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ABSTRACT OF THE DISSERTATION

Multivariate Analogues of Catalan Numbers, Parking Functions, and

their Extensions

by

Nicholas Anthony Loehr

Doctor of Philosophy in Mathematics

University of California San Diego, 2003

Professor Je�rey Remmel, Chair

This document is concerned with the Catalan numbers and their generaliza-

tions. The Catalan numbers, which occur ubiquitously in combinatorics, are also con-

nected to certain problems in representation theory, symmetric function theory, the

theory of Macdonald polynomials, algebraic geometry, and Lie algebras. Garsia and

Haiman introduced a bivariate analogue of the Catalan numbers, called the q; t-Catalan

sequence, in this setting. This sequence counts multiplicities of the sign character in a

certain doubly graded Sn-module called the diagonal harmonics module. Several classical

q-analogues of the Catalan numbers can be obtained from this sequence by suitable spe-

cializations. Haglund and Haiman separately proposed combinatorial interpretations for

this q; t-Catalan sequence by de�ning two statistics on Dyck paths. Garsia and Haglund

later proved the correctness of these interpretations. Haglund, Haiman, and Loehr de-

�ned similar statistics on labelled Dyck paths, which are conjectured to give the Hilbert

series of the diagonal harmonics module.

In this thesis, we introduce and analyze several conjectured combinatorial in-

terpretations for the \higher" q; t-Catalan sequences of Garsia and Haiman. These in-

terpretations involve pairs of statistics for unlabelled lattice paths staying inside certain

triangles. Trivariate generating functions for these paths are also discussed. These

constructions are then generalized to lattice paths contained in trapezoids. We study

xv



�ve-variable generating functions for these paths and derive their combinatorial proper-

ties.

Next, we consider multivariate generating functions for labelled lattice paths

(parking functions) staying within various shapes. In the case of triangles, we obtain a

conjectured combinatorial interpretation for the Hilbert series of higher-order analogues

of the diagonal harmonics module.

Finally, we present some miscellaneous results connected to the various Catalan

sequences. We present a variation of Andr�e's reection principle to count paths contained

in trapezoidal regions. We give a determinantal formula for the Carlitz-Riordan numbers

that enumerate Dyck paths by area. We also give several ways to de�ne the bivariate

Catalan sequence in terms of classical permutation statistics.
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1

Introduction to Catalan

Sequences and Parking Functions

This document is concerned with the Catalan numbers and their generaliza-

tions. The Catalan numbers, which occur ubiquitously in combinatorics, are also con-

nected to certain problems in representation theory, symmetric function theory, the

theory of Macdonald polynomials, algebraic geometry, and Lie algebras. Garsia and

Haiman introduced a bivariate analogue of the Catalan numbers, called the q; t-Catalan

sequence, in this setting. This sequence counts multiplicities of the sign character in a

certain doubly graded Sn-module called the diagonal harmonics module. Several classical

q-analogues of the Catalan numbers can be obtained from this sequence by suitable spe-

cializations. Haglund and Haiman separately proposed combinatorial interpretations for

this q; t-Catalan sequence by de�ning two statistics on Dyck paths. Garsia and Haglund

later proved the correctness of these interpretations. Haglund, Haiman, and the present

author de�ned similar statistics on labelled Dyck paths, which are conjectured to give

the Hilbert series of the diagonal harmonics module.

We will study these sequences and their generalizations from a combinatorial

standpoint. We de�ne statistics on various collections of lattice paths (both unlabelled

and labelled) that stay within special shapes such as triangles and trapezoids. We prove

formulas, recursions, specializations, and bijections involving these statistics. In some

cases, we have conjectured interpretations of the generating functions for these statistics

1



2

in terms of representation theory or symmetric functions.

In this �rst chapter, we introduce the Catalan numbers and their classical q-

analogues. We briey describe the problems in representation theory that motivated

the de�nition of the original q; t-Catalan sequence. We then discuss results of Garsia,

Haiman, Haglund, et al. that give a combinatorial description of this bivariate sequence.

Finally, we give a preview of the more general collections of objects that admit a similar

combinatorial treatment.

1.1 Catalan Numbers

De�nition 1.1. The Catalan numbers Cn are de�ned by the formula

Cn =
1

n+ 1

�
2n

n

�
=

(2n)!

(n+ 1)!n!
for n � 0:

Cn can also be de�ned recursively by setting

C0 = 1; Cn =

n�1X
k=0

CkCn�1�k for n > 0:

The �rst few Catalan numbers are

C0 = 1; C1 = 1; C2 = 2; C3 = 5; C4 = 14; C5 = 42; C6 = 132; C7 = 429:

The Catalan number Cn counts the number of rooted, unlabelled binary trees with n

vertices; the number of rooted, unlabelled planar trees with n + 1 vertices; and many

other combinatorial objects. See [29, 30] for a list of more than 95 collections of objects

counted by the Catalan numbers. The objects of greatest interest for our purposes are

the Dyck paths and the Catalan words.

De�nition 1.2. A Dyck path of order n is a path in the xy-plane from (0; 0) to (n; n)

consisting of n north steps and n east steps (each of length one), such that the path

never goes strictly below the diagonal line y = x. Let Dn denote the collection of Dyck

paths of order n.

De�nition 1.3. A Catalan word of order n is a word w = w1w2 : : : w2n consisting of n

zeroes and n ones, such that for all i, the number of zeroes in the pre�x w1w2 : : : wi is



3

greater than or equal to the number of ones in w1w2 : : : wi. LetWn denote the collection

of Catalan words of order n.

An example of a Dyck path appears in Figure 1.1. Suppose we encode the steps

of the path, starting at (0; 0), by writing the symbol 0 for each north step and writing

the symbol 1 for each east step. For the Dyck path in Figure 1.1, we obtain the word

w = 0001001111010010011001110011:

This word has n zeroes and n ones, since there are n north steps and n east steps in

the Dyck path. Also, in any pre�x of w, there are at least as many zeroes as ones,

since otherwise the Dyck path would go below the diagonal line y = x. This process of

encoding a Dyck path as a word is clearly reversible. Thus, we have a bijection between

Dyck paths and Catalan words. If we write a left parenthesis instead of a zero and a

right parenthesis instead of a one, a Catalan word turns into a string of n left and right

parentheses where there are no unmatched parentheses. For example, the word w above

becomes the string

((()(())))()(()(())(()))(()).

This construction gives another collection of objects counted by the Catalan number.

1.2 Classical q-analogues of the Catalan Numbers

We can obtain generalizations of the Catalan numbers by looking at collections

of weighted objects. For instance, we can assign weights to Catalan words using the

following classical statistics.

De�nition 1.4. Let w = w1w2 : : : wn be any word, where each wi is an integer.

(1) De�ne the inversions of w by

inv(w) =
X

1�i<j�n

�(wi > wj): (1.1)

Here and below, for any logical statement A we set �(A) = 1 if A is true, and �(A) = 0

if A is false.
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y = x

( 0 , 0 )

 ( n,  n )

Figure 1.1: A Dyck path.

(2) De�ne the major index of w by

maj(w) =

n�1X
i=1

i�(wi > wi+1):

For example, Table 1.1 lists the values of these statistics for all w 2 W3, the

Catalan words of order 3.

We now obtain \q-analogues" of the Catalan numbers by looking at generating

functions for the Catalan words relative to the various statistics.

De�nition 1.5. Let q be a formal variable.

(1) De�ne the inversion q-analogue of the Catalan numbers by

Cinv
n (q) =

X
w2Wn

qinv(w):

(2) De�ne the major index q-analogue of the Catalan numbers by

Cmaj
n (q) =

X
w2Wn

qmaj(w):
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Table 1.1: Statistics for Catalan words of order 3.

Word w in W3 inv(w) maj(w)

010101 3 6

001101 2 4

010011 2 2

001011 1 3

000111 0 0

For example, using Table 1.1, we compute

Cinv
3 (q) = 1 + q + 2q2 + q3;

Cmaj
3 (q) = 1 + q2 + q3 + q4 + q6:

The sequence Cinv
n (q) has been studied by Carlitz, Riordan, and other authors [7]. The

sequence Cmaj
n (q) was �rst studied by MacMahon [25]. MacMahon proved the formula

Cmaj
n (q) =

1

[n+ 1]q

�
2n

n; n

�
q

;

where we use the notation

[0]q = 0; [m]q = 1 + q + q2 + � � �+ qm�1 =
1� qm

1� q
for m > 0; and (1.2)

�
a+ b

a

�
q

=

�
a+ b

a; b

�
q

=

Qa+b
i=1 (1� qi)Qa

i=1(1� qi)
Qb

i=1(1� qi)
: (1.3)

The sequence Cinv
n (q) has no simple explicit formula like the one for Cmaj

n (q). However,

we will discuss a determinantal formula for Cinv
n (q) in x5.2.

We can also de�ne statistics on geometric objects such as Dyck paths.

De�nition 1.6. Let D be a Dyck path of order n.

(1) De�ne area(D) to be the number of complete lattice cells between D and the diagonal

line y = x.

(2) De�ne the area q-analogue of the Catalan numbers by

Carea
n (q) =

X
D2Dn

qarea(D):
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For instance, the path D in Figure 1.1 has area(D) = 16. By examining the

�ve Dyck paths of order 3 in Figure 1.2, we compute

Carea
3 (q) = 1 + 2q + q2 + q3:

010101 001101 010011 001011 000111

Figure 1.2: Dyck paths of order 3, and the associated Catalan words.

We remark that Carea
3 (1) = 5 = C3. In general, for any q-analogue of the

Catalan number, we can recover the number Cn by setting q = 1.

Comparing Figure 1.2 to Table 1.1, we observe that

area(D) + inv(w) = 3 =

�
3

2

�
;

where w is the Catalan word associated to the Dyck path D. This is a special case of

the following lemma.

Lemma 1.7. Let D be a Dyck path of order n, with associated Catalan word w. Then

area(D) + inv(w) =

�
n

2

�
:

Proof. Consider the triangle bounded by the lines y = x, y = n, and x = 0. Let us count

the number of complete lattice squares inside this triangle. There are n � 1 squares in

the leftmost column, n�2 squares in the next column, etc. The total number of squares

is

(n� 1) + (n� 2) + � � �+ 1 + 0 =

�
n

2

�
:

Note that each square in this triangle is either below or above the Dyck path D. The

number of squares below the path is area(D). We claim the number of squares above

the path and inside the triangle is inv(w). To see this, let ci be the number of zeroes in

w that follow the ith one in w. Since w consists only of zeroes and ones, the de�nition of
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inv(w) shows that inv(w) = c1 + c2 + � � �+ cn. On the other hand, consider the number

of squares above the path D in the ith column from the left. These squares lie above the

ith horizontal segment in the path, which corresponds to the ith one in w. The number of

such squares is the same as the number of vertical segments following the ith horizontal

segment in the path, which is the same as the number of zeroes following the ith one in

w. Thus, there are ci squares above the path in column i. Adding over all i, we see that

the total area above the path is inv(w), as claimed.

As a consequence of this lemma, we compute

Cinv
n (q) =

X
w2Wn

qinv(w) =
X
D2Dn

q(
n
2)�area(D) = q(

n
2)
X
D2Dn

�
1

q

�area(D)

= q(
n
2)Carea

n (1=q):

Thus, there is no essential di�erence between the sequences Cinv
n and Carea

n . For this

reason, we may refer to either sequence as the Carlitz-Riordan q-analogue of the Catalan

numbers. On the other hand, Cmaj
n cannot be obtained from these sequences by a simple

transformation of this kind.

Remarkably, it turns out that both sequences Carea
n and Cmaj

n can be obtained

as special cases of a bivariate sequence involving two variables q and t. This sequence,

introduced by Garsia and Haiman, arose from problems in representation theory and

symmetric function theory. We now interrupt the combinatorial discussion to describe

the development of this bivariate sequence.

1.3 Diagonal Harmonics and Bivariate Catalan Sequences

We assume the reader is well-acquainted with basic facts about groups, rings,

�elds, vector spaces, modules, and algebras; see [26] or any algebra text for a detailed

discussion of these concepts. This section also assumes some knowledge of the repre-

sentation theory of �nite groups and symmetric function theory, including Macdonald

polynomials. Di�erent aspects of this material are treated in [27, 29, 24]. For the

reader's convenience, we summarize some needed de�nitions and notation in the next

few subsections.
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1.3.1 Partitions

We �rst review some standard terminology associated with integer partitions.

De�nition 1.8. A partition is a sequence � = (�1 � �2 � � � � � �k) of weakly decreasing

positive integers, called the parts of �. The integer N = �1 + �2 + � � � + �k is called

the area or weight of � and denoted j�j. In this case, � is said to be a partition of N ,

written in symbols as � ` N . The number of parts k is called the length of � and denoted

`(�). We often depict a partition � by its Ferrers diagram. This diagram consists of k

left-justi�ed rows of boxes (called cells), where the ith row from the top has exactly �i

boxes.

Figure 1.3 shows the Ferrers diagram of � = (8; 7; 5; 4; 4; 2; 1), which is a parti-

tion of 31 having seven parts.

c

Figure 1.3: Diagram of a partition.

De�nition 1.9. Given a partition �, the transpose �0 of � is the partition obtained by

interchanging the rows and columns of the Ferrers diagram of �.

For example, the transpose of the partition in Figure 1.3 is

�0 = (7; 6; 5; 5; 3; 2; 2; 1):

De�nition 1.10. Let � be a partition of N . Let c be one of the N cells in the diagram

of �.

(1) The arm of c, denoted a(c), is the number of cells strictly right of c in the diagram

of �.
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(2) The coarm of c, denoted a0(c), is the number of cells strictly left of c in the diagram

of �.

(3) The leg of c, denoted l(c), is the number of cells strictly below c in the diagram of

�.

(4) The coleg of c, denoted l0(c), is the number of cells strictly above c in the diagram

of �.

For example, the cell labelled c in Figure 1.3 has a(c) = 4, a0(c) = 2, l(c) = 3,

and l0(c) = 1.

De�nition 1.11. We de�ne the dominance partial ordering on partitions of N as follows.

If � and � are partitions of N , we write � � � to mean that

�1 + � � �+ �i � �1 + � � �+ �i for all i � 1.

For example, we have (4; 3; 1) � (3; 3; 1; 1). As another example, � = (3; 1; 1; 1)

and � = (2; 2; 2) are not comparable to one another relative to the partial order �.

De�nition 1.12. Fix a positive integer N and a partition � of N . We introduce the

following abbreviations to shorten upcoming formulas:

h�(q; t) =
Y
c2�

(qa(c) � tl(c)+1)

h0�(q; t) =
Y
c2�

(tl(c) � qa(c)+1)

n(�) =
X
c2�

l(c)

B�(q; t) =
X
c2�

qa
0(c)tl

0(c)

��(q; t) =
Y

c2�;c6=(0;0)

(1� qa
0(c)tl

0(c))

In all but the last formula above, the sums and products range over all cells in the

diagram of �. In the product de�ning ��(q; t), the northwest corner cell of � is omitted

from the product. This is the cell c with a0(c) = l0(c) = 0; if we did not omit this cell,

then ��(q; t) would be zero. Note that

n(�0) =
X
c2�0

l(c) =
X
c2�

a(c):
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Example 1.13. Let � = (3; 2). Then

h(3;2)(q; t) = (q2 � t2)(q1 � t2)(q0 � t1)(q1 � t1)(q0 � t1)

h0(3;2)(q; t) = (t1 � q3)(t1 � q2)(t0 � q1)(t0 � q2)(t0 � q1)

n(3;2) = 2 + 1 + 0 + 1 + 0 = 4

B(3;2)(q; t) = q0t0 + q1t0 + q2t0 + q0t1 + q1t1

�(3;2)(q; t) = (1� q1t0)(1 � q2t0)(1 � q0t1)(1� q1t1)

n(3;2)0 = n(2;2;1) = 1 + 1 + 0 + 0 + 0 = 2:

1.3.2 Symmetric Functions

Next, we review notation for symmetric functions and various bases for the

symmetric functions. For more information, see [27, 29, 24].

Let K be a �eld of characteristic zero, such as the rational numbers Q or the

complex numbers C . Let � = �(K) denote the ring of symmetric functions in the

indeterminates x1; x2; : : : ; xn; : : : with coeÆcients in K. Let �m denote the subring of

homogeneous symmetric functions of degree m (including zero). For a formal algebraic

de�nition of �m and �, see [24], Chapter 1.

De�nition 1.14. We now introduce some commonly occurring symmetric functions.

(1) For n > 0, de�ne the elementary symmetric function en by

en =
X

i1<i2<:::<in

xi1xi2 � � � xin :

De�ne e0 = 1 and ej = 0 for j < 0.

For a partition � = (�1; : : : ; �t), de�ne e� = e�1e�2 � � � e�t .

(2) For n > 0, de�ne the complete symmetric function hn by

hn =
X

i1�i2�:::�in

xi1xi2 � � � xin :

De�ne h0 = 1 and hj = 0 for j < 0.

For a partition � = (�1; : : : ; �t), de�ne h� = h�1h�2 � � � h�t .
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(3) For n > 0, de�ne the power-sum symmetric function pn by

pn =
X
i�1

xni :

De�ne p0 = 1 and pj = 0 for j < 0.

For a partition � = (�1; : : : ; �t), de�ne p� = p�1p�2 � � � p�t .

(4) For any partition � of weight n, de�ne the Schur function s� by the Jacobi-Trudi

formula

s� = det(h�i�i+j)1�i;j�n:

(There are several other equivalent ways of de�ning s�.)

Example 1.15. For n = 1, we have

e1 = h1 = p1 = s(1) =
X
i

xi:

For n = 2, we have

e2 =
X
i<j

xixj

h2 =
X
i

x2i +
X
i<j

xixj

p2 =
X
i

x2i

p(1;1) =

 X
i

xi

!2

=
X
i

x2i + 2
X
i<j

xixj

s(2) = h2 =
X
i

x2i +
X
i<j

xixj

s(1;1) = h21 � h0h2 = e2 =
X
i<j

xixj

e(1;1) = e1e1 =
X
i

x2i + 2
X
i<j

xixj
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Comparing these expressions, we see that

p(2) = 1s(2) � 1s(1;1)

p(1;1) = 1s(2) + 1s(1;1)

s(2) = (1=2)p(2) + (1=2)p(1;1)

s(1;1) = (�1=2)p(2) + (1=2)p(1;1)

(1.4)

These formulas will be used in later examples.

We can use the symmetric functions de�ned above to get several di�erent bases

for �, viewed as a vector space over K.

Theorem 1.16. Let K be a �eld of characteristic zero.

(1) The set fe�g, as � ranges over all partitions, is a basis for �.

The set fe� : � ` mg is a basis for �m.

The set fe1; e2; : : :g is algebraically independent and generates � as a K-algebra.

(2) The set fh�g, as � ranges over all partitions, is a basis for �.

The set fh� : � ` mg is a basis for �m.

The set fh1; h2; : : :g is algebraically independent and generates � as a K-algebra.

(3) The set fp�g, as � ranges over all partitions, is a basis for �.

The set fp� : � ` mg is a basis for �m.

The set fp1; p2; : : :g is algebraically independent and generates � as a K-algebra.

(4) The set s�, as � ranges over all partitions, is a basis for �.

The set fs� : � ` mg is a basis for �m.

Proof. See [24] Chapter 1, or [29] Chapter 7.

De�nition 1.17. Let f be an arbitrary element of �. Since fs�g is a basis for � as a

K-vector space, there is a unique expansion

f =
X
�

c�s�; c� 2 K:
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We de�ne the coeÆcient of s� in f to be the scalar c�. In symbols, we write

f js� = c�:

Similar notation can be de�ned for the other bases of � mentioned above.

Example 1.18. Inspection of (1.4) shows that

p(2)js(2) = 1 and p(2)js(1;1) = �1:

Example 1.19. Some care must be exercised when using this notation, since the value

of f jg depends on the basis to which g belongs, not just on g itself. For instance, let

f = 3e2 + 3e(1;1) and g = s(1;1) = e2. Evidently, f je2 = 3. On the other hand, since

e2 = s(1;1) and e(1;1) = s2 + s(1;1) by Example 1.15, it follows that

f = 3s(2) + 6s(1;1);

so that f js(1;1) = 6. Thus, the value of f jg depends on whether we consider g as belonging

to the Schur basis (s�) or to the elementary basis (e�).

Theorem 1.20. [Foundation for Plethystic Substitution]

Let pn denote the power-sum symmetric function, as usual. Let R be a K-algebra. If

�0 : fp1; p2; : : : ; pn; : : :g ! R is any function, then there exists a unique K-algebra

homomorphism � : �(K)! R that extends �0.

Proof. This follows immediately from the fact that the set fp1; p2; : : : ; pn; : : :g is alge-

braically independent and generates � as a K-algebra. Speci�cally, to get a K-algebra

homomorphism that extends �0, we must set

�(p�) = �(p�1 � � � p�k) = �(p�1) � � ��(p�k) = �0(p�1) � � � �0(p�k):

For any f 2 �, we can write f uniquely as f =
P

� c�p� where c� 2 K. Then we must

set

�(f) =
X
�

c��(p�):

This shows that �, if it exists, must be unique. To show existence, de�ne � by the formu-

las just given. It is routine to check that � is a well-de�ned K-algebra homomorphism

from �(K) to R.
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Example 1.21. Let �0 be the function that sends each pk to (1 � qk)pk. Let � be the

corresponding map produced by the theorem. We have

�(p1) = (1� q)p1; �(p2) = (1� q2)p2;

from which we deduce that

�(p(1;1)) = �(p1)�(p1) = (1� q)2p1p1 = (1� 2q + q2)p(1;1):

Next, since s(2) = (1=2)p(2) + (1=2)p(1;1) and s(1;1) = (�1=2)p(2) + (1=2)p(1;1), linearity

of � gives

�(s(2)) =
1

2
(1� q2)p(2) +

1

2
(1� 2q + q2)p(1;1)

�(s(1;1)) = �
1

2
(1� q2)p(2) +

1

2
(1� 2q + q2)p(1;1):

Using (1.4) to rewrite the p's in terms of Schur functions, we get

�(s(2)) = (1� q)s(2) + (q2 � q)s(1;1)

�(s(1;1)) = (q2 � q)s(2) + (1� q)s(1;1)
(1.5)

We will use these calculations in the next subsection.

1.3.3 Modi�ed Macdonald Polynomials and the Nabla Operator

In this section, we de�ne the modi�ed Macdonald polynomials, which form an-

other useful basis for the ring of symmetric functions. We also de�ne the nabla operator,

a linear operator on � that has many important properties. The modi�ed Macdonald

polynomials were introduced by Garsia and Haiman [18] by modifying the de�nition in

Macdonald's book [24]. The nabla operator was �rst introduced by F. Bergeron and

Garsia [4].

Let K be the �eld Q(q; t) whose elements are quotients g(q; t)=h(q; t) of poly-

nomials in the variables q and t. We will be working in the ring � = �(K) of symmetric

functions with coeÆcients in K. Let �0 : K ! K be the automorphism of K that inter-

changes q and t; thus, �0(g(q; t)=h(q; t)) = g(t; q)=h(t; q). Extend �0 to an automorphism

� : �! � by setting

�

 X
�

c�s�

!
=
X
�

�0(c�)s� (c� 2 K):
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Sometimes we abuse notation and write an element f 2 � as f(x; q; t). Then we would

write �(f) = f(x; t; q).

Next, let �0 : fp1; p2; : : :g ! � be the function given by �0(pk) = (1�qk)pk 2 �.

By Theorem 1.20, we obtain a unique K-algebra homomorphism � : � ! � extending

�0. (Authors who use plethystic notation would write f [(1 � q)X] instead of �(f), for

f 2 �.) Now we can introduce the modi�ed Macdonald polynomials.

Theorem 1.22. Let K, �, and � be de�ned as above. There exists a unique basis ~H�

of �(K) with the following properties:

(1) �( ~H�) =
P

��� c�;�s� for certain scalars c�;� 2 K.

(2) �( ~H�) = ~H�0.

(3) ~H�js(n) = 1.

Here, � ranges over all partitions, and � is the dominance partial order on partitions.

Also, f ~H� : � ` mg is a basis of �m(K).

(Some authors write the three properties in the de�nition using di�erent notation, as

follows:

(1) ~H�[(1 � q)X; q; t] =
P

��� c�;�(q; t)s�(X) for certain scalars c�;� 2 K.

(2) ~H�(X; q; t) = ~H�0(X; t; q).

(3) h ~H�(X; q; t); s(n)(X)i = 1.

Here, h�; �i denotes the inner product on �(K) de�ned by requiring that fs�g be an or-

thonormal basis relative to the inner product.)

Proof. See, for instance, [18]. The proof for the original Macdonald polynomials is in

[24].

De�nition 1.23. The elements ~H� are called modi�ed Macdonald polynomials.

Fix a partition � ` n. Since fs� : � ` ng is a basis for �n, we can uniquely

write

~H� =
X
�`n

~K�;�s�
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for certain coeÆcients ~K�;� 2 Q(q; t). These coeÆcients are called the modi�ed Kostka-

Macdonald coeÆcients. The following theorem of Haiman resolves a long-standing con-

jecture of Macdonald regarding these coeÆcients.

Theorem 1.24. [Haiman]

For every � ` n and � ` n, ~K�;� is a polynomial in q and t with nonnegative integer

coeÆcients.

Proof. See [18].

In advance, one only knows that ~K�;� is a rational function with rational coeÆ-

cients. Haiman's proof uses sophisticated machinery from algebraic geometry. The proof

provides an explicit interpretation for the coeÆcients of the polynomials ~K�;�. These

coeÆcients count the multiplicities of irreducible modules in a certain doubly graded

Sn-module.1 In particular, the coeÆcients must be nonnegative integers.

