,Res
S2m

∆Sm

Ind
S2m

Hm

1

 (2.32)

= dim

Res
S2m

∆Sm

Ind
S2m

Hm

1

∆Sm

(2.33)

The group ∆Sm acts on the left cosets of Hm in S2m by restricting the left coset

action of S2m. By 2.33, it is clear that the orbits of this action are to be enumerated. As

usual, let S2m/Hm denote the left cosets of Hm in S2m. ∆Sm acts on Ĩ2m by conjugation

and this action is equivalent to the left coset action of ∆Sm on S2m/Hm, by the following

correspondence:

ψ : S2m/Hm −→ Ĩ2m

σHm 7−→ στσ−1

A quick check will establish that the above bijection is defined. The remainder

of the proof is to establish a bijective correspondence between the orbits Ĩ2m/∆Sm and

the set Dm defined above. Observe that two involutions σ1 and σ2 are in the same orbit

under the action of ∆Sm, if and only if they correspond to two elements g1, g2 ∈ LDm

which are different labelings of the same unlabeled directed graph. Q.E.D.

Observe that the space
⊗2Cn = S2(Cn)⊕∧2(Cn). So under the action of GLn

we have,

S(
⊗2

Cn) = S(S2(Cn))⊗ S(∧2(Cn))

S
(
S2(Cn)

)
=

⊕
µ : l(µ) ≤ n

F 2µ (2.34)

S
(
∧2(Cn)

)
=

⊕
ν : l((2ν)c) ≤ n

F (2ν)c

(2.35)
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Here we use the notation, λc to denote conjugation λ. Combining the last two

results together we obtain the following decomposition as a representation of GLn.

S
(⊗2

(Cn)
)

=
⊕
µ, ν

l((2ν)c) ≤ n

l(µ) ≤ n

F 2µ ⊗ F (2ν)c

=
⊕
λ, µ, ν

l((2ν)c) ≤ n

l(µ), λ ≤ n

Nλ
2µ,(2ν)c F λ

Then, find the On invariants as before by taking one invariant for each even λ.

This approach leads to the following identity:

∑
λ, µ

l(µ), l(λ) ≤ n

N2λ
µµq

λ =
∑

λ, µ, ν

l((2ν)c) ≤ n

l(µ), l(λ) ≤ n

N2λ
2µ,(2ν)cqλ (2.36)

Taking n to infinity gives another identity of formal power series.

Corollary 7 ∑
λ,µ

N2λ
µµq

λ =
∑
λ,µ,ν

N2λ
2µ,(2ν)cqλ =

∏
k≥1

(
1

1− qk

)ck

(2.37)

It is interesting to note that there is a correspondence between elements of Ck

and certain On invariant functions on Mn given by the following description. Let C ∈ Ck.

Choose arbitrarily an arc A1 in C. Let {A2, A3, . . . , Ak} denote the sequence of arcs tra-

versed clockwise from A1. Let f : Mn → C be defined by, f(X) = Trace
(∏k

i=1 fi(X)
)
.

Where:

fi =

 X If Ai is oriented clockwise.

XT If Ai is oriented counterclockwise.

It is easy to see that these functions are On invariant. Observe that the def-

inition is independent of the initial choice of A1 because a cyclic permutation of the

variables will not effect the value of the trace. Also, we could have interchanged the

words clockwise and counterclockwise because the trace of a matrix is the same as the

trace of its transpose.
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2.5 An enumeration of Ck and Dm

In this section we enumerate the set Ck by computing a generating function. A

vertex in a directed cycle is called a sink vertex if the two arcs joined to it are pointing

into the vertex. A vertex is called a source vertex if the two arcs joined to it are pointed

away from the vertex. A vertex is called a flow vertex if one arc points into it and one

arc points out of it. Next, let

C(i)
k = {c ∈ Ck|c has i sinks and i sources} (2.38)

So Ck = ∪iC(i)
k . Observe that the source and sink vertices alternate with flow

vertices scattered between them. For each directed cycle, construct a polygon whose

corners correspond to the source vertices, with each side corresponding to a sink vertex.

The flow vertices are then represented by ordered pairs of non-negative integers assigned

to each side. In order to enumerate these, we will use Burnside’s theorem by averaging the

fix point set cardinalities of the action of the dihedral group on such n sided polygons.

The generating function gn(x) in which xk records the directed cycles with exactly n

sources, n sinks and k flow vertices is,

gn(x) =
1

2(1− x2)n
+

1
2n

∑
d|n

φ(d)

(1− xd)
2n
d

(2.39)

The generating function in which the coefficient of xn is the number of directed

cycles with n vertices is then,

C(x) =
∑
k≥1

gk(x)x2k (2.40)

=
∑
n≥1

 x2n

2(1− x2)n
+
x2n

2n

∑
d|n

φ(d)

(1− xd)
2n
d

 . (2.41)

It is interesting to see that the initial segment of the sequence {ck}k≥1 is 1, 2, 2, 4, 4, 9,

10, 22, 30, 62, 94, 192, 316, 623, 1096, 2122, 3856, 7429, 13798, ...

An initial segment of the numbers Dm, for m = 0...19 is, 1, 1, 3, 5, 12, 20, 44,

76, 157, 281, 559, 1021, 2005, 3721, 7237, 13631, 26433, 50297, 97543, 187129. In section
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2.3, we defined a t-analog of these numbers. This is what is currently being investigated.

The following table gives some initial data. The coefficient of t(column)q(row) in H̃(q, t)

is displayed for rows and columns from 0 to 9. Recall then that in the mth row are the

coefficients of dm(t) and the sum of the first n columns is the sequence of coefficients of

the formal power series expansion of Hn(q).

1 0 0 0 0 0 0 0 0 0 ...

1 2 0 0 0 0 0 0 0 0 ...

1 2 2 0 0 0 0 0 0 0 ...

1 5 3 3 0 0 0 0 0 0 ...

1 5 7 4 3 0 0 0 0 0 ...

1 9 13 12 5 4 0 0 0 0 ...

1 9 21 21 14 6 4 0 0 0 ...

1 14 33 48 30 19 7 5 0 0 ...

1 14 51 75 67 39 21 8 5 0 ...

1 20 73 145 133 98 48 26 9 6 ...
...

...
...

...
...

...
...

...
...

...
. . .

2.6 On the Hilbert Series of P(g)K

2.6.1 The restricted adjoint representation

Let G denote a connected semi-simple linear algebraic group over C with Lie

algebra g and let θ denote a regular involution with differential (also denoted) θ : g → g.

Let K be the set of fixed points of θ in G and let k denote the Lie algebra of K. k

is a Lie subalgebra of g and under the adjoint representation of K, g = k ⊕ p where,

p = {X ∈ g|θ(X) = −X}.
Of course for the purpose of this work we are interested in the reductive case

of the pair (GLn(C), On(C), but for the time being we will take G to be the semisimple

group SLn(C) and K = SOn(C). θ is inverse transpose, while its differential at the

identity is negative transpose. g can be taken as the the trace zero matrices, k the skew

symmetric matrices and p the symmetric matrices in g.

Let V be a regular representation of K. As before we have a linear action of
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K on the polynomial functions on V. Semisimplicity of G implies that K is reductive,

and in the case of K reductive the ring P(V )K is finitely generated, but not necessarily

a polynomial ring. Also, we have that P(V ) is a finitely generated module over P(V )K ,

but not necessarily a free module. Two deep results are the following.

Theorem 8 (Kostant) P(g) is free as a P(g)G -module

Of course applying the theorem to k, we have that P(k) is free as a P(k)K

-module, but in addition we also have,

Theorem 9 (Kostant-Rallis) P(p) is free as a P(p)K -module.

The Chevalley restriction theorem gives that P(g)G, P(k)K and P(p)K are

polynomial rings in which case the Hilbert series for each is of the form, 1∏l
i=1(1−qdi )

.

Where the numbers di are the degrees the algebraically independent generators. Let the

ideal generated by the K-invariant polynomial functions of positive degree be denoted by

IV and for each d ≥ 0 set Id
V = Pd(V )∩ IV and let Hd

V be the K-invariant complement

of Id
V in Pd(V ). Set HV = ⊕d≥0Hd

V . Another way to say theorems 8 and 9 is,

P(g) = P(g)G ⊗Hg

P(k) = P(k)K ⊗Hk

P(p) = P(p)K ⊗Hp

The goal of this work is to understand the Hilbert series of the ring of invariants,

P(g)K . One approach is to view P(g) as P(k)⊗ P(p) and then apply the above results

to obtain,

P(g)K = P(k)K ⊗ P(p)K ⊗ (Hk ⊗Hp)
K

One way of carrying out this program might be to obtain a complete graded

decomposition of the spaces Hp and Hk and then pair each representation of K with

its dual to find the invariants. The graded decompositions of Hk is given in [9], but

currently the graded decomposition of Hp is not known for general (K, p). See [20], for

some important cases where such a graded decomposition is given. Because of this the
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program will be to first use the results in [9] to obtain a graded decomposition of Hg

into irreducible representations and then use the Cartan and Helgason theorem for the

multiplicities of K-invariants in irreducible G representations.

We will now recall a formula which gives the graded multiplicity of each irre-

ducible representation of G in Hg. Fix, T , a maximal (algebraic) torus of G and h the

corresponding Cartan subalgebra of g. Let l = dimT . Let Φ denote the root system of

T acting on G. Choose a system, Φ+, of positive roots in Φ and let ∆ be the simple

roots in Φ+. Let W (G,T ) = W be the Weyl group of T in G acting on h. If α ∈ Φ then

sα ∈W denotes the reflection about the hyperplane α = 0 in h. Let ρ = 1
2

∑
α∈Φ+ α (as

usual). Next, we will define Lustig’s q-analog of the Kostant partition function which

is a function ℘q on h∗ taking values in the ring of polynomials in q with non-negative

integer coefficients.

1∏
α∈Φ+ 1− qe−α

=
∑
ξ∈h∗

℘q(ξ)e−ξ (2.42)

For any vector λ ∈ h∗ define the function,

Lλ(q) =
∑
s∈W

sgn(s)℘q(s(λ+ ρ)− ρ).

Theorem 10 (Hesselink) If µ is a dominant integral character of T we denote by

Fµ the irreducible finite dimensional representation of (of the simply connected covering

group of) G with highest weight µ. Then,

Lµ(q) =
∑

d

dimHomG(Fµ,Hd
g) q

d (2.43)

Here we quote the Cartan, Helgason theorem which asserts that the dimension

of the space of K-invariants in the restriction of an irreducible G-representation, Fµ is

at most 1. Define

I(G,K) =
{
µ ∈ P+(g)|dim (Fµ)K = 1

}
With this in mind, we are lead to a (not so closed) formula for the Hilbert series

of the invariants,
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Hilbq P(g)K =

∑
λ∈I(G,K) Lλ(q)∏l

i=1(1− qdi)
(2.44)

The above hints at an algorithm to compute the Hilbert series of P(g)K . For

the cases of (GLn, On) and (GLn, SOn), I have implemented this algorithm.

2.7 On-stability of the tensor algebra

Define the formal series,

Tn(q) =
∑
m≥0

dim
(⊗m

End(Cn)
)On

qm

We will let the GLn decomposition of
⊗mCn be defined by the numbers fλ,

⊗m
Cn =

⊕
λ

l(λ) ≤ n

|λ| = m

fλF
λ (2.45)

Schur-Weyl duality implies that fλ is the dimension of the irreducible Sm rep-

resentation indexed by λ. Again, we will find the dimension of the On-invariants by

theorem 3, and obtain,

Tn(q) =
∑

λ:l(λ)≤n

f2λq
|λ| (2.46)

Theorem 11 For m,n ≥ 0 we have,

dim
(⊗m

End(Cn)
)On

≤ (2m)!
2mm!

(2.47)

with equality if and only if m ≤ n

Proof:

dim
(⊗m

End(Cn)
)On

= dim
(⊗m

(Cn ⊗ (Cn)∗)
)On

= dim
(⊗m

(Cn ⊗ Cn)
)On

= dim
(⊗2m

Cn
)On
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From the theory of representations of the symmetric group, f2λ is the number of

standard tableaux on the shape 2λ. The RSK algorithm gives a correspondence between

pairs of standard tableaux (of the same shape) and permutations (see [4], chapter 4).

The involutions are sent to the diagonal pairs via this correspondence (see [4], page 52),

moreover the number of odd columns is the number of fixed points in the involution. We

can conjugate all of these to change column parity conditions to row parity conditions.

dim
(⊗m

End(Cn)
)On

=
∑

λ:|λ|=m,l(λ)≤n

f2λ

≤
∑

λ:|λ|=m

f2λ

= |Ĩ2m|

=
(2m)!
2mm!

Observe that the above inequality is actually an equality if and only if m ≤ n. Q.E.D.

It is important to note that the above proof gives an algorithm for computing

the exact dimension, by using the hook length formula for f2λ.



Chapter 3

Branching

3.1 Restriction of representations

We address the problem of decomposing an irreducible GL(n) = GL(n,C) rep-

resentation into irreducible representations of the orthogonal subgroup, O(n) = O(n,C)

or in the case n = 2k, the rank k symplectic group, Sp(k) = Sp(k,C). In general this

the problem of decomposing an irreducible representation of a group into irreducible

representations for one of its subgroups is called branching. From the Weyl character

formula, one can derive very general formulae in terms of partition functions, see [8]

chapter 8. There are quite a few sources in the literature involving branching problems.

Some of the most recent papers are [7], and [6]. Although the problem is address much

earlier. In [15] and [16], Littlewood refers to the work of Schur and Frobenius. The

physics literature also has a wide variety of treatments, see [3].

[5] has a section on branching rules. However, some of the hypotheses are not

strong enough in certain theorems. For example, the rules for branching from GL(n,C)

to O(n,C) in formula (25.37) on page 427 in [5] has the following counterexample: The

square of the determinant is an irreducible GL(n,C) representation which restricts to the

trivial representation of O(n,C). The stated formula indicates that the restricted repre-

sentation should contain irreducible components which have dimension greater than 1.

If one adds the requirement that the partition indexing the GL(n,C) representation has

at most bn
2 c parts then this example is removed. Littlewood indicates this assumption in

[16]. This example indicates that some care must be given when attacking this problem.

28
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In particular, one should expect to find formulas which work only in certain ranges. I

will refer to such a range as a stable range.

The representations will in general be regular representations in the category

of linear algebraic groups. This is to say that, the matrix coefficients are rational func-

tions of the entries in GL(n,C) where the denominators are powers of the determinant.

Indeed, the ring of matrix coefficients is isomorphic to the ring of polynomials in n2

variables localized at the determinant. In this category the irreducible representations

are indexed by dominant weights. The over all structure of this chapter is to describe

first and indexing of the irreducible representations of the groups involved (even the dis-

connected case of O(n)). Then we introduce Howe duality for the pairs (GL(n), GL(m)),

(O(n), sp(m)) and (Sp(k), so∗(2m)). Using the Howe duality theorems will will prove

the Littlewood restriction rules for the pairs (GL(n), O(n)) and (GL(2k), Sp(k)).

3.1.1 Irreducible Representations of GL(n)

For any integer partition λ = (λ1, . . . , λn), let F λ
(n) be the irreducible regular

representations of GL(n) indexed in the usual way by highest weights, λ1e1 + · · ·+λnen.

Where the ei denote the standard linear functionals on the diagonal Cartan subalgebra

of the Lie algebra gln(C). That is,

ei :


a11 0 0 . . . 0

0 a22 0 . . . 0
...

...
...

...
...

0 0 0 . . . ann

 7→ aii

Note that if it is clear which group we are dealing with, we will usually omit

the (n) subscript from our notation. If λn ≥ 0 then we will say that F λ is a polynomial

representation. This terminology is motivated by the fact that the matrix coefficients are

in fact polynomial functions in this case. Polynomial representations are not closed under

duality, while regular representations are closed. We consider polynomial representations

for a convenience of notation. Branching to the orthogonal or symplectic groups is

essentially the same in either category because every regular representation of GL(n) is

a polynomial representation if we tensor with a sufficiently high positive integer power

of the determinant.
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3.1.2 Irreducible Representations of Sp(k)

{V µ}µ will be representatives of the equivalence classes of irreducible regular

representations of Sp(k,C). As with the GL(n,C) case we will index this by non-negative

integer partitions in which each ν corresponds to an irreducible regular (or polynomials

in this case) representation of Sp(n) with highest weight µ1e1 + · · ·+ µnek.

3.1.3 Irreducible Representations of O(n)

{Eµ}µ will be representatives of the equivalence classes of irreducible regular

representations of O(n,C). We can again take the index set to be non-negative integer

partitions with at most n parts as described in [8] chapter 10. We will repeat the

indexing here. Let Q be the symmetric nondegenerate bilinear form defining the complex

orthogonal group.

Let

Cij :
⊗m

Cn →
⊗m−2

Cn

Defined by:

Cij(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vm) =

Q(vi, vj) v1 ⊗ · · · ⊗ vi−1 ⊗ vi+1 ⊗ · · · ⊗ vj−1 ⊗ vj+1 ⊗ · · · ⊗ vm

Let

H(
⊗m

Cn) =
⋂

1≤i<j≤m

ker Cij

For each λ with |λ| = m and l(λ) ≤ n we can choose a representative, F λ for

the irreducible GL(n) representation with highest weight λ as a subspace of
⊗mCn.

This tensor space decomposes by Schur-Weyl duality as,

⊗m
Cn =

⊕
λ : |λ| = m

l(λ) ≤ n

F λ ⊗ Uλ

Where Uλ is an irreducible representation of the symmetric group on m letters,

Sm. See chapter 2 for more comments on this decomposition.
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Given a partition λ = (λ1 ≥ · · · ≥ λn ≥ 0) with |λ| = m and l(λ) ≤ n,

set Eλ = F λ ∩ H(⊗mCn). Denote by λc the conjugate partition of λ. That is to

say the partition with its i part defined by λc
i = #{j : λj ≥ i}. If λ is such that

λc
1 + λc

2 > n then Eλ = (0). In the case that λc
1 + λc

2 ≤ n, Eλ will be an irreducible

representation of O(n,C). It is the case that all irreducible regular representations of

O(n,C) occur as invariant subspaces of tensor powers of the standard representation. As

a consequence of this fact, every irreducible regular representation of O(n) corresponds

to a unique partition λ. The proofs of these facts can be found in [8], chapter 10. In

particular, we have the decomposition of the harmonic tensors into irreducible O(n)×Sm

representations,

H(
⊗m

Cn) =
⊕

λ : |λ| = m

λc
1 + λc

2 ≤ n

Eλ ⊗ Uλ

Note that because O(n,C) is not a connected group we do not index represen-

tations by highest weights. Next we will describe how representations of O(n) indexed

in this way decomposes into irreducible representations for SO(n) where we do describe

the representations by highest weights.

Branching from O(n,C) to SO(n,C)

In chapter 5 of [8] the irreducible O(n) representations are obtained from the

fact that SO(n) is an index two subgroup of O(n). This implies that the irreducible

representations of O(n) either remain irreducible when restricted to SO(n) or decompose

into two irreducible representations of SO(n). We will now describe this in terms of the

above parameters.

Proposition 12 ((O(n), SO(n)) branching, see [8]) Let Eλ be an irreducible repre-

sentation of O(n,C) indexed by a non-negative integer partition, λ subject to the condi-

tion that λc
1 + λc

2 ≤ n. (A partition satisfying this condition will be called admissible.)

Set:

V = ResO(n,C)
SO(n,C) E

λ
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Case 1: n = 2r and l(λ) = r then the representation V is reducible with two irreducible

components with highest weights,

λ1e1 + · · ·+ λr−1er−1 + λrer

and,

λ1e1 + · · ·+ λr−1er−1 − λrer

Case 2: l(λ) 6= r then for all n the representation V is irreducible with highest

weight,

λ1e1 + · · ·+ λr−1er−1 + λrer

Remark: The proof of this theorem is contained in chapter 5 of [8] together

with the comments about the indexing of the O(n) representations found in chapter 10.

Let λ and µ be partitions such that,

• λ1 + µ1 = n

• λi = µi for all i such that 2 ≤ i ≤ n

A pair of partitions satisfying the above two conditions will be called associates.

Corollary 13 (Associate partition theorem, see [8] chapter 10)

As representations of SO(n),

ResO(n)
SO(n)E

λ ∼= ResO(n)
SO(n)E

µ

if and only if λ and µ are associates.

3.1.4 Branching Coefficients

For a non-negative integer partitions λ and µ, define the non-negative integers

bλµ to be the multiplicity of Eµ in the representation F λ restricted to the orthogonal

group.
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As Sp(k) ⊂ GL(2k), we can view an irreducible representation of GL(n) as a

representation of Sp(k). In the space manner, let cλµ be the multiplicity of V µ in F λ

restricted to Sp(k).

By Schur’s lemma we have:

bλµ = dimHomO(n)

(
Eµ, Res

GL(n)
O(n) F λ

)

cλµ = dimHomSp(k)

(
V µ, Res

GL(2k)
Sp(k) F λ

)
3.1.5 Littlewood’s Restriction Rules

Given integer partitions, µ = (µ1 ≥ · · · ≥ µn), λ = (λ1 ≥ · · · ≥ λn), and

ν = (ν1 ≥ · · · ≥ νn), define the classical Littlewood-Richardson coefficients Nλ
µ,ν by,

Nλ
µ,ν = dimHomGL(n)(F

λ, Fµ ⊗ F ν)

Littlewood’s restriction formula for O(n)

If ν is a partition then set 2ν to be the partition obtained by doubling each

part of ν.

Theorem 14 (See [16]) If r = bn
2 c, and λ = (λ1 ≥ · · · ≥ λr ≥ 0),

then for µ = (µ1 ≥ · · · ≥ µr ≥ 0),

dimHomO(n)(E
µ,Res GL(n)

O(n) F
λ) =

∑
ν:l(ν)≤r

Nλ
2ν, µ

Littlewood’s restriction formula for Sp(k)

If ν is a non-negative integer partition then (2ν)c is a non-negative integer

partition with even columns in its Young diagram.

Littlewood’s restriction formula for Sp(k) asserts:
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Theorem 15 (See [16]) For λ = (λ1 ≥ · · · ≥ λk ≥ 0),

then for µ = (µ1 ≥ · · · ≥ µk),

dimHomSp(k)(V
µ,Res GL(2k)

Sp(k) F λ) =
∑

ν:l((2ν)c)≤k

Nλ
(2ν)c, µ

The goal of this work is to give a proof of the above formulae by using the

structure theory of infinite dimensional highest weight modules.

3.2 Howe duality

3.2.1 Howe duality for the groups (GL(n), GL(m))

Theorem 16 (Howe duality A-A) GL(n) acts on Mn×m by left multiplication and

GL(m) acts by right multiplication. As a GL(n)×GL(m) representation, P(M∗
n×m) is

multiplicity free space decomposing as,

P(M∗
n×m) =

⊕
λ:l(λ)≤min(n,m)

F λ
(n) ⊗ F λ

(m)

Corollary 17 All irreducible polynomial representations of GL(n) occur as invariant

subspaces of the left multiplication representation on P(M∗
n×n).

Corollary 18 All irreducible regular representations of O(n) occur as invariant sub-

spaces of P(M∗
n×n)

Corollary 19 All irreducible regular representations of Sp(k) occur as invariant sub-

spaces of P(M∗
2k×k)

Let AL
n,m be the algebra of operators in End(P(M∗

n×m)) generated by the image

of the representation of GL(n).

Let AR
n,m be the algebra of operators in End(P(M∗

n×m)) generated by the image

of the representation of GL(m).

Part of the Howe duality theorem (in full form) is the assertion that the com-

mutant of the algebra AL
n,m is the algebra AR

n,m and that the commutant of the algebra

AR
n,m is the algebra AL

n,m.
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3.2.2 Howe duality for (O(n), sp(m))

Consider the representation of O(n) defined by matrix multiplication on Mn×m

from the left. We then have a left (linear) action of O(n) on P(M∗
n×m). For 1 ≤ i ≤ j ≤

m, the algebra of operators commuting with the algebra generated by the image of this

representation has a generating set defined in terms of the following operators:

Eij =
n∑

s=1

xki
∂

∂xs,j

∆ij =
n∑

s=1

∂2

∂xs,i∂xs,j

Mij =
n∑

s=1

xs,ixs,j

Let Cn,m be the algebra of operators in End (P(Mn×m)) commuting with the

image of the left action of O(n).

The above operators generate the algebra of linear operators commuting with

the O(n) action. Under the usual bracket, the vector space span of the operators

{Mij , Eij + n
2 δij , ∆ij} has the structure a Lie algebra isomorphic to the rank m sym-

plectic Lie algebra, sp(m) = sp(m,C).

The double commutant theorem gives us a pairing of the irreducible sp(m)

modules, denoted Eµ in P(M∗
n×m) with the irreducible representation of the group O(n),

occurring in P(M∗
n×m). The pairing in this case is part of Roger Howe’s general duality

theory see [10]. For a recent treatment of these results see [8]. We quote the result here:

Theorem 20 As an O(n)× sp(m) representation the space P(M∗
n×m) is a multiplicity

free space. That is,

P(M∗
n×m) =

⊕
µ:l(µ)≤min(bn

2
c,m)

Eµ ⊗ Eµ

In this light, the isotypic component of an irreducible O(n) representation has

the structure of an sp(m) module. The irreducible sp(m) modules are infinite dimensional

highest weight modules.
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The interesting fact is that the structure of these modules gives insight into the

computation of the branching coefficients described in subsection 3.1.5. These facts will

be discussed further in section 3.3.

3.2.3 Howe duality for (Sp(k), so∗(2m))

Consider the representation of Sp(k) defined on M2k×m by matrix multiplica-

tion on the left. We then have a locally finite dimensional representation of Sp(k) on

P(M∗
k×m). For 1 ≤ i < j ≤ m, the algebra of operators commuting with the algebra

generated by the image of this representation has a generating set defined in terms of

the operators,

Dij =
k∑

s=1

(
∂2

∂xs,i∂x(k+s),j
− ∂2

∂xs,j∂x(k+s),i

)

Sij =
k∑

s=1

(
xs,ix(k+s),j − xs,jx(k+s),i

)
And, recall that for all 1 ≤ i, j ≤ m we defined:

Eij =
2k∑

s=1

xs,i
∂

∂xs,j

Let Dk,m be the algebra of operators in End (P(M2k×m)) commuting with the

image of the left action of Sp(k).

As with the (O(n), sp(m)) case, the above operators generate the algebra of

operators commuting with the Sp(k) action. Under the usual bracket, the vector space

span of {Mij , ∆ij} for 1 ≤ i < j ≤ n and Eij +kδij for all 1 ≤ i, j ≤ m has the structure

a Lie algebra isomorphic to the Lie algebra so(2m,C). This is a Lie algebra over C,

which is the complexification of the real Lie algebra so∗(2m).

The double commutant theorem gives us a pairing of the irreducible Sp(k)

representations and irreducible so(2m) modules that occur in P(M∗
2k×m). Denote the

so(2m) modules by Vµ. The pairing in this case is again part of Roger Howe’s general

duality theory.
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Theorem 21 As an Sp(k)×so(2m) representation the space P(M∗
2k×m) is a multiplicity

free space. That is,

P(M∗
2k×m) =

⊕
µ:l(µ)≤min(k,m)

V µ ⊗ Vµ

In this light, the isotypic component of an irreducible Sp(k) representation

has the structure of an so(2m) module. The irreducible so(m) modules are infinite

dimensional highest weight modules.

3.2.4 A change in the order of summation.

RecallAn,m, the centralizer algebra of operators commuting with the left GL(n)

action on P(M∗
n,m). From theorem 16 we have,

P(M∗
n×m) =

⊕
λ:l(λ)≤min(n,m)

F λ
(n) ⊗ F λ

(m)

We will restrict the action of the GL(n) in the above to the orthogonal group

and write out the decomposition,

P(M∗
n×m) =

⊕
λ

(⊕
µ

bλµE
µ

)
⊗ F λ

In the above sum, µ runs over non-negative integer partitions with at most

r = bn
2 c parts. Upon reordering the summands in each of the decompositions we obtain,

P(M∗
n×m) =

⊕
µ

(
Eµ ⊗

⊕
λ

bλµF
λ

)
The sp(m) modules, Eµ are representations of the O(n) centralizer algebra,

Cn,m in End(P(M∗
n×m)). Observe that AR

n,m ⊂ Cn,m because O(n) ⊂ GL(n). The image

of GL(m) is then contained in the algebra, Cn,m. This implies that Eµ is a representation

of the group GL(m). We shall call this representation the right representation of GL(m)

on Eµ.