Example 1.25. Let us compute ~H(2) and ~H(1;1). Each of these is a linear combination

of the Schur functions s(2) and s(1;1). Using condition (3) of the de�nition, we can write

~H(2) = 1s(2) + a(q; t)s(1;1)

~H(1;1) = 1s(2) + b(q; t)s(1;1)

for some unknown scalars a(q; t) and b(q; t) in K. By condition (2) of the de�nition,

b(q; t) = a(t; q) so it suÆces to compute a(q; t). To do this, we use condition (1) of the

de�nition. On one hand, using (1.5) and linearity of �, we have

�( ~H(2)) =
�
1� q + a(q; t)(q2 � q)

�
s(2) +

�
(q2 � q) + a(q; t)(1 � q)

�
s(1;1):

On the other hand, condition (1) in the de�nition of ~H� tells us that

�( ~H(2)) = c(q; t)s(2) + 0s(1;1)

for some scalar c(q; t). Comparing coeÆcients of s(1;1) gives us the equation

(q2 � q) + a(q; t)(1� q) = 0:

1This terminology is reviewed in the next subsection.
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Solving this gives a(q; t) = (q � q2)=(1 � q) = q. Therefore, b(q; t) = a(t; q) = t, and we

have
~H(2) = 1s(2) + qs(1;1)
~H(1;1) = 1s(2) + ts(1;1):

(1.6)

We can also solve for the Schur functions in terms of ~H�:

s(2) = t
t�q

~H(2) +
�q
t�q

~H(1;1)

s(1;1) = �1
t�q

~H(2) +
1
t�q

~H(1;1):

(1.7)

We now de�ne the nabla operator of F. Bergeron and Garsia. Some of the

special properties of this operator are developed in [4, 5, 6].

De�nition 1.26. The nabla operator r is the linear operator on �(K) that acts on the

modi�ed Macdonald basis as follows:

r( ~H�) = qn(�
0)tn(�) ~H�:

If f is any element of �(K), we can write f uniquely as

f =
X
�

c� ~H�; c� 2 K:

By linearity, we then have

r(f) =
X
�

c�q
n(�0)tn(�) ~H�:

Note that r is a linear operator with eigenvalues qn(�
0)tn(�) and corresponding eigen-

functions ~H�.

Example 1.27. For partitions of 2, we have

r( ~H(2)) = q ~H(2)

r( ~H(1;1)) = t ~H(1;1):
(1.8)

Using the relations (1.6) and (1.7), we can determine the action of nabla on the Schur

basis. Applying r to both sides of (1.7) and using (1.8), we get

r(s(2)) = qt
t�q

~H(2) +
�qt
t�q

~H(1;1)

r(s(1;1)) = �q
t�q

~H(2) +
t

t�q
~H(1;1):

(1.9)
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We then use (1.6) to express the answer in terms of Schur functions. After some routine

calculations, we obtain:

r(s(2)) = 0s(2) + (�qt)s(1;1)

r(s(1;1)) = 1s(2) + (q + t)s(1;1):

Thus, the matrix of r on �2(K) relative to the basis (s(2); s(1;1)) is

[r]2 =

0
@ 0 1

�qt q + t

1
A : (1.10)

Example 1.28. We can carry out similar calculations for s� with j�j = 3. We invite

the reader to verify the following formulas.

~H(3) = 1s(3) + (q + q2)s(2;1) + q3s(1;1;1)
~H(2;1) = 1s(3) + (q + t)s(2;1) + qts(1;1;1)
~H(1;1;1) = 1s(3) + (t+ t2)s(2;1) + t3s(1;1;1):

(1.11)

Proceeding as in the last example, one can then compute the matrix of the linear map

r relative to the ordered basis (s(3); s(2;1); s(1;1;1)). After some calculations, the result is:

[r]3 =

0
BB@

0 0 1

q2t2 �qt(q + t) q + q2 + t+ t2 + qt

q2t2(q + t) �qt(q2 + qt+ t2) q3 + q2t+ t3 + qt+ qt2

1
CCA : (1.12)

The next theorem, due to Garsia and Haiman, gives an explicit formula for

r(en) = r(s1n) as an expansion in terms of the basis ( ~H�).

Theorem 1.29.

r(en) = r(s1n) =
X
�`n

~H�t
n(�)qn(�

0)(1� t)(1 � q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
:

Proof. See [15, 14, 18].

For example, (1.9) illustrates the case n = 2 of this formula. The formula in

this theorem has a representation theoretical interpretation, conjectured by Garsia and

Haiman and later proved by Haiman. This interpretation is described in subsection

x1.3.5 below. That subsection also gives specializations of this formula when t = 1=q or

t = 1.
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1.3.4 Representation Theory of Symmetric Groups

In this subsection, we review some basic facts from the representation theory

of the symmetric group. A good reference for this material is [27].

De�nition 1.30. Fix n � 1.

(1) Let Sn denote the symmetric group, consisting of all bijections

� : f1; 2; : : : ; ng ! f1; 2; : : : ; ng

with group operation composition. We frequently write a permutation � by listing

its values:

� = �(1) �(2) � � � �(n):

(2) Let A(Sn) = C Sn denote the group algebra of Sn. The elements of the group

algebra are functions f : Sn ! C . It is convenient to write elements f 2 A(Sn) as

formal sums

f =
X
�2Sn

f(�)�:

With this notation, the operations in the group algebra are de�ned by

f + g =
X
�2Sn

(f(�) + g(�))�;

f � g =
X
�2Sn

(f(�)� g(�))�;

cf =
X
�2Sn

(cf(�))� for c 2 C ;

fg =
X
�2Sn

X
�;�2Sn
��=�

(f(�)g(�))�:

(3) We can embed Sn in the group algebra A(Sn) by identifying � 2 Sn with the

function f� such that f�(�) = 1 and f�(�) = 0 for � 6= �. Then Sn is a basis for

A(Sn), viewed as a C -vector space.

(4) Let V be a complex vector space2, We say that V is an Sn-module if and only if it

is a module over the ring A(Sn). This is equivalent to having a representation of

2
V could be in�nite-dimensional. For simplicity, we deal only with �nite-dimensional vector spaces

V , or in�nite-dimensional graded (or doubly graded) vector spaces V where each graded piece is �nite-
dimensional.



20

Sn on V , which is a group homomorphism A : Sn ! GL(V ) from Sn to the group

of invertible linear transformations of V .

(5) Given an Sn-module V with associated representation A : Sn ! GL(V ), the

character of V (or A) is the function �V = �A : Sn ! C that sends � 2 Sn to

the trace of the linear operator A(�). Thus, �V is an element of the group algebra

A(Sn).

(6) An Sn-submodule of V is a subspace W of V that is mapped to itself under the

action of each � 2 Sn. In symbols, A(�)(w) 2 W for every w 2 W and � 2 Sn.

This is equivalent to saying that W is an A(Sn)-submodule of V .

(7) V is an irreducible Sn-module if and only if it is nonzero and has no Sn-submodules

other than V itself and the zero submodule.

The next theorem summarizes some basic facts from representation theory.

Theorem 1.31. Fix n � 1.

(1) Every Sn-module V can be decomposed into a direct sum of irreducible Sn-modules.

(2) The isomorphism classes of irreducible Sn-modules correspond in a natural way to

the partitions � ` n. Thus, we may label these irreducible modules M�.

(3) An Sn-module V is determined (up to isomorphism) by its character �V .

(4) For any Sn-module V , the character �V belongs to the center of the group algebra

A(Sn).

(5) The characters ��
def
= �M�

are a vector-space basis for the center of the group

algebra.

(6) The center of the group algebra is isomorphic to the ring �(C )n of homogeneous

symmetric functions of degree n under an isomorphism sending �� to s�. This

isomorphism is called the Frobenius map.

Proof. See [27].
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De�nition 1.32. Let V be an Sn-module. We can decompose V into a direct sum of

irreducible submodules, say

V =
M
�`n

c�M� (where c� 2 N) :

The Frobenius characteristic of V is de�ned by

FV =
X
�`n

c�s� 2 �n:

Thus, FV is a homogeneous symmetric function of degree n, and the coeÆcient of s� in

this function is the multiplicity of the irreducible module M� in V .

A similar procedure is possible for graded Sn-modules and doubly graded Sn-

modules, which we now de�ne.

De�nition 1.33. Fix n � 1.

(1) An Sn-module V is called a graded Sn-module if there is a direct sum decomposition

V =
M
h�0

Vh;

where each Vh is an Sn-submodule of V .

(2) Let V = �hVh be a graded Sn-module. Decompose each Vh into irreducible sub-

modules, say Vh = ��`nch(�)M�. The Frobenius series of V is

FV (q) =
X
h�0

 X
�`n

ch(�)s�

!
qh =

X
h�0

FVhq
h:

(3) Let V = �hVh be a graded Sn-module. The Hilbert series of V is

HV (q) =
X
h�0

dimC (Vh)q
h:

(4) An Sn-module V is called a doubly graded Sn-module if there is a direct sum

decomposition

V =
M
h�0

M
k�0

Vh;k;

where each Vh;k is an Sn-submodule of V .
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(5) Let V = �h;kVh;k be a doubly graded Sn-module. Decompose each Vh;k into

irreducible submodules, say Vh;k = ��`nch;k(�)M�. The Frobenius series of V is

FV (q; t) =
X
h�0

X
k�0

 X
�`n

ch;k(�)s�

!
qhtk =

X
h�0

X
k�0

FVh;kq
htk:

(6) Let V = �h;kVh;k be a doubly graded Sn-module. The Hilbert series of V is

HV (q; t) =
X
h�0

X
k�0

dimC (Vh;k)q
htk:

Given a doubly graded Sn-module V , there is a simple way to recover the Hilbert

series of V from the Frobenius series of V . Speci�cally, let f� be the dimension of the

irreducible Sn-module M�. A well-known theorem [27] states that f� is the number of

standard tableaux of shape �, which is n! divided by the product of the hook lengths of

�. It is immediate from the de�nitions that

HV (q; t) = [FV (q; t)]js�=f� ;

where this notation indicates that we should replace every s� by the integer f�.

Similarly, we can use the Frobenius series to obtain the generating function for

the occurrences of any particular irreducible Sn-module inside V . For instance,M1n is the

irreducible submodule that a�ords the sign character of Sn. Thus, to �nd the generating

function for the doubly graded submodule of V that carries the sign representation, we

would look at FV (q; t)js1n , the coeÆcient of s1n in the Frobenius series.

1.3.5 Diagonal Harmonics

We now de�ne the module of diagonal harmonics, which is a crucial example

of a doubly graded Sn-module. This module, studied by Garsia and Haiman in [15], is

the source of the bivariate q; t-Catalan sequence to be de�ned below.

Fix a positive integer n. Consider the polynomial ring

Rn = C [x1 ; : : : ; xn; y1; : : : ; yn]

in two sets of n independent variables. The ring Rn is an in�nite-dimensional vector

space over C with a basis given by the set of all monomials. We make Rn into an
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Sn-module as follows. Given � 2 Sn, de�ne an action of � on the variables in Rn by

setting

� � xi = x�(i) and � � yi = y�(i):

Extend this action to all monomials by multiplicativity, and then extend to all polyno-

mials by linearity. Thus, for f 2 Rn, we have

� � f(x1; : : : ; xn; y1; : : : ; yn) = f(x�(1); : : : ; x�(n); y�(1); : : : ; y�(n)):

This is called the diagonal action of Sn on Rn, since � permutes the indices of the

x-variables and the y-variables in the same way.

De�nition 1.34. De�ne the diagonal harmonics in Rn by

DHn =

(
f 2 Rn :

nX
i=1

@h

@xhi

@k

@yki
f = 0 for 1 � h+ k � n

)
:

It is easy to see that DHn is a vector subspace of Rn. Since all subscripts

appear symmetrically in the de�nition, f 2 DHn implies � � f 2 DHn for any � 2 Sn.

This shows that DHn is an Sn-submodule of Rn. Furthermore, DHn is a doubly graded

module: we can write

DHn =
M
h�0

M
k�0

Vh;k(n);

where Vh;k(n) is the submodule of DHn consisting of zero and those polynomials f that

are homogeneous of degree h in the x-variables and homogeneous of degree k in the

y-variables.

We can now form the Frobenius series FDHn(q; t), the Hilbert series HDHn(q; t),

and the generating function for the sign character FDHn(q; t)js1n , as discussed in the last

subsection. For notational convenience, we will henceforth denote these three generating

functions by Fn(q; t), Hn(q; t), and RCn(q; t), respectively.

To understand the representation theory of diagonal harmonics, we would like

to have more explicit formulas for Fn(q; t), Hn(q; t), and RCn(q; t). As pointed out

earlier, it is suÆcient to �nd a formula for the Frobenius series. Garsia and Haiman

conjectured such a formula involving the modi�ed Macdonald polynomials [15]. The

formula was proved much later by Haiman using advanced machinery from algebraic

geometry. The next theorem gives this formula.
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Theorem 1.35.

Fn(q; t) =
X
�`n

~H�t
n(�)qn(�

0)(1� t)(1� q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
:

Proof. See [18, 21].

Combining this result with Theorem 1.29, we have

Fn(q; t) = r(s1n):

Example 1.36. If we know the matrix of r relative to the Schur basis for �n, we can

�nd the Frobenius series by simply reading o� the entries in the column corresponding

to s1n . For instance, equation (1.10) implies that

F2(q; t) = 1s(2) + (q + t)s(1;1):

Equation (1.12) implies that

F3(q; t) = 1s(3) + (q + q2 + t+ t2 + qt)s(2;1) + (q3 + q2t+ t3 + qt+ qt2)s(1;1;1):

The following theorem of Garsia and Haiman can be used to compute the

specializations Fn(q; 1) and Fn(q; 1=q) of the Frobenius series.

Theorem 1.37.

(1) For a Dyck path D of order n, de�ne ai(D) to be the number of north steps taken

by the path along the line x = i. Then

r(en)jt=1 =
X
D2Dn

qarea(D)
n�1Y
i=0

eai(D);

where ej denotes an elementary symmetric function, as usual.

(2)

qn(n�1)=2r(en)
���
t=1=q

=
X
�`n

s�
s�0(1; q; q

2; : : : ; qn)

[n+ 1]q
:

Proof. See Theorem 1.2 and Corollary 2.5 in [15].
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Recall that the Hilbert series of DHn is given by Hn(q; t) = Fn(q; t)js�=f� .

Haiman's work also implies the following specializations of the Hilbert series.

Theorem 1.38.

Hn(1; 1) = (n+ 1)n�1

qn(n�1)=2Hn(q; 1=q) = [n+ 1]n�1q :

Proof. See [18, 21].

Note that the �rst statement just says that dim(DHn) = (n+1)n�1. Even this

seemingly simple fact is very diÆcult to prove.

Example 1.39. We have f2 = f(1;1) = f3 = f(1;1;1) = 1 and f(2;1) = 2. Hence, from the

previous example,

H2(q; t) = 1 + q + t;

H3(q; t) = 1 + 2q + 2q2 + q3 + 2t+ 2t2 + t3 + qt2 + q2t+ 3qt:

Note that H2(1; 1) = 3 = (2 + 1)2�1 and H3(1; 1) = 16 = 42. Moreover,

qH2(q; 1=q) = 1 + q + q2 = [3]1q ;

and it is easy to check that

q3H3(q; 1=q) = (1 + q + q2 + q3)2 = [4]2q :

Next, consider RCn(q; t) = Fn(q; t)js1n , the generating function for occurrences

of the sign character in DHn. Before Theorem 1.35 was proved, Garsia and Haiman [15]

were able to compute the coeÆcient of s1n in the conjectured character formula

X
�`n

~H�t
n(�)qn(�

0)(1� t)(1� q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
:

In light of Theorem 1.29, this coeÆcient is just r(s1n)js1n , the entry in the lower-right

corner of the matrix representing nabla relative to the Schur basis. This coeÆcient is

the original version of the q; t-Catalan number, as de�ned by Garsia and Haiman in [15].
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De�nition 1.40. For n � 1, de�ne the original q; t-Catalan sequence by

OCn(q; t) =
X
�`n

t2n(�)q2n(�
0)(1� t)(1 � q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
:

Theorem 1.41. For all n,

OCn(q; t) = r(s1n)js1n :

Proof. See [15].

Of course, it is immediate from Haiman's Theorem 1.35 that OCn(q; t) =

RCn(q; t). However, since this equality is very diÆcult to prove, it is useful to maintain

separate notation for the two expressions.

Garsia and Haiman also proved the following specializations of OCn(q; t), which

explain why they called it the q; t-Catalan sequence.

Theorem 1.42. For all n,

OCn(1; 1) =
1

n+ 1

�
2n

n

�
= Cn

qn(n�1)=2OCn(q; 1=q) =
1

[n+ 1]q

�
2n

n

�
q

= Cmaj
n (q)

OCn(1; q) = OCn(q; 1) =
X
D2Dn

qarea(D) = Carea
n (q)

Proof. See [15].

This theorem shows that the two classical q-analogues of the Catalan numbers

from x1.2 can be derived from OCn(q; t) by appropriate substitutions.

Example 1.43. We calculated the matrix of r on the space �3 in Example 1.28. Ex-

amining the lower-right entry of this matrix, we �nd that

r(s(1;1;1))js(1;1;1) = q3 + q2t+ t3 + qt+ qt2:
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On the other hand, computing OC3(q; t) from the de�nition, we obtain a sum of three

rational functions that correspond to the three partitions � of 3:

OC3(q; t) =
t0q6(1� t)(1� q)(1� q)(1� q2)(1 + q + q2)

(q2 � t)(1 � q3)(q � t)(1� q2)(1� t)(1� q)

+
t2q2(1� t)(1� q)(1� q)(1� t)(1 + q + t)

(q � t2)(t� q2)(1 � t)(1� q)(1� t)(1� q)

+
t6q0(1� t)(1� q)(1 � t)(1� t2)(1 + t+ t2)

(t2 � q)(1� t3)(t� q)(1� t2)(1� t)(1� q)

As promised by the theorem, this messy sum does simplify to q3 + q2t + t3 + qt + qt2.

Moreover,

OC3(q; 1) = OC3(1; q) = 1 + 2q + q2 + q3 = Carea
3 (q);

q(
3
2)OC3(q; 1=q) = 1 + q2 + q3 + q4 + q6 = Cmaj

3 (q):

In light of this last result, it is natural to ask if there is a purely combinatorial

interpretation for the bivariate sequence OCn(q; t). In other words, we would like to

have a second statistic on Dyck paths, say tstat, such that

OCn(q; t) =
X
D2Dn

qarea(D)ttstat(D):

Two such statistics were separately conjectured by Haglund and Haiman [16, 19]. Later,

Garsia and Haglund proved that these conjectures really do give OCn(q; t) [14]. Their

proof is discussed briey in x1.4.5 below.

Similarly, we would like to have combinatorial interpretations for the Hilbert

series Hn(q; t) and the Frobenius series Fn(q; t) by introducing suitable pairs of statistics

on some collection of objects. Haglund, Haiman, and the present author conjectured

such statistics for the Hilbert series (see [17] and x1.5 below). At this time, it is an open

problem to prove that these conjectured statistics are correct. It is also an open problem

to give a combinatorial interpretation (even a conjectural one) for the full Frobenius

series.

1.4 Combinatorial q; t-Catalan Sequences

In this section, we describe two di�erent combinatorial versions of the bivariate

Catalan sequence. These sequences are based on two statistics proposed by Haglund
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and Haiman, respectively. The idea is to take the sequence Carea
n (q) and add a new

parameter to keep track of the new statistic. The new sequences have the form

X
D2Dn

qarea(D)ttstat(D);

where tstat is Haglund's statistic or Haiman's statistic.

After describing these two statistics, we give a bijection demonstrating the

equivalence of the two sequences. Then we derive a fundamental recursion (�rst proved

by Haglund) characterizing the sequence. We briey indicate how Garsia and Haglund

used this recursion to prove that the combinatorial sequence was equal to the original

sequence OCn(q; t). Finally, we use the recursion to prove specialized formulas where t

is replaced by 1=q.

1.4.1 Haglund's Combinatorial Catalan Sequence

This subsection describes the statistic proposed by Haglund in [16]. Let E be

a Dyck path of order n. We �rst de�ne a bounce path derived from E as follows. The

bounce path begins at (n; n) and moves to (0; 0) via an alternating sequence of horizontal

and vertical moves. Starting at (n; n), the bounce path proceeds west until it reaches the

north step of the Dyck path going from height n�1 to height n. From there, the bounce

path goes south until it reaches the main diagonal line y = x. This process continues

recursively. When the bounce path has reached the point (i; i) on the main diagonal

(i > 0), the bounce path goes west until it is blocked by the north step of the Dyck path

going from height i� 1 to height i. From there, the bounce path goes south until it hits

the main diagonal. The bounce path terminates when it reaches (0; 0). See Figure 1.4

for an example.

Suppose the bounce path derived from E hits the main diagonal at the points

(n; n); (i1; i1); (i2; i2); : : : ; (is; is); (0; 0):

The bounce statistic for E is de�ned by

bounce(E) =

sX
k=1

ik:
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(14,14)

(10,10)

(5,5)

(1,1)

bounce(E) = 16         area(E) = 41
(0,0)

Figure 1.4: A Dyck path with its derived bounce path.

We also de�ne the bounce count by

bcount(E) = s;

which is one less than the number of bounces. For example, in Figure 1.4, the bounce

path for E hits the main diagonal at (14; 14), (10; 10), (5; 5), (1; 1), and (0; 0). Thus,

bounce(E) = 10 + 5 + 1 = 16 and bcount(E) = 3 for this path.

De�nition 1.44. We de�ne Haglund's combinatorial q; t-Catalan sequence by

Cn(q; t) =
X
E2Dn

qarea(E)tbounce(E) for n � 1:

Example 1.45. Let n = 3, and consider the �ve paths in Figure 1.2. The statistics

area, bounce, and maj for these �ve paths are given in Table 1.2. From this table, we

read o�

C3(q; t) = t3 + qt2 + qt+ q2t+ q3 = OC3(q; t):

Observe that C3(q; t) = C3(t; q), and we have the specializations

C3(q; 1) = C3(1; q) = 1 + 2q + q2 + q3 = Carea
3 (q)
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Table 1.2: Statistics for Dyck paths of order 3.

encoding of Dyck path D area(D) bounce(D) maj(D)

010101 0 3 6

001101 1 2 4

010011 1 1 2

001011 2 1 3

000111 3 0 0

and

q3C3(q; 1=q) = 1 + q2 + q3 + q4 + q6 = Cmaj
3 (q):

1.4.2 Haiman's Combinatorial Catalan Sequence

This subsection describes the statistic proposed by Haiman in [19]. Let D be a

Dyck path of order n. We begin by giving an alternate method of describing the Dyck

path D. For 0 � i < n, de�ne i(D) to be the number of complete cells strictly between

the path and the main diagonal in the ith row of the picture, where the bottom row is

row zero. De�ne (D) to be the vector (0(D); : : : ; n�1(D)). For example, for the path

D shown in Figure 1.5, we have

(D) = (0; 1; 2; 2; 3; 0; 0; 1; 1; 2; 1; 2; 0; 1):

Since the total number of area cells is the sum of the area cells in each row, we

have area(D) =
Pn�1

i=0 i(D).

De�nition 1.46. We de�ne Haiman's statistic dinv by the formula

dinv(D) =
X
i<j

[�(i(D) = j(D)) + �(i(D) = j(D) + 1)] : (1.13)

For example, we have dinv(D) = 41 for the path in Figure 1.5. Some of the 41

pairs of indices (i; j) that contribute to this count are:
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i
γi

9
8
7
6
5

0
1
2
2
3
0
0
1
1
2
1
2
0
1

area(D) = 16         dinv(D) = 41

4
3
2
1
0

10
11
12
13

Figure 1.5: A Dyck path and the associated -vector.

� i = 0 and j = 5 (since 0 = 0 = 5)

� i = 3 and j = 9 (since 3 = 2 = 9)

� i = 3 and j = 7 (since 3 = 2 = 1 + 1 = 7 + 1)

� i = 4 and j = 11 (since 4 = 3 = 2 + 1 = 11 + 1)

Note that 7 = 1 = 0 + 1 = 6 + 1. However, the pair (i = 7; j = 6) does not contribute

to the statistic because i 6< j.

De�nition 1.47. We de�ne Haiman's combinatorial q; t-Catalan sequence to be

HCn(q; t) =
X
D2Dn

qdinv(D)tarea(D) for n � 1:

Note that we use t, not q, to keep track of area in this sequence.

For later reference, we give the following characterization of the vectors (D).
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Theorem 1.48. Let  = (0; : : : ; n�1) be a vector of n integers. Then  has the form

(D) for some Dyck path D of order n if and only if the following three properties hold:

(P1) 0 = 0.

(P2) i � 0 for 0 � i � n� 1.

(P3) i+1 � i + 1 for 0 � i < n� 1.

Proof. Assume that  = (D) for some Dyck path D. In the lowest row (which is row

zero), there is no room between the lines x = 0 and y = x for any area cells. Hence,

0(D) = 0. The number of area cells in the ith row must be nonnegative, so i(D) � 0

for all i. Finally, given that there are i(D) area cells in row i, there can be at most

i(D) + 1 area cells in row i+1. For, to get more than i(D) + 1 area cells in row i+1,

the path D would need to take one or more steps west, which is not allowed. (Compare

to Figure 1.6 below.)

Conversely, assume  satis�es the three stated conditions. We construct D such

that  = (D) as follows. Draw a picture by shading in i complete lattice cells in row

i, working from right to left from the diagonal line y = x. If i = 0, shade in the vertical

segment in row i closest to this diagonal. The westward and northward boundary of the

collection of shaded cells and segments forms a path D. The path starts at (0; 0) with a

north step, since 0 = 0. The path ends at (n; n), there are n rows in the picture. The

path never goes right of the diagonal y = x, since i � 0 for all i. Finally, the path takes

only north and east steps (no west steps), since i+1 � i + 1 and 0 = 0. Hence, the

path D is a Dyck path of order n. It is clear from the construction that (D) = .

For example, Figure 1.6 shows the paths constructed from the vectors  =

(0; 1; 2; 2; 3; 1; 0; 1) and Æ = (0; 3; 1; 2; 1; 1; 0; 2). The path for  is a Dyck path, since 

satis�es the three conditions of the proposition. The path for Æ is not a Dyck path |

there are west steps at each row where condition (P3) fails for Æ.
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   = ( 0, 3, 1, 2, 1, 1, 0, 2 )δ   = ( 0, 1, 2, 2, 3, 1, 0, 1 )γ

 y = x 

( 0, 0 ) ( 0, 0 )

 y = x 

Figure 1.6: Paths constructed from two integer vectors.

1.4.3 Comparing the Two Combinatorial Sequences

In this subsection, we give a proof that Cn(q; t) = HCn(q; t). The proof con-

structs a bijection � : Dn ! Dn with the property that

area(�(D)) = dinv(D) and bounce(�(D)) = area(D):

It follows that X
D2Dn

qarea(D)tbounce(D) =
X
D2Dn

qdinv(D)tarea(D);

proving the equivalence of Haglund's sequence and Haiman's sequence.

The bijection � (or its inverse ��1) appears to have been discovered indepen-

dently by many authors in various forms, though not every author was aware of the

connection to the q; t-Catalan sequence. In [2], Andrews, Krattenthaler, Orsina, and

Papi give a bijection that is essentially equivalent to �, although the statistics dinv and

bounce are not mentioned. They show that the combinatorial generating function

X
D2Dn

qbcount(D)tarea(D)

is in fact equal to the generating function for ad-nilpotent ideals of a Borel subalgebra of

sl(n+ 1; C ), enumerated by class of nilpotence and dimension. (This leads to the ques-

tion of whether Haglund's statistic bounce(D) has an interpretation in the Lie algebra
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setting.) The bijection � also appears implicitly in the work of Iarrobino and Yameogo

[22]. See also [16, 17]. Our discussion here is based on the description of � in [17]. More

general bijections containing this one as a special case will be given in later chapters.

Description of the map �.

Fix a path D 2 Dn. We will construct a new path E = �(D) 2 Dn such that area(D) =

bounce(E) and dinv(D) = area(E).

Set  = (D) = (0(D); : : : ; n�1(D)). From the last subsection, we know that

i � 0 for all i, 0 = 0, and i+1 � i + 1 for all i < n� 1. Set s = max0�i�n�1 i. For

0 � j � s, let aj be the number of occurrences of j in . Since the entries of  begin at

0 and can increase by at most one, there can be no omitted values between 0 and s; in

other words, aj > 0 for all j � s. Moreover, a0+ � � �+ as = n, since there are n symbols

in .

To construct E, we �rst draw a bounce path B whose successive horizontal

moves (starting from (n; n)) have lengths a0; : : : ; as. See Figure 1.7 for an example of B.

This bounce path, together with the main diagonal line y = x, creates a sequence of s+1

triangles which we shall call T0; : : : ; Ts. For 1 � i � s, there is an empty rectangular

region Ri located north of triangle Ti and west of triangle Ti�1. Note that rectangle Ri

has width ai and height ai�1.

The path E will have B as its derived bounce path. We now describe how to

construct the portion of the path E located in rectangle Ri. Fix i between 1 and s, and

let wi be the word obtained from  by deleting all symbols other than i� 1 and i. Then

wi consists of ai�1 occurrences of i� 1 and ai occurrences of i. By the conditions on ,

the �rst symbol in wi must be i� 1. This is clear if i = 1, since 0 = 0. For i > 1, recall

that the entries of  increase by at most one when read left to right. Thus, since 0 < i,

the �rst occurrence of the symbol i in  must be immediately preceded by the symbol

i� 1.

Read the symbols in wi from left to right. Starting at the northwest tip of

triangle Ti�1 and proceeding southwest, draw a horizontal step when the symbol i is

read; draw a vertical step when the symbol i� 1 is read. The �rst symbol in wi is i� 1,

so this partial path must begin with a vertical step.

After �lling all the rectangular regions in this way, we obtain the Dyck path
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R3

T2

R2

R1

T1

T0

T3

Figure 1.7: A bounce path, with associated triangles and rectangles.

E. Observe that, because the paths within each Ri have a vertical step at the northeast

corner, B will be the bounce path derived from E. Note that B touches the main

diagonal at the points

(n; n); (n� a0; n� a0); (n� a0 � a1; n� a0 � a1); : : : ; (0; 0);

by de�nition of the triangles Ti. Therefore,

bounce(E) = (n� a0) + (n� a0 � a1) + � � �+ (n� a0 � a1 � � � � � as)

= n(s+ 1)� (s+ 1)a0 � sa1 � � � � � (s+ 1� j)aj � � � � � 1as

= (s+ 1)(n� a0 � � � � � as) +
sX

j=0

jaj

=

sX
j=0

jaj =

n�1X
i=0

i (since  has aj copies of j)

= area(D):

Recall from (1.13) that

dinv(D) =
X
i<j

[�(i(D) = j(D)) + �(i(D) = j(D) + 1)] :
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Consider the contribution to dinv(D) arising from all nonzero summands of the form

�(i(D) = j(D)):

For each k with 0 � k � s, there are ak symbols in  that are equal to k. Hence, there

are
�ak
2

�
pairs of indices i < j with i = k = j. Thus, we get a total contribution ofPs

k=0

�
ak
2

�
.

Next, consider the contribution to dinv(D) arising from the nonzero summands

of the form

�(i(D) = j(D) + 1):

For each k with 1 � k � s, we can �nd all the pairs i < j such that j(D) = k � 1

and i(D) = j(D) + 1 = k by looking at the subword wk. This subword contains all

occurrences of k� 1 and k, in the same order that they occurred in . A pair i < j with

i(D) = k and j(D) = k� 1 corresponds exactly to an inversion between the same two

symbols in the subword wk. (See equation (1.1).) All the inversions of wk arise in this

way. Hence, adding over all k, the total contribution is
Ps

k=1 inv(wk).

To summarize this discussion, we have found that

dinv(D) =
sX

k=0

�
ak
2

�
+

sX
k=1

inv(wk):

Now
�ak
2

�
= ak(ak�1)

2 is the number of complete lattice cells in the triangle Tk. It is easy

to see that inv(wk) is the number of lattice cells beneath the path E in the rectangle

Rk; the proof is just like that of Lemma 1.7. We conclude that dinv(D) = area(E).

Example 1.49. Let D be the path shown in Figure 1.5. Recall that area(D) = 16 and

dinv(D) = 41. For this path, n = 14 and

 = (0; 1; 2; 2; 3; 0; 0; 1; 1; 2; 1; 2; 0; 1):

In this vector, there are four zeroes, �ve ones, four twos, and one three. We therefore

set s = 3, a0 = 4, a1 = 5, a2 = 4, and a3 = 1. Next, we draw a bounce path B with

successive bounce lengths 4, 5, 4, and 1. This is exactly the bounce path shown in Figure

1.7. Letting i = 1; 2; 3, we obtain the following subwords of :

w1 = 010011101; w2 = 122112121; w3 = 22322:
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Accordingly, we �ll in rectangle R1, from northeast to southwest, with steps

V HV V HHHVH

(where V means vertical step and H means horizontal step). We �ll rectangle R2 with

the subpath V HHV V HV HV . We �ll rectangle R3 with the subpath V V HV V . The

resulting path E is the path shown in Figure 1.4. This path is redrawn in Figure 1.8

with the area cells shaded. We have bounce(E) = 16 = area(D) and area(E) = 41 =

dinv(D), as required.

Y

W

V

U

Z

X

T

(14,14)

(10,10)

(5,5)

(1,1)

bounce(E) = 16         area(E) = 41
(0,0)

Figure 1.8: The image of D under the bijection �.

Note that inv(w1) = 6; accordingly, there are 6 area cells in rectangle R1.

These six cells correspond to the following six pairs i < j such that j(D) = 0 and

i(D) = 1 = j(D) + 1:

(i; j) = (1; 5); (1; 6); (1; 12); (7; 12); (8; 12); (10; 12):

Similarly, note that triangle T2 has six area cells, where 6 =
�4
2

�
. These six cells corre-

spond to the following six pairs i < j such that i(D) = 2 = j(D):

(i; j) = (2; 3); (2; 9); (2; 11); (3; 9); (3; 11); (9; 11):
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Before describing the inverse of �, we record one further property of the bijection

that will be used later. First, we make the following de�nitions. For any word v =

v1v2 � � � vn, an ascent of v is an index i < n such that vi < vi+1. For any lattice path E,

an inner corner of E is a point (x; y) such that the horizontal segment from (x � 1; y)

to (x; y) and the vertical segment from (x; y) to (x; y + 1) are both steps of E.

Given a Dyck path D, let  = (D) and E = �(D). The new property of �

is that the ascents of  correspond bijectively to the inner corners of E. To prove this,

�rst note that the ascents of  correspond bijectively to the ascents of the subwords wi.

This follows from the condition j � j+1 + 1, which says that any ascent in  must

involve the adjacent symbols i � 1 followed by i. Such an ascent will also be an ascent

of the subword wi, and conversely. When drawing E according to the de�nition of �, an

ascent in wi translates into a vertical step followed by a horizontal step in rectangle Ri

(following the path from northeast to southwest). This is exactly the same as an inner

corner of E.

For example, in Figure 1.8, the inner corners of E are marked by capital letters.

The inner corner marked T corresponds to the single ascent at position 2 in w3 = 22322,

which in turn corresponds to the ascent at position 3 in  between 3 = 2 and 4 = 3.

The inner corner marked Y corresponds to the ascent at position 4 in w1 = 010011101,

which in turn corresponds to the ascent at position 6 in  between 6 = 0 and 7 = 1.

Description of ��1. To show that � is a bijection, we describe the inverse map. Given

a Dyck path E, we need to reconstruct the path D = ��1(E) such that �(D) = E. Here

is an algorithm to �nd D:

(1) Draw the bounce path B derived from E. Let a0; : : : ; as be the lengths of the

successive horizontal moves in this bounce path.

(2) Let R1; : : : ; Rs denote the rectangular regions above the bounce path, as described

earlier. For 1 � k � s, traverse the subpath of E going from the northeast corner

of Rk to the southwest corner of Rk. Construct the word wk by writing the symbol

k for each horizontal step and writing the symbol k � 1 for each vertical step.

By de�nition of the bounce path, the subpath in rectangle Rk must start with a

vertical step. Hence, every constructed word wk starts with k � 1.
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(3) Build up an integer vector  satisfying properties (P1)|(P3) from Theorem 1.48

as follows. Initially,  is a string of a0 zeroes. For k = 1; 2; : : : ; s, insert ak copies

of k into the current string  according to wk. More explicitly, read wk from left

to right. When a k � 1 is encountered in wk, scan  from left to right for the

next occurrence of k � 1. When a k is encountered in wk, place a k in the gap

immediately to the right of the symbol currently being scanned in . Continue

scanning wk and  until all copies of k have been inserted. It is clear that this is

the only way to insert the k's into the current  vector such that (P3) holds and

such that the subword of  consisting of the k's and (k � 1)'s is precisely wk.

(4) Use  to draw a Dyck path D with (D) = , as discussed earlier. We have

D = ��1(E).

Example 1.50. Consider the path E shown in Figure 1.8. To compute ��1(E), we �rst

draw the bounce path for E (also shown in the �gure). We have s = 3, a0 = 4, a1 = 5,

a2 = 4, and a3 = 1. By decoding the subpaths in each rectangle Ri, we recover the

words

w1 = 010011101; w2 = 122112121; w3 = 22322

from the previous example. Let us use these words to build up  in stages.

� Initially,  = 0000 since a0 = 4.

� Using word w1 to insert �ve ones, we get  = 010011101.

� Using word w2 to insert 2's in gaps following the 1's, we get  = 0122001121201.

� Using word w3 to insert 3's in gaps following the 2's, we get  = 01223001121201.

Finally, we use the completed  vector to recover the Dyck path D from Figure 1.5.

1.4.4 Lattice Paths and q-Binomial CoeÆcients

In the next subsection, we are going to prove a recursion due to Haglund [16]

characterizing the combinatorial sequence Cn(q; t). The proof of the recursion requires a

well-known combinatorial interpretation of the q-binomial coeÆcient
�
C+D
C;D

�
q
, which we

discuss in this subsection.
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Let Pa;b denote the set of lattice paths that �t inside a rectangle of height a and

width b. In the proof of the next theorem, we assume the paths go from the northwest

corner to the southeast corner of the rectangle. Of course, analogous results will hold for

the set of paths going from the northeast corner to the southwest corner. For P 2 Pa;b,

let area(P ) be the number of cells in the rectangle below the path P . Let area0(P )

be the number of cells in the rectangle above the path P . We have the following basic

properties of the q-binomial coeÆcients.

Theorem 1.51. Let C;D be nonnegative integers.

(1)
�C+D
C;D

�
q
=
�C+D
D;C

�
q
.

(2)
�
C
C;0

�
q
= 1.

(3) We have the recurrence�
C +D + 1

C;D + 1

�
q

=

�
C +D

C;D

�
q

+ qD+1

�
C +D

C � 1;D + 1

�
q

:

(4) We have the recurrence�
C +D + 1

C;D + 1

�
q

= qC
�
C +D

C;D

�
q

+

�
C +D

C � 1;D + 1

�
q

:

(5) The q-binomial coeÆcients are uniquely determined by conditions (1), (2), (3).

More speci�cally, if g is a function of two nonnegative integers satisfying

g(C;D) = g(D;C)

g(C; 0) = 1

g(C;D + 1) = g(C;D) + qD+1g(C � 1;D + 1);

then g(C;D) =
�C+D
C;D

�
q
for all C, D.

(6) We have �
C +D

C;D

�
q

=
X

P2PC;D

qarea(P ) =
X

P2PC;D

qarea
0(P ):
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Proof. Recall from (1.3) that�
a+ b

a; b

�
q

=

Qa+b
i=1 (1� qi)Qa

i=1(1� qi)
Qb

i=1(1� qi)
: (1.14)

Items (1) and (2) are immediate from this de�nition. Similarly, (3) and (4) follow from

an easy manipulation of the de�nition. For example, (3) is proved by calculating�
C +D

C;D

�
q

+ qD+1

�
C +D

C � 1;D + 1

�
q

=

QC+D
i=1 (1� qi)QC

i=1(1� qi)
QD

i=1(1� qi)

+qD+1

QC+D
i=1 (1� qi)QC�1

i=1 (1� qi)
QD+1

i=1 (1� qi)

=
[1� qD+1 + qD+1(1� qC)]

QC+D
i=1 (1� qi)QC

i=1(1� qi)
QD+1

i=1 (1� qi)

=

QC+D+1
i=1 (1� qi)QC

i=1(1� qi)
QD+1

i=1 (1� qi)

=

�
C +D + 1

C;D + 1

�
q

:

The proof of (4) is similar; it uses the fact that

qC(1� qD+1) + (1� qC) = 1� qC+D+1:

Statement (5) follows by induction on C+D, since g(C;D) and the q-binomial coeÆcient�C+D
C;D

�
q
satisfy the same recurrence (3) and initial conditions (1) and (2).

To prove (6), we invoke (5) with g(C;D) =
P

P2PC;D
qarea

0
(P ): (The proof for

area is similar.) The relation g(C;D) = g(D;C) follows since we can rotate a path inside

a C �D rectangle to obtain a path inside a D � C rectangle with the same number of

cells above it. The relation g(C; 0) = g(0; C) = 1 is immediate from the de�nition. We

now give combinatorial arguments to prove that recurrences (3) and (4) hold for g.

Recall that the power of q in the generating function g(C;D+1) records the area

above a path that goes from northwest to southeast in a rectangle of height C and width

D + 1. See Figure 1.9. Let us classify such paths by their initial step at the northwest

corner. If this step is horizontal, the remainder of the path lies in a rectangle of height

C and width D, giving the term g(C;D). If this step is vertical, the remainder of the

path lies in a rectangle of height C�1 and width D+1, giving the term g(C�1;D+1).
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C

D + 1

C
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Figure 1.9: Picture used to prove Theorem 1.51(6).

However, we must also multiply by qD+1 to account for the D+1 area cells in the top row

of the original rectangle. This proves that g(C;D+1) = g(C;D) + qD+1g(C � 1;D+1).

To get the other recurrence, let us classify the paths by their �nal step at

the southeast corner. If this step is horizontal, the remainder of the path lies in a

rectangle of height C and width D, giving the term g(C;D). However, we must also

multiply by qC to account for the C area cells in the rightmost column of the original

rectangle. If the �nal step is vertical, the remainder of the path lies in a rectangle

of height C � 1 and width D + 1, giving the term g(C � 1;D + 1). This proves that

g(C;D + 1) = qCg(C;D) + g(C � 1;D + 1).

1.4.5 Haglund's Recursion

We now state and prove Haglund's recursion, which characterizes the combi-

natorial q; t-Catalan sequence. Fix a positive integer n. Let Fn;s denote the set of Dyck
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paths of height n that terminate in exactly s horizontal steps. For such a path, the

length of the �rst horizontal bounce move will be s. See Figure 1.11 below. De�ne

Fn;s(q; t) =
X

D2Fn;s

qarea(D)tbounce(D):

These generating functions are related to Cn(q; t) by the identities

Cn(q; t) =
nX
s=1

Fn;s(q; t)

and

tnCn(q; t) = Fn+1;1(q; t):

The �rst identity follows by classifying Dyck paths of height n by the number s of east

steps in the topmost row. To prove the second identity, augment the diagram of a Dyck

path of height n by adding a new top row with no area cells. The result is a Dyck path

of height n + 1 terminating in one east step preceded by one north step. All elements

of Fn+1;1 arise uniquely in this way. The bounce path derived from this augmented

Dyck path starts with a bounce of size 1 contributing n to the bounce statistic, and

afterwards bounces in the same way that the original bounce path did. See Figure 1.10,

and compare to Figure 1.4.

Theorem 1.52. The generating functions Fn;s satisfy the recursion

Fn;s(q; t) = tn�sqs(s�1)=2
n�sX
r=1

�
r + s� 1

r; s� 1

�
q

Fn�s;r(q; t) for 1 � s < n (1.15)

with initial condition Fn;n(q; t) = qn(n�1)=2.

Remark 1.53. Note that the initial condition and recursion uniquely determine the

polynomials Fn;s(q; t) and allow these polynomials to be computed rapidly.

Proof. Consider the initial condition �rst. If D 2 Fn;n, then D is a Dyck path of height n

terminating in exactly n east steps in the top row. This can only happen if D is the path

consisting of n north steps followed by n east steps. Then area(D) = n(n� 1)=2, since

(D) = (0; 1; : : : ; n� 1); and bounce(D) = 0, since the only bounce hits the diagonal at

(0; 0). So, Fn;n(q; t) = qn(n�1)=2t0 as claimed.
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(10,10)

(5,5)

(1,1)

(0,0)

(14,14)

(15,15)

n = 14, n+1 = 15, bounce(D’) = 16+14, area(D’) = 41

Figure 1.10: Adding an empty top row to a Dyck path.

The recursion for Fn;s follows by \removing the �rst bounce" from a Dyck path

to obtain a smaller Dyck path of height n � s. More precisely, let D 2 Fn;s. Then D

ends in s east steps, so the derived bounce path starts with a bounce of size s ending at

(n� s; n� s). See Figure 1.11. If we ignore the top s rows of the �gure, we see a smaller

Dyck path D0 of height n � s. Observe that the derived bounce path of D0 is just the

bounce path of D with the �rst bounce removed.

We can uniquely construct a path D 2 Fn;s as follows. Choose a number

r 2 f1; 2; : : : ; n � sg. Given r, build D by making a sequence of choices. First, choose

a path D0 2 Fn�s;r. The generating function for this choice is Fn�s;r(q; t). Second,

draw a vertical and horizontal segment to create a triangle with vertices (n � s; n � s)

and (n � s; n) and (n; n). This triangle adds s(s � 1)=2 area cells to the path being

constructed, giving a factor qs(s�1)=2. Also, the path D will have a new bounce going

from (n; n) to (n � s; n � s), so we get a contribution of tn�s as well. Third, draw a

subpath ending with a north step in the rectangular region above the top row of D0 and
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(0, 0)

(n, n)

(n−s, n−s)

s

n−s

r

s

Figure 1.11: Proving the recursion by removing the �rst bounce.

left of the triangle just drawn. Equivalently, draw an arbitrary path in the rectangle of

width r and height s � 1 above the top row of D0, and append one north step at the

end. This subpath does not change the bounce statistic (since it ends in a north step),

but the area increases by the number of cells beneath the subpath in its rectangle. The

generating function for this choice is thus
�r+s�1
r;s�1

�
q
. The recursion follows immediately

from the sum and product rules for generating functionons ([3], Ch. 10).

In the next two subsections, we give two applications of this recursion.

1.4.6 Comparison of Cn(q; t) and OCn(q; t)

In [14], Garsia and Haglund used the recursion (1.15) to prove that Cn(q; t) =

OCn(q; t) for all n. More speci�cally, they de�ned

Qn;s(q; t) = tn�sqs(s�1)=2r(en�s[X(1 + q + � � �+ qs�1)])
���
s1n�s

:

Here, X is a formal in�nite alphabet X = x1 + x2 + � � � , and the square brackets

denote plethystic substitution; in particular en[X] = en. To write this formula without
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plethystic notation, invoke Theorem 1.20 to obtain a unique K-algebra homomorphism

� of �(K) extending the function �0 such that

�0(pk) = (1 + qk + q2k + � � �+ q(s�1)k)pk:

Then

Qn;s(q; t) = tn�sqs(s�1)=2r(�(en�s))
���
s1n�s

:

Garsia and Haglund showed that

Qn;s(q; t) = tn�sqs(s�1)=2
n�sX
r=1

�
r + s� 1

r; s� 1

�
q

Qn�s;r(q; t) and Qn;n(q; t) = qn(n�1)=2:

In other words, Qn;s satis�es the same recursion and initial condition that Fn;s does. By

uniqueness, Qn;s(q; t) = Fn;s(q; t) for all n and s. In particular,

Cn(q; t) = Fn+1;1(q; t)=t
n = Qn+1;1(q; t)=t

n = r(en)js1n = OCn(q; t):

1.4.7 The Specializations Fn;s(q; 1=q) and Cn(q; 1=q)

In [16], Haglund proved the formula

qn(n�1)=2Fn;s(q; 1=q) =
[s]q
[n]q

�
2n� s� 1

n� s; n� 1

�
q

q(s�1)n:

Using this formula, Haglund computed q(
n
2)Cn(q; 1=q) and showed that this specialization

is equal to Cmaj
n (q).

In this subsection, we will prove the formula

Fn;s(q; 1=q) = q�(n
2+n)=2+ns

 �
2n� s� 1

n� s; n� 1

�
q

� qs
�
2n� s� 1

n� s� 1; n

�
q

!
: (1.16)

Routine algebraic manipulations con�rm that this formula is equivalent to Haglund's

formula. Our proof is similar to Haglund's, but is more combinatorial. The basic idea

of both proofs is to show that the given formulas satisfy the same initial condition and

recursion that Fn;s(q; 1=q) does. Haglund did this in [16] using q-series identities. By

rewriting Haglund's formula as a di�erence of q-binomial coeÆcients, as done in (1.16),

we will be able to show the same thing using two simple combinatorial lemmas.
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Lemma 1.54. For all nonnegative integers C, D, and E,

D�EX
i=0

�
C + i

C; i

�
q

�
D � i

E;D � i�E

�
q

q(E+1)i =

�
C +D + 1

D �E;C + 1 +E

�
q

: (1.17)

Proof. Recall from Theorem 1.51(6) that�
a+ b

a; b

�
q

=
X

P2Pa;b

qarea(P ) =
X

P2Pa;b

qarea
0(P );

where Pa;b is the set of lattice paths contained in a rectangle of height a and width b.

Using this fact, we can prove (1.17) by drawing a picture. See Figure 1.12. (In this

�gure, the paths go from the northwest corner to the southeast corner of the rectangle.

As usual, we could also consider paths going from the northeast corner to the southwest

corner.)

D − E

i

i
D − E − i

E

C + E + 1

E + 1

C

s

region 1

region 2region 3

Figure 1.12: Picture used to prove (1.17).

We classify paths P contained in a rectangle of height C + E + 1 and width

D � E based on what happens in row (C + 1) from the top. This row contains exactly



48

one vertical step s of P ; let i denote the distance of this vertical step from the left edge.

Evidently, 0 � i � D�E. Given i, we can uniquely construct such a path P as follows.

First, choose a subpath P1 in the rectangle R1 northwest of s, which has height C and

width i. Second, choose a subpath P2 in the rectangle R2 southeast of s, which has

height E and width D�E � i. Then P is the concatenation of P1 and the vertical step

s and P2.