In the same way, consider the case where n = 2k and restrict the action of

the GL(2k) to the symplectic group and write out the decomposition after reversing the
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order of summation.

P(M∗
2k×m) =

⊕
µ

(
V µ ⊗

⊕
λ

cλµF
λ

)
In the above, µ runs over all partitions with at most min(k,m) non-zero parts,

while λ runs over all partitions with at most min(2k,m) non-zero parts. The so(2m)

modules, Vµ are representations of the Sp(k) centralizer algebras, Dk,m. Observe that

A2k,m ⊂ Dk,m because Sp(k) ⊂ GL(2k). Hence the image of GL(m) is contained in the

algebra, Dn,m. This implies that Vµ is a representation of the group GL(m). Again, we

shall call this the right representation of GL(m) on Vµ.

This gives an expression for the GL(m) decomposition (under the right action)

of the sp(m)-modules, Eµ as well as the so(2m)-modules, Vµ occurring in P(M∗
n×m).

Proposition 22 ((O(n), sp(k)) case) As a GL(m) representation under the right ac-

tion, an sp(m) representation Eµ occurring in the space P(M∗
n,m) decomposes as,

Eµ =
⊕

λ:l(λ)≤min(n,m)

bλµ F
λ

Proposition 23 ((Sp(k), so∗(2m)) case) As a GL(m) representation under the right

action, an so(2m) representation Vµ occurring in the space P(M∗
2k,m) decomposes as,

Vµ =
⊕

λ:l(λ)≤min(2k,m)

cλµ F
λ

3.3 Generalized Verma Modules

In this section we will show how the results of Enright, Howe and Wallach (see

[2]) imply that in a certain stable range the modules Eµ and Vµ have a special structure.

We will use these results to give another proof of the the Littlewood restriction rules.

In the most general situation, let G be simple real Lie group with a subgroup K such

that, (G,K) is a Hermitian symmetric pair. Let g0 be the Lie algebra of G, while g

denotes the complexification of g0. Let k0 be the Lie algebra of K, and again let k be the

complexification of k0. Let g0 = k0 ⊕ p0 be the Cartan decomposition. Let g = k⊕ p be

the complexified Cartan decomposition. h0 ⊂ k0 will denote a Cartan subalgebra. Our

assumptions imply that h0 ⊂ g0 and is a Cartan subalgebra for g0 as well. h will denote
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the complexification of h0 as before. Let b be a Borel subalgebra containing t such that

q = k + b is a parabolic subalgebra of g. Φ = Φ(g, h) will denote the roots of g with

respect to h.

Φ+ = Φ+(g, b) will denote the positive roots. Let Φc be the roots of (k, h). We

call these roots, compact roots, while the remaining roots of g will be denoted by Φn

and referred to as noncompact roots. Set Φ+
c = Φ+ ∩ Φc and Φ+

n = Φ+ ∩ Φn.

For a dominant weight λ ∈ h, let F λ be a irreducible k module. Now,

N(λ) = U(g)⊗U(q) F
λ

. We will call N(λ) a generalized Verma module. Define:

p+ =
∑

α∈Φ+
n

gα

p− =
∑

α∈Φ+
n

g−α

Both p+ and p− are k invariant subspaces. As a k-module we have g = p−⊕k⊕p+.

This implies that as a k-module,

N(λ) ∼= S(p−)⊗ F λ

Let the irreducible quotient of N(λ) be denoted by L(λ). The goal of this

section is to use a sufficient condition of when N(λ) = L(λ) and use this fact to prove

the Littlewood restriction rules.

For λ ∈ h∗, and α ∈ Φ set

λα =
2〈λ, α〉
(α, α)

Let β be the unique maximal noncompact positive root of g. Let h∗1 be the span of

Φc. By the assumptions on (G,K), h∗1 has codimension 1 in h∗. That is, k has a one

dimensional center. There is then a unique choice ζ ∈ h∗ so that, ζ is orthogonal to Φc

and ζβ = 1. Equivalently,

〈ζ, β〉 =
1
2
(β, β)
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Figure 3.1: λ0 + zζ for z ∈ R

The span of ζ is a complement to k∗1. Each highest weight λ is a point on a line

defined by λ0 + zζ where λ0 is normalized so that:

〈λ0 + ρ, β〉 = 0

λ is then determined by λ0 and z by either of the two equivalent conditions,

〈λ+ ρ, β〉 = z〈ζ, ρ〉 (3.1)

=
z(β, β)

2
(3.2)

Theorem 24 (Enright, Howe, Wallach [2]) The set of real numbers z with L(λ0 +

zζ) a unitarizable g-module is given in figure 3.1.

• The set includes the half line ending at A(λ0).

• The discrete series representations of G correspond to values z < 0

• The limit of the discrete series corresponds to z = 0.

• The smallest value of z with N(λ0 + zζ) reducible is z = A(λ0. We call A(λ0) the

first reduction point.

• In addition to the half line there are a number of equally spaced points in the set

ending at B(λ0).

Remark: In particular, if z < A(λ0) then N(λ) = L(λ). The fact that we shall

need is that since A(λ0) > 0, we have that if z < 0 then N(λ) = L(λ).

From the Howe duality theory we have that the modules Vµ and Eµ are irre-

ducible modules. It is the case that they are in fact unitary highest weight modules (see

[2]). The question answered by the above theorem is: When are the modules generalized

Verma Modules? We consider the two cases g = so(2m) and g = sp(m) and give a

sufficient (but not necessary) condition for when this happens.
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3.3.1 The so∗(2m) case.

g0 = so∗(2m)

g = so(2m,C)

k = gl(m,C)

p+ = ∧2(Cm)

p− = ∧2(Cm)∗

Φ = Dm

Φ+
c = {ei − ej |1 ≤ i < j ≤ m}

Φ+
n = {ei + ej |1 ≤ i < j ≤ m}

β = e1 + e2

ρ = (m− 1,m− 2,m− 3, . . . , 2, 1, 0)

ζ =
1
2
(1, 1, . . . , 1)

Proposition 25 For the Sp(k)× so(2m)-decomposition,

P(M∗
2k,m) =

⊕
V µ ⊗ Vµ

where the direct sum runs over non-negative integer partitions,

µ = (µ1, µ2, . . . , µk)

with l = min(k,m) non-zero parts, the highest weight of Vµ is the m tuple:

µ̃ = (−k, . . . ,−k,−k − µl, . . . ,−k − µ1)

The highest weight of the Sp(k) representation is the k tuple:

µ = (µ1, . . . , µl, 0, . . . , 0)

Proof:

This proposition is a form of the well known Howe duality theorem mentioned

earlier. We indicate below enough detail to determine the explicit parameters.
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For 1 ≤ i ≤ min(2k,m), define:

ωi = Det




x11 x12 . . . x1i

x21 x22 . . . x2i

· · · · · · · · ·
xi1 xi2 . . . xii




Let

vµ = ωµ1−µ2
1 ωµ2−µ3

2 . . . ω
µm−1−µm

m−1 ωµm
m

In [2] p. 124 the vector vµ is a highest weight vector relative to the chosen

positive system with highest weight µ̃. Furthermore, let T be the usual diagonal torus

for the groups Sp(k,C). For t = (t1, . . . , tk) we have tv̇µ = tµ1
1 . . . tµk

k vµ. And it can

be checked that vµ is killed by the positive nilpotent part of the Lie algebra of Sp(k,C).

This means that vµ is a highest weight vector for both actions. Q.E.D.

Let:
η = 2kζ

= (k, k, . . . , k)︸ ︷︷ ︸
m k’s

Proposition 26 As a gl(m,C) representation under restriction, the so∗(2m) generalized

Verma module,

N(−k, . . . ,−k,−k − µl, . . . ,−k − µ1)

is equivalent to P(∧2(Cm)∗)⊗ F−µ ⊗ F−η

Proof: This follows from the definition of a generalized Verma modules and

p− = ∧2(Cm)∗

Q.E.D.

Remark: In the above, F−η is the one dimensional representation of the com-

plex Lie algebra glm(C). This representation is equivalent to −k Tr(X). In the case that

N(µ̃) ∼= Eµ then it is a representation under the right action of GL(m). Note that the

differential of the right action of GL(m,C) on Eµ is not equivalent to the restriction of

sp(m,C) to the Lie subalgebra glm(C). However, we do have the following,
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Proposition 27 If Vµ has highest weight,

µ̃ = (−k, . . . ,−k,−k − µl, . . . ,−k − µ1)

and Vµ = N(µ̃) then under the right action of GL(m) we have,

Vµ
∼= S(∧2(Cm)∗)⊗ Fµ

Proof: The action of the Cartan subalgebra,

h ⊂ gl(m,C) ⊂ so(2m,C)

defined by the differential operators Eij + kδi,j differs by k Idm from the action of the

Cartan subalgebra,

h′ ⊂ Lie(GL(m,C))

defined by the differential of the right action of GL(m,C). Q.E.D.

Proposition 28 In the decomposition, P(M∗
2k,k) =

⊕
V µ ⊗ Vµ

Vµ = N(−k − µk, . . . ,−k − µ1)

= L(−k − µk, . . . ,−k − µ1)

Proof: Recall first that in this example, ρ = (k − 1, k − 2, . . . , 0). So,

λ+ ρ = (−k − µk,−k − µk−1, . . . )

+(k − 1, k − 2, . . . )

= (−µk − 1,−µk−1 − 2, . . . )

For this example, β = e1 + e2. So,

z =
2〈λ+ ρ, β〉

(β, β)
= 〈λ+ ρ, β〉

= −µk − µk−1 − 2

< 0

The result follows from Theorem 24. Q.E.D.



44

Proposition 29 ([8] chapter 5) As a GL(k) representation

S(∧2(Ck)) is a multiplicity free space in which an irreducible representation F ν occurs

if and only if ν has each part repeated an even number of times. That is, the Young

diagram has even columns.

Corollary 30 The multiplicity of the GL(m) representation F λ,

in S(∧2(Cm))⊗ Fµ is, ∑
ν:l((2ν)c)≤m

Nλ
(2ν)c,µ

Proof: Tensor every irreducible component of S(∧2(Cm)) with Fµ. Q.E.D.

A proof of Littlewood’s restriction rules for Sp(k)

Let

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0)

µ = (µ1 ≥ µ2 ≥ · · · ≥ µk ≥ 0)

be non-negative integer partitions with at most k parts and set µ̃ to be the following

vector in Ck,

µ̃ = (−k − µk, . . . ,−k − µ1)

• By definition cλµ is the multiplicity of the irreducible representation V µ in theGL(k)

representation F λ.

• cλµ is the same as the multiplicity of the GL(k)-representation F λ in the so(2k)-

representation Vµ by Proposition 23

• Vµ is an irreducible unitary highest weight representation with highest weight µ̃ by

Proposition 25. Hence, Vµ
∼= L(µ̃).

• V µ occurs in the space P(M∗
2k,k) by Corollary 19.

• Vµ occurs in the space P(M∗
2k,k) by Theorem 21

• If L(µ̃) occurs in P(M∗
2k,k) then L(µ̃) = N(µ̃) by Proposition 28

• As a right GL(k) representation, Vµ
∼= S(∧2(Ck))⊗ Fµ by Proposition 27
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• The multiplicity of the irreducible representation F λ of GL(m) in

S(∧2(Ck))⊗ Fµ

is cλµ and by Proposition 30 this number is:∑
ν:l((2ν)c)≤m

Nλ
(2ν)c,µ

Q.E.D.

3.3.2 The sp(m) case.

g0 = sp(2m)

g = sp(m,C)

k = gl(m,C)

p+ = S2(Cm)

p− = S2(Cm)∗

Φ = Cm

Φ+
c = {ei − ej |1 ≤ i < j ≤ m}

Φ+
n = {ei + ej |1 ≤ i ≤ j ≤ m}

β = 2e1

ρ = (m,m− 1,m− 2, . . . , 3, 2, 1)

ζ = (1, 1, . . . , 1)

For this section let r = bn
2 c and l = min(r,m).

Proposition 31 For the

O(n)× sp(m)-decomposition,

P(M∗
n,m) =

⊕
Eµ ⊗ Eµ
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where the direct sum runs over non-negative integer partitions µ with l non-zero parts,

the highest weight of Eµ is:

µ̃ = (−n
2
, . . . ,−n

2
,−n

2
− µl, . . . ,−

n

2
− µ1)

Proof: For 1 ≤ i ≤ min(n,m),

ωi = Det




x11 x12 . . . x1i

x21 x22 . . . x2i

· · · · · · · · ·
xi1 xi2 . . . xii




Let

vλ = ωλ1−λ2
1 ωλ2−λ3

2 . . . ω
λm−1−λm

m−1 ωλm
m

In [12], p.23 prop 6.6 we have that the vector vµ̃ is a highest weight vector

which under the action of the O(n,C) generates an irreducible representation of O(n,C

isomorphic to Eµ. Q.E.D.

In the next proposition we will denote by η̃ the partition in which each part is

equal to n
2 . That is,

η̃ = n
2 ζ

= (
n

2
,
n

2
, . . . ,

n

2
)︸ ︷︷ ︸

m n
2 ’s

Proposition 32 ((O(n), sp(m)) case) As a gl(m,C) representation under restriction,

the generalized Verma module,

N(−n
2
, . . . ,−n

2
,−n

2
− µl, . . . ,−

n

2
− µ1)

is equivalent to

P(S2(Cm)∗)⊗ Fµ ⊗ F η̃

Proof: This follows from the definition of a generalized Verma modules and

p− = S2(Cm)∗

Q.E.D.
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Remark: In the above, F η̃ is the one dimensional representation of the complex

Lie algebra representation equivalent to n
2 Tr(X). This is not the differential of a group

representation of the GL(m,C). However, in the case that N(µ̃) ∼= Eµ then it is a

representation under the right action of GL(m). Note that the differential of the right

action of GL(m,C) on Eµ is not equivalent to the restriction of sp(m,C) to the Lie

subalgebra glm(C). Although we do have the following,

Proposition 33 In the case that, Eµ has highest weight

µ̃ = (−n
2
, . . . ,−n

2
,−n

2
− µl, . . . ,−

n

2
− µ1)

and Eµ
∼= N(µ̃) then under the right action of GL(m) we have

Eµ
∼= S(S2(Cm))⊗ Fµ

Proof: The action of the Cartan subalgebra,

h ⊂ gl(m,C) ⊂ sp(m,C)

defined by the differential operators Eij + n
2 δi,j differs by n

2 Im from the action of the

Cartan subalgebra,

h′ ⊂ Lie(GL(m,C))

defined by the differential of the right action of GL(m,C). Q.E.D.