Assume that the power of q records the area below the path P . This area is

the sum of the area below P1 inside R1, the area below P2 inside R2, and the full area of

the southwest rectangle of height E + 1 and width i. These three pieces of the area are

accounted for by the factors
�C+i
C;i

�
q
,
� D�i
E;D�i�E

�
q
, and q(E+1)i, respectively. Adding over

all choices of i, we immediately obtain (1.17).

Lemma 1.55. For nonnegative integers C and D,

q�C

 �
C +D

C;D

�
q

�

�
C +D

C � 1;D + 1

�
q

!
=

�
C +D

C;D

�
q

� qD�C+1

�
C +D

C � 1;D + 1

�
q

: (1.18)

Proof. This identity is equivalent to the relation�
C +D

C;D

�
q

+ qD+1

�
C +D

C � 1;D + 1

�
q

= qC
�
C +D

C;D

�
q

+

�
C +D

C � 1;D + 1

�
q

; (1.19)

which follows immediately from Theorem 1.51, since both sides are equal to
�C+D+1
C;D+1

�
q
.

We are now ready to prove our formula for the specialization of Fn;s at t = 1=q.

Theorem 1.56. For all n � 1 and 1 � s � n,

Fn;s(q; 1=q) = q�(n
2+n)=2+ns

 �
2n� s� 1

n� s; n� 1

�
q

� qs
�
2n� s� 1

n� s� 1; n

�
q

!
: (1.20)

Proof. Setting t = 1=q in Theorem 1.52, we see that Fn;s(q; 1=q) is a solution to the

recurrence

Fn;s(q; 1=q) = qs(s�1)=2+s�n
n�sX
r=1

�
r + s� 1

r; s� 1

�
q

Fn�s;r(q; 1=q) for 1 � s < n

with initial condition

Fn;n(q; 1=q) = qn(n�1)=2:
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This recurrence and initial condition uniquely determine the quantities Fn;s(q; 1=q) for

n � 1 and 1 � s � n. Hence, it suÆces to show that the claimed formulas for Fn;s(q; 1=q)

satisfy the same recurrence and initial condition.

If s = n, the right side of (1.20) is

q�(n
2+n)=2+n2 � (1� 0) = q(n

2�n)=2 = qn(n�1)=2;

so the initial condition is correct. Assume that 1 � s < n now. We must con�rm that

the expression

q�(n
2+n)=2+ns

 �
2n� s� 1

n� s; n� 1

�
q

� qs
�
2n� s� 1

n� s� 1; n

�
q

!

is equal to the expression

qs(s�1)=2+s�n
n�sX
r=1

�
r + s� 1

r; s� 1

�
q

q�((n�s)
2+(n�s))=2+(n�s)r�

 �
2n� 2s� r � 1

n� s� r; n� s� 1

�
q

� qr
�

2n� 2s� r � 1

n� s� r � 1; n� s

�
q

! (1.21)

obtained by replacing Fn�s;r(q; 1=q) by the formula given in (1.20).

The second expression decomposes naturally into two pieces, namely

qs(s�1)=2+s�n
n�sX
r=1

�
r + s� 1

r; s� 1

�
q

q�((n�s)
2+(n�s))=2+(n�s)r

�
2n� 2s� r � 1

n� s� r; n� s� 1

�
q

and

�qs(s�1)=2+s�n
n�sX
r=1

�
r + s� 1

r; s� 1

�
q

q�((n�s)
2+(n�s))=2+(n�s)r+r

�
2n� 2s� r � 1

n� s� r � 1; n� s

�
q

:

We will use the Lemma 1.54 to evaluate each piece separately. The �rst piece can be

written

q�n
2=2+ns�3n=2+s

n�sX
i=0

�
C + i

C; i

�
q

�
D � i

D �E � i; E

�
q

q(E+1)i;

where

C = s� 1; D = 2n� 2s� 1; E = n� s� 1; D �E = n� s:

Using the lemma, the �rst piece becomes

qs�n

 
q�(n

2+n)=2+ns

�
2n� s� 1

n� s; n� 1

�
q

!
:
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Similarly, the second piece evaluates to

qs�n

 
�q�(n

2+n)=2+ns

�
2n� s� 1

n� s� 1; n

�
q

!
:

The sum of these two quantities does equal the desired expression

q�(n
2+n)=2+ns

 �
2n� s� 1

n� s; n� 1

�
q

� qs
�
2n� s� 1

n� s� 1; n

�
q

!
;

as can be seen by invoking Lemma 1.55 with C = n� s and D = n� 1. This completes

the proof.

Corollary 1.57.

q(
n
2)Cn(q; 1=q) =

1

[n+ 1]q

�
2n

n; n

�
q

:

Proof. Recall that

qn(n�1)=2Cn(q; 1=q) = qn(n�1)=2qnFn+1;1(q; 1=q):

The result follows by substituting the expression for Fn+1;1(q; 1=q) provided by the the-

orem and simplifying.

Remark 1.58. MacMachon [25] showed that

Cmaj
n (q; 1=q) =

1

[n+ 1]q

�
2n

n; n

�
q

:

Garsia and Haiman [15] showed that

q(
n
2)OCn(q; 1=q) =

1

[n+ 1]q

�
2n

n; n

�
q

:

Thus, we conclude that

Cn(q; 1=q) = OCn(q; 1=q):

Of course, this follows from the result Cn(q; t) = OCn(q; t) quoted above, but the latter

result is much more diÆcult to prove.

1.5 Combinatorial Hilbert Series

In this section, we describe conjectured combinatorial interpretations for the

Hilbert series Hn(q; t) of diagonal harmonics. These interpretations are due to Haglund,

Haiman, and the present author [17].
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1.5.1 Labelled Dyck Paths | First Version

We start by de�ning a collection Pn of labelled Dyck paths of order n. Labelled

Dyck paths are equivalent to parking functions, which are discussed in x1.5.5 below. To

construct a typical object P 2 Pn, we attach labels to a path D 2 Dn according to the

following rules. Let p0p1 � � � pn�1 be a permutation of the labels f1; 2; : : : ; ng. Place each

label pi in the ith row of the diagram for D, in the cell just right of the unique vertical

step of D in that row. There is one restriction: the labels in each column must increase

when read from bottom to top. See Figure 1.13 for an example.

i

8
7
6
5

area(P) = 16     dinv(P) = 18      dinv(D(P)) = 41

0
1
2
2
3
0
0
1
1
2
1
2
0
1

1
2
3
4
5
9
11
13
7
10
6
12
8
14

p
i

1
2
3

4
5

9

7

6

8

11
13

10

12

14

P  =

γ
i

10
11
12
13

9

3
4

2
1
0

Figure 1.13: A labelled Dyck path (version 1).

Given such a labelled path P constructed from the ordinary Dyck path D =

D(P ), de�ne area(P ) to be area(D(P )), the usual area of the ordinary path D. Also

de�ne

dinv(P ) =
P

i<j [�(i(D(P )) = j(D(P )) and pi < pj)

+�(i(D(P )) = j(D(P ) + 1) and pi > pj)] :



52

Comparing this formula to the one for dinv(D(P )), we see that dinv(P ) � dinv(D(P ))

for all P , and strict inequality can occur.

De�ne

CHn(q; t) =
X
P2Pn

qarea(P )tdinv(P ): (1.22)

It is conjectured that CHn(q; t) = Hn(q; t). This says that the combinatorial generating

function just de�ned is the same as the Hilbert series of the diagonal harmonics module.

1.5.2 Labelled Dyck Paths | Second Version

We now de�ne another collection Qn of labelled Dyck paths of order n. To

construct a typical object Q 2 Qn, we attach labels to a path D 2 Dn according to

the following rules. Let q0q1 � � � qn�1 be a permutation of the labels f1; 2; : : : ; ng. Place

each label qi in the ith row of the diagram for D in the main diagonal cell. There is one

restriction: for each inner corner in the Dyck path consisting of an east step followed by

a north step, the label qi appearing due east of the north step must be less than the label

qj appearing due south of the east step. See Figure 1.14 for an example. In the �gure,

capital letters mark the inner corners in the Dyck path. Since 4 < 5, 6 < 12, 7 < 10,

2 < 3, 8 < 14, 11 < 13, and 1 < 2, the labelled path shown does belong to Q14.

Given a labelled path Q constructed from the ordinary Dyck path D = D(Q),

de�ne dmaj(Q) to be bounce(D(Q)), which was de�ned earlier. Also de�ne area0(Q) to

be the number of cells c in the diagram for Q such that:

1. Cell c is strictly between the Dyck path D and the main diagonal.

2. The label on the main diagonal directly east of c is less than the label on the main

diagonal directly south of c.

In Figure 1.14, only the shaded cells satisfy both conditions and hence contribute to

area0(Q). Evidently, area0(Q) � area(D(Q)) for all Q, and strict inequality can occur.

De�ne

CH 0
n(q; t) =

X
Q2Qn

qdmaj(Q)tarea
0(Q): (1.23)

It is conjectured that CH 0
n(q; t) = Hn(q; t). We will prove in the next subsection that

CHn(q; t) = CH 0
n(q; t), so this conjecture is equivalent to the previous one.
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5
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dmaj(Q) = 16      area’(Q) = 18     area(D(Q))=41

Q  =

G

F

E

D

C

B

A

Figure 1.14: A labelled Dyck path (version 2).

1.5.3 Bijections between Labelled Paths

We now give a bijective proof that CHn(q; t) = CH 0
n(q; t). The bijection builds

on the bijection � for unlabelled paths used to show Cn(q; t) = HCn(q; t). (See x1.4.3.)

We will de�ne a bijection from Pn to Qn that sends area to dmaj and sends

dinv to area0. This bijection proves that

X
P2Pn

qarea(P )tdinv(P ) =
X
Q2Qn

qdmaj(Q)tarea
0(Q):

Fix P 2 Pn. We shall construct Q 2 Qn with dmaj(Q) = area(P ) and area0(Q) =

dinv(P ). As an example, the labelled path P in Figure 1.13 will map to the labelled

path Q in Figure 1.14.

Let D = D(P ) denote the underlying unlabelled Dyck path of P . Let E be

the unlabelled Dyck path produced by the bijection �, with bounce(E) = area(D) and

area(E) = dinv(D). E will be the underlying unlabelled path for Q (i.e., D(Q) = E).

We obtain Q by attaching labels to E, as follows. Scan each of the diagonals of

P , from southwest to northeast, starting with the main diagonal and proceeding upward.



54

Enter the labels of P , in the order in which they are encountered, on the main diagonal

of Q going from northeast to southwest. For instance, in Figure 1.13, P has the labels

1, 9, 11, 8 on the main diagonal, followed by the labels 2, 13, 7, 6, 14 on the �rst

superdiagonal, etc. Hence, as shown in Figure 1.14, the labels on the main diagonal of

Q are 1, 9, 11, 8, 2, 13, 7, 6, 14, : : : starting from (n; n). Clearly, we can recover the

labelling of P from the labelling of Q.

Here is an equivalent way of describing the relation between the labels in P

and Q. Recall that E = D(Q) can be dissected into triangles T0; : : : ; Ts and rectangles

R1; : : : ; Rs. For 0 � j � s, the aj labels on the main diagonal of Q inside triangle Tj

(read from top to bottom) are the labels appearing in the leftmost cells of the aj rows

of D = D(P ) for which i(D) = j (read from bottom to top).

Recall that the labels of P in a given column must increase from bottom to

top. To check the validity of a given labelling, it clearly suÆces to check that adjacent

labels in the same column are always properly ordered. Suppose that the labels pi and

pi+1 in rows i and i+ 1 both occur in column j. This occurs if and only if i+1 = i + 1

if and only if there is an ascent of  at position i (recall that i+1 � i + 1 for all i).

We observed earlier that the ascents of (D) correspond bijectively to the inner corners

of E = D(Q). It is easy to verify that label pi appears in Q directly east of the inner

corner corresponding to the ascent i < i+1, and the label pi+1 appears in Q directly

south of this inner corner. Hence, the labelling restrictions on P imply the corresponding

labelling restrictions on Q, and conversely.

Clearly, dmaj(Q) = dmaj(E) = area(D) = area(P ). We now show that

area0(Q) = dinv(P ). Consider a typical area cell c of the path E = D(Q). Suppose

�rst that c is inside triangle Tk. Let x1; x2; : : : ; xak be the labels on the diagonal of Q

inside Tk, from top to bottom. As noted above, the labels x1; x2; : : : ; xak are just the

numbers pi in all positions i for which i = k. Thus, the cells in Tk that contribute to

area0(Q) correspond precisely to coinversions in the word x1; x2; : : : ; xak . (A coinversion

of a word v1 : : : vn is a pair (i; j) with i < j and vi < vj.) We obtain a bijection between

the contributing cells in Tk and the nonzero summands

�(i = j and pi < pj)

for which i = j = k in the de�nition of dinv(P ).
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A similar argument applies to a cell c in rectangle Rk. The horizontal position

of the cell determines a unique pi such that i = k, and the vertical position of the cell

determines a unique pj such that j = k � 1. As k ranges from 1 to s, all pairs (i; j)

for which i = j + 1 are accounted for exactly once in this fashion. Now, we get a

contribution to dinv(P ) if and only if i < j and pi > pj ; this occurs precisely when the

associated cell c satis�es the two conditions for contributing to area0(Q). We conclude

that the number of contributing cells in all the rectangular regions Rk is exactlyX
i<j

�(i = j + 1 and pi > pj):

Combining this result with the one in the preceding paragraph, we see that area0(Q) =

dinv(P ). This completes the proof.

1.5.4 Formula for CHn(q; t)

We now describe an explicit formula for CHn(q; t) as a summation over per-

mutations � 2 Sn. First, we need some notation. Given � = �1�2 � � � �n, a descent of

� is an index i < n such that �i > �i+1. Suppose � has descents i1; i2; : : : ; is, where

i1 < i2 < � � � < is. Then we call the lists of elements

�1�2 � � � �i1 ; �i1+1 � � � �i2 ; � � � ; �is+1 � � � �in

the ascending runs of �. For example, if � = 4; 7; 1; 5; 8; 3; 2; 6, then the ascending runs

of � are 4; 7 and 1; 5; 8 and 3 and 2; 6. We can display the runs more concisely by writing

� = 4; 7 > 1; 5; 8 > 3 > 2; 6:

For 1 � i � n, de�ne a number wi(�) as follows. Let Rj be the ascending run

of � containing �i. Let Rj+1 be the next ascending run of �, if there is one. The number

wi(�) is the number of items in Rj that are larger than �i, plus the number of items in

Rj+1 that are smaller than �i if Rj+1 exists, plus one if Rj+1 does not exist (i.e., if Rj is

the last ascending run of �). For example, given � = 4; 7 > 1; 5; 8 > 3 > 2; 6, we obtain

(w1(�); : : : ; w8(�)) = (2; 2; 2; 2; 1; 1; 2; 1):
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Then

CHn(q; t) =
X
�2Sn

qmaj(�)
nY
i=1

[wi(�)]t: (1.24)

This formula is proved in [17].

We will continue the combinatorial study of labelled paths in Chapter 4. In

that chapter, we prove the formula above as a corollary of a more general formula. We

also give yet another pair of statistics on labelled paths whose generating function is

CHn(q; t).

1.5.5 Parking Functions

This subsection introduces parking functions and discusses their connection to

labelled Dyck paths. Parking functions were introduced by Konheim and Weiss [23] and

have been subsequently studied and generalized by many authors (see, e.g., [10, 12, 28,

31, 32]). Further discussion of parking functions and their generalizations appears in

Chapter 4.

De�nition 1.59. A parking function or preference function of order n is a function

f : f1; 2; : : : ; ng ! f1; 2; : : : ; ng such that

jfx : f(x) � igj � i for 1 � i � n:

Let P 0n denote the collection of parking functions of order n.

As in [23], we think of the elements x in the domain of f as cars that wish

to park on a one-way street with parking spots labelled 1; 2; : : : ; n (in that order). The

number f(x) represents the spot where car x prefers to park. In the standard parking

policy, cars 1 through n arrive at the beginning of the street in increasing numerical

order. Each car drives forward to the spot f(x) it prefers. If this spot is available, the

car parks there. If not, the car continues driving forward and parks in the next available

spot. It can be shown that a function f is a parking function if and only if all n cars are

able to park following this policy.

We can identify a parking function f with a labelled Dyck path P as follows.

Let Si = fx : f(x) = ig be the set of cars preferring spot i. Starting in the bottom

row of an n by n grid of lattice cells, place the elements of S1 in increasing order in
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the �rst column of the diagram, one per row. Starting in the next empty row, place

the elements of S2 in increasing order in the second column of the diagram, one per

row. Continue similarly: after listing all elements x with f(x) < i, start in the next

empty row and place the elements of Si in increasing order in column i. Finally, draw

a lattice path from (0; 0) to (n; n) by drawing vertical steps immediately left of each

label, and then drawing the necessary horizontal steps to get a connected path. It can

be shown that the resulting labelled lattice path is a labelled Dyck path if and only if

f is a parking function. Furthermore, given a labelled Dyck path P , we can recover the

parking function f by setting f(i) = j if and only if label i occurs in column j. Thus,

from now on, we will identify the set of parking functions P 0n with the set of labelled

Dyck paths Pn.

Example 1.60. Let n = 8, and de�ne a function f by

f(1) = 2; f(2) = 3; f(3) = 5; f(4) = 4;

f(5) = 1; f(6) = 4; f(7) = 2; f(8) = 6:

It is easy to check that f is a parking function. The labelled path P 2 P8 corresponding

to f is shown in Figure 1.15. Note that area(P ) = 9.

5

4
6

8
3

2
7
1

Figure 1.15: Diagram for a parking function.

If P is the diagram for a parking function f , we can compute area(P ) as follows.

Note that the triangle bounded by the lines x = 0, y = n, and x = y contains n(n� 1)=2
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complete lattice cells. Since label i occurs somewhere in column f(i), there are f(i)� 1

lattice cells inside the triangle and left of label i. These lattice cells lie outside the Dyck

path associated to f . Subtracting, we �nd that

area(P ) = n(n� 1)=2 �
nX
i=1

[f(i)� 1] = n(n+ 1)=2 �
nX
i=1

f(i): (1.25)

For instance, in the example above we have

area(P ) = 36 � (2 + 3 + 5 + 4 + 1 + 4 + 2 + 6) = 9:

1.6 Extensions of Dyck Paths and Parking Functions

In this section, we introduce generalizations of the representation theoretical

and combinatorial objects considered in the preceding sections. In later chapters, we

conduct a detailed study of these generalized combinatorial objects.

Recall that the Frobenius series of diagonal harmonics is given by the formula

Fn(q; t) = r(en). It is natural to ask what happens if we apply the nabla operator

more than once. Speci�cally, for each positive integer m, let F
(m)
n (q; t) = rm(en). For

each m � 1, F
(m)
n (q; t) is the Frobenius series of a doubly-graded Sn-module, which is

described in [15]. We can consider the Hilbert series for this module,

H(m)
n (q; t) = F (m)

n (q; t)js�=f�

or the generating function for the sign character in this module,

RC(m)
n (q; t) = F (m)

n (q; t)js1n :

The following problems immediately suggest themselves.

Problems: Let m � 1.

(1) Find a combinatorial interpretation for the Frobenius series F
(m)
n (q; t).

(2) Find a combinatorial interpretation for the Hilbert series H
(m)
n (q; t).

(3) Find a combinatorial interpretation for the sign character RC
(m)
n (q; t).
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Whenm = 1, solutions to problem (3) and conjectured solutions to problem (2)

have been described earlier in this chapter. In later chapters, we will provide conjectured

solutions to problems (2) and (3) for all m. Finding conjectured statistics for problem

(1) is an open question even when m = 1.

Our proposed solution to problem (3) will involve unlabelled lattice paths sim-

ilar to Dyck paths, which stay inside a triangular region with vertices (0; 0) and (0; n)

and (mn;n). Similarly, our proposed solution to problem (2) will involve labelled paths

staying within this same region. We will de�ne pairs of statistics on each of these col-

lections, whose corresponding generating functions are conjectured to give RC
(m)
n (q; t)

and H
(m)
n (q; t), respectively. While we cannot prove this representation theoretical con-

jecture, we do prove various combinatorial facts about these generating functions. In

particular, we will prove bijections, recursions, summation formulas, and specializations

analogous to those presented above when m = 1. We believe that the recursions pro-

vided by the combinatorics will be the key to proving the validity of the representation

theoretical conjectures.

There are further combinatorial extensions that arise. Having looked at statis-

tics for lattice paths staying in triangular regions, one can consider similar statistics

for lattice paths (unlabelled or labelled) staying in certain trapezoidal regions. The

generating functions for these statistics have combinatorial properties similar to those

considered in the last paragraph. This leads to the question of �nding representation

theoretical interpretations corresponding to the trapezoidal constructs. This is still an

open problem.

Another open problem involves a third statistic that occurs in the combinatorial

setting. We will de�ne a trivariate Catalan sequence

Cn(q; t; r) =
X
D2Dn

qarea(D)tbounce(D)rarea
�(D);

where area� is a modi�ed version of the usual area statistic. This trivariate sequence

reduces to the previous one when r = 1. It has various symmetry properties; for instance,

Cn(q; t; r) = Cn(r; t; q);

Cn(q; 1; 1) = Cn(1; q; 1) = Cn(1; 1; q):
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There are similar trivariate sequences for the other classes of paths staying inside other

shapes. The open question is to �nd a meaning for the new r-variable in the setting of

representation theory.

The rest of this document is organized as follows. In Chapter 2, we discuss

several conjectured combinatorial interpretations for RC
(m)
n (q; t) involving unlabelled

lattice paths inside certain triangles. Trivariate generating functions for these paths are

also discussed. In Chapter 3, we generalize the preceding constructions to lattice paths

lying in certain trapezoids. We study several �ve-variable generating functions for these

paths and derive their combinatorial properties. In Chapter 4, we consider labelled

lattice paths (generalized parking functions) staying within triangles and trapezoids.

In the case of triangles, we obtain a conjectured combinatorial interpretation for the

higher Hilbert series H
(m)
n (q; t). We also introduce trivariate generating functions for

the labelled paths. Finally, Chapter 5 contains some miscellaneous results connected

to the various Catalan sequences. In particular, we give a determinantal formula for

the Carlitz-Riordan numbers Carea
n (q). We also give several ways to de�ne the bivariate

sequence Cn(q; t) in terms of classical permutation statistics.

1.7 Summary of Notational Conventions

We conclude this chapter by reviewing notation that will be used constantly in

the sequel.

De�nition 1.61. (1) If A is any logical statement, de�ne �(A) = 1 if A is true, and

�(A) = 0 if A is false.

(2) If w = w1w2 : : : wn is a word, where each wi is an integer, de�ne the inversions of

w by

inv(w) =
X

1�i<j�n

�(wi > wj):

(3) Given a word w as in (2), de�ne the coinversions of w by

coinv(w) =
X

1�i<j�n

�(wi < wj):
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(4) Given a word w as in (2), de�ne the major index of w by

maj(w) =
n�1X
i=1

i�(wi > wi+1):

(5) Let x be any indeterminate. De�ne [0]x = 0 and

[j]x = 1 + x+ x2 + � � � + xj�1 for integers j > 0.

Also de�ne

[n]!x =
nY
j=1

[j]x

�
n

k

�
x

=
[n]!x

[k]!x[n� k]!x�
n

n1; : : : ; ns

�
x

=
[n]!x

[n1]!x � � � [ns]!x
when n1 + � � �+ ns = n:

These are the \x-analogues" of the number j, the factorial n!, the binomial coeÆ-

cient
�n
k

�
, and the multinomial coeÆcient

� n
n1;:::;ns

�
, respectively. It is easy to check

that these formulas agree with those given in (1.2) and (1.3).

(6) Let x; y be indeterminates. De�ne [0]x;y = 0 and

[j]x;y =

j�1X
k=0

xkyj�1�k for integers j > 0.

Also de�ne

[n]!x;y =

nY
j=1

[j]x;y

�
n

k

�
x;y

=
[n]!x;y

[k]!x;y[n� k]!x;y�
n

n1; : : : ; ns

�
x;y

=
[n]!x;y

[n1]!x;y � � � [ns]!x;y
when n1 + � � �+ ns = n:

These are the \homogeneous x; y-analogues" of numbers, factorials, binomial coef-

�cients, and multinomial coeÆcients.
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(7) Given c � 0 and d � 0, de�ne R(0c1d) to be the set of rearrangements of c zeroes

and d ones. De�ne R(c; d) to be the set of lattice paths going from the southwest

corner to the northeast corner of a rectangle of height c and width d. Given such

a path P , let a(P ) be the number of cells below the path and inside the rectangle.

Let ~a(P ) be the number of cells above the path and inside the rectangle. There is

a bijection between R(0c1d) and R(c; d) obtained by replacing zeroes by vertical

steps and ones by horizontal steps. If w 2 R(0c1d) corresponds to P 2 R(c; d)

under this bijection, then coinv(w) = a(P ) and inv(w) = ~a(P ). We also have�
c+ d

c

�
x;y

=

�
c+ d

c; d

�
x;y

=
X

w2R(0c1d)

xinv(w)ycoinv(w) =
X

P2R(c;d)

x~a(p)ya(p):

(This follows from Theorem 1.51 part (6) if we replace q by y=x there and multiply

everything by xcd.) We prefer to use the multinomial coeÆcient rather than the

binomial coeÆcient, so that both dimensions of the rectangle appear explicitly in

the formula. By convention, the multinomial coeÆcient is zero if c or d is negative.