Proposition 34 Let r = bn
2 c. In the decomposition,

P(M∗
n,r) =

⊕
Eµ × Eµ

Eµ = N(−n
2
− µr, . . . ,−

n

2
− µ1)

= L(−n
2
− µr, . . . ,−

n

2
− µ1)

Proof: Recall first that in this example, ρ = (r, r − 1, . . . , 1). So,

λ+ ρ = (−n
2
− µr, . . . )

+(r, r − 1, . . . )

= (r − n

2
− µr, . . . )
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For this example, β = 2e1. So,

z =
2〈λ+ ρ, β〉

(β, β)

=
〈λ+ ρ, β〉

2

=
2(r − n

2 − µr)
2

=
2(bn

2 c −
n
2 − µr)

2
= bn

2
c − n

2
− µr

≤ 0

The result follows from Theorem 24. Q.E.D.

Proposition 35 (see [8] chapter 5) As a GL(m) representation

S(S2(Cm)) is a multiplicity free space in which an irreducible representation F ν occurs

if and only if ν has even parts. That is, the Young diagram has even rows.

Corollary 36 The multiplicity of the GL(m) representation F λ in

S(S2(Cm))⊗ Fµ

is, ∑
ν:l(ν)≤n

Nλ
2ν,µ

Proof: Tensor every irreducible component of S(S2(Cm)) with Fµ. Q.E.D.

A proof of Littlewood’s restriction rules for O(n)

Let r = bn
2 c

λ = (λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0)

µ = (µ1 ≥ µ2 ≥ · · · ≥ µr ≥ 0)

be non-negative integer partitions with at most r parts and set µ̃ to be the following

vector in Cr,

µ̃ = (−n
2
− µr, . . . ,−

n

2
− µ1)
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• By definition bλµ is the multiplicity of the irreducible representation Eµ in the GL(r)

representation F λ.

• bλµ is the same as the multiplicity of the GL(r)-representation F λ in the sp(r)-

representation Eµ by Proposition 22

• Eµ is an irreducible unitary highest weight representation with highest weight µ̃

by Proposition 31. Hence, Eµ
∼= L(µ̃).

• Eµ occurs in the space P(M∗
n,r) by Corollary 18.

• Eµ occurs in the space P(M∗
n,r) by Theorem 20

• If L(µ̃) occurs in P(M∗
n,r) then L(µ̃) = N(µ̃) by Proposition 34

• As a right GL(r) representation, Eµ
∼= S(S2(Cr))⊗ Fµ by Proposition 33

• The multiplicity of the irreducible representation F λ of GL(r) in

S(S2(Cr))⊗ Fµ

is bλµ and by Corollary 36 is also: ∑
ν:l(ν)≤n

Nλ
2ν,µ

Q.E.D.

In conclusion, we point out that the techniques employed in this chapter are

somewhat more general than what we have actually used. In the research following this

thesis we will give stronger branching rules as further applications of this same theory.



Chapter 4

Spherical Harmonics

4.1 Spherical Harmonics

4.1.1 Classical Setup

Let {xi}n
i=1 be the coordinate basis of the vector space (Cn)∗ and (∗, ∗) the

standard non-degenerate bilinear form on Cn with respect to this basis, ie:

(xi, xj) = δi,j

Using this form we will identify Cn with (Cn)∗. P(Cn) will denote the ring of polynomial

functions on Cn. This ring is graded by degree, so take Pd(Cn) to be the degree d

homogeneous polynomials. Hence,

P(Cn) =
⊕
d≥0

Pd(Cn)

For x ∈ Cn, set Q(x) = (x, x). Q is a quadratic polynomial function on Cn. Let the

subring of P(Cn) generated by Q be denoted by C[Q]. As usual, let the Laplacian,

∆ =
n∑

i=1

∂2

∂xi
2

Define the degree d spherical harmonics,

Hd(Cn) =
{
f ∈ P d(C)|∆(f) = 0

}

50
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We will abbreviate Hd = Hd(Cn), and set

H(Cn) =
⊕
d≥0

Hd

O(n) will (specifically) be the subgroup of GL(n) consisting of orthogonal matrices with

respect to Q. GL(n) acts linearly on Cn by the standard representation, so let P(Cn)O(n)

denote the subring of O(n)-invariant polynomial functions. For the classical theory of

spherical harmonics refer to [8]. The part of the theory we require is summarized by,

P(Cn) = P(Cn)O(n) ⊗ H, and P(Cn)O(n) = C[Q]. As mentioned in the last chapter a

list of operators which generate the commutant of this action are,

∆ =
n∑

i=1

∂2

∂xi
2

E =
n

2
+

n∑
i=1

xi
∂

∂xi

M =
n∑

i=1

x2
i

The above operators span a vector space which under the usual Lie bracket is a Lie

algebra isomorphic to sl2(C). In fact, if X = 1
2∆, Y = −1

2M , and H = −E then

{X,Y,H} is a standard TDS, see [8].

4.1.2 A formal expression

Let the symbols t1, . . . , tn and h be indeterminates and let t = t(n) denote the

list t1, . . . , tn. Let N denote the set of non-negative integers. For a ∈ Nn, let λ(a) be a

partition with its ith part,

λ(a)i =
n∑

j=i

aj

Also, for a non-negative integer partition λ with at most n parts, let

A(λ)i =

 λi − λi+1 For 1 ≤ i ≤ n− 1

λn For i = n

Observe that for all partitions, λ with l(λ) ≤ n, and for all, a ∈ Nn,

λ(A(µ)) = µ

A(λ(a)) = a
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Recall the notation from chapter 3 where we indexed the irreducible representations of

O(n,C) by non-negative integer partitions. Note that the spherical harmonics correspond

to the partitions with exactly one non-zero part, that is Hd
∼= Eµ, where µ = (d) =

(d, 0, . . . , 0). As in chapter 3, set:

bλ(d) := dimHomO(n)(Hd, F
λ)

In the above, the subscript (d) is intended to denote a partition with one part equal to

d. Consider the following formal sum,

RO(n)(t(n), h) :=
∑

a∈Nn, d≥0

b
λ(a)
(d) ta hd

The idea in the above is that the coefficient of ta1
1 . . . tan

n hd is the multiplicity of the

spherical harmonics of degree d in F λ(a), where the highest weight λ is indexed by its

non-negative integer combination of fundamental weights for GL(n).

Theorem 37 For n ≥ 2,

RO(n) =
∏n−1

i=1 (1 + titi+1h)
(1− t1h)

∏n
i=1(1− t2i )

∏n−1
i=2 (1− t2ih

2)

Remarks: In the above an empty product has the value 1, as usual.

By expanding the above expression into a formal power series we obtain an

effective method to compute the multiplicity of the space of spherical harmonics of

degree d in a irreducible GL(n) representation with highest weight λ.

In the next section we will give a somewhat technical proof of theorem 37. It

is instructive to point out that what we will prove is the following inductive approach.

Proposition 38

RO(n+1)(t(n+1), h) =
1 + tntn+1h

(1− t2n+1)(1− t2nh
2)
RO(n)(t(n), h) for n ≥ 1

RO(1)(t, h) =
1 + th

1− t2
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4.2 Proof of theorem 37

Define:

Wn(t(n), h) =
∑

a∈Nn, d≥0

dim
(
F λ(a) ⊗ Sd(Cn)

)O(n)
tahd

Recall the isomorphism,

HomO(n)(Hd, F
λ) ∼= ((Hd)∗ ⊗ F λ)O(n)

∼= (Hd ⊗ F λ)O(n)

As an application of this observe,∑
d≥0

dim
(
F λ ⊗ Sd(Cn)

)O(n)
hd =

∑
d≥0

dim
(
F λ ⊗ (Sd(Cn))∗

)O(n)
hd

=
∑
d≥0

dim
(
F λ ⊗ Pd(Cn)

)O(n)
hd

=
1

1− h2

∑
d≥0

dim
(
F λ ⊗Hd

)O(n)
hd

=
1

1− h2

∑
d≥0

bλ(d) h
d

We then obtain,

RO(n) = (1− h2)Wn(t(n), h)

Given partitions λ and µ with at most n parts, λ is said to interlace µ if λi ≥ µi ≥ λi+1 for

all 1 ≤ i ≤ n− 1. Another way to state this condition is that the corresponding Young

diagrams differ by a horizontal strip. With this in mind we shall compute Wn(t, h)

another way, first observe the classical interlacing result.

Theorem 39 (Interlacing, [8] Chapter 9)

Fµ
⊗

Sd(Cn) =
⊕

λ

F λ

Where the sum is over all partitions λ with at most n parts and

size |µ|+ d that interlace µ.

In order to find the O(n) invariants we will again (see chapter 2) use the fol-

lowing special case of Cartan and Helgason, (see [8], chapter 10).
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Theorem 40

dim
(
F λ
)O(n)

=

 1 if λ has all even parts

0 otherwise

To obtain our objective we will give a weighted enumeration of even partitions

which interlace a given partition. We define the following set,

Ln = {(λ, µ)| 2λi ≥ µi ≥ 2λi+1 ≥ µi+1 for all i, 1 ≤ i ≤ n− 1}

Let C[t(n), h] denote the ring of polynomials in x1, . . . , xn and h. Consider the weight,

wn : Ln → C[t(n), h], by,

wn(λ, µ) = tµn
n

[
n−1∏
i=1

t
µi−µi+1

i

]
h

∑n
i=1(2λi−µi)

= tA(µ) h2|λ|−|µ|

Proposition 41

Wn(t(n), h) =
∑

(λ,µ)∈Ln

wn(λ, µ)

Proof:

Wn(t(n), h) =
∑

a∈Nn, d≥0

dim (F λ(a) ⊗ Sd(Cn))
O(n)

tahd

=
∑

µ1 ≥ · · · ≥ µn ≥ 0

d ≥ 0

 ∑
λ : 2λ interlaces µ

|2λ| − |µ| = d

1

 tA(µ) hd

=
∑

(λ,µ)∈Ln

tA(µ) h|2λ|−|µ|

Q.E.D.

We will express Wn(t(n), h) as a rational function. We will proceed inductively

as follows. Set,

N2
e = {(a, b) ∈ N2|a, b ≥ 0, a+ b ∈ 2Z}
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and define another weight,

w̃n : N2
e × Ln → C[ t(n+1), h]

w̃n ((a, b), (λ, µ)) = tan+1 t
b
m hb wn(λ, µ)

Theorem 42 Given a quadruple (a, b, λ̃, µ̃) ∈ N2
e × Ln, let

λi = λ̃i +
a+ b

2
for 1 ≤ i ≤ n

λn+1 =
a+ b

2
µi = µ̃i + a+ b for 1 ≤ i ≤ n

µn+1 = a

Let: Ψ
(
(a, b), (λ̃, µ̃)

)
= (λ, µ). It is the case that Ψ defines a function,

Ψ : N2
e × Ln → Ln+1

Furthermore, Ψ is bijective and wn+1 ◦Ψ = w̃n

Proof: The fact that Ψ is a function is a just a check that the values are in the set

Ln+1. It can be easily checked that the following is also a function, Ψ∗ : Ln+1 → N2
e×Ln

Given (λ, µ) set,

a = µn+1

b = 2λn+1 − µn+1

λ̃i = λi − λn+1 for 1 ≤ i ≤ n

µ̃i = µi − 2λn+1 for 1 ≤ i ≤ n

Ψ∗(λ, µ) =
(
(a, b), (λ̃, µ̃

)
It is an easy exercise to check that, Ψ ◦Ψ∗ = ILn+1 and, Ψ∗ ◦Ψ = IN2

e×Ln
. To

verify the second part of the theorem observe the following computation,

wn+1 ◦Ψ
(
(a, b), (λ̃, µ̃)

)
= wn+1(λ, µ)
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wn+1(λ, µ) = t
µn+1

n+1

[
n−1∏
i=1

t
µi−µi+1

i (tµn−µn+1
n )

]
h[

∑n
i=1(2λi−µi)+(2λn+1−µn+1)]

= tan+1

[
tµ̃n+b
n

n−1∏
i=1

t
µ̃i−µ̃i+1

i

]
h[b+

∑n
i=1(2λ̃i−µ̃i)]

= (tan+1 t
b
n h

b) tµ̃n
n

[
n−1∏
i=1

t
µ̃i−µ̃i+1

i

]
h2|λ|−|µ|

= tan+1 t
b
n h

b wn(λ̃, µ̃)

= w̃n((a, b), (λ̃, µ̃))

Q.E.D.

Before proceeding with our computation we will need the following lemma:

Lemma 2 ∑
(i,j)∈N2

e

xi yj =
1 + xy

(1− x2)(1− y2)

Proof: ∑
(i,j)∈N2

e

xi yj =
∑
i,j≥0

(x2i y2j + x2i+1 y2j+1)

=
∑
i,j≥0

x2i y2j (1 + xy)

=
1 + xy

(1− x2)(1− y2)

Q.E.D.



57

Now we will set up the induction step for our computation starting with Propo-

sition 41 and then applying Theorem 42.

Wn+1(t(n+1), h) =
∑

(λ,µ)∈Ln+1

wn+1(λ, µ) (4.1)

=
∑

((a,b),(λ̃,µ̃))∈N2
e×Ln

wn+1 ◦Ψ((a, b), (λ̃, µ̃)) (4.2)

=
∑

((a,b),(λ̃,µ̃))∈N2
e×Ln

w̃n((a, b), (λ̃, µ̃)) (4.3)

=
∑

((a,b),(λ̃,µ̃))∈N2
e×Ln

tan+1t
b
nh

bwn(λ̃, µ̃) (4.4)

=

 ∑
(a,b)∈N2

e

tan+1t
b
n

 ∑
(λ̃,µ̃)∈Ln

wn(λ̃, µ̃)

 (4.5)

=
(

1 + tntn+1h

(1− t2n+1)(1− t2nh
2)

)
Wn(t(n), h) (4.6)

The last line follows from the definition of Wn(t(n), h) and Lemma 2. This sets up an

inductive procedure for the computation. The basis case will be provided by,

Proposition 43

W1(t1, h) =
∑

λ1, µ1 ∈ N
2λ1 − µ1 ≥ 0

tµ1h2λ−µ

=
1 + t1h

(1− t21)(1− h2)

Proof: Use Lemma 2 Q.E.D.