Acknowledgements: x1.5 is a reprint of a section from the paper \A Conjectured

Combinatorial Formula for the Hilbert Series for Diagonal Harmonics" by J. Haglund and

N. Loehr, Proceedings of FPSAC 2002, Melbourne Australia, July 2002. The dissertation

author was the primary investigator and single author of the section of the paper used.

An abridged version of Chapter 1 appears in the introduction of the paper \Con-

jectured Combinatorial Models for the Hilbert Series of Generalized Diagonal Harmonics

Modules" by N. Loehr and J. Remmel, which is now in preparation for publication. The

dissertation author was the primary investigator and single author of the section of the

paper used.
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Higher-Order Catalan Sequences

In Chapter 1, we introduced several bivariate analogues of the Catalan numbers.

These analogues are summarized in the following de�nition.

De�nition 2.1. Let n be a positive integer.

(1) The original q; t-Catalan number, introduced by Garsia and Haiman in [15], is

OCn(q; t) =
X
�`n

t2n(�)q2n(�
0)(1� t)(1� q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
:

Here, we sum over all partitions of n. The quantities on the right side are de�ned

in De�nition 1.12.

(2) Consider the diagonal harmonics moduleDHn, as discussed in x1.3.5. Let s(h; k; n)

denote the multiplicity of the sign character in the (h; k)-component of DHn. Ex-

plicitly, s(h; k; n) is the dimension of the subspace of polynomials f 2 DHn such

that f has degree h in the x-variables, f has degree k in the y-variables, and

� � f = sgn(�)f for all � 2 Sn. The representation-theoretical q; t-Catalan number

is

RCn(q; t) =
X
h�0

X
k�0

s(h; k; n)qhtk:

(3) The symmetric-function q; t-Catalan number is

SCn(q; t) = r(s1n)js1n ;

where r denotes the nabla operator from x1.3.3.
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(4) The �rst combinatorial q; t-Catalan number, introduced by Haglund in [16], is

Cn(q; t) =
X
D2Dn

qarea(D)tbounce(D);

where Dn is the set of Dyck paths of order n, and bounce is the statistic de�ned in

x1.4.1.

(5) The second combinatorial q; t-Catalan number, introduced by Haiman in [19], is

HCn(q; t) =
X
D2Dn

qdinv(D)tarea(D);

where dinv is the statistic de�ned in x1.4.2.

Theorem 2.2. For all n � 1,

RCn(q; t) = OCn(q; t) = SCn(q; t) = Cn(q; t) = HCn(q; t):

Proof. Garsia and Haiman proved (with di�erent notation) that OCn(q; t) = SCn(q; t)

in [15]. The equality RCn(q; t) = OCn(q; t) follows from this result and Haiman's proof

of the full character formula for DHn (see [18, 21]). As discussed in x1.4.6, Garsia and

Haglund proved that SCn(q; t) = Cn(q; t) by showing that both formulas satis�ed the

same recursion [14]. Finally, a combinatorial proof that Cn(q; t) = HCn(q; t) was given

in x1.4.3.

In this chapter, we will study \higher-order" bivariate Catalan numbers that

generalize those de�ned above. Garsia and Haiman introduced algebraic versions of these

higher-order sequences in [15]. After discussing these algebraic sequences, we give several

conjectured combinatorial interpretations for them analogous to Cn(q; t) and HCn(q; t).

These interpretations are based on statistics for lattice paths that never go east of the

line x = my, where m is a positive integer. We prove explicit summation formulas,

bijections, and recursions involving the new statistics. We show that specializations of

the combinatorial sequences obtained by setting t = 1 or q = 1 or t = 1=q agree with

the corresponding specializations of the algebraic sequences. A third statistic occurs

naturally in the combinatorial setting, leading to the introduction of trivariate Catalan

sequences and higher-order sequences.
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2.1 Algebraic Higher-order Catalan Sequences

Let m be a positive integer. This section introduces \algebraic Catalan se-

quences of order m" that generalize the sequences OCn(q; t), SCn(q; t), and RCn(q; t)

de�ned above. When m = 1, the higher-order sequences reduce to the corresponding

original sequences. All the de�nitions presented here are due to Garsia and Haiman [15].

De�nition 2.3. The original higher q; t-Catalan sequence of order m is de�ned by

OC(m)
n (q; t) =

X
�`n

t(m+1)n(�)q(m+1)n(�0)(1� t)(1 � q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
for n � 1: (2.1)

This formula is the same as the one in De�nition (1.40), except that the

factors t2n(�)q2n(�
0) in OCn(q; t) have been replaced by t(m+1)n(�)q(m+1)n(�0). Clearly,

OC
(1)
n (q; t) = OCn(q; t).

De�nition 2.4. The symmetric function version of the higher q; t-Catalan sequence of

order m is de�ned by

SC(m)
n (q; t) = rm(s1n)js1n for n � 1; (2.2)

where rm means apply the nabla operator m times in succession.

To calculate SC
(m)
n (q; t) for a particularm and n, one should express s1n = en as

a linear combination of the modi�ed Macdonald basis f ~H�(q; t)g, multiply the coeÆcient

of each ~H� by tmn(�)qmn(�0), express the result in terms of the Schur basis fs�g, and

extract the coeÆcient of s1n . Garsia and Haiman proved in [15] (using di�erent notation)

that OC
(m)
n (q; t) = SC

(m)
n (q; t) using symmetric function identities.

De�nition 2.5. The representation-theory version of the higher q; t-Catalan sequence

of order m is de�ned as follows (cf. [15]). As in x1.3.5, let Sn act on the polynomial

ring Rn = C [x1 ; : : : ; xn; y1; : : : ; yn] via the diagonal action. Let An denote the ideal in

Rn generated by all polynomials P 2 Rn for which

� � P = sgn(�)P for all � 2 Sn.

Let Am
n denote the ideal inRn generated by all products P1P2 � � �Pm, where each Pi 2 An.

Let Mn denote the ideal in Rn generated by all the variables xi and yi for 1 � i � n.
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Finally, de�ne

�(m)
n = Am

n =MAm
n :

One can check that �
(m)
n is a doubly-graded Sn-module that is a direct sum of one-

dimensional submodules M1n corresponding to the sign character. We let RC
(m)
n (q; t)

be the Hilbert series of �
(m)
n relative to its double grading.

A problem mentioned but not solved in [15] is to give a combinatorial interpre-

tation for the sequences OC
(m)
n (q; t). That paper does give a simple interpretation for

OC
(m)
n (q; 1), which we now describe.

De�nition 2.6. Given positive integers m and n, de�ne an m-Dyck path of height n to

be a path in the xy-plane from (0; 0) to (mn;n) consisting of n north steps and mn east

steps (each of length one), such that the path never goes strictly below the slanted line

x = my. Let D
(m)
n denote the collection of m-Dyck paths of height n. For D 2 D

(m)
n , let

area(D) be the number of complete lattice squares strictly between the path D and the

line x = my.

See Figure 2.1 for an example of an m-Dyck path of height n with m = 3 and

n = 8. For this path, we have area(D) = 23.

m = 3, n = 8, area(D) = 23

x = 3y

(0, 0)

(24, 8)

Figure 2.1: A 3-Dyck path of height 8.

Garsia and Haiman proved the following specializations of the higher-order

Catalan sequences.



67

Theorem 2.7.

OC(m)
n (q; 1) = OC(m)

n (1; q) =
X

D2D
(m)
n

qarea(D):

qmn(n�1)=2OC(m)
n (q; 1=q) =

1

[mn+ 1]q

�
mn+ n

mn; n

�
q

:

Proof. See [15].

2.2 Conjectured Combinatorial Models for the Higher q; t-

Catalan Sequences

Fix a positive integer m. We next describe two statistics de�ned on m-Dyck

paths that each have the same distribution as the area statistic. The �rst statistic

generalizes Haiman's statistic for Dyck paths; the second statistic generalizes Haglund's

bounce statistic. We conjecture that either statistic, when paired with area and summed

over m-Dyck paths of height n, will give a generating function that equals OC
(m)
n (q; t).

In support of this conjecture, we show that these combinatorial generating functions

have the same specializations as OC
(m)
n when q = 1 or t = 1 or t = 1=q (see Theorem

2.7 above).

2.2.1 Haiman's Statistic for m-Dyck Paths

The statistic discussed here was derived from a statistic communicated to the

author by M. Haiman [20].

De�nition 2.8. Let D 2 D
(m)
n be an m-Dyck path of height n.

(1) De�ne i(D) to be the number of cells in the ith row that are completely contained

in the region between the path D and the diagonal x = my, for 0 � i < n. Here, the

lowest row is row zero. Note that area(D) =
Pn�1

i=0 i(D).

(2) De�ne a statistic h(D) by

h(D) =
X

0�i<j<n

m�1X
k=0

� (i(D)� j(D) + k 2 f0; 1; : : : ;mg) : (2.3)
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i (D)γ

m = 2, n = 12, area(D) = 30, h(D) = 41

x = 2y

0
1
2
3
4
5
6
7
8
9

0
0
1
3
5

2
3
5
5
4
1

1

10
11

(0, 0)

i

Figure 2.2: De�ning the generalized Haiman statistic for a 2-Dyck path.

See Figure 2.2 for an example.

It is easy to see that h(D) reduces to the statistic dinv(D) from x1.4.2 when

m = 1. Here is another formula for h(D) which will be useful later. De�ne a function

scm : Z! Z by

scm(p) =

8>><
>>:

m+ 1� p if 1 � p � m;

m+ p if �m � p � 0;

0 for all other p.

Note that, given the value of a particular di�erence i(D) � j(D) for a �xed i and j,

we can evaluate the inner sum
Pm�1

k=0 �(i(D)� j(D) + k 2 f0; 1; : : : ;mg) in (2.3). By

checking the various cases, one sees that the value of this sum is exactly scm(i(D) �

j(D)). For instance, if i(D) � j(D) is 0 or 1, then we get a contribution for each of

the m values of k, in agreement with the fact that scm(0) = scm(1) = m. Similarly,

if i(D) � j(D) is �(m � 1), then only the summand with k = m � 1 will cause a

contribution, in agreement with the fact that scm(�(m� 1)) = 1. The remaining cases

are checked similarly. We conclude that

h(D) =
X

0�i<j<n

scm(i(D)� j(D)): (2.4)
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De�nition 2.9. De�ne the �rst conjectured combinatorial version of the higher q; t-

Catalan sequence of order m by

HC(m)
n (q; t) =

X
D2D

(m)
n

qh(D)tarea(D) for n � 1:

In x2.2.5, we will prove that HC
(m)
n (q; 1) = HC

(m)
n (1; q). This says that the

statistic h has the same univariate distribution as the area statistic.

2.2.2 Bounce Statistics for m-Dyck paths

We now discuss how to de�ne a bounce statistic for m-Dyck paths that gener-

alizes Haglund's statistic on ordinary Dyck paths. To de�ne this statistic, we must �rst

de�ne the bounce path derived from a given m-Dyck path D.

In Chapter 1, we obtained the bounce path derived from a Dyck path by starting

at (n; n) and moving southwest towards (0; 0) according to certain rules (see Figure 1.4).

We could have drawn an analogous bounce path that starts at (0; 0) and bounces north-

east towards (n; n). At each stage, this new bounce path would move north until blocked

by an east step of the Dyck path, and then move east to the line y = x. It turns out

that this latter bounce path construction is easier to generalize to the case of m-Dyck

paths.

Fix an integer m � 2, and �x an m-Dyck path D. The bounce path derived

from D will consist of a sequence of alternating vertical moves and horizontal moves.

We begin at (0; 0) with a vertical move, and eventually end at (mn;n) after a horizontal

move. Let v0; v1; : : : denote the lengths of the successive vertical moves in the bounce

path, and let h0; h1; : : : denote the lengths of the successive horizontal moves. These

lengths are calculated as follows. (Refer to Figures 2.3 and 2.4 for examples.)

To �nd v0, move due north from (0; 0) until you reach an east step of the m-

Dyck path; the distance traveled is v0. Next, move due east v0 units (so h0 = v0). Next,

move north from the current position until you reach an east step of the m-Dyck path;

let v1 be the distance traveled. Next, move due east v0 + v1 units (so h1 = v0 + v1). In

general, for i < m, we move north vi units from our current position until we are blocked

by an east step of the m-Dyck path, and then move east hi = v0 + v1 + � � �+ vi units.
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(0, 0)
m = 2, n = 12, area(E) = 41, b(E) = 30

v
h

i

i

i 0 2 3 4 5
2 213 1

1
3 (0)

6

2 5 4 3 3 4 (3)

(24, 12)

Figure 2.3: De�ning the bounce statistic for a 2-Dyck path.

For i � m, the rules change. At stage i, we still move north vi units until we are

blocked by an east step of D. But we then move east hi = vi+vi�1+vi�2+vi�(m�1) units.

In other words, the length of the next horizontal move is the sum of the m preceding

vertical moves.

If we de�ne vi = 0 and hi = 0 for all negative indices i, we can state a single rule

that works for all the bounces. Start at (0; 0). Assuming inductively that vj = vj(D)

and hj = hj(D) have been determined for all j < i (where i � 0), move north from the

current position until you are blocked by an east step of the m-Dyck path; de�ne the

distance traveled to be vi. Then move east hi = vi + vi�1 + � � � + vi�(m�1) units. We

continue bouncing until we reach (mn;n). (In fact, it suÆces to stop once we reach the

top rim of the �gure, which is the horizontal line y = n.) Finally, we de�ne the bounce

statistic b(D) to be

b(D) =
X
k�0

k � vk(D); (2.5)

a weighted sum of the lengths of the vertical segments in the bounce path derived from
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D. For example, in Figure 2.3, we have

b(E) = 0 � 2 + 1 � 3 + 2 � 1 + 3 � 2 + 4 � 1 + 5 � 3 = 30:

Remark 2.10. When m = 1, the new rule says that hi = vi for all i. In other words, we

move north until we hit a horizontal step of the Dyck path, and then move east the same

distance, bringing us back to the main diagonal y = x. Thus, we obtain the modi�ed

bounce path construction on Dyck paths in which the bounce path begins at the origin.

In this case, there is another formula for b(D). Let s be the number of vertical moves

needed to reach the top rim. Then v0 + v1 + � � �+ vs�1 = n, where n is the height of D.

We claim that

b(D) =

s�1X
k=0

(n� v0 � v1 � � � � � vk): (2.6)

To see this, replace n by v0 + � � �+ vs�1 in (2.6) and simplify the resulting sum. We get

b(D) = (v1+v2+v3+ � � �+vs�1)+(v2+v3+ � � �+vs�1)+(v3+ � � �+vs�1)+ � � � =
X
k�0

k �vk;

which is formula (2.5).

Remark 2.11. Consider the involution � : Dn ! Dn that sends a Dyck path P to its

reection in the line y = n � x. It is easy to see that �(P ) is another Dyck path with

the same area as P . Moreover, if we also reect the bounce path starting at the origin

about the line y = n�x, we obtain the original bounce path for �(P ) starting at (n; n).

Finally, it is easy to check that the numbers n� v0(P )� v1(P )� � � � � vk(P ) in (2.6) are

the same as the numbers ik(�(P )) in the original de�nition of bounce(�(P )) (see x1.4.1).

Therefore, b(P ) = bounce(�(P )).

Note that, for m > 1, the bounce path does not necessarily return to the

diagonal x = my after each horizontal move. Consequently, it may occur that we cannot

move north at all after making a particular horizontal move. This situation occurs for

the bounce path shown in Figure 2.4, which is derived from the 3-Dyck path shown

in Figure 2.1. In this case, we de�ne the next vi to be zero, and compute the next

hi = vi + vi�1 + � � � + vi�(m�1) just as before. In other words, vertical moves of length

zero can occur, and are treated the same as nonzero vertical moves when computing the

hi's and the b statistic.
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v
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1 1
7 8 9
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(1)(2)

10i

i

i
1h 3

(0, 0)
m = 3, n = 8, area(D) = 23, b(D) = 29

(24, 8)

Figure 2.4: A bounce path with vertical moves of length zero.

The possibility now arises that the bounce path could get \stuck" in the middle

of the �gure. To see why, suppose that m consecutive vertical moves vi; : : : ; vi+m�1 in

the bounce path had length zero. Then the next horizontal move hi+m�1 would be zero

also. As a result, our position in the �gure at stage i +m is exactly the same as the

position at the beginning of stage i + m � 1, since vi+m�1 = hi+m�1 = 0. From the

bouncing rules, it follows that vi+m = 0 also. But then vj = hj = 0 for all j � i+m, so

that the bouncing path is stuck at the current position forever.

We now argue that the situation described in the last paragraph will never

occur. Since the m-Dyck path must start with a north step, we have v0 > 0, and so we do

not get stuck at (0; 0). The evolving bounce path will continue to make progress eastward

with each horizontal step, unless hi = 0 for some i � 0. Note that hi = 0 if and only if

vi+vi�1+ � � �+vi�(m�1) = 0. Fix such an i, and consider the situation just after making

the vertical move of length vi�1 and the horizontal move of length hi�1. Let (x0; y0)

denote the position of the bounce path at this instant. Then y0 = v0 + v1 + � � � + vi�1

is the total vertical distance moved so far. Since vi�1 = � � � = vi�(m�1) = 0, we have

y0 = v0 + � � � + vi�m. On the other hand, the total horizontal distance moved so far is
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x0 = h0 + h1 + � � �+ hi�1. From the de�nition of the hj's and the fact that vi�1 = � � � =

vi�(m�1) = 0, it follows that x0 = mv0 +mv1 + � � � +mvi�m. In more detail, note that

the last nonzero vj , namely vi�m, contributes to the m horizontal moves hi�m; : : : ; hi�1.

Similarly, for j < i �m, vj has contributed to m horizontal moves that have already

occurred at the end of stage i� 1. Since vj = 0 for i�m < j � i� 1, the stated formula

for x0 accounts for all the horizontal motion so far. Comparing the formulas for x0

and y0 gives x0 = my0, so that the bounce path has returned to the bounding diagonal

x = my. If y0 = n, the bounce path has reached its destination. If y0 < n, the m-Dyck

path continues above height y0. But now vi > 0 is forced; otherwise, the m-Dyck path

must have gone east from (my0; y0), violating the requirement of always staying weakly

above the line x = my. This argument is illustrated by the path in Figure 2.4.

Thus, the bounce path does not get stuck. The argument at the end of the last

paragraph can be modi�ed to show that the bounce path (like the m-Dyck path itself)

never goes below the line x = my. For, after moving v0 + � � � + vi�1 steps vertically at

some time, we will have gone at most mv0 + � � � +mvi�1 steps horizontally. Therefore,

our position is on or above the line x = my.

Now that we know the bounce path is always well-de�ned, we can make the

following de�nition.

De�nition 2.12. De�ne the second conjectured combinatorial version of the higher q; t-

Catalan sequence of order m by

C(m)
n (q; t) =

X
D2D

(m)
n

qarea(D)tb(D) for n � 1:

The involution � in Remark 2.11 shows that

X
D2Dn

qarea(D)tb(D) =
X
D2Dn

qarea(D)tbounce(D);

which says that C
(1)
n (q; t) = Cn(q; t).

In x2.2.5, we will give a bijective proof that HC
(m)
n (q; t) = C

(m)
n (q; t). Setting

t = 1 or q = 1 here shows that both new statistics (h and b) have the same distribution

on m-Dyck paths of height n as area.
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Conjecture 2.13. For all m and n, we have

OC(m)
n (q; t)HC(m)

n (q; t):

This equality has been veri�ed for small values of m and n by computer. A

possible approach to proving this conjecture will be indicated in x2.3.

2.2.3 Formula for C
(m)
n (q; t)

In this subsection, we give an explicit algebraic formula for C
(m)
n (q; t) by an-

alyzing bounce paths. This formula, while messy, is obviously a polynomial in q and t

with nonnegative integer coeÆcients, unlike the formula de�ning OC
(m)
n (q; t). A disad-

vantage of the new formula is that the (conjectured) symmetry C
(m)
n (q; t) = C

(m)
n (t; q)

is not evident from inspection of the formula. In the next subsection, we will prove that

the same formula holds for HC
(m)
n (q; t), which implies that C

(m)
n (q; t) = HC

(m)
n (q; t).

Recall from Chapter 1 the following combinatorial interpretations for q-binomial

coeÆcients: �
a+ b

a; b

�
q

=
X

P2Pa;b

qarea(P ) =
X

P2Pa;b

qab�area(P ):

�
a+ b

a; b

�
q

=
X

w2R(0a1b)

qinv(w) =
X

w2R(0a1b)

qcoinv(w): (2.7)

We are now ready to state the formula for C
(m)
n (q; t). Let V

(m)
n denote the set

of all sequences v = (v0; v1; v2; : : : ; vs) such that: each vi is a nonnegative integer; v0 > 0;

vs > 0; v0 + v1 + v2 + � � �+ vs = n; and there is never a string of m or more consecutive

zeroes in v. As usual, let vi = 0 for all negative i.

Theorem 2.14. With V
(m)
n de�ned as above, we have:

C(m)
n (q; t) =

X
v2V

(m)
n

t
P

i�0 iviqpow
Y
i�1

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

; (2.8)

where

pow = m
X
i�0

�
vi
2

�
+
X
i�1

vi

mX
j=1

(m� j)vi�j :

Equivalently, we may sum over all compositions v of n with zero parts allowed, if we

identify compositions that di�er only in trailing zeroes.
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Remark 2.15. When m = 1, this formula reduces to a formula for Cn(q; t) given by

Haglund in [16].

Proof. Let D 2 D
(m)
n be a typical object counted by C

(m)
n (q; t). We can classify D based

on the sequence v(D) = (v0; v1; : : : ; vs) of vertical moves in the bounce path derived from

D. Call this sequence the bounce composition of D. By the discussion in the preceding

section, the vector v = v(D) belongs to V
(m)
n . To prove the formula for C

(m)
n (q; t), it

suÆces to show thatX
D: v(D)=v

qarea(D)tb(D) =

t
P

i�0 iviqm
P

i�0

�
vi
2

� sY
i=1

qvi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

for each v = (v0; : : : ; vs) 2 V
(m)
n . By our conventions for q-binomial coeÆcients, the right

side of this expression is zero if any m consecutive vi's are zero (in particular, this occurs

if v0 = 0). Thus, it does no harm in (2.8) to sum over all compositions v of n with zero

parts allowed, not just the compositions v belonging to V
(m)
n .

Now, �x v 2 V
(m)
n and consider only the m-Dyck paths of height n having

bounce composition v. By de�nition of the bounce statistic, every such path D will have

the same t-weight, namely

tb(D) = t
P

i�0 ivi :

To analyze the q-weights, note that we can construct allm-Dyck paths of height

n having bounce composition v as follows.

1. Starting with an empty diagram, draw the bounce path with vertical segments

v0; : : : ; vs. There is exactly one way to do this, since the horizontal moves hi are

completely determined by the vertical moves.

2. Having drawn the bounce path, there are now s empty rectangular areas just

northwest of the \left-turns" in the bounce path. See Figure 2.5 for an example.

Label these rectangles R1; : : : ; Rs, as shown. By de�nition of the bounce path,

rectangle Ri has height vi and width hi�1 = vi�1 + � � � + vi�m for each i. To

complete the m-Dyck path, draw a path in each rectangle Ri from the southwest
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corner to the northeast corner, where each path begins with at least one east step.

The �rst east step in Ri must be present, by de�nition of vi�1.

4R

2R

5R

3R

1R

v
h

i

i

i 0 2 3 4 5
2 213 1

1
3 (0)

6

2 5 4 3 3 4 (3)

m = 2, n = 12.

Figure 2.5: Rectangles above the bounce path.

We can rephrase the second step as follows. Let R0i denote the rectangle of

height vi and width hi = vi�1+ � � �+ vi�m� 1 obtained by ignoring the leftmost column

of Ri. Then we can uniquely construct the path D by �lling each shortened rectangle

R0i with an arbitrary path going from the southwest corner to the northeast corner.

The generating function for the number of ways to perform this second step,

where the exponent of q records the total area above the bounce path, is

sY
i=1

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

by the preceding discussion of q-binomial coeÆcients.

We still need to multiply by a power of q that records the area under the bounce

path, which is independent of the choices in the second step. We claim that this area is

m

sX
i=0

1

2
vi(vi � 1) +

sX
i=1

0
@vi mX

j=1

(m� j)vi�j

1
A ;
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Figure 2.6: Dissecting the area below the bounce path.

which will complete the proof.

To establish the claim, dissect the area below the bounce path as shown in

Figure 2.6. There are s+1 triangular pieces Ti, where the i
th triangle contains 0 +m+

2m+ � � �+(vi�1)m = mvi(vi�1)
2 complete cells. In Figure 2.6, for instance, where v1 = 3,

we have shaded the 0 + 2 + 4 = 6 cells in T1 that contribute to the area statistic. The

total area coming from the triangles is

m
sX
i=0

1

2
vi(vi � 1):

There are also s rectangular slabs Si (for 1 � i � s). The height of slab Si is

vi. What is the width of Si? To answer this question, �x i, let (a; c) be the coordinates

of the southeast corner of Si, and let (b; c) be the coordinates of the southwest corner of

Si. First note that c = v0 + v1 + � � �+ vi�1, the sum of the vertical steps prior to step i.

Therefore,

a = mc = m(v0 + � � �+ vi�1) = mvi�1 +mvi�2 + � � �+mvi�m +mvi�m�1 + � � �

since the southeast corner of Si lies on the line x = my. Next, b = h0 + h1 + � � �+ hi�1,

the sum of the horizontal steps prior to step i. Recall that each hj is the sum of the
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m preceding vi's (starting with i = j). Substituting into the expression for b gives

b = 1vi�1 + 2vi�2 + � � � +mvi�m +mvi�m�1 +mvi�m�2 + � � � . We conclude that the

width of Si is

a� b = (m� 1)vi�1 + (m� 2)vi�2 + � � � + (m�m)vi�m + 0 + 0 + � � � :

Finally, the area of Si is the height times the width, which is

vi(a� b) = vi

mX
j=1

(m� j)vi�j :

Adding over all i gives the term

sX
i=1

0
@vi mX

j=1

(m� j)vi�j

1
A ;

completing the proof of the theorem.

2.2.4 Proving the Formula for HC
(m)
n (q; t)

We now prove that HC
(m)
n (q; t) is given by the same formula as C

(m)
n (q; t).

Theorem 2.16. With V
(m)
n de�ned as above, we have:

HC(m)
n (q; t) =

X
v2V

(m)
n

t
P

i�0 iviqpow
Y
i�1

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

; (2.9)

where

pow = m
X
i�0

�
vi
2

�
+
X
i�1

vi

mX
j=1

(m� j)vi�j :

Equivalently, we may sum over all compositions v of n with zero parts allowed, if we

identify compositions that di�er only in trailing zeroes.

Proof. Recall that an m-Dyck path D can be represented by a vector

(D) = (0(D); : : : ; n�1(D));

where i(D) is the number of area cells between the path and the diagonal in the ith row

from the bottom. Clearly, the path D is uniquely recoverable from the vector . Also,

a vector  = (0; : : : ; n�1) represents an element D 2 D
(m)
n if and only if the following

three conditions hold:
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1. 0 = 0.

2. i � 0 for all i.

3. i+1 � i +m for all i < n� 1.

The �rst condition reects the fact that the lowest row cannot have any area cells. The

second condition is clear, since i is counting cells. The third condition follows since the

path is not allowed to take any west steps.

Let G
(m)
n denote the set of all n-long vectors  satisfying these three conditions.

Then the preceding remarks show that

HC(m)
n (q; t) =

X
2G

(m)
n

qh()t
P

i�0 i ;

where
P

i�0 i is the area of the path D corresponding to , and where we set

h() =
X

0�i<j<n

m�1X
k=0

�(i � j + k 2 f0; 1; : : : ;mg);

so that h() is the h-statistic of the path D.

Given a vector  2 G
(m)
n , let vi() be the number of times i occurs in the

sequence (0; : : : ; n�1) for each i � 0. Let v() = (v0(); v1(); : : : ; vs()) where s is the

largest entry appearing in . We call v() the composition of . From the de�nitions of

G
(m)
n and v(), we see that v0 > 0, vs > 0, v0 + � � � + vs = n, and there is never a string

of m consecutive zeroes in v (lest i+1 > i +m for some i). In other words, v belongs

to V
(m)
n .

We now classify the objects  in G
(m)
n based on their composition. To prove the

summation formula for HC
(m)
n (q; t), it suÆces to show thatX

: v()=v

qh()t
P

i�0 i =

t
P

i�0 iviqm
P

i�0
1
2
vi(vi�1)

sY
i=1

qvi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

(2.10)

for each v = (v0; : : : ; vs) 2 V
(m)
n . It is clear that the powers of t on each side of this

equation agree, since vi is the number of occurrences of the value i in the summationP
i�0 i.
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Before considering the powers of q, note that we can uniquely construct all

vectors  2 G
(m)
n having composition v as follows.

1. Initially, let  be a string of v0 zeroes.

2. Next, insert v1 ones in the gaps to the right of these zeroes. There can be any

number of ones in each gap, but no 1 may appear to the left of the leftmost zero.

3. Continue by inserting v2 twos into valid locations, then v3 threes, etc. The general

step is to insert vi copies of the symbol i into valid locations in the current string.

Here, a \valid" location is one such that inserting i in that location will not cause

a violation of the three conditions in the de�nition of G
(m)
n .

How many ways are there to perform the ith step of this insertion process, for i > 0? To

answer this, note that a new symbol i > 0 can only be placed in a gap immediately to

the right of the existing symbols i � 1; i � 2; : : : ; i �m in the current string. There are

vi�1+vi�2+ � � �+vi�m such symbols, and hence the same number of gaps. Since multiple

copies of i can be placed in each gap, the number of ways to insert the vi new copies of

the symbol i is

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � � + vi�m � 1

�
. (To see this, represent a particular way of

inserting the new i's by a string of vi \stars" representing the i's and vi�1+ � � �+vi�m�1

\bars" that separate the vi�1+ � � �+vi�m available gaps.) Multiplying these expressions

as i ranges from 1 to s, we see that formula (2.10) is correct when q = 1.

It remains to see that the power of q is correct as well. We prove this by

induction on the largest symbol s appearing in . If s = 0, then v = (n), and  must

consist of a string of n zeroes. From the de�nition, we see that h() = mn(n � 1)=2.

This is the same as the power of q on the right side of (2.10), since v0 = n and vi = 0

for i > 0.

Now assume that s > 0. Fix v = (v0; : : : ; vs) 2 V
(m)
n . Let v0 = (v0; : : : ; vs�1),

which is an element of V
(m)
n�vs (ignore trailing zeroes in v0 if necessary). Our induction

hypothesis says that

X
Æ:v(Æ)=v0

qh(Æ) = qm
Ps�1

i=0 vi(vi�1)=2
s�1Y
i=1

qvi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

;
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note that any trailing zeroes in v0 just contribute extra factors of 1 to the right side,

which are harmless. We want to establish the analogous formula forX
:v()=v

qh():

For this purpose, recast the construction given in the q = 1 case as follows. We can

uniquely produce every  with v() = v by �rst choosing a Æ with v(Æ) = v0 and then

choosing a way to insert vs copies of s into Æ in valid locations. The generating function

for the number of ways to choose Æ, where the power of q records h(Æ), is by assumption

qm
Ps�1

i=0 vi(vi�1)=2
s�1Y
i=1

qvi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

:

To complete the proof, we need to show that the increase in the h-statistic caused by

the second choice (namely, h()� h(Æ)) has generating function

qmvs(vs�1)=2qvs
Pm

k=1(m�k)vs�k

�
vs + vs�1 + � � �+ vs�m � 1

vs; vs�1 + � � � + vs�m � 1

�
q

: (2.11)

Then the desired result will follow from the product rule for generating functions (see

[3], Ch. 10).

We encode the choice of how to insert the vs copies of s into Æ as a word

w 2 R(0vs1vs�1+���+vs�m�1):

To �nd w, read the symbols in the completed vector  from left to right. Write down

a zero in w every time an s occurs in ; write down a one in w every time one of the

symbols s � 1; : : : ; s �m occurs in ; ignore all other symbols in . By the conditions

on , the �rst symbol in w must be a one (since some symbol in fs� 1; : : : ; s�mg must

appear just before the leftmost s in ). Erase this initial 1 to obtain the �nal word w.

We will prove that

h()� h(Æ) = mvs(vs � 1)=2 + vs

mX
k=1

(m� k)vs�k + coinv(w); (2.12)

if this equation holds, then (2.11) immediately follows from it because of (2.7).

The proof of (2.12) proceeds by induction on the value of coinv(w). Suppose

coinv(w) = 0 �rst. This happens if and only if all vs copies of s were inserted into Æ
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immediately following the last occurrence of any symbol in the set fs � 1; : : : ; s �mg.

How do these vs newly inserted symbols a�ect the h-statistic? To answer this, we must

compute the sum (see (2.4)) X
i<j

scm(i � j)

over all pairs (i; j) such that i = s or j = s.

First, consider the pairs (i; j) for which i < j and i = s and j = s. There are�vs
2

�
such pairs, and each contributes scm(s � s) = scm(0) = m to the h-statistic. This

gives the term mvs(vs � 1)=2 in (2.12).

Second, consider the pairs (i; j) for which i < j and i = s and j 6= s. Since

all the copies of s in  occur in a contiguous group following all instances of the symbols

s � 1; : : : ; s �m, and since s is the largest symbol appearing in , j > i implies that

j < s�m. Then scm(i� j) = 0, since i� j > m. So these pairs contribute nothing

to the h-statistic.

Third, consider the pairs (i; j) for which i < j and i 6= s and j = s. Since s

is the largest symbol, we have i < s. Write i = s � k for some k > 0, and consider

various subcases. Suppose k 2 f1; 2; : : : ;mg. Then scm(i � j) = scm(�k) = m � k.

For how many pairs (i; j) does it happen that i < j, i = s � k, and j = s? There

are vs choices for the index j and vs�k choices for the index i; the condition i < j holds

automatically, since all occurrences of s occur to the right of all occurrences of s � k.

Thus, we get a total contribution to the h-statistic of (m�k)vs(vs�k) for this k. Adding

over all k, we obtain the term

vs

mX
k=1

(m� k)vs�k

appearing in (2.12). On the other hand, if k > m, then scm(i � j) = scm(�k) = 0, so

there is no contribution to the h-statistic.

The three cases just considered are exhaustive, so we conclude that (2.12) is

true when coinv(w) is zero.

For the inductive step, consider what happens when we replace two consecutive

symbols 10 in w by 01, thus increasing coinv(w) by one. Let w0 be the new word after

the replacement, and let 0 be the associated vector obtained by inserting s's into Æ

according to the encoding w0. We may assume, by induction, that (2.12) is correct for 
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and w. Passing from w to w0 increases the right side of (2.12) by one. Hence, (2.12) will

be correct for 0 and w0, provided that h(0) = h()+1. To obtain 0 from , look at the

symbols in  corresponding to the replaced string 10 in w. The symbol corresponding

to the 0 is an s. This s is immediately preceded in  by a symbol in fs� 1; : : : ; s�mg

which corresponds to the 1, by the conditions on  and the fact that s > 0. Say s � k

immediately precedes this s. The e�ect of replacing 10 by 01 in w is to move the s

leftwards, past its predecessor s � k, and re-insert it in the next valid position in .

This valid position occurs immediately to the right of the next occurrence of a symbol

in fs; s� 1; s� 2; : : : ; s�mg left of the symbol s� k. Pictorially, we have:

original  = : : : (s� j) z1 z2 : : : z` (s� k) s : : :

where 0 � j � m, 1 � k � m, ` � 0, and every zi < s�m. After moving s left, we have

new 0 = : : : (s� j) s z1 z2 : : : z` (s� k) : : : :

Note that the symbol s� j must exist, lest 00 = s > 0.

Now, let us examine the e�ect of this motion on the h-statistic. When we move

the s left past its predecessor s� k in , we get a net change in the h-statistic of

scm(s� (s� k))� scm((s� k)� s) = scm(k)� scm(�k) = +1;

since 1 � k � m (see (2.4)). As before, since js � zij > m, moving the s past each zi

will not a�ect the h-statistic at all. Thus, the total change in the h-statistic is +1, as

desired.

We can obtain an arbitrary encoding word w from the word 11 : : : 100 : : : 0 with

no coinversions by doing a �nite sequence of interchanges of the type just described.

Thus, the validity of (2.12) for all words w follows by induction on the number of such

interchanges required (this number is exactly coinv(w), of course). This completes the

proof of the theorem.

Corollary 2.17.

C(m)
n (q; t) = HC(m)

n (q; t):

We will give a bijective proof of this corollary in the next subsection.
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2.2.5 Bijection Proving that HC
(m)
n (q; t) = C

(m)
n (q; t)

The two proofs just given to show that formula (2.8) holds for C
(m)
n (q; t) and

HC
(m)
n (q; t) were completely combinatorial. Hence, we can combine these proofs to get

a bijective proof that HC
(m)
n (q; t) = C

(m)
n (q; t). Fix m and n. We describe a bijection

� : D
(m)
n ! D

(m)
n such that

h(D) = area(�(D)) and area(D) = b(�(D)) for D 2 D
(m)
n

and a bijection  = ��1 : D
(m)
n ! D

(m)
n such that

b(D) = area( (D)) and area(D) = h( (D)) for D 2 D
(m)
n .

These bijections will show that the three statistics area, h, and b all have the same

univariate distribution on D
(m)
n .

Description of �. Let D be an m-Dyck path of height n. To �nd the path �(D):

� Represent D by the vector of row lengths (D) = (0(D); : : : ; n�1(D)), where

i(D) is the number of area cells in the ith row from the bottom.

� De�ne v = (v0; : : : ; vs) by letting vj be the number of occurrences of the value j in

the vector (D).

� Starting with an empty triangle, draw a bounce path from (0; 0) with successive

vertical segments v0; : : : ; vs and horizontal segments h0; h1; : : :, where hi = vi +

vi�1 + � � �+ vi�(m�1) for each i.

� For 1 � i � s, form a word wi from (D) as follows. Initially, wi is empty. Read 

from left to right. Write down a zero every time the symbol i is seen in . Write

down a one every time a symbol in fi� 1; : : : ; i�mg is seen in . Ignore all other

symbols in . At the end, erase the �rst symbol in wi (which is necessarily a 1).

� Let R1; : : : ; Rs be the empty rectangles above the bounce path. Let R01; : : : ; R
0
s be

these rectangles with the leftmost columns deleted (as in x2.2.3). For 1 � i � s,

use the word wi to �ll in the part of the path lying in R
0
i, from the southwest corner

to the northeast corner, by taking a north step for each zero in wi, and an east

step for each one in wi. Call the completed path �(D).
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The two preceding proofs have already shown that � has the desired e�ect on the various

statistics.

Example 2.18. Let D be the 2-Dyck path of height 12 depicted in Figure 2.2. We have

(D) = (0; 0; 1; 3; 5; 1; 2; 3; 5; 5; 4; 1); area(D) = 30; h(D) = 41:

Doing frequency counts on the entries of , we compute

v = (v0; v1; v2; v3; v4; v5) = (2; 3; 1; 2; 1; 3):

Given v, we can draw the bounce path shown in Figure 2.5 with 5 empty rectangles

above it. Now, we compute the words wi:

w1 = 1000; w2 = 11101; w3 = 01101; w4 = 110; w5 = 01001:

Using these words to �ll in the partial paths, we obtain the path D0 in Figure 2.3, which

has b(D) = 30 and area(D) = 41.

Here is a mild simpli�cation of the bijection. Leave the �rst 1 at the beginning

of each wi instead of erasing it. Then the wi tell us how to construct the partial paths

in the full rectangles Ri (rather than the shortened rectangles R0i). Every such partial

path begins with an east step, as required by the bouncing rules.

Description of  . Let D be an m-Dyck path of height n. To �nd the path  (D):

� Draw the bounce path derived from D according to the bouncing rules (see x2.2.2).

Let v = (v0; : : : ; vs) be the lengths of the vertical moves in this bounce path.

� Let R1; : : : ; Rs be the rectangular regions above the bounce path. These regions

contain partial paths going from the southwest corner to the northeast corner. For

1 � i � s, �nd the word wi by traversing the partial path in Ri and writing a

one for each east step and a zero for each north step. Note that every wi has �rst

symbol one.

� Build up  as follows. Start with a string of v0 zeroes. For i = 1; 2; : : : ; s, insert vi

copies of i into the current string  according to wi. More explicitly, read wi left

to right. When a 1 is encountered, scan  from left to right for the next occurrence
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of a symbol in fi � 1; : : : ; i�mg. When a 0 is encountered, place an i in the gap

immediately to the right of the current symbol in . Continue until all symbols i

have been inserted.

� Use  to draw the picture of a new m-Dyck path D0 of height n, by placing i area

cells in the ith row of the �gure. Since  2 G
(m)
n , the resulting picture will be a

valid path.

Example 2.19. Let D be the 3-Dyck path of height 8 shown in Figure 2.4. From the

bounce path drawn in that �gure, we �nd that

v = (v0; : : : ; v9) = (1; 1; 1; 1; 2; 0; 0; 1; 1):

Examining the rectangles above the bounce path (several of which happen to be empty

or have height zero), we get the words wi:

w1 = 10; w2 = 110; w3 = 1110; w4 = 10011; w5 = 1111; w6 = 111; w7 = 110; w8 = 10:

Now, build up the vector  as follows:

� Initially,  = 0 (since v0 = 1).

� Use w1 = 10 to insert one 1 into  to get  = 01.

� Use w2 = 110 to insert one 2 into  to get  = 012.

� Use w3 = 1110 to insert one 3 into  to get  = 0123.

� Use w4 = 10011 to insert two 4's into  to get  = 014423.

� Use w5 = 1111 to insert zero 5's into  to get  = 014423.

� Use w6 = 111 to insert zero 6's into  to get  = 014423.

� Use w7 = 110 to insert one 7 into  to get  = 0144723.

� Use w8 = 10 to insert one 8 into  to get  = 01447823.

Thus, the image path D0 is the unique 3-Dyck path of height 8 such that (D0) =

(0; 1; 4; 4; 7; 8; 2; 3). D0 is pictured in Figure 2.7.
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’sγ

0
1
4

7
8
2
3

4

(0, 0)
m = 3, n = 8, h(D’) = 23, area(D’) = 29

Figure 2.7: The image  (D) for the path D from Figure 2.4.

As this example indicates, the presence of vertical moves of length zero does

not alter the validity of the preceding proofs and bijections.

Remark 2.20. The main diÆculty involved in the combinatorial investigation of the

original q; t-Catalan sequence OCn(q; t) was discovering the two statistics bounce and

dinv de�ned in x1.4.1 and x1.4.2. The area statistic, on the other hand, is quite natural

to consider once one notices that OCn(1; 1) counts the number of Dyck paths of height

n. Similar comments apply to the higher q; t-Catalan sequences.

Having introduced the bijections � and  = ��1, we can consider the problem

of �nding these statistics in a new light. It is natural to count Dyck paths (or m-Dyck

paths) by constructing the associated -sequences through successive insertion of zeroes,

ones, twos, etc., as done in x2.2.4. The map � arises by representing the insertion choices

geometrically as paths inside rectangles and positioning these rectangles in a nice way

(as in Figure 2.5). The remarkable coincidence is that the resulting picture is another

m-Dyck path.

We may thus regard the area statistic and the map � as the \most fundamental"

concepts. Then the two new statistics h and b can be \guessed" by simply looking at

what happens to the area statistic when we apply � (or ��1). We �nd that � sends area

to the bounce statistic b, and ��1 sends area to the generalized Haiman statistic h.
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This suggests a possible approach to other problems in which there are two

variables with the same univariate distribution, but a combinatorial interpretation is

only known for one of the variables. Finding a combinatorial interpretation for the

Kostka-Macdonald coeÆcients [24] provides an example of such a problem. There, the

q-statistic is known (the so-called \cocharge statistic" on tableaux), but the t-statistic

has not been discovered.

2.3 Recursions for C
(m)
n (q; t)

In this section, we prove several recursions for C
(m)
n (q; t) and related sequences.

Of course, the same recursions hold for HC
(m)
n (q; t). These recursions are more con-

venient for some purposes than the summation formula given in x2.2.3. As an ex-

ample, we use the recursion to prove a formula for C
(m)
n (q; 1=q) which shows that

C
(m)
n (q; 1=q) = OC

(m)
n (q; 1=q).

2.3.1 Recursion based on Removing the First Bounce

Our goal here is to modify the idea in the proof of Haglund's recursion (see

x1.4.5) to get a recursion for C
(m)
n (q; t). The main diÆculty is that the bounce path

depends on the prior bouncing history when m > 1, so that we cannot simply remove

the �rst bounce and restart \from scratch." Consequently, we must add more subscripts

that keep track of the lengths of the �rst m vertical moves in the bounce path.

De�nition 2.21. Fix m > 1. De�ne F
(m)
n;v0;v1;:::;vm�1 to be the collection of m-Dyck

paths of height n whose derived bounce paths start with vertical moves of lengths

v0; v1; : : : ; vm�1, in that order. De�ne F
(m)
n;v0;:::;vm�1(q; t) to be the sum of qarea(D)tb(D)

over all paths D 2 F
(m)
n;v0;:::;vm�1 . (An empty sum is de�ned to be zero.) To reduce clutter

in formulas, we will generally omit the superscript (m).

We make the following observations about these de�nitions.

Remark 2.22. (1) If Fn;v0;v1;:::;vm�1 is a nonempty collection of paths, then we must

have v0 > 0, vi � 0 for i > 0, and v0 + � � �+ vm�1 � n.
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(2) If v0 = n and vi = 0 for i > 0, then Fn;n;0;:::;0 consists of the single path D that

goes north n steps and then east mn steps. Hence, Fn;n;0;:::;0(q; t) = qmn(n�1)=2t0.

(3) Consider the collection Fn+1;1;0;:::;0. A path D in this collection starts by going

north one unit and then east m units (since v1 = � � � = vm�1 = 0). At this point,

D has returned to the diagonal x = my. If we look at the rest of the path beyond

this point, we get an arbitrary m-Dyck path D0 of height n. Also, the bounce path

for D0 is the same as the latter part of the bounce path for D (starting with vm).

Note that the prior history in D is immaterial, since vm�1 = � � � = v1 = 0. See

Figure 2.8. We conclude that

tmnC(m)
n (q; t) = Fn+1;1;0;:::;0(q; t):

The extra factor of tmn accounts for the contribution of the �rst m bounces to

b(D), which is not present in b(D0).

Figure 2.8: Removing a trivial bottom row of an m-Dyck path.

(4) There is a version of the formula (2.8) for Fn;v0;:::;vm�1(q; t). Speci�cally,

Fn;v0;:::;vm�1(q; t) =X
(vm;vm+1;:::)

t
P

i�0 iviqm
P

i�0

�vi
2

�Y
i�1

qvi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

:

This equation follows immediately from the combinatorial interpretation of the

summation index v = (v0; v1 : : :) appearing in (2.8) as the lengths of the vertical

segments in the bounce path. Since v0; : : : ; vm�1 are �xed in advance, we need

only sum over the remaining segments vm; vm+1; : : :.
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To state the new recursion, it is convenient to introduce a modi�ed version of

the generating functions Fn;v0;:::;vm�1(q; t). Intuitively, we need to remove the inuence

of v0 on the future bouncing history to obtain a recursion. Assume that v0 > 0 �rst.

De�nition 2.23. For v0 > 0, de�ne En;v0;:::;vm�1 to be the collection of all m-Dyck

paths D of height n with the following properties. First, the bounce path derived from

D starts with vertical moves of lengths v0; : : : ; vm�1. Second, the �rst m� 1 rectangles

R1; : : : ; Rm�1 above the bounce path of D (see Figure 2.5) are all empty. This means

that the subpath in each rectangle goes all the way east before turning north, so that

there are no area cells in the rectangle. Also de�ne

E(m)
n;v0;:::;vm�1(q; t) =

X
D2En;v0;:::;vm�1

qarea(D)tb(D):

The case when v0 = 0 is handled in the following remark.

Remark 2.24. By �lling the empty rectangles R1; : : : ; Rm�1 in a path D 2 En;v0;:::;vm�1

according to the bouncing rules, we deduce that

Fn;v0;:::;vm�1(q; t) = En;v0;:::;vm�1(q; t)

m�1Y
i=1

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � � + vi�m � 1

�
q

when v0 > 0.

(2.13)

This relation gives an exact formula for En;v0;:::;vm�1(q; t) when v0 > 0:

En;v0;:::;vm�1(q; t) =X
(vm;vm+1;:::)

t
P

i�0 iviqm
P

i�0
1
2
vi(vi�1)

Y
i�1

qvi
Pm^i

j=1 (m�j)vi�j
Y
i�m

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

:

(2.14)

Here, we have written m ^ i to denote the minimum of m and i. Note that the validity

of equation (2.14) does not depend on the earlier convention that vi = 0 for all negative

i. Now, if v0 = 0, we simply de�ne En;v0;:::;vm�1(q; t) by formula (2.14).

Remark 2.25. It follows from (2.13) that En+1;1;0;:::;0(q; t) = Fn+1;1;0;:::;0(q; t). There-

fore,

C(m)
n (q; t) = t�mnEn+1;1;0;:::;0(q; t): (2.15)

Thus, the higher-order Catalan sequence can be recovered from the E's.



91

Theorem 2.26. The generating functions En;v0;:::;vm�1(q; t) satisfy the recursion:

En;v0;:::;vm�1(q; t) =

tn�v0qm(
v0
2 )

m�1Y
i=1

qv0vi(m�i)
n�v0�����vm�1X

vm=0

�
vm + � � �+ v0 � 1

vm; vm�1 + � � � + v0 � 1

�
q

En�v0;v1;:::;vm�1;vm(q; t):

(2.16)

The initial conditions are

En;n;0;:::;0(q; t) = qmn(n�1)=2t0

En;0;0;:::;0(q; t) = 0:

Remark 2.27. Observe that we recover Haglund's original recursion when m = 1.