Now we will express Wn(t(n), h) as a rational function of the variables t1, . . . , tn

and h.

Proposition 44

Wn(t(n), h) =
∏n−1

i=1 (1 + titi+1h)
(1− t1h)(1− h2)

∏n
i=1(1− t2i )

∏n−1
i=2 (1− t2ih

2)

Proof: This has been proved above by the induction argument with basis case from

equation (4.7) and induction step supplied by equation (4.6). Q.E.D. This
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completes the inductive approach to the computation. We now push back the recursion

to yield the following statement for n ≥ 2,

RO(n) =
∏n−1

i=1 (1 + titi+1h)
(1− t1h)

∏n
i=1(1− t2i )

∏n−1
i=2 (1− t2ih

2)
(4.7)

4.3 Graded multiplicity formulae for the spherical harmon-

ics

Here we give an application of section 4.1 by computing the graded multiplic-

ity formula for the spherical harmonics of the groups, O(n) and SO(n) in the spaces

P(∧2(Cn)∗), and P(S2(Cn)∗). Here we will assume n ≥ 3. Recall the classical GL(n)

decompositions (see [8], chapter 5),

P(∧2(Cn)∗) =
⊕
d≥0

Pd(∧2(Cn)∗)

=
⊕
d≥0

⊕
λ : l((2λ)c) ≤ n

|λ| = d

F (2λ)c

P(S2(Cn)∗) =
⊕
d≥0

Pd(S2(Cn)∗)

=
⊕
d≥0

⊕
λ : l(λ) ≤ n|λ| = d

F 2λ

Both of the spaces above are graded by degree. We will now apply the results of

section 4.1 to the problem of finding the graded multiplicity of the O(n) representations,

Hd in the above spaces.

4.3.1 Graded Multiplicity in P(S2(Cn))

It is interesting to point out that if we restrict the sum in equation (4.7) to only

the partitions with even parts the numerator cleans up. This restriction can be done

algebraically by applying the operator E as follows:

Define the following operator on the ring of formal power series in the variables

t1 . . . tn and h,
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En : C[[t(n), h]] → C[[t(n), h]]

En(p) =
1
2n

∑
e∈{1,−1}n

p(e1t1, . . . , entn, h)

∑
a∈Nn,d≥0

b
2λ(a)
(d) t2ahd

= En

 ∑
a∈Nn,d≥0

b
λ(a)
(d) tahd


=

1
2n

∑
e∈{1,−1}n

RO(n)(e1t1, . . . , entn, h)

Using the recursion for RO(n) we obtain,

=
1
2n

∑
e∈{1,−1}n

1 + en−1entn−1tnh

(1− t2n)(1− t2n−1h
2)
RO(n−1)(e1t1, . . . , en−1tn−1, h)

=
1

(1− t2n)(1− t2n−1h
2)

1
2n−1

∑
e∈{1,−1}n−1

RO(n−1)(e1t1, . . . , en−1tn−1, h)

=
1

(1− t2n)(1− t2n−1h
2)
En−1(RO(n−1)(t(n−1), h))

=
1∏n

i=1(1− t2i )
∏n−1

i=1 (1− t2ih
2)

The specialization of ti = qi/2, for 1 ≤ i ≤ n gives the generating function for

the graded multiplicity of the degree d spherical harmonics in the space S(S2(Cn)).∑
k,d≥0

dimHomO(n)(Hd,Pk(S2(Cn)∗)) qk td =

n∏
i=1

(
1

1− qi

) n−1∏
i=1

(
1

1− qi t2

)
Recall that as an O(n) representation, S2(Cn) is reducible, specifically it has a

one dimensional invariant subspace which as an irreducible complement which we call p.

After taking into account this invariant occurring in degree 1 we obtain,∑
k,d≥0

dimHomO(n)(Hd,Pk(p∗)) qk td =
n∏

i=2

(
1

1− qi

) n−1∏
i=1

(
1

1− qi t2

)
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Recall that as with any representation of the group O(n), p∗ ∼= p. From the Kostant-

Rallis theorem (see chapter 1) for the pair (GL(n), O(n)), the polynomial functions on p

are a free module of the ring of invariant polynomials. The ring of invariant polynomials

is a polynomial ring by the Chevalley restriction theorem (see [1], or [8]). Viewing the

harmonic polynomials as a quotient by the invariant polynomials one obtains,

∑
k,d≥0

dimHomO(n)(Hd,Hk(p)) qk td =
n−1∏
i=1

(
1

1− qi t2

)

4.3.2 Graded multiplicity for in P(S2(Cn)∗) for SO(n)

In the same spirit that the above computation is carried out, we can ob-

tain the generating function for the graded multiplicity of the spherical harmonics

(viewed this time as irreducible representations of SO(n)) in the space H(p) for the

pair (SL(n), SO(n)). This is done by first observing that,

Proposition 45 (SO(n) Invariants)

dim
(
F λ
)SO(n)

=

 1 if λ has all even or all odd parts

0 otherwise

Proof: Use theorem 40.

Define,

RSO(n) =
∑

a∈Nn, d≥0

dimHomSO(n)(Hd, F
λa)ta h

In a sense, theorem 45 states that we have found one half the the induced

representation. We will use a process of induction in stages to find the other half.

Define:

M = RSO(n) −RO(n) (4.8)

The problem is reduced to the calculation of M . The essential part of the

calculation is provided below.
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M(t(n), h) =
∑

a ∈ Nn, d ≥ 0

an > 0

b
λ(a)
(d) t

a1
1 . . . t

a(n−1)

n−1 t(an)−1
n hd

=
1
tn

(
∑

a∈Nn, d≥0

b
λ(a)
(d) t

a1
1 . . . t

an−1

n−1 tan
n hd −

∑
a ∈ Nn, d ≥ 0

an = 0

b
λ(a)
(d) t

a1
1 . . . t

a(n−1)

n−1 hd)

=
1
tn

(RO(n)(t(n), h)−RO(n)(t(n), h)|t0n)

View the above as a computation of formal power series in tn with coefficient

ring C[t1, . . . , tn, h]. The coefficient of tn0 in RO(n) is,

∏n−2
i=1 (1 + titi+1 h)

(1− t1 h)
∏n−1

i=2 (1− t2i h
2)
∏n−1

i=1 (1− ti2)

Subtracting,

tnM(t(n), h) =
∏n−2

i=1 (1 + titi+1 h) (1 + tn−1tn h− (1− tn
2))

(1− t1 h)
∏n−1

i=2 (1− ti2 h2)
∏n−1

i=1 (1− ti2) (1− tn2)

Finally we are lead to,

M(t(n), h) =
∏n−2

i=1 (1 + titi+1 h) (tn−1 h+ tn)
(1− t1 h)

∏n−1
i=2 (1− ti2 h2)

∏n
i=1(1− ti2)

Combining this result with equation (4.8) proves,

Proposition 46

RSO(n) =
(1 + tn)(1 + htn−1)

∏n−2
i=1 (1 + titi+1h)

(1− t1h)
∏n

i=1(1− t2i )
∏n−1

i=2 (1− t2ih
2)

Returning now to our application, we seek to find the graded multiplicity of a

spherical harmonic viewed as an SO(n) representation. As before we average over the

group Zn
2 .
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1
2n

∑
e∈{1,−1}n

M(e1t1, . . . , entn, h)

=
t21t

2
2 . . . t

2
n−1 h

n∏n
i=1(1− t2i )

∏n−1
i=1 (1− t2ih

2)

Now we can easily find the graded multiplicity, Take ti = qi/2 for 1 ≤ i ≤ n and

obtain,

∑
k,d≥0 dimHomSO(n)(Hd, S

k(S2(Cn))) qk td

=
1 + tn q(

n
2)∏n−1

i=1 (1− qit2)
∏n

i=1(1− qi)

Removing the Hilbert series for the SO(n)-invariants we are left with,

Corollary 47 ∑
k,d≥0 dimHomSO(n)(Hd,Hk(p)) qk td

=
1 + tn q(

n
2)∏n−1

i=1 (1− qit2)

4.3.3 Graded Multiplicity in P(∧2(Cn))

CASE 1: n = 2k. It is enough to extract the coefficient of t01 t
0
3 t

0
5 . . . t

0
2k−1 in

equation (4.7). That is sum over only the monomials with variables indexed by even

numbers. An easy induction argument on k gives that the appropriate coefficient is,

1∏k−1
i=1 (1− t22ih

2)
∏k

i=1(1− t22i)

CASE 2: n = 2k + 1. This time, it is enough to extract the coefficient of

t01 t
0
3 t

0
5 . . . t

0
2k+1 in equation (4.7). That is sum over only the monomials with variables

indexed by even numbers.

1∏k
i=1(1− t22ih

2)(1− t22i)



Chapter 5

An Identity

5.1 Schur polynomials

As before, by a non-negative integer partition we mean a list of non-negative

integers, λ = (λ1 ≥ · · · ≥ λn ≥ 0). The λi will be called the parts of the partition. The

number of non-zero λi will be called the length of the partition, denoted l(λ). The sum

of the λi will be called the size of the partition and will be denoted by |λ|.
In [17], the Schur polynomial, sλ(x1, . . . , xn) indexed by λ is defined by,

∑
w∈Sn

sgn(w) xλ1+n−1
w(1) xλ2+n−2

w(2) . . . xλn

w(n)∏
1≤i<j≤n(xi − xj)

In this chapter we consider the above polynomials from two points of view.

On one hand, the Weyl character formula asserts that the above formulae are in fact

the characters of the irreducible representations of GL(n,C) with highest weight λ1ε1 +

· · ·+λnεn evaluated on the maximal torus parameterized by the diagonal matrix entries

(x1 = x11, . . . , xn = xnn).

In this sense, we have xi ∈ C×, for each i. This defines a homogeneous poly-

nomial function on a dense subset of Cn. Therefore, we can view these ”characters”

as polynomials in the indeterminates x1, . . . , xn. These polynomials will have degree

|λ| = λ1 + · · · + λn. The coefficients of the monomials are weight multiplicities, which

are invariant under the Weyl group, Sn. Hence, these polynomials are in fact symmetric

polynomials.
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These indeed form a vector space basis of the ring of symmetric polynomials

in n indeterminates. This is the other role of these polynomials. In [17], the theory of

symmetric polynomials is highly developed. We recall some facts and formalisms here

in order to state and prove theorem 51. Later we will interpret this formal identity in

terms of representation theoretic ideas via the results of chapter 3.

For non-negative integer partitions (with at most n nonzero parts) define the

non-negative integers Nλ
µ,ν

sµ(x)sν(x) =
∑

λ

Nλ
µνsλ(x)

The above numbers are called the Littlewood-Richardson coefficients. Also,

define the skew Schur function, sλ/µ by:

sλ/µ(x) =
∑

ν

Nλ
µν sν(x)

From the fact that the degree of a product of polynomials is the sum of the degrees of

the factors, we see that if Nλ
µ,ν 6= 0, then |λ| = |µ| + |ν|. Also, the degree of sλ/µ(x) is

|λ| − |µ|. A consequence of this is that the above sum is finite.

Next, we will consider the case where we have two sets of variables:

x = (x1, · · · , xn)

y = (y1, · · · , ym)

Proposition 48

sλ(x,y) =
∑
λ,µ

sλ/µ(x)sµ(y)

Equivalently,

(sλ, sµsν) = (sλ/µ, sν)

Where (, ) is the Hall scalar product (under which the Schur functions are an orthonormal

basis of the symmetric polynomials, see [17]. In the next section we will give a proof of

Proposition 48.

Two additional facts that we will use in this chapter are:
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Proposition 49 ∏
1 ≤ i ≤ n

1 ≤ j ≤ m

1
1− xiyj

=
∑

λ:l(λ)≤min(n,m)

sλ(x)sλ(y)

This identity follows from the fact that each side is a graded character of the

GL(n,C) representation, P(Mn,m), which is an instance of Howe duality, see [10]. For a

proof from a symmetric function point of view see [17] or [4].

Proposition 50 ∏
1≤i≤j≤n

1
1− xixj

=
∑

λ:l(λ)≤n

s2λ(x)

Again, this proposition can be found in many places such as [17] or [4]. It also

results from the fact that each side is the graded character of theGL(n,C) representation,

P(S2(Cn) ∗ n). For a complete account of this point of view see [8].

5.2 A symmetric function identity

We now state the main identity we need for the stability result. I have not seen

this identity in the literature, but have seen variations of it.

Proposition 51

∑
λ,µ

s2λ/2µ(x)q|µ| =
∞∏

k=1

(
1

1− qk

∏
1 ≤ i ≤ j ≤ n

1
1− qk−1xixj

)

Remark: Observe that on the left side of the formula in Proposition 51 the coefficient

of qd is a formal series in x1, . . . , xn for all d.

Corollary 52

∑
λ,µ

s2λ/2µ(x)q|λ| =
∞∏

k=1

(
1

1− qk

∏
1 ≤ i ≤ j ≤ n

1
1− qkxixj

)
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Proof: Follows from the homogeneity of s2λ/2µ(x) and Proposition 51 by substituting

q
1
2xi for xi. Q.E.D.

The proof of Proposition 48 is standard and is included here:

Proof of Proposition 48:

Consider another set of indeterminates, z1, . . . , zn+m. We will expand the fol-

lowing product using Proposition 49 and 48.

∏
1 ≤ i ≤ n

1 ≤ j ≤ n + m

1
1− xizj

∏
1 ≤ i ≤ m

1 ≤ j ≤ n + m

1
1− yizj

(5.1)

=
∑
µ,ν

sµ(x)sµ(z)sν(y)sν(z) (5.2)

=
∑

λ

sλ(x,y)sλ(z) (5.3)

=
∑
τ,ν

N τ
µνsτ (z)sµ(x)sν(y) (5.4)

=
∑
τ,ν

sτ/ν(x)sν(y)sτ (z) (5.5)

Taking the coefficient of sλ(z) in 5.3 and 5.5 gives the result. Q.E.D.