Proof. We obtain the recursion for En;v0;:::;vm�1 by breaking up the summation in (2.14)

based on the value of vm. Consider a �xed choice of vm in the range f0; 1; : : : ; n� v0 �

� � � � vm�1g. Write down (2.14) with n replaced by n � v0 and vk replaced by vk+1 for

all k � 0:

En�v0;v1;:::;vm(q; t) =
X

(vm+1;vm+2;:::)

t
P

i�0 ivi+1qpow1
Y
i�m

�
vi+1 + vi + � � �+ vi+1�m � 1

vi+1; vi + � � �+ vi+1�m � 1

�
q

;

(2.17)

where

pow1 = m
X
i�0

�
vi+1

2

�
+
X
i�1

vi+1

m^iX
j=1

(m� j)vi+1�j :

Replace i by i� 1 in this formula to get

En�v0;v1;:::;vm(q; t) =
X

(vm+1;vm+2;:::)

t
P

i�1(i�1)viqpow2
Y
i>m

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q

;

(2.18)

where

pow2 = m
X
i�1

�
vi
2

�
+
X
i�2

vi

m^(i�1)X
j=1

(m� j)vi�j :

In the original formula for En;v0;:::;vm�1 , we can sum over vm �rst and then sum over the

remaining vj 's. The resulting formula is:

En;v0;:::;vm�1(q; t) =

n�v0�����vm�1X
vm=0

X
(vm+1;vm+2;:::)

t
P

i�0 iviqpow3
Y
i�m

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � � + vi�m � 1

�
q

;
where (2.19)
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pow3 = m
X
i�0

�
vi
2

�
+
X
i�1

vi

m^iX
j=1

(m� j)vi�j :

To go from the formula in (2.18) to the corresponding summand in (2.19), we need to

multiply the former by the expression

t0v0+v1+v2+v3+���qm(
v0
2 )qv1v0(m�1)

mY
i=2

qvi(m�i)v0
�

vm + � � �+ v0 � 1

vm; vm�1 + � � �+ v0 � 1

�
q

:

Doing this multiplication and adding over all choices of vm, we obtain the recursion

stated in (2.16). The initial conditions follow immediately from the de�nitions.

Remark 2.28. It is hoped that (2.16) could be used to prove the conjecture C
(m)
n (q; t) =

SC
(m)
n (q; t). One diÆculty is �nding the analogues of En;v0;:::;vm�1 in the symmetric

function setting. Computer experiments suggest that

En;v0;0;:::;0(q; t) = qm
�v0
2

�
t(m�1)(n�v0) rm(en�v0 [X(1 + q + q2 + � � � + qv0�1)])

��
s
1n�v0

:

In other words, the conjecture is that

En;v0;0;:::;0(q; t) = qm
�v0
2

�
t(m�1)(n�v0) (rm(�(en�v0)))js

1n�v0
;

where � is the unique extension of the function sending pk to

pk(1 + qk + q2k + � � � + qk(v0�1));

whose existence is guaranteed by Theorem 1.20.

However, we have not found a conjectured formula for the general En;v0;:::;vm�1

in terms of the nabla operator.

Remark 2.29. It is clear that we could perform a similar manipulation of (2.8) to obtain

a recursion based on removing the last nontrivial vertical bounce vs. The inductive proof

in x2.2.4 that (2.8) equals HC
(m)
n (q; t) was based on this idea. There is a slight added

complication because one must know s, not just vs, to determine the e�ect of removing

the last bounce on b(D). On the other hand, vs only a�ects the dimensions of one

nontrivial rectangle in Figure 2.5.
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2.3.2 Application: A Formula for the Specialization C
(m)
n (q; 1=q)

We now use the recursion of the preceding subsection to derive an exact formula

for the specialization

E(m)
n;v0;:::;vm�1(q; 1=q):

As an application of this formula, we will prove that

qmn(n�1)=2C(m)
n (q; 1=q) =

1

[mn+ 1]q

�
mn+ n

mn; n

�
q

:

Garsia and Haiman proved the same formula for OC
(m)
n (q; 1=q) in [15]. It follows that

C(m)
n (q; 1=q) = OC(m)

n (q; 1=q):

Fix m, N , and v = (v0; : : : ; vm�1). Our formula for E
(m)
N ;v(q; 1=q) will involve

various intermediate quantities A, B, etc., depending on N , m, and v. If the dependence

on the variables needs to be made explicit, we will write A(N;m; v), B(N;m; v), etc.

The basic formula is

E
(m)
N ;v(q; 1=q) = A0 �B1 �B2 � � � � �Bm; (2.20)

where A0 and each Bj is a certain q-binomial coeÆcient multiplied by a certain power

of q. The precise expressions appear in the next de�nition.

De�nition 2.30. Introduce the following temporary notation, to be used only in this

subsection.

A = A(N;m; v0; : : : ; vm�1) =

�
(m+ 1)N � 1�

Pm�1
k=0 (m� k)vk

N �
Pm�1

k=0 vk

�
q

B = B(N;m; v0; : : : ; vm�1) =

�
(m+ 1)N � 1�

Pm�1
k=0 (m� k)vk

N � 1�
Pm�1

k=0 vk

�
q

P0 = P0(N;m; v0; : : : ; vm�1) = �
m

2
(N2 +N) +

"
m

 
m�1X
k=0

vk

!
� (m� 1)

#
N

+

m�2X
k=0

(m� 1� k)vk +
X

0�j<k�m�1

(j � k)vjvk

Pj = Pj(N;m; v0; : : : ; vm�1) = vm�1 + (j � 1)N

�
m�2X
`=0

min(j � 1;m� 2� `)v` (1 � j � m)
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A0 = A0(N;m; v0; : : : ; vm�1) = AqP0

Bj = Bj(N;m; v0; : : : ; vm�1) = BqP0+Pj (1 � j � m)

Example 2.31. (1) Let m = 1 and v0 = w. Then

E
(1)
N ;w(q; 1=q) = q�(N

2+N)=2+wN

 �
2N � w � 1

N � w;N � 1

�
q

� qw
�
2N � w � 1

N � w � 1; N

�
q

!
:

This is exactly formula (1.20) from Theorem 1.56.

(2) Let m = 2, v0 = w, v1 = x. Then

E
(2)
N ;w;x(q; 1=q) = qpow2

 �
3N � 2w � x� 1

N � w � x; 2N � w � 1

�
q

�(qx + qN+x)

�
3N � 2w � x� 1

N � w � x� 1; 2N � w

�
q

!
;

where pow2 = �(N2 +N) + (2w + 2x� 1)N �w(x � 1):

(3) Let m = 3, v0 = w, v1 = x, v2 = y. Then

E
(3)
N ;w;x;y(q; 1=q) = qpow3

 �
4N � 3w � 2x� y � 1

N � w � x� y; 3N � 2w � x� 1

�
q

�(qy + qy+N�w + qy+2N�w)

�
4N � 3w � 2x� y � 1

N�w�x�y�1; 3N�2w�x

�
q

!
;

where

pow3 = �3(N2 +N)=2 + (3w + 3x+ 3y � 2)N + (y � 1)(�2w � x)� wx:

(4) Let m = 5 and (v0; v1; v2; v3; v4) = (v; w; x; y; z). Then

P1 = z

P2 = z +N � v � w � x

P3 = z + 2N � 2v � 2w � x

P4 = z + 3N � 3v � 2w � x

P5 = z + 4N � 3v � 2w � x:
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Theorem 2.32. With the notation introduced above, we have:

E
(m)
N ;v(q; 1=q) = A0 �B1 �B2 � � � � �Bm: (2.21)

Proof. We will need the following two identities, proved in Lemma 1.54 and Lemma 1.55

from Chapter 1.

D�EX
i=0

�
C + i

C; i

�
q

�
D � i

E;D � i�E

�
q

q(E+1)i =

�
C +D + 1

D �E;C + 1 +E

�
q

: (2.22)

q�C

 �
C +D

C;D

�
q

�

�
C +D

C � 1;D + 1

�
q

!
=

�
C +D

C;D

�
q

� qD�C+1

�
C +D

C � 1;D + 1

�
q

: (2.23)

To prove (2.21), we need to check that the right side satis�es the same initial

conditions and recursion that the specialization E
(m)
N ;v(q; 1=q) satis�es.

Step 1. The �rst step is to check that the right side of (2.21) satis�es the specialized

initial conditions

E
(m)
N ;0;0;:::;0(q; 1=q) = 0:

E
(m)
N ;N;0;:::;0(q; 1=q) = qmN(N�1)=2

Consider the �rst initial condition, where v0 = � � � = vm�1 = 0. For these values of the

vi's, we obtain

A =

�
mN +N � 1

N;mN � 1

�
q

B =

�
mN +N � 1

N � 1;mN

�
q

P0 = �
m

2
(N2 +N)�mN +N

Pj = (j � 1)N:

Then the right side of (2.21), namely A0 �B1 � � � � �Bm, evaluates to

qP0

 �
mN +N � 1

N;mN � 1

�
q

� (1 + qN + q2N + � � �+ q(m�1)N )

�
mN +N � 1

N � 1;mN

�
q

!
:

After factoring, this expression can be written

qP0
[mN +N � 1]!q

[N � 1]!q[mN � 1]!q

 
1

[N ]q
�

1 + qN + q2N + � � �+ q(m�1)N

[mN ]q

!
:
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The parenthesized factor can be written

1� q

1� qN
�

(1� qmN )=(1� qN )

(1� qmN )=(1 � q)
= 0;

and so the whole expression is zero, as desired.

The other initial condition, where v0 = N and vi = 0 for i > 0, is easier to

check. From the de�nitions, we have

A =

�
(m+ 1)N � 1�mN

N �N

�
q

= 1

B =

�
(m+ 1)N � 1�mN

N � 1�N

�
q

= 0

P0 = �
m

2
(N2 +N) + (mN � (m� 1))N + (m� 1)N

=
mN(N � 1)

2
:

Thus, we immediately calculate

A0 �B1 � � � � �Bm = 1qP0 � 0 = qmN(N�1)=2:

Step 2. The next step is to check that the right side of (2.21) satis�es the recursion

(2.16) with t specialized to 1=q. After setting t = 1=q and simplifying, this recursion can

be written

E
(m)
N ;v0;:::;vm�1

(q; 1=q) = qpow
N�v0�:::�vm�1X

i=0

�
C + i

C; i

�
q

E
(m)
N�v0;v1;v2:::;vm�1;i

(q; 1=q); (2.24)

where

pow = v0 �N +m(v20 � v0)=2 +
m�1X
k=1

(m� k)v0vk

and C = v0 + v1 + � � � + vm�1 � 1:

The proof will be �nished if we can show this same relation holds with the E's replaced

by the appropriate formulas from the right side of (2.21). Speci�cally, write A0 for

A(N;m; v0; : : : ; vm�1), write P
0
j for Pj(N;m; v0; : : : ; vm�1), and so forth. Write A00 for

A(N � v0;m; v1; : : : ; vm�1; i), write P
00
j for Pj(N � v0;m; v1; : : : ; vm�1; i), and so forth.

Then we must show that the quantity

A00 �B0
1 �B0

2 � � � � �B0
m (2.25)
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is equal to the quantity

qpow
N�v0�:::�vm�1X

i=0

�
C + i

C; i

�
q

�
A000 �B00

1 �B00
2 � � � � �B00

m

�
: (2.26)

To show this, we write the latter expression as the sum of m + 1 smaller expressions,

namely

qpow
N�v0�:::�vm�1X

i=0

�
C + i

C; i

�
q

A000

and (for 1 � j � m)

qpow
N�v0�:::�vm�1X

i=0

�
C + i

C; i

�
q

(�B00
j ):

Each of these m+1 expressions can be evaluated (see below) using identity (2.22). The

resulting sum is almost the desired quantity

A00 �B0
1 �B0

2 � � � � �B0
m:

More speci�cally, for 2 � j � m, the expression involving �B00
j will evaluate to �B0

j�1.

On the other hand, the expression involving �B00
1 will evaluate to �B0

m times an un-

wanted power of q. Similarly, the expression involving A000 will evaluate to A00 times

another unwanted power of q. Finally, identity (2.23) will show that these last two terms

are in fact equal to A00 �B0
m without the unwanted powers of q! This will complete the

proof of the formula (2.21).

Step 3. We indicate how to evaluate the expression

qpow
N�v0�:::�vm�1X

i=0

�
C + i

C; i

�
q

(A000) (2.27)

from Step 2. The �nal answer will be q�(N�v0�����vm�1)A00.

We must �rst verify the algebraic identity

P 000 + pow = P 00 � (N � v0 � � � � � vm�1) + i

"
mN �

m�1X
k=0

(m� k)vk

#
: (2.28)
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To do this, recall that

P 00 = P0(N;m; v0; v1; : : : ; vm�1)

= �
m

2
(N2 +N) +

"
m

 
m�1X
k=0

vk

!
� (m� 1)

#
N

+

m�2X
k=0

(m� 1� k)vk +
X

0�j<k�m�1

(j � k)vjvk:

Now, P 000 = P0(N�v0;m; v1; : : : ; vm�1; i). ReplacingN byN�v0, vi by vi+1 for i < m�1,

and vm�1 by i in the above formula, we have

P 000 = �
m

2
((N � v0)

2 + (N � v0)) +

"
m

 
m�1X
k=1

vk + i

!
� (m� 1)

#
(N � v0)

+
m�2X
k=0

(m� 1� k)vk+1 +
X

0�j<k�m�2

(j � k)vj+1vk+1

+
X

0�j<k=m�1

(j � k)vj+1i:

Let us �rst consider the terms involving i on either side of (2.28). From the above

formulas, the terms divisible by i in P 000 + pow are

im(N � v0) +

m�2X
j=0

(j � (m� 1))vj+1i = im(N � v0) +

m�1X
k=1

(k �m)vki

= i

"
mN �

m�1X
k=0

(m� k)vk

#
:

Exactly the same terms involve i on the right side of (2.28).

Next, consider the terms involving vjvk on either side of (2.28), where 0 � j <

k � m � 1. If j > 0, comparison of the above formulas for P 00 and P 000 shows that the

term (j � k)vjvk appears on each side. If j = 0, the coeÆcient of v0vk in P 000 + pow

is �m + (m � k) = �k, while the coeÆcient on the other side (coming from P 00) is

0� k = �k. Thus, each side of (2.28) has the term �kv0vk.

One can similarly verify that the terms involving other combinations of the

parameters vj and N are the same on either side of (2.28). These routine algebraic

veri�cations will be left to the reader.
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Using identity (2.28) and expanding the de�nition of A000 , the expression (2.27)

can be written

qP
0
0�(N�v0�����vm�1)

D�EX
i=0

�
C + i

C; i

�
q

�
D � i

E;D �E � i

�
q

qi(E+1);

where

D = (m+ 1)N � 1�
m�1X
k=0

(m+ 1� k)vk;

E = mN � 1�
m�1X
k=0

(m� k)vk; and

D �E = N � v0 � v1 � � � � � vm�1:

Using the identity (2.22), this new expression becomes

q�(N�v0�����vm�1)qP
0
0

�
C +D + 1

D �E;C + 1 +E

�
q

= q�(N�v0�����vm�1)A00:

Step 4. We indicate how to evaluate the expression

qpow
N�v0�:::�vm�1X

i=0

�
C + i

C; i

�
q

(�B00
j ) (2.29)

from Step 2. The answer will be �B0
j�1 for j > 1; it will be �B0qP

0
0�(N�v0�����vm�1) for

j = 1.

The calculation is similar to the one in Step 3. Using the de�nition of B00
j and

and the identity (2.28), we can rewrite (2.29) as

�qP
0
0�(N�v0�����vm�1)

D�E+1X
i=0

�
C + i

C; i

�
q

�
D � i

E;D �E � i

�
q

qiEqP
00
j ; (2.30)

where we now set

D = (m+ 1)N � 1�
m�1X
k=0

(m+ 1� k)vk;

E = mN �
m�1X
k=0

(m� k)vk; and

D �E = N � v0 � v1 � � � � � vm�1 � 1:
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The summand where i = D�E+1 is zero, so we may adjust the upper limit of the sum

to be i = D �E instead. To continue simplifying, one must �rst verify the identity

P 0j�1 = P 00j � i� (N � v0 � � � � � vm�1) (j > 1):

The proof of this identity involves algebraic manipulations similar to those used to prove

(2.28). These manipulations will be left to the reader.

Assume j > 1 �rst. Using the last identity to eliminate P 00j , the expression

(2.30) becomes

�qP
0
0+P

0
j�1

D�EX
i=0

�
C + i

C; i

�
q

�
D � i

E;D �E � i

�
q

qi(E+1):

Using the identity (2.22), the sum (without the outside power of q) evaluates to B0.

Thus, when j > 1, the expression (2.29) evaluates to �B0
j�1 as claimed.

Now assume j = 1. Since P 001 = i, the expression (2.30) becomes

�qP
0
0�(N�v0�����vm�1)

D�EX
i=0

�
C + i

C; i

�
q

�
D � i

E;D �E � i

�
q

qi(E+1):

Using the identity (2.22), this becomes

�qP
0
0�(N�v0�����vm�1)B0

as claimed.

Step 5. Let us recap the preceding calculations. We have evaluated the expression (2.26),

hoping to obtain the answer

(A00 �B0
m)�B0

1 �B0
2 � � � � �B0

m�1

from (2.25). Instead, we obtained the answer

q�(N�v0�����vm�1)(A0qP
0
0 �B0qP

0
0)�B0

1 �B0
2 � � � � �B0

m�1:

Now, use the identity (2.23), setting

C = N � v0 � � � � � vm�1 and

D = mN � 1�
m�1X
k=0

(m� 1� k)vk:
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The result is

q�(N�v0�����vm�1)(A0 �B0) = A0 � qP
0
mB0;

since one can check that P 0m = D � C + 1 here. Multiplying by qP
0
0 , we see that

q�(N�v0�����vm�1)(A0qP
0
0 �B0qP

0
0) = (A00 �B0

m);

so that (2.26) does indeed evaluate to the desired answer (2.25). This completes the

proof.

Corollary 2.33. For all m;n � 1,

qmn(n�1)=2C(m)
n (q; 1=q) =

1

[mn+ 1]q

�
mn+ n

mn; n

�
q

:

In particular, C
(m)
n (q; 1=q) = OC

(m)
n (q; 1=q).

Proof. From (2.15) with t = 1=q, we have

C(m)
n (q; 1=q) = qmnE

(m)
n+1;1;0;:::;0(q; 1=q):

Now, we use the formula just proved for the E's with N = n+ 1, v0 = 1, and vi = 0 for

i > 0. The reader may verify that, with these substitutions, we obtain

qmn(n�1)=2C(m)
n (q; 1=q) =

qn�nm

0
@�mn+ n

mn; n

�
q

�

�
mn+ n

n� 1;mn+ 1

�
q

�

0
@m�1X

j=0

qnj+�(j=m�1)

1
A
1
A :

The expression in the curly braces can be written�
mn+ n

mn; n

�
q

�

 
1�

[n]q
Pm�1

j=0 qnj+�(j=m�1)

[mn+ 1]q

!
;

which in turn simpli�es to�
mn+ n

mn; n

�
q

�

�Pmn
k=0 q

k �
Pmn

k=0 q
k�(k 6= mn� n)

[mn+ 1]q

�
=

1

[mn+ 1]q

�
mn+ n

mn; n

�
q

qmn�n:

The leftover power of q is exactly what is needed to cancel the outside power qn�nm.

Thus, we obtain the desired result

qmn(n�1)=2C(m)
n (q; 1=q) =

1

[mn+ 1]q

�
mn+ n

mn; n

�
q

:
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The last assertion of the corollary follows from the identity

qmn(n�1)=2OC(m)
n (q; 1=q) =

1

[mn+ 1]q

�
mn+ n

mn; n

�
q

:

proved by Garsia and Haiman in [15].

2.3.3 Recursions for C
(m)
n (q; t) based on Removing the Last Row

We now present one more recursion that is not based directly on formula (2.8).

This recursion is simpler in form than (2.16) because it has only four terms. However,

one must keep track of several new statistics in this recursion.

We �rst introduce some temporary notation.

De�nition 2.34. Let D be an m-Dyck path of height n. Let the bounce path of D

have successive vertical moves (v0; v1; : : : ; vs) and horizontal moves (h0; h1; : : :) as usual.

Here, vs is the last nonzero vertical move. De�ne

Q(D) = area(D);

T (D) = b(D);

Y (D) = s;

Zi(D) = vs�i for i � 0;

K(D) = the total number of area cells in the top row of D;

W (D) = the number of area cells in the top row of D

left of the last vertical move of the bounce path.

Thus, Y (D) is one less than the total number of bounces needed to reach the top rim; the

statistics Zi(D) record the history of vertical moves near the end of the bounce path; and

W (D) counts the number of \extra" cells in the top row left of the bounce path. De�ne

D
(m)
n;k to be the collection of paths D 2 D

(m)
n with K(D) = k, for 0 � k � m(n� 1).

Finally, de�ne

Cn;k(q; t; y; z0; : : : ; zm�1; w) =
X

D2D
(m)
n;k

qQ(D)tT (D)yY (D)wW (D)
m�1Y
i=0

z
Zi(D)
i : (2.31)

(We suppress the dependence on m from the notation.)
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Example 2.35. The 2-Dyck path E in Figure 2.3 has Q(E) = 41, T (E) = 30, Y (E) = 5,

Z0(E) = 3, Z1(E) = 1, W (E) = 1, and K(E) = 8. The 3-Dyck path D in Figure 2.4

has Q(D) = 23, T (D) = 29, Y (D) = 8, Z0(D) = 1, Z1(D) = 1, Z2(D) = 0, W (D) = 0,

and K(D) = 5.

Theorem 2.36. For all m and n and all k with 0 � k < m(n�1), we have the recursion

Cn;k(q; t; y; ~z; w) =z0q
kCn�1;k�m(q; t; ty; ~z; w)

+ q�1w�1 (Cn;k+1(q; t; y; ~z; w)� Cn;k+1(q; t; y; ~z; 0))

+ q�1tyz0z
�1
1 w�2Cn;k+1(q; t; y; wz1; wz2; : : : ; wzm�1; w; 0):

(2.32)

The initial condition is

Cn;m(n�1)(q; t; y; z0; : : : ; zm�1; w) = qmn(n�1)=2zn0 :

This recursion and initial condition uniquely determine the multivariable generating func-

tions Cn;k.

Proof. Consider the initial condition �rst. If k = m(n � 1), there is only one path

D0 2 D
(m)
n;m(n�1), which goes north n steps and then east mn steps. We obtain

Cn;m(n�1)(q; t; y; z0; : : : ; zm�1; w) = qmn(n�1)=2zn0 ;

since, by inspection, D0 has area mn(n� 1)=2 and a single nontrivial bounce of height

n.

Write ~z to denote (z0; : : : ; zm�1). We now give a combinatorial proof of (2.32).

The idea is to classify a path D 2 D
(m)
n;k based on what happens at the left edge of the

top row of D. Exactly one of the following three cases must occur:

� Case 1: The path D reaches the top row by taking two consecutive north steps.

See Figure 2.3 for an example.

� Case 2: The path D reaches the top row by taking a north step preceded by an

east step, AND this east step did not block the progress of the next-to-last vertical

bounce move. This means that adding one more area cell to the top row of D

would not change the derived bounce path. See Figure 2.9 for an example.
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� Case 3: The path D reaches the top row by taking a north step preceded by

an east step, AND this east step did block the progress of the next-to-last vertical

bounce move. This means that adding one more area cell to the top row of D would

enable the next-to-last bounce to reach the top rim, so that the total number of

bounces would decrease by one. See Figure 2.4 for an example.

c

2i

i

i 0 2 3 4 5
2 13v

1
3 (0)

6

2 45 3 3 4 (3)h
1

m = 2, n = 12, area(D) = 42, b(D) = 30

Figure 2.9: A path satisfying case 2 in the recursion analysis.

The three terms on the right side of (2.32) are the respective generating func-

tions for the paths in the three cases above.

To see this, �rst consider paths satisfying Case 1. We can uniquely construct

each such pathD by �rst picking a pathD0 of height n�1 with k�m area cells in row n�1,

and then placing k new area cells in row n to obtain D. See Figures 2.10 and 2.3 (where

D = E). The generating function for the choice of D0 is Cn�1;k�m(q; t; y; ~z; w). Adding

the new row inuences the statistics as follows. The power of q increases by k since we

added k new area cells. Let (v00; : : : ; v
0
s0) be the vertical moves in the bounce path for D0.

It is clear from Figure 2.10 that the bounce path ofD will have vertical moves (v0; : : : ; vs),

where s = s0, vi = v0i for i < s, and vs = v0s0+1. Since only the last vertical move changed,

all horizontal moves before reaching the top rim are the same. Since vs = v0s0 + 1, the

power of z0 should increase by one when we pass from D0 to D. Since vi = v0i for i < s,
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the powers of z1; z2; : : : should not change. Similarly, since s = s0, the power of y does

not change in the passage from D0 to D. The power of w does not change either, since

there are the same number of extra cells left of the last vertical move after adding the

new row. Finally, we have b(D) =
P

i�0 ivi =
P

i�0 iv
0
i+ s = b(D0)+ s, since vs = v0s+1.

We can increase the power of t in the generating function by exactly s if we replace y

by ty in Cn�1;k�m(q; t; y; ~z; w). To see this, recall that Y (D0) = s0 = s and compare to

de�nition (2.31) [with D there replaced by D0]. Putting all this together, we see that

the generating function for paths in Case 1 is precisely z0q
kCn�1;k�m(q; t; ty; ~z; w).

new row

k − m

k

Figure 2.10: Constructing a path in Case 1 by adding a row.

We will treat the next two cases together. Note that all paths D satisfying

Case 2 or Case 3 can be uniquely constructed by choosing a path D0 2 D
(m)
n;k+1 and then

removing the leftmost area cell in the top row of D0. The generating function for the

paths D0 is Cn;k+1(q; t; y; ~z; w). However, to determine the e�ect of the cell removal on

the bounce statistic, we must know whether the removed cell was an \extra" cell or

one that was part of the bounce path. This complication forces the introduction of two

separate cases.

If w(D0) = 0, then D0 has no extra area cells in its top row. The path D

constructed from D0 therefore belongs to case 3. Consider the de�nition (2.31) with D
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replaced by D0 and k replaced by k + 1. If we substitute w = 0 in that de�nition (with

the usual convention that 00 = 1), we are left with the generating function for just those

paths D0 with w(D0) = 0. By the sum rule, the generating function for just those paths

D0 with w(D0) > 0 must be Cn;k+1(q; t; y; ~z; w) � Cn;k+1(q; t; y; ~z; 0).