Proposition 53 ∑
λ

s2λ/µ(x) =
∑

σ

sµ/2σ(x)
∏

1≤i≤j≤n

1
1− xixj

Remark: If Nλ
µν 6= 0 then the Young diagrams of µ and ν must fit inside the Young

diagram of λ. This is a consequence of the fact that weights of the tensor product are the

sums of the weights of the tensor factors. We mention it here to observe the consequence

that if Nλ
µ,ν 6= 0 then l(λ) ≤ l(µ) + l(ν). Recall also that if l(ν) > n then we take

sν(x) = 0. Hence, sλ/µ(x) = 0 if l(λ) > l(µ) + n. Therefore, for a fixed µ,

∑
λ

s2λ/2µ(x) =
∑

λ:l(λ)≤n+m

s2λ/2µ(x)
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∑
σ

sµ/2σ(x) =
∑

σ:l(σ)≤m

sµ/2σ(x)

The proof of Proposition 53 can be found in [17], but we will include it here.

Proof of Proposition 53: Let zi = xi for 1 ≤ i ≤ n and zi+n = yi for 1 ≤ i ≤ m.

∏
1≤i≤j≤n+m

1
1− zizj

=
∑

λ:l(λ)≤n+m

s2λ(x,y) (5.6)

=
∑

λ : l(λ) ≤ n + m

ν : l(ν) ≤ m

s2λ/ν(x)sν(y) (5.7)

For a partition µ with at most m parts, the coefficient of sµ(y) in (5.7) is,

∑
λ:l(λ)≤n+m

s2λ/µ(x)

Now reconsider the expression,∏
1≤i≤j≤n+m

1
1− zizj

and factor as follows,∏
1≤i≤j≤n

1
1− xixj

∏
1 ≤ i ≤ n

1 ≤ j ≤ m

1
1− xiyj

∏
1≤i≤j≤m

1
1− yiyj

(5.8)

We will develop the last two products in the above as follows:
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∏
1 ≤ i ≤ n

1 ≤ j ≤ m

1
1− xiyj

∏
1≤i≤j≤m

1
1− yiyj

(5.9)

=
∑

α:l(α)≤min(n,m)

sα(x)sα(y)
∑

σ:l(σ)≤m

s2σ(y) (5.10)

=
∑

α : l(α) ≤ min(n, m)

σ : l(σ) ≤ m

sα(x)sα(y)s2σ(y) (5.11)

=
∑

α : l(α) ≤ min(n, m)

σ : l(σ) ≤ m

γ : l(γ) ≤ m

sα(x) Nγ
α,2σsγ(y) (5.12)

=
∑

α : l(α) ≤ min(n, m)

σ : l(σ) ≤ m

γ : l(γ) ≤ m

Nγ
2σ,αsα(x)sγ(y) (5.13)

=
∑

σ : l(σ) ≤ m

γ : l(γ) ≤ m

sγ/2σ(x)sγ(y) (5.14)

We see that the coefficient of sµ(y) in equation (5.8) is,∏
1≤i≤j≤n

1
1− xixj

∑
σ:l(σ)≤m

sµ/2σ(x)

The coefficients of equations (5.7) and (5.8) are the same so we obtain:

∑
λ:l(λ)≤n+m

s2λ/µ(x) =
∏

1≤i≤j≤n

1
1− xixj

∑
σ:l(σ)≤m

sµ/2σ(x)

Q.E.D.

5.2.1 Proof of Proposition 51

Define:

Ãq(x) =
∞∏

k=1

 1
1− qk

∏
1≤i≤j≤n

1
1− qk−1xixj


and,

Aq(x) =
∑
λ,µ

s2λ/2µ(x)q|µ|
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By Proposition 53 we have:

Aq(x) =
∑

µ

q|µ|

(∑
λ

s2λ/2µ(x)

)

=
∑

µ

q|µ|

(∑
σ

s2µ/2σ(x)

) ∏
1≤i≤j≤n

1
1− xixj

=
∑
µ,σ

s2µ/2σ(x)q|µ|
∏

1≤i≤j≤n

1
1− xixj

=
∑
µ,σ

s2µ/2σ(q
1
2 x)q|σ|

∏
1≤i≤j≤n

1
1− xixj

= Aq(q
1
2 x)

∏
1≤i≤j≤n

1
1− xixj

Iterating the above argument we obtain,

Aq(x) =
Aq(q

d
2 x)∏d

k=0

∏
1≤i≤j≤n(1− qkxixj)

(5.15)

This holds for all d ≥ 0. View Aq(q
d
2 x) as a formal power series in q with

coefficients from the ring of formal power series in the n indeterminates, x1, . . . , xn.

Aq(q
d
2 x) =

∑
λ,µ

s2λ/2µ(q
d
2 x)q|µ|

=
∑
λ,µ

s2λ/2µ(x)qd(|λ|−|µ|)+|µ|

In the above,

d (|λ| − |µ|) + |µ| = |µ| if |λ| = |µ|

≥ d otherwise

Hence, up to degree d − 1 the series Aq(q
d
2 x) has only terms where |λ| = |µ|.

For such terms s2λ/2µ(x) = 1. This implies that up to degree d− 1, Aq(q
d
2 x) agrees with

the expansion of,
∞∏

k=1

1
1− qk



70

For 0 ≤ N < d, observe that the coefficient of qN in,

∏
d≥k≥0

 ∏
1≤i≤j≤n

1
1− qkxixj


is the same as the coefficient of qN in,

∞∏
k=0

 ∏
1≤i≤j≤n

1
1− qkxixj


We have shown that as a series in q, up to degree d, Aq(x) agrees with Ãq(x).

In light of the fact that both Aq(x) and Ãq(x) are independent of d we are finished.

5.3 A stable range of the multiplicities in the space of Har-

monic polynomials

Consider the symmetric pair (GL(n,C), O(n,C)). When the adjoint represen-

tation, g = gl(n,C) of GL(n,C) is restricted to O(n,C) we have the decomposition,

gl(n,C) = S2(Cn)⊕ ∧2(Cn)

Note that S2(Cn) contains a unique invariant vector (up to scalar multiple)

whose complement, denoted pn, is irreducible. ∧2(Cn) is irreducible for all n ≥ 2. We

have a natural grading by degree on the polynomial functions on S2(Cn)∗,

P(S2(Cn)∗) =
⊕

d

Pd(S2(Cn)∗)

Let I(pn) be the ideal generated by the O(n,C) invariant polynomials on pn

which vanish at the origin. Set:

Id(pn) = Pd(pn) ∩ I(pn)

Let Hd(pn) be the O(n) invariant complement of Id(pn) in the representation

P(pn). Set:

H(pn) =
⊕

d

Hd(pn)
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The Kostant-Rallis theorem asserts that as a representation of O(n,C),

P(S2(Cn)∗) ∼= P(S2(Cn)∗)O(n,C) ⊗H(pn)

Each irreducible representation of O(n) occurs with finite multiplicity in the

space H(pn). The question arises: what is the distribution of a given irreducible O(n,C)

representation in the graded components of H(pn). We can address this question at the

character level by introducing an indeterminate q to keep track of the grading on H(pn).

charq P(S2(Cn)∗) = charq

(
P(S2(Cn)∗)O(n,C)

)
charq (H(pn))

From the Chevalley restriction theorem (see [8], [1]), we can write out the q

character for the invariants.

charq P(S2(Cn)∗)O(n,C) =
n∏

k=1

1
1− qk

Because we have a finite multiplicity space, we define the polynomials pν(q) to

be the graded multiplicity of an irreducible representation, Eν indexed by ν as in chapter

3 of this work or as in chapter 10 of [8]. Let the character of Eν be denoted by χν .

charq H(pn) =
∑

ν

pν(q)χν

∑
ν

pν(q)χν = charqP(S2(Cn)∗)
n∏

k=1

(1− qk) (5.16)

As a representation of the larger group GL(n,C) we have,

charqP(S2(Cn)∗) =
∑

λ:l(λ)≤n

s2λ q
|λ|

In chapter 3 we have that if we address the restriction of representations of GL(n,C) to

O(n,C). At the character level, restrict sλ to the group O(n,C) and expand in terms of

the irreducible O(n) characters,

sλ =
∑

ν:l(ν)≤n

bλν χν
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Recall the definition, bλν = dim HomO(n)(Eν , F λ). From equation 5.16 we obtain,

∑
ν:l(ν)≤n

pν(q)χν =
∑

ν:l(ν)≤n

b2λ
ν χν q

|λ|
n∏

k=1

(1− qk)

Hence, for each ν we have,

pν(q) =

 ∑
λ:λ≤n

b2λ
ν q|λ|

 n∏
k=1

(1− qk)

=
∑
i≥0

∑
λ : l(λ) ≤ n

|λ| = i

b2λ
ν qi

n∏
k=1

(1− qk)

Let: r = bn
2 c. From the Littlewood restriction formula proven in chapter 3, if

l(λ) ≤ r then we have that,

bλν =
∑

µ:l(µ)≤r

Nλ
2µ,ν

Observe that if |λ| ≤ i then l(λ) ≤ i, so up to degree r,

pν(q) =
∑

0≤i≤r

∑
λ : l(λ) ≤ n

|λ| = i

∑
µ:l(µ)≤r

N2λ
2µ,νq

i
n∏

k=1

(1− qk) (5.17)

+
∑
i>r

∑
λ : l(λ) ≤ n

|λ| = i

b2λ
ν qi

n∏
k=1

(1− qk) (5.18)

We will define the formal power series p̃ν(q) by,

∑
ν

p̃ν(q)sν(x) =
∞∏

k=1

∏
1≤i≤j≤n

1
1− qkxixj

Or, by expanding the individual factors indexed by k into Schur functions we

obtain, ∑
ν

p̃ν(q)sν(x) =
∞∏

k=1

(∑
λ

s2λ(x)qk|λ|

)

Theorem 54 Up to degree r = bn
2 c in q, pν(q) agrees with the p̃µ(q).



73

Proof: From corollary 52 we have,

∑
ν

p̃ν(q)sν(x) =
∏∞

k=1(1− qk)∏∞
k=1(1− qk)

∞∏
k=1

∏
1≤i≤j≤n

1
1− qkxixj

=
∑
λ,µ

s2λ/2µ(x)q|λ|
∞∏

k=1

(1− qk)

=
∑
λ,µ,ν

N2λ
2µ,νsν(x)q|λ|

∞∏
k=1

(1− qk)

Up to degree r in q, p̃ν(q) is the same as,

∑
λ,µ

N2λ
2µ,νq

|λ|
n∏

k=1

(1− qk) (5.19)

=
∑

0≤i≤r

∑
λ : l(λ) ≤ n

|λ| = i

∑
µ:l(µ)≤r

N2λ
2µ,νq

i
n∏

k=1

(1− qk) (5.20)

+
∑
i>r

∑
λ : l(λ) ≤ n

|λ| = i

∑
µ

N2λ
2µ,νq

i
n∏

k=1

(1− qk) (5.21)

Comparing 5.20 with equation 5.17 we obtain the result. Q.E.D.

Corollary 55 For n ≥ 2d, and ν = (ν1, . . . , νbn
2
c),

the multiplicity of the irreducible O(n) representation, Eν in Hd(pn) is the coefficient of

qd in the formal series p̃ν(q).

Proof: Immediate from the definition of pν(q).



Chapter 6

Low rank examples.

6.1 Background

In the general situation, G will denote a semi-simple linear algebraic group

with Lie algebra g. Θ will denote a regular involution with differential at the identity

θ : g → g. Let K be the set of fix points of Θ in G while the Lie algebra of K will be

denoted by k. It is implied that k is the fixed point set of θ. We take p to be the -1

eigenspace of θ, ie:

p = {X ∈ g : θ(X) = −X}

The example which will be addressed in this chapter is G = SL(n,C) with Θ(g) =

(X−1)T . So, K = SO(n,C).

k =
{
X ∈Mn(C)|XT +X = 0

}
p = sln(C) ∩ SMn

Where: SMn = {X ∈Mn(C)|XT = X}.
For any vector space V , let P(V ) denote the complex valued polynomial func-

tions on V . This ring is graded by degree, so let Pd(V ) denote the subspace of homoge-

neous polynomials of degree d. And we have,

P(V ) =
⊕
d≥0

Pd(V )

74
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As usual, denote the subring of K-invariant polynomial functions on p by P(p)K . For

the case that we are interested in K = SOn(C) and p = sln(C) ∩ SMn. The Chevalley

restriction theorem (see [1]) implies that P(p)K is a polynomial ring and in particular,

P(p)K = C[TrX2, T r X3, . . . , T r Xn]

We set I = P(p)P(p)+
K and Id = I ∩Pd(p). So I is the ideal of P(p) generated by the

K-invariant functions which vanish at the origin and this ideal is graded by degree. Id

is stable under the action of K so it has a unique K-invariant complement in Pd(p) as K

is a reductive group. Let H(p)d denote this complement and set H(p) =
⊕

d≥0H(p)d. In

analogy with the theory of spherical harmonics we will call H(p) the harmonics. From a

general theorem proven by Kostant and Rallis we have,

Theorem 56 (Kostant-Rallis)

P(p) ∼= P(p)K ⊗H(p)

and furthermore as a representation of K, H(p) ∼= IndK
M 1.

Where: M is the centralizer in K of an Abelian subalgebra a of g maximal with respect

to the condition of being contained in p and consisting of only semi-simple elements.

Proof (See [8] or [13])

In the case where K = SOn(C). one can show that a = p ∩Dn and M = K ∩Dn where

Dn denotes the set of diagonal n× n matrices.

The fact thatH(p) is an induced representation and Frobenius reciprocity allows

us to determine the multiplicity of an irreducible representation of K in the space of

harmonics. Indeed,

dimHomK(V,H(p)) = dimV ρ(M)

where (ρ, V ) is an irreducible regular representation of K. The question which we will

answer concerns the distribution of the above multiplicity in the graded components of

the harmonics. In particular, if V λ is an irreducible representation of K with highest

weight λ then we will find dimHomK(V λ,H(p)) in terms of λ. Again, for this chapter

we will only consider the case when K = SO4(C). Before proceeding, we will describe

an isomorphism between the Lie algebra so4(C) and sl2(C)⊕ sl2(C).
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6.2 Parameterization of SO4(C) representations

Proposition 57 The groups SL2(C)×SL2(C) and SO4(C) are locally isomorphic linear

algebraic groups.

Proof First, let K̃ = SL2 × SL2. Let V = M2(C) and consider the map K̃ × V →
V defined by (g, h), X 7→ gXh−1 for all (g, h) ∈ K̃,X ∈ V . This defines a regular

representation of K̃ which we will denote by α : K̃ → GL(V ). The image of this map is

contained in a subgroup of GL(V ) isomorphic to SO4(C). This can be seen by observing

that the determinant is a quadratic, irreducible polynomial on the two by two matrices

and Det(α(g, h)(X)) = Det(X), hence α(K̃) ⊆ O(V,Det). α is continuous and K̃ is

connected so the image is connected and we have α(K̃) ⊆ SO(V,Det). Because α is a

morphism of algebraic groups, the image is closed. After observing that K̃ and SO4(C)

are six dimensional, we see, that α is surjective. A direct computation will show that

ker α = {±1}. Q.E.D.

Corollary 58

sl2(C)⊕ sl2(C) ∼= so4(C)

Proof The differential of α (from the proof of the last proposition) at the identity is an

explicit isomorphism between the Lie algebras sl2(C)⊕ sl2(C) and so4(C). Q.E.D.

Using the fact that these two algebras are isomorphic will allow us to parame-

terize the irreducible regular representations of SO4(C).

Proposition 59 In general, if G1 and G2 are reductive groups and {V λ} and {Wµ}
are distinct representations of equivalence classes of irreducible regular representations

of G1 and G2 respectively, then {V λ ⊗Wµ} are the irreducible regular representations

of G1 ×G2. Furthermore, the same statement is true if we replace the reductive groups

with reductive Lie algebras and the representations of the groups with representations of

Lie algebras.

Proof: See [8].

We will apply this fact when G1 = G2 = SL2(C) and then obtain a concrete

parameterization of the irreducible representations of SO4(C).
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Proposition 60 Let V = C2 be the standard representation of SL2(C) and set F d =

Pd(V ). Define: πd(g)(f)(v) = f(g−1v) for f ∈ F d, g ∈ SL2(C), v ∈ V. Then,

1. (πd, F
d) is an irreducible regular representation of SL2(C).

2. If (ρ,W ) is an irreducible regular representation of SL2(C) then W ∼= F d, for some

d = 0, 1, 2, . . . .

3. For s ∈ C× let χd(s) denote the character of the representation (ρ,W ) evaluated

at the matrix

 s 0

0 s−1

. Then,

χd(s) =
sd+1 − s−d−1

s− s−1

Proof: see [8]

SO(4,C) representations.

So the irreducible representations of SO4(C) will be taken to be

F k,l ≡ F k ⊗ F l

for all k, l = 0, 1, 2, . . . . Observe that, F kl has highest weight kω1 + lω2 where ω1 and

ω2 are the two fundamental weights of SO4(C). Also note that dimF k,l = (k+ 1)(l+ 1)

and in fact we have,

char F k,l

 s 0

0 s−1

 ,
 t 0

0 t−1

 = χk(s)χl(t)

=
(sk+1 − s−k−1)(tl+1 − t−l−1)

(s− s−1)(t− t−1)

6.3 Application of the Kostant-Rallis theorem

Any character of a regular representation of SO4(C) can be written as a non-

negative integer linear combination of the above formulae. We will now return to the

theorem of Kostant and Rallis where k = sl2⊕sl2 ∼= F 2,0⊕F 0,2 and p = SMn∩sl4 ∼= F 2,2

as an SO4 representations. From the Kostant-Rallis theorem we have,
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P(F 2,2) ∼= C[u1, u2, u3]⊗H(p)

Where: ui = Tr(Xi+1) for i = 1, 2, 3. {u1, u2, u3} are algebraically independent poly-

nomials generating the invariants. Also, we have the additional structure that H(p) is

an induced representation, which allows us to compute the multiplicity of irreducible

representations. Define m(k, l) by:

H(p) =
⊕
k,l≥0

F k,l ⊕ · · · ⊕ F k,l︸ ︷︷ ︸
m(k, l) copies

and as stated before we see from Frobenius reciprocity and the Kostant-Rallis result that

mk,l = dim(F k,l)M . The goal of this section is to prove a formula for the computation

of md(k, l) which are defined by,

H(p)d =
⊕
k,l≥0

F k,l ⊕ · · · ⊕ F k,l︸ ︷︷ ︸
md(k, l) copies

In order to apply the Kostant-Rallis theorem to compute the non-graded multiplicity of

F k,l in H(p) we must find M̃ such that,

α : SL2 × SL2 → SO4(C)

∪ ∪
M̃ = α−1(M) → M

M̃ consists of 16 pairs of SL2 matrices. We then arrive at,

m(2k, 2l) =


(2k+1)(2l+1)−3

4 for k − l odd,
(2k+1)(2l+1)+3

4 for k − l even.

while, m(k, l) = 0 if either k or l are odd.
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6.4 Graded Multiplicity

Let V =
⊕

i≥0 V
i be a graded K-representation such that dimV i < ∞ and

each V i is K-invariant. Define:

charq V =
∑
i≥0

qi char V i

Let K̂ be a complete index set of distinct irreducible regular representations ofK. Define:

charq V =
∑
λ∈K̂

pλ(q) char V λ

So the multiplicity of V λ in V d is pλ(q)|qd and furthermore the nongraded multiplicity

of V λ in V is pλ(1). From the Kostant-Rallis theorem we have,

charq P(F 2,2) = charq P(F 2,2)SO(4,C)
charq H(p)

=
charq H(p)

(1− q2)(1− q3)(1− q4)

In order to compute charq P(F 2,2) we need only observe that,

χ2 2(s, t) =

s2t2 + t2 + s−2t2 +

s2 + 1 + s−2 +

s2t−2 + t−2 + s−2t−2

Which leads to the formal expression for the character of the polynomial functions on

F 2,2,

charq P(F 2,2) =
1∏

i,j=−2,0,2 (1− qsitj)

Hence, finding the graded multiplicity is equivalent to finding the polynomials pk l(q)

such that,
(1− q2)(1− q3)(1− q4)∏

i,j=−2,0,2 (1− qsitj)
=
∑
k,l≥0

pk l(q)χ2k,2l(s, t) (6.1)

Before proceeding we should point out that one can prove the following facts directly, yet

they will come out automatically from the formula for the graded multiplicity to follow

this section.

1. pk l(q) = pl k(q) for all k, l ≥ 0
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2. degree pk l(q) ≤ 2k + l for all k, l ≥ 0 with k ≥ l

3. The order of zero in pk l(q) ≥ max(k, l)

The initial values of pk l(q) can be easily be computed by expansion of the above into

power series. Below are some initial data.

0 1 2 3

0 1 0 q2 + q4 q6

1 0 q3 + q2 + q q5 + q4 + q3 q7 + q6 + 2q5 + q4 + q3

2 q4 + q2 q5 + q4 + q3 2q6 + q5 + 2q4 + q3 + q2 q8 + 2q7 + 2q6 + 2q5 + q4

3 q6 q7 + q6 + 2q5 + q4 + q3 q8 + 2q7 + 2q6 + 2q5 + q4 2q9 + 2q8 + 3q7 + 2q6 + 2q5 + q4 + q3

Several properties of pk l(q) were found and these are now proven by a compu-

tation later in this chapter, some of the most important are:

Proposition 61 For all, j ≥ 0

pj j(q) =
qj(1− qj+2)(1− qj+1) + qj+4(1− qj)(1− qj−1)

(1− q)2(1 + q)

Proposition 62 For all, j ≥ 0

pj+1 j(q) =
qj+2(1− qj+2)(1− qj)

(1− q)2

But most importantly,

Proposition 63 (Shift formula) For all, k, l ≥ 0 with k ≥ l,

pk+2 l(q)− q2pk l(q) = q2k−l+4

(
1− q2l+1

1− q

)
The above three statements provide a formula for pk l(q). In the next section we will

prove a stronger form of the shift formula which gives a more interesting algorithm for

computing the values of pk,l(q). For now we will describe how the above facts give us

the graded multiplicity. The following theorem is a statement about formal power series

and is intentionally stated without reference to any representation theory.

Proposition 64 For all integers k, l ≥ 0 let pk l(q) be a formal power series in q which
satisfies propositions 1, 2 and 3. Then, for each k, l ≥ 0 pk l(q) is a polynomials in q. In
particular, for all k ≥ l, k − l ∈ 2Z,

pk l(q) =
qk(1 + q2 + q4)− qk+l(q + q2 + q3 + q4) + q2k(ql+3 − q−l+2) + qk+2l+3

(1− q)(1− q2)
(6.2)
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For all k ≥ l, k − l ∈ 2Z + 1,

pk l(q) =
(q2k+l + qk+2l)(q3 − q4) + q2k−l(q3 − q2) + qk(q − q4) + qk+l(q5 − q)

(1− q2)(1− q)2
(6.3)

Proof The proof is an easy induction argument on k− l in which the base case is stated

in propositions 1 and 2 and the induction step is propositions 3.

Theorem 65 If pk l(q) are given by (6.2) and ( 6.3) then,

(1− q2)(1− q3)(1− q4)∏
i,j=−2,0,2 (1− qsitj)

=
∑
k,l≥0

pk l(q)χ2k,2l(s, t)

Proof: This was done by formal methods using the computer package MAPLE. Because

of the parity condition on pk l(q) we will define Er l(q) and Or l(q) by re-indexing the

parameters,

Er l(q) := pl+2r l

and

Or l(q) := pl+2r+1 l

It is enough to show,∑
r,l≥0

(
Er l(q)χ2(l+2r) 2l(s, t) +Or l(q)χ2(l+2r+1) 2l(s, t)

)
(6.4)

+
∑
r,l≥0

(
Er l(q)χ2l 2(l+2r)(s, t) +Or l(q)χ2l 2(l+2r+1)(s, t)

)
(6.5)

−
∑
l≥0

Er l(q)χ2l 2l(s, t) (6.6)

=
(1− q2)(1− q3)(1− q4)∏

i,j=−2,0,2 (1− qsitj)
(6.7)

Here ( 6.4) is the part of the sum where k ≥ l and ( 6.5) is where k ≤ l and then we

subtract ( 6.6) because it was counted twice. By substituting the conjectured formulae

of pk l(q) into ( 6.4),( 6.5), and ( 6.6), and evaluating all summations which will result in

a rational expression in q, s, and t. This expression can be checked against ( 6.7) with

MAPLE. Let cn m(s, t) = sn+1tm+1 and observe that,

(s− s−1)(t− t−1)χm,n = cn m(s, t)− cn m(s−1, t)− cn m(s, t−1) + cn m(s−1, t−1)



82

Define:

A(s, t) :=
∑
r,l≥0

Er l(q)cl+2r 2l(s, t) +Or l(q)c2(l+2r+1) 2l(s, t)

+
∑
r,l≥0

Er l(q)c2l 2(l+2r)(s, t) +Or l(q)c2l 2(l+2r+1)(s, t)

−
∑
l≥0

Er l(q)c2l 2l(s, t)

To be shown that,

A(s, t)−A(s−1, t)−A(s, t−1) +A(s−1, t−1) =

(1− q2)(1− q3)(1− q4)(s− s−1)(t− t−1)∏
i,j=−2,0,2 (1− qsitj)

Evaluating the geometric series which appear in A(s, t) and then obtaining a simplified

rational expression in q, s and t the left side of this equation can be found using MAPLE.

Again with MAPLE we verify that this symbolic expression is equal to,

(1− q2)(1− q3)(1− q4)(s− s−1)(t− t−1)∏
i,j=−2,0,2 (1− qsitj)

It is the case that the decomposition of a representation is unique up to equivalence so

the above gives us,

Corollary 66 The graded multiplicity of F 2k,2l in H(p) is given by the equations ( 6.2)

and ( 6.3).

6.5 SO4(C) invariants

The last result is the key to solving the problem of computing the Hilbert series

of P(M4(C))SO4(C). This is done by observing that as an SO4(C)-representation we have:

M4(C) ∼= p⊕ k⊕ CI

Recall that k is the Lie algebra so4(C). If we have a graded decomposition of the

polynomial functions on each of these irreducible components of M4(C), then a graded

decomposition of P(M4(C)) can in principle be calculated for the graded multiplicity

of all representations that arise from tensoring irreducibles occurring in the space of
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polynomial functions on each of the components of M4(C). The Hilbert series for the

invariants will then be the graded multiplicity of the trivial representation which can be

computed with the aid of MAPLE. Before pushing this through we observe the following

decomposition,

Proposition 67 As a K-representation,

charq P(k) =

∑
k,l≥0 q

k+l χ2k,2l(s, t)
(1− q2)2

Proof As an SL2(C) × SL2(C)-representation, k ∼= F 2,0 ⊕ F 0,2 and as an SL2(C)-

representation,

charq P(F 2) =

∑
k≥0 q

kχ2k(s)
1− q2

This follows from the fact that locally SL2(C) is isomorphic to SO3(C). and the above

decomposition follows from spherical harmonics. The result can be verified by evaluating

the sum to a rational expression which is equal to,

1
(1− qs2)(1− qs0)(1− qs−2)

Using this fact and that P(F 2,0 ⊕ F 0,2) ∼= P(F 2,0)⊗ P(F 0,2)

charq P(F 2,0 ⊕ F 0,2) =

∑
k≥0 q

kχ2k,0
∑

l≥0 q
lχ0,2l

(1− q2)2

Next observe that as SO4(C)-representations,

Fn,0 ⊗ F 0,m ∼= Fn,m

Q.E.D.

Theorem 68

charq P(M4(C))SO4(C) =
q15 + q11 + q10 + 3q9 + 2q8 + 2q7 + 3q6 + q5 + q4 + 1

(1− q6)(1− q4)3(1− q3)2(1− q2)3(1− q)

Proof. The result is only a computation using the Clebsh-Gordan formula for SL2(C)

representations. The computation reduces to,

charq P(M4(C))SO4(C) =

∑
k,l≥0 q

k+lpk l(q)
(1− q)(1− q2)3)(1− q4)

Which, using MAPLE can be summed to a rational expression in q that is the above

result.
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6.6 A proof of the shift.

In this section we give a full decomposition for the space Hp as an SO(4,C)-

representation. We will accomplish this by proving the following:

Theorem 69 (The Shift Formula) For k ≥ l ≥ 0,

pk,l(q)− q2 pk−2, l(q) = q2k−l

(
1− q2l+1

1− q

)
Proposition 70 For all k, l ≥ 0,

pk,l(q) = pl,k(q)

Lemma 3

p0,0(q) = 1 (6.8)

p1,0(q) = 0 (6.9)

p1,1(q) = q + q + q2 (6.10)

First we recall some basic facts which follow from the Clebsh-Gordan formula for tensor-

ing a sl2(C)⊕ sl2(C) representation with itself and then projecting onto the symmetric

and skew-symmetric tensors.

Lemma 4 For k ≥ 0,

S2
(
F k,k

)
∼=

⊕
2k ≥ r, s ≥ 0

r + s ∈ 2Z

F 2r,2s

Lemma 5 For k ≥ 0,

∧2
(
F k,k

)
∼=

⊕
2k ≥ r, s ≥ 0

r + s ∈ 2Z + 1

F 2r,2s

As before we denote the standard representation of SO4(C) by V and we recall that as

an K = SL2 × SL2 representation V ∼= F 1,1. In the following is a full decomposition of

the polynomial functions on S2(V ) as a graded K representation.
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Theorem 71 Define:

Sk = S2(SkV )

Ek = ∧2(SkV )

and set,

S =
⊕
k≥0

Sk

E =
⊕
k≥0

Ek

Then,

charqP(S2V ) = charqP(∧2V ) (charqS − charqE)

Proof: From lemma 4 we have S2V ∼= F 0,0 ⊕ F 2,2. The weights occurring in this

representation are:

{(0, 0)} ∪ {(2i, 2j) : i, j = -1, 0 or 1}

From this fact we obtain that,

charqP(S2V ) =
1

(1− q)
∏

i,j=−1,0,1(1− qu2iv2j)

=

(
1∏

i=−1,0,1(1− qu2iv0)
∏

j=−1,0,1(1− qu0v2j)

)
(

1∏
i,j=−1,1(1− qu2iv2j)

)

From Lemma 5 we obtain,

charqP(∧2V ) =
1∏

i=−1,0,1(1− qu2iv0)
∏

j=−1,0,1(1− qu0v2j)

The set of weights W of SkV is,

W =

 a1(1, 1) + a2(1,−1)+

a3(−1, 1) + a4(−1,−1)
such that

a1, a2, a3, a4 ≥ 0

a1 + a2 + a3 + a4 = k


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The set of weights in ∧2(SkV ) consists of all two element subsets of W, while the set of

weights in S2(SkV ) consists of all two element multi-subsets of W. Hence, we obtain:

charqS − charqE =
∑
k≥0

qk
(
char S2(SkV )− char ∧2 (SkV )

)

=
∑
k≥0

qk

 ∑
a1, a2, a3, a4 ≥ 0

a1 + a2 + a3 + a4 = k

((u1v1)a1)2((u1v−1)a2)2

((u−1v1)a3)2((u−1v−1)a4)2


=

1∏
i,j=−1,1(1− qu2iv2j)

Q.E.D.

Theorem 72 (Spherical Harmonics for n = 3) Let SO(3,C) act on C3 via the stan-

dard representation. Then, as an SO(3,C)-representation we have,

charqP(C2) =

∑
k≥0 q

kχ2k

1− q2

Next we observe that as a K-representation, the Lie algebra k is isomorphic to ∧2V .

Furthermore, we have,

Corollary 73

charqP(k) =

∑
i,j≥0 q

i+jχ2i,2j

(1− q2)2

Theorem 74 (Spherical Harmonics for n=4) Let SO(4,C) act on C4 via the stan-

dard representation. Then, as an SO(4,C)-representation we have,

charqP(C4) =

∑
k≥0 q

kχk,k

(1− q2)2

Lemma 6

charqS − charqE =

∑
k≥0

(
char S2(F k,k)− char ∧2 (F k,k)

)
(1− q2)

Proof: Define:

charqS − charqE =
∑
k≥0

Dkq
k
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For k ≥ 0

Dk+2 −Dk = char S2(Sk+2V )− char ∧2 (Sk+2V )− char S2(SkV )

+char ∧2 (SkV )

= char S2
(
SkV ⊕ F k+2,k+2

)
− char S2(SkV )

−char ∧2
(
SkV ⊕ F k+2,k+2

)
+ char ∧2 (SkV )

= char S2(SkV ) + char S2(F k+2,k+2)

+charSk+2V ⊗ F k+2,k+2 − char S2(SkV )

−char ∧2 (SkV )− char ∧2 (F k+2,k+2)

−charSk+2V ⊗ F k+2,k+2 + char ∧2 (SkV )

= char S2(F k+2,k+2)− char ∧2 (F k+2,k+2)

Observe that,

D0 = 1 = char S2(F 0,0)− char ∧2 (F 0,0)

and since V ∼= F 1,1,

D1 = char S2(V )− char ∧2 (V ) = char S2(F 1,1)− char ∧2 (F 1,1)

We obtain,

(1− q2) (charqS − charqE) =
∑
k≥0

(1− q2)Dkq
k

=
∑
k≥0

Dkq
k −

∑
k≥0

Dkq
k+2

= D0 +D1q +
∑
k≥2

(Dk −Dk−2) qk

=
∑
k≥0

(
char S2(F k,k)− char ∧2 (F k,k)

)
Q.E.D.
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Theorem 75

charqP(S2V ) =

1
(1− q)(1− q2)3

∑
n,m≥0


∑

i, j, k, l ≥ 0

|i − k| ≤ n ≤ i + k

|j − l| ≤ m ≤ j + l

(−1)k+lqi+j+max(k,l)χ2n,2m


Proof: From Lemma 4 and Lemma 5 we obtain,

charqS − charqE =
1

1− q2

∑
d≥0

qd
(
charS2(F d,d)− char ∧2 (F d,d)

)

=
1

1− q2

∑
d≥0

qd

 ∑
d≥k,l≥0

(−1)k+lχ2k,2l


=

1
1− q2

∑
r, k, l ≥ 0

d = r +max(k, l)

(−1)k+lqr+max(k,l)χ2k,2l

=
1

1− q2

∑
r≥0

qr

∑
k,l≥0

(−1)k+lqmax(k,l)χ2k,2l


=

1
(1− q)(1− q2)

∑
k,l≥0

(−1)k+lqmax(k,l)χ2k,2l

And from Corollary 73 we have an expression for charqP(∧2(V )). Next, recall from the

Clebsh-Gordan formula that for i, j, k, l ≥ 0

F 2i,2j ⊗ F 2k,2l ∼=
⊕

|i − k| ≤ r ≤ i + k

|j − l| ≤ s ≤ j + l

F 2r,2s

Q.E.D.

If we multiply the formula in theorem 75 by (1 − q)(1 − q2)(1 − q3)(1 − q4) then we

will have obtained the following expression for the graded multiplicity of the irreducible

representation Fn,m in Hp.

pn,m(q) =
(1− q3)(1− q4)

(1− q2)2
∑

i, j, k, l ≥ 0

|i − k| ≤ n ≤ i + k

|j − l| ≤ m ≤ j + l

(−1)k+lqi+j+max(k,l)
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This expression is not a finite sum, however we shall see that p0,0(q) = 1, p1,0(q) = 0,

p1,1(q) = q + q2 + q3, pn,m(q) = pm,n(q) for n,m ≥ 0 and the following result. These

facts will set up our inductive procedure for computing pn,m(q).

Theorem 76 For n ≥ m and n ≥ 2 and m ≥ 0

pn,m(q)− q2pn−2,m(q) = q2n−m(1 + q + q2 + · · ·+ q2m)

Proof: Let R(q) = (1−q3)(1−q4)
(1−q2)2

. We will write pn,m(q) in the following way,

pn,m(q) = R(q)
∑

j, l ≥ 0

|j − l| ≤ m ≤ j + l

(−1)lqj p̃n,l(q)

Where: For n, l ≥ 0,

p̃n,l(q) =
∑

i, k ≥ 0

|i − k| ≤ n ≤ i + k

(−1)kqi+max(k,l)

Claim: For n ≥ 2 and l ≥ 0,

p̃n,l(q)− q2p̃n−2,l(q) = (1− q2)(−1)nql
l−n∑
r=0

(−q)r

We will establish this claim by a straightforward computation. Recall that if l − n < 0

then by convention the empty sum is taken to be zero. In order to see the idea of the

computation we have drawn the sets we will be summing over for n=5.

7 x x x x x x
6 x x x x x x x
5 x x x x x x x x
4 x x x x x x x
3 x x x x x x
2 x x x x x
1 x x x
0 x

0 1 2 3 4 5 6 7

Below is the set we would sum over for n=3.
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7 x x x x
6 x x x x x
5 x x x x x x
4 x x x x x x x
3 x x x x x x x
2 x x x x x
1 x x x
0 x

0 1 2 3 4 5 6 7

Upon substituting n− 2 for n we obtain,

p̃n−2,l(q) =
∑

i, k ≥ 0

|i − k| ≤ n − 2 ≤ i + k

(−1)kqi+max(k,l)

Next is the last picture with the i,k-axis shifted to the left by two.

7 x x
6 x x x
5 x x x x
4 x x x x x
3 x x x x x x
2 x x x x x
1 x x x
0 x

0 1 2 3 4 5 6 7

Next, we will multiply by q2 and shift the i index by 2.

q2p̃n−2,l(q) =
∑

i, k ≥ 0

|i − k| ≤ n − 2 ≤ i + k

(−1)kqi+2+max(k,l)

=
∑

(i − 2), k ≥ 0

|(i − 2)− k| ≤ n − 2 ≤ (i − 2) + k

(−1)kqi+max(k,l)

Because the second is a subset of the first we will display the difference of the sets.
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7 x x x x
6 x x x x
5 X X x x
4 X X
3
2
1
0

0 1 2 3 4 5 6 7

In the above expression for p̃n−2,l(q) the sum is over a set of indices which

contains the summation indices in the shifted expression for q2p̃n,l(q). As a consequence

of this, there is a significant amount of cancellation in the difference of the sums. The

difference in the sets of indices is to be thought of as four diagonal lines parameterized

below with r ≥ 0.

(i, k) = (0, n) + (r, r)

(i, k) = (1, n) + (r, r)

(i, k) = (1, n− 1) + (r, r)

(i, k) = (1, n− 1) + (r, r)

The computation of the p̃-shift follows,

p̃n,l(q)− q2p̃n−2,l =
∑
r≥0


(−1)n+rqr+max(n+r,l)+

(−1)n+rqr+1+max(n+r,l)+

(−1)r−1+rqr+1+max(n−1+r,l)+

(−1)r−1+rqr+2+max(n−1+r,l)


=

∑
r≥0

(1 + q)

 (−1)n+rqr+max(n+r,l)+

(−1)n+1+rqr+1+max(n−1+r,l)


= (−1)n(1 + q)

∑
r≥0

(−1)rqr[qmax(n+r,l) − q1+max(n−1+r,l)]

Observe that,

qmax(n+r,l) − q1+max(n−1+r,l) =

 (1− q)ql if l > n− 1 + r

0 otherwise
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Substituting this into our p̃-shift formula we obtain the claim,

p̃n,l(q)− q2p̃n−2,l(q) = (1− q2)(−1)n−2ql
∑
r ≥ 0

l > n − 1 + r

(−q)r

Next, we return to the p-shift and substitute our result for the p̃-shift.

pn,l(q)− q2pn−2,l(q)

= R(q)
∑

j, l ≥ 0

|j − l| ≤ m ≤ j + l

(−1)lqj(p̃n,l(q)− q2p̃n,l(q))

= R(q)
∑

j, l ≥ 0

|j − l| ≤ m ≤ j + l

l ≥ n

(−1)lqj

(1− q2)(−1)nql
l−n∑
r≥0

(−q)r



To proceed further we note the set equality resulting from the fact that n ≥ m,

{(j, l) ≥ 0 : |j − l| ≤ m ≤ j + l, l ≥ n} =

{(j, l) ≥ 0 : l ≥ n, l −m ≤ j ≤ l +m}

To simplify the notation we will introduce the following notation for integers a and b

with a ≤ b:

[a, b]q = qa + qa+1 + qa+2...+ qb
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We will now write the p-shift as,

pn,l(q)− q2pn−2,l(q)

= R(q)
∑
l≥n

 ∑
l−m≤j≤l+m

(−1)lqj

(
(1− q2)(−1)nql

l−n∑
r=0

(−q)r

)
= R(q)(1− q2)(−1)n

∑
l≥n

(−1)lql

(
l−n∑
r=0

(−q)r

) ∑
l−m≤j≤l+m

qj


= R(q)(1− q2)(−1)n[−m,m]q

∑
l≥n

(−1)lq2l

(
l−n∑
r=0

(−q)r

)
= R(q)(1− q2)(−1)n[−m,m]q(−1)nq2n

∑
l≥0

(−1)lq2l

(
l∑

r=0

(−q)r

)

= R(q)(1− q2)

 ∑
r, l ≥ 0

l ≥ r ≥ 0

(−1)l+rqr+2l

 [−m,m]qq2n

Observe that we have the identity of formal power series,∑
r, l ≥ 0

l ≥ r ≥ 0

(−1)l+rqr+2l =
∑

r, s ≥ 0

l = r + s

(−1)2r+sq3r+2s

=
(

1
1− q3

)(
1

1 + q2

)
This identity allows us to cancel the R(q) in the p-shift formula.

pn,m(q)− q2pn−2,m(q)

= R(q)(1− q2)
1

(1− q3)(1 + q2)
[−m,m]qq2n

=
(1− q3)(1− q4)

(1− q2)2
(1− q2)

1
(1− q3)(1 + q2)

[−m,m]qq2n

= [−m,m]qq2n

= q2n−m[0, 2m]q

= q2n−m
(
1 + q + q2 + · · ·+ q2m

)
Q.E.D.



94

The text of this chapter, is in part a reprint of material as it appears in the

paper On Some q-Analogs of a Theorem of Kostant-Rallis, in the Canadian Journal of

Mathematics, Vol. 52(2), 2000, pp. 438-448; Canadian Mathematical Society, Ottawa

Ontario, Canada; co-authored with Nolan R. Wallach. I was the secondary author of

this paper and made substantial contributions to the research as did my co-author.
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