In case 2, we start with a path D0 counted by the latter generating function.

For example, D0 could be the path D shown in Figure 2.9 with the cell c adjoined. To go

from D0 to D, we remove the cell in position c. This clearly decreases Q(D0) and W (D0)

by 1, but does not a�ect the other statistics that are determined by the bounce path. It

immediately follows that the generating function for the paths D in case 2 is

q�1w�1 (Cn;k+1(q; t; y; ~z; w)� Cn;k+1(q; t; y; ~z; 0))

To get a path D belonging to case 3, on the other hand, we must have started

with a path D0 such that w(D0) = 0. For example, the path D0 in Figure 2.11 is used to

construct the path D in Figure 2.4.

c

v
h

i

i

i 0 2 3 4 5
1 111 2

1
0 0

6

1 2 3 3 4 3 2
2
7 8 9

2
(0)
(2)

(0)
(2)

Figure 2.11: Constructing a path in Case 3 by deleting one cell.

The generating function for the choice of D0 is Cn;k+1(q; t; y; ~z; 0). We obtain D

from D0 by removing the leftmost area cell c in the top row of D0. To see how this a�ects

the statistics, compare Figure 2.11 to Figure 2.4. Clearly, the area Q(D) = Q(D0) � 1

because of the removed cell. Let (v00; : : : ; v
0
s0) be the lengths of the vertical moves in the
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bounce path for D0; let (v0; : : : ; vs) be the lengths of the vertical moves in the bounce

path for D. In this case, removing the cell forces the last vertical move in D0 to be

shortened by 1 unit, so that there must be a new vertical move of length 1 afterwards

in D. Thus, vi = v0i for i < s0, vs0 = v0s0 � 1, s = s0 + 1, and vs = 1. We �nd that

b(D)� b(D0) = (s0+1) �1� s0 �1 = 1, so that the bounce statistic has increased by 1. We

also have Y (D) = Y (D0) + 1, Z0(D) = 1, Z1(D) = Z0(D
0) � 1, and Zi(D) = Zi�1(D

0)

for i � 2. Finally, we must compute the new value W (D). After the bounce path for

D takes the vertical step of length vs0 = v0s0 � 1 (this step is blocked by the east step

introduced by the removed cell), the bounce path moves east

Z1(D) + Z2(D) + � � � + Zm(D) = Z0(D
0)� 1 + Z1(D

0) + � � �+ Zm�1(D
0) units.

All the area cells above this horizontal move were present in D0; in D, all these cells

exist except the leftmost cell c. This implies that

W (D) = Z0(D
0) + � � �+ Zm�1(D

0)� 2:

Consider the last term on the right side of (2.32):

q�1tyz0z
�1
1 w�2Cn;k+1(q; t; y; wz1; wz2; : : : ; wzm�1; w; 0):

By the de�nition in (2.31) and the comments above,

Cn;k+1(q; t; y; z0; : : : ; zm�1; 0) =
X

D0as in Case 3

qQ(D0)tT (D
0)yY (D0)

m�1Y
i=0

z
Zi(D

0)
i :

Therefore, making the indicated substitutions for the variables,

q�1tyz0z
�1
1 w�2Cn;k+1(q; t; y; wz1; wz2; : : : ; wzm�1; w; 0)

=
X
D0

qQ(D0)�1tT (D
0)+1yY (D0)+1z10z

Z0(D0)�1
1 z

Z1(D0)
2 � � � z

Zm�2(D0)
m�1 wpow

(where pow = Z0(D
0) + � � �+ Zm�2(D

0) + Zm�1(D
0)� 2)

=
X
D

qQ(D)tT (D)yY (D)z
Z0(D)
0 � � � z

Zm�1(D)
m�1 wW (D);

(2.33)

where the sums extend over the paths D0 and D appearing in the description of case 3

above. Thus, the third term in (2.32) is the correct generating function for the paths

belonging to case 3. This completes the proof of the recursion.
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Remark 2.37. The given recursion (2.32) keeps track of the last m vertical bounces

Z0(D), ... , Zm�1(D). This is necessary to determine what happens to the other statistics

in certain cases. Though it is not necessary here, we clearly could add even more variables

zm; : : : to keep track of the earlier bounce moves Zm(D); : : : if we wished. Later (x2.4),

we shall consider a more general recursion in which it becomes necessary to keep track

of Zm(D).

Remark 2.38. A similar recursion can be proved for a suitable generalization of HC
(m)
n .

We do not give the details of the proof, which are quite messy, but merely list the

appropriate reinterpretations of the statistics. In this setting, one should take

Q(D) = h(D);

T (D) = area(D);

Y (D) = max
0�i<n

i(D);

Zi(D) = jfj : j(D) = Y (D)� igj for i � 0;

K(D) = h(D)� h(D0);where D0 is obtained from D by

removing the rightmost value Y (D);

W (D) = the number of symbols in fY (D)� 1; : : : ; Y (D)�mg appearing

in (D) after the last occurrence of Y (D).

This gives an alternate way of proving that C
(m)
n (q; t) = HC

(m)
n (q; t).

2.4 Trivariate Catalan Sequences

We now introduce three-variable sequences C
(m)
n (q; t; r) that generalize the

higher q; t-Catalan sequences. Recall from Chapter 1 that�
c+ d

c

�
x;y

=

�
c+ d

c; d

�
x;y

=
X

w2R(0c1d)

xinv(w)ycoinv(w) =
X

P2R(c;d)

x~a(p)ya(p):

De�nition 2.39. We introduce a new statistic area0 on m-Dyck paths D of height n

as follows. Given D, draw the bounce path of D and the associated rectangles Ri as in

Figure 2.5. Let R0i denote the rectangle Ri without its leftmost column. De�ne area0(D)
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to be the number of complete cells below the bounce path of D plus the number of cells

inside the rectangles R0i and above the path D. By contrast, area(D) is the number of

complete cells below the bounce path of D plus the number of cells inside the rectangles

R0i and below the path D. For each m and n, de�ne

C(m)
n (q; t; r) =

X
D2D

(m)
n

qarea(D)tb(D)rarea
0(D):
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m = 2, n = 12, area(E) = 41, area’(E) = 44, b(E) = 30

Figure 2.12: Visualizing the three statistics as counting cells.

See Figure 2.12 for an example. In this �gure, cells below the bounce path

contributing to both area and area0 are labelled by their weight qr. Cells above the

bounce path but below them-Dyck path contribute only to area and are labelled q. Cells

inside the rectangles R0i but above the m-Dyck path are labelled r. Finally, Figure 2.12

shows how we can interpret the bounce statistic b(D) as counting certain cells in the

picture as well. Speci�cally, we label each cell in the column above a vertical bounce

move with t. Equation (2.6) shows that the number of such factors t is exactly b(D).

Theorem 2.40 (Symmetry between area and area0).

C(m)
n (q; t; r) = C(m)

n (r; t; q):

Proof. The proof can be read o� from Figure 2.12. For, we can interchange the number

of cells labelled q and the number of cells labelled r by merely rotating the contents of
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each shortened rectangle R0i by 180Æ. Note that this rotation will not a�ect the bounce

path, since it does not a�ect the leftmost columns of the full rectangles Ri. The image

of the path in Figure 2.12 under this involution is shown in Figure 2.13.
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m = 2, n = 12, area(E’) = 44, area’(E’) = 41, b(E’) = 30

Figure 2.13: Interchanging area and area0 by ipping rectangles.

It is easy to incorporate area0 into formula (2.8).

Theorem 2.41. We have

C(m)
n (q; t; r) =X

v2V
(m)
n

t
P

i�0 ivi(qr)m
P

i�0
1
2
vi(vi�1)

Y
i�1

(qr)vi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � � + vi�m � 1

�
q;r

:

(2.34)

Proof. The new formula follows by recalling that the factors
�
vi+vi�1+���+vi�m�1
vi;vi�1+���+vi�m�1

�
q
keep

track of the area cells below the path in the rectangles R0i, whereas the remaining powers

of q in (2.8) count the cells below the bounce path. Hence, to keep track of area0, it

suÆces to replace the latter occurrences of q by qr and to use q; r-binomial coeÆcients

in place of q-binomial coeÆcients.

The recursion in x2.3.1 is also easily modi�ed.
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De�nition 2.42. De�ne

En;v0;:::;vm�1(q; t; r) =X
(vm ;vm+1;:::)

t
P

i�0 ivi(qr)pow1rpow2
Y
i�m

�
vi + vi�1 + � � � + vi�m � 1

vi; vi�1 + � � �+ vi�m � 1

�
q;r

;
(2.35)

where

pow1 = m
X
i�0

1

2
vi(vi � 1) +

X
i�1

vi

m^iX
j=1

(m� j)vi�j ; and

pow2 =

m�1X
i=1

vi

0
@
0
@ i�1X

j=0

vj

1
A� 1

1
A :

The extra power rpow2 accounts for the cells in the �rst m� 1 rectangles R0i, which all

contribute to the r-statistic.

Theorem 2.43. We have the recursion

En;v0;:::;vm�1(q; t; r) =

tn�v0(qr)pow3

n�v0�����vm�1X
vm=0

rpow4

�
vm + � � �+ v0 � 1

vm; vm�1 + � � �+ v0 � 1

�
q;r

En�v0;v1;:::;vm�1;vm(q; t; r);

(2.36)

where

pow3 = m

�
v0
2

�
+

m�1X
i=1

v0vi(m� i); and

pow4 = v0(v1 + � � �+ vm�1)� v1 � vm(vm�1 + � � �+ v0 � 1):

The initial condition is

En;n;0;:::;0(q; t; r) = (qr)mn(n�1)=2t0:

Proof. The proof is the same as for the �rst recursion. It is easy to see that the powers

of r are correct.

The recursion from x2.3.3 requires a bit more work.
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De�nition 2.44. For an m-Dyck path D, de�ne R(D) = area0(D), and set

Cn;k(q; r; t; y; z0; : : : ; zm; w) =
X

D2D
(m)
n;k

qQ(D)rR(D)tT (D)yY (D)wW (D)
mY
i=0

z
Zi(D)
i : (2.37)

Observe that this generating function, unlike the original, keeps track of Zm(D) as well

as Zi(D) for i < m. We need to make one technical adjustment in the de�nition of Zm.

If D0 is the special path that goes north n steps and east mn steps, set Zm(D0) = 1; for

all other paths, de�ne Zm(D) as in x2.3.3.

Theorem 2.45. If 0 � k < m(n� 1), then

Cn;k(q; r; t; y; ~z; w) =

z0q
krk�1Cn�1;k�m(q; r; t; ty; z0; rz1; : : : ; rzm; r

�2w)

+ q�1w�1r+1 (Cn;k+1(q; r; t; y; ~z; w) � Cn;k+1(q; r; t; y; ~z; 0))

+ q�1tyz0z
�1
1 w�2r2Cn;k+1(q; r; t; y; r

�1wz1; r
�2wz2; : : : ; r

�2wzm; r
�1; 0):

(2.38)

The initial condition is

Cn;k(q; r; t; y; ~z; w) = (qr)mn(n�1)=2zn0 z
1
m when k = m(n� 1).

Proof. The initial condition follows easily from the preceding de�nition. To verify the

new recursion, we need only check the correctness of the powers of r and zm. We look

at three cases, as in x2.3.3. In case 1, we go from D0 2 D
(m)
n�1;k�m to D 2 D

(m)
n;k by

adding a new top row with k area cells. By de�nition, Zm(D
0) = Zm(D). [Note that

the technical adjustment made to Zm(D0) has no e�ect here, since k < m(n� 1) implies

that (k �m) < m((n � 1) � 1), hence D0 6= D0 and D 6= D0.] What happens to area0

when we pass from D0 to D? In the new top row, k �W (D) of the k new area cells are

below the bounce path for D, hence contribute to area0. The last rectangle Rs has also

gained a new top row, which contains hs�1 = vs�1 + � � �+ vs�m cells. Of these cells, the

one in the leftmost column does not count towards area0, nor do the W (D) new cells

below the path D. These observations explain why we replace z1; : : : ; zm by rz1; : : : ; rzm

(leaving z0 alone) and multiply by rk�1 in the term

z0q
krk�1Cn�1;k�m(q; r; t; ty; z0; rz1; : : : ; rzm; r

�2w):
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For, the net gain in the power of r is

Z1(D
0) + � � �+ Zm(D

0) + k � 1� 2W (D0) =

vs�1(D) + � � �+ vs�m(D) + (k �W (D))� (W (D) + 1);

as required.

The term from Case 2, namely

q�1w�1r+1 (Cn;k+1(q; r; t; y; ~z; w)� Cn;k+1(q; r; t; y; ~z; 0)) ;

is the easiest to derive. Recall that we go from D0 to D by removing the leftmost

ordinary area cell in the top row of D0, which is not below the bounce path of D0 or D.

But \removing" this cell from D0 causes the cell to contribute to area0 instead, since it

belonges to one of the rectangles R0 and is now above D. Thus, we have an extra factor

r+1 in the generating function. As for zm, note that D
0 6= D0 sinceW (D0) > 0 =W (D0),

and D 6= D0 since k < k + 1 � m(n� 1). Thus, Zm(D
0) = Zm(D).

Finally, consider the term from Case 3, namely

q�1tyz0z
�1
1 w�2r2Cn;k+1(q; r; t; y; r

�1wz1; r
�2wz2; : : : ; r

�2wzm; r
�1; 0):

In this case, we go from D0 to D by removing the leftmost ordinary area cell c in the top

row of D0, causing a change in the end of the bounce path. (See Figures 2.11 and 2.4.)

Speci�cally, the bounce path of D has a new terminating vertical move vs of length 1,

and the previous vertical move vs�1 is one less than the corresponding move v0s�1 in D
0.

Note that the top row of the last rectangle R�s�1 in D
0 does not belong to the rectangle

Rs�1 in D. Every cell in the top row of R�s�1, except the leftmost one, contributed

to R(D0), because w(D0) = 0. The number of contributing cells is one less than the

horizontal dimension of R�s�1; this dimension is Z1(D
0) + � � � + Zm(D

0). The conclusion

is that R(D) drops by

(Z1(D
0) + � � �+ Zm(D

0)� 1) (2.39)

as a result of the lost row in Rs�1.

On the other hand, consider cells in the top row of D0 that are to the right of

the bounce path in D0. After removing cell c from D0, the new bounce path for D stops

at the southwest corner of c, then goes east for a distance of

Z0(D) + � � �+ Zm�1(D) = (Z0(D
0)� 1) + Z1(D

0) + � � �+ Zm�1(D
0)
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units, then goes north one unit. The cells in the top row above this last east step used

to count towards area0(D0), being below the bounce path of D0, but will no longer count

towards area0(D). In more detail, cell c does not count towards area0(D) because it is

in the leftmost column of its rectangle. The other cells do not count towards area0(D)

because they count towards ordinary area instead. We conclude that R(D) drops by an

additional

Z0(D
0) + � � �+ Zm�1(D

0)� 1 (2.40)

as a result of the change in this part of the bounce path. The total change is

R(D)�R(D0) = �(1Z0(D
0) + 2Z1(D

0) + � � �+ 2Zm�1(D
0) + 1Zm(D

0)) + 2:

This change is modelled algebraically by the additional occurrences of r in the expression

q�1tyz0z
�1
1 w�2r2Cn;k+1(q; r; t; y; r

�1wz1; r
�2wz2; : : : ; r

�2wzm; r
�1; 0):

The argument in the last two paragraphs is correct, unless R�s�1 has width zero.

In this situation, there is no leftmost column in R�s�1, so we should not have subtracted

1 in (2.39). But it is easy to see that this situation occurs if and only if D0 = D0. Then

our technical convention that Zm(D0) = +1 causes (2.39) to be correct after all, and the

validity of (2.40) is not a�ected either. Since the new value Zm(D) comes from the old

value Zm�1(D
0) (not from Zm(D

0)), the technical convention for Zm(D0) does not a�ect

the correctness of the values of Zm(D) calculated using the recursion. This completes

the proof of the new recursion.

Finally, we describe an analogous way of adding a third statistic to the other

combinatorial sequence HC
(m)
n (q; t). We can \guess" what this statistic should be by

seeing what happens to area0 when we apply the bijection  from x2.2.5. We are led to

the following formula.

De�nition 2.46. For an m-Dyck path of height n, de�ne

h0(D) =
X

0�i<j<n

m�1X
k=0

� (i(D)� j(D) + k 2 f�1; 0; 1; : : : ;m� 1g)�
n�1X
i=0

�(i(D) > 0):



115

The �rst sum is similar to the one appearing in h(D). The second sum that is

subtracted may look surprising, but it arises from the fact that the leftmost column of

each rectangle Ri does not count towards area
0. Note that the total number of cells in

these columns is n� v0(�(D)) =
Pn�1

i=0 �(i(D) > 0).

There is a formula analogous to (2.4) for h0(D).

De�nition 2.47. De�ne sc0m : Z! Z by

sc0m(p) =

8>><
>>:

m� p for 0 � p � m;

m+ 1 + p for �m � p � �1;

0 for other p.

(2.41)

De�ne adj0 : Z! Z by adj0(p) = �1 for p > 0 and adj0(p) = 0 for other p. We have

h0(D) =
X

0�i<j<n

sc0m(i(D)� j(D)) +
n�1X
i=0

adj0(i):

The proof is the same as the corresponding proof of (2.4).

Finally, de�ne

HC(m)
n (q; t; r) =

X
D2D

(m)
n

qh(D)tarea(D)rh
0(D):

Theorem 2.48.

HC(m)
n (q; t; r) =X

v2V
(m)
n

t
P

i�0 ivi(qr)m
P

i�0
1
2
vi(vi�1)

Y
i�1

(qr)vi
Pm

j=1(m�j)vi�j

�
vi + vi�1 + � � �+ vi�m � 1

vi; vi�1 + � � � + vi�m � 1

�
q;r

;

(2.42)

and hence HC
(m)
n (q; t; r) = C

(m)
n (q; t; r): Moreover, the bijection � introduced in x2.2.5

maps the ordered triple of statistics (h; area; h0) to the ordered triple (area; b; area0) (sim-

ilarly for  = ��1).

Proof. As in x2.2.4, we proceed by induction on the largest symbol s appearing in (D).

When s = 0,  must consist of n zeroes, and h0(D) = mn(n� 1)=2. This is the same as

the power of r on the right side of (2.34).
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For the induction step, it suÆces to prove the following formula, which is the

analogue of (2.12) for h0:

h0()� h0(Æ) = mvs(vs � 1)=2 + vs

mX
k=1

(m� k)vs�k + inv(w): (2.43)

Here,  = (D) has largest symbol s > 0; vi is the number of occurrences of i in  for

0 � i � s; Æ is obtained from  by erasing all the symbols s; and the word w records

how to insert the vs copies of s into Æ to recover .

We still proceed by induction on coinv(w). If coinv(w) = 0, all vs copies of s

were inserted into Æ just after the last occurrence of any symbol in the set fs�1; : : : ; s�

mg. The change h0()� h0(Æ) caused by this insertion is

X
i<j

sc0m(i � j)� vs

where the sum extends over all pairs (i; j) such that i = s or j = s. We subtract vs

since we introduced vs new positive entries (all equal to s) in .

First, consider the pairs (i; j) for which i < j and i = s = j . There are
�vs
2

�
such pairs, and each contributes sc0m(s� s) = sc0m(0) = m to the h0-statistic. This gives

the term mvs(vs � 1)=2 in (2.43).

Second, consider the pairs (i; j) for which i < j and i = s and j 6= s. Since

all the copies of s in  occur in a contiguous group following all instances of the symbols

s � 1; : : : ; s �m, and since s is the largest symbol appearing in , j > i implies that

j < s�m. Then sc0m(i� j) = 0, since i� j > m. So these pairs contribute nothing

to the h0-statistic.

Third, consider the pairs (i; j) for which i < j and i 6= s and j = s. Since s

is the largest symbol, we have i < s. Write i = s � k for some k > 0, and consider

various subcases. Suppose k 2 f1; 2; : : : ;mg. Then sc0m(i�j) = sc0m(�k) = m+1�k.

For how many pairs (i; j) does it happen that i < j, i = s � k, and j = s? There

are vs choices for the index j and vs�k choices for the index i; the condition i < j holds

automatically, since all occurrences of s occur to the right of all occurrences of s � k.

Thus, we get a total contribution to the h0-statistic of (m + 1 � k)vs(vs�k) for this k.
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Adding over all k, we obtain

vs

mX
k=1

(m+ 1� k)vs�k = vs

mX
k=1

(m� k)vs�k +

mX
k=1

vsvs�k:

On the other hand, if k > m, then sc0m(i�j) = scm(�k) = 0, so there is no contribution

to the h0-statistic.

Finally, recall that w is a rearrangement of vs zeroes and vs�1+ � � �+ vs�m� 1

ones. Since coinv(w) = 0, all zeroes in w occur at the end, and hence

inv(w) = vs(vs�1 + � � �+ vs�m � 1) =

 
mX
k=1

vsvs�k

!
� vs:

Thus, the change h0() � h0(Æ) is precisely the expression on the right side of

(2.43). So we are done when coinv(w) = 0.

To �nish the induction step, it suÆces to show that replacing 10 by 01 in w

decreases h0 by one (since this replacement also decreases inv(w) by one). Let w0 be the

new word after the replacement, with corresponding vector 0 As in x2.2.4, we have

original  = : : : (s� j) z1 z2 : : : z` (s� k) s : : :

where 0 � j � m, 1 � k � m, ` � 0, and every zi < s �m. Replacing 10 by 01 in w

causes the s to move left, resulting in:

new 0 = : : : (s� j) s z1 z2 : : : z` (s� k) : : : :

Note that the symbol s� j must exist, lest 00 = s > 0.

Let us examine the e�ect of this motion on the h0-statistic. When we move the

s left past its predecessor s� k in , we get a net change in the h0-statistic of

sc0m(s� (s� k))� sc0m((s� k)� s) = sc0m(k)� sc0m(�k) = �1;

since 1 � k � m (see (2.41)). As before, since js � zij > m, moving the s past each zi

will not a�ect the h0-statistic at all. Thus, the total change in the h0-statistic is �1, as

desired.
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Trapezoidal Lattice Paths and

Multivariate Analogues

In this chapter, we extend the combinatorial work of the previous chapter to

lattice paths inside trapezoids. We introduce two collections of �ve statistics on trape-

zoidal paths, one based on \bounce paths" and another based on \generalized inversion

statistics." Though these two sets of statistics appear to be quite di�erent, they have the

same generating function. We give bijections to prove this fact and provide an explicit

summation formula for their common generating function. We can specialize this gener-

ating function in various ways to obtain all the bivariate and trivariate sequences from

Chapter 2. We also establish certain symmetry properties and recursions involving the

new statistics. We will see that some proofs actually become simpler in the �ve-variable

setting. It is an open problem to �nd interpretations for the new combinatorial sequences

(or their specializations) in terms of representation theory or symmetric functions.

The rest of this chapter is organized as follows. In Section 3.1, we de�ne

trapezoidal lattice paths and the two families of statistics for those paths. In Section

3.2, we prove a summation formula for the common generating function of each family

of statistics. The proof provides a bijection on paths that sends one family of statistics

to the other family. Section 3.3 describes the symmetry properties of the �ve-variable

generating function and its specializations. Section 3.4 uses the summation formula to

prove a recursion characterizing the trapezoidal generating functions.
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n = 6 
 m = 3

 k = 2
(0, 0)

(20, 6)

Figure 3.1: A trapezoidal lattice path.

3.1 Statistics on Trapezoidal Lattice Paths

In this section, we de�ne statistics on lattice paths and two �ve-variable gen-

erating functions involving these statistics. We begin by de�ning trapezoidal lattice

paths.

3.1.1 Trapezoidal Lattice Paths

De�nition 3.1. Let n, k, and m be integers with n > 0, k � 0, and m � 0. Let

TZn;k;m denote the trapezoid with corners at (0; 0), (0; n), (k; 0), and (k +mn;n). (If

k = 0, then TZn;k;m is really a triangle. This case was studied in Chapter 2. If k > 0

and m = 0, then TZn;k;m is a rectangle. This degenerate case will be discussed later.)

De�ne a trapezoidal lattice path of type (n; k;m) to be a path that goes from (0; 0) to

(k +mn;n) by a series of north and east steps of length one, such that no vertex of the

path lies outside the trapezoid TZn;k;m. De�ne Tn;k;m to be the set of trapezoidal lattice

paths of type (n; k;m).

For example, Figure 3.1 shows a trapezoidal path with n = 6, k = 2, andm = 3.

Next, we de�ne statistics for these trapezoidal lattice paths. We will use two

di�erent families of statistics. One family is based on \bounce paths," while the second

family consists of \generalized inversion statistics." The theorem in the next section will

show that the two families of statistics have the same generating function.
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3.1.2 Statistics based on Bounce Paths

Let P be a trapezoidal path of type (n; k;m). Then P is a path that proceeds

by vertical and horizontal steps from (0; 0) to (k+mn;n) while staying inside a trapezoid.

We begin with the fundamental construction of the bounce path derived from P . This is

another lattice path B = B(P ) that also proceeds by vertical and horizontal steps from

(0; 0) to (k+mn;n) while staying inside the trapezoid TZn;k;m. The bounce path B(P )

always stays weakly below the original path P . It is derived from P according to the

following rules.

Bouncing Algorithm. Given P 2 Tn;k;m, we construct its derived bounce path B(P )

as follows.

(1) B(P ) will consist of an alternating sequence of vertical moves and horizontal moves,

starting at (0; 0) and ending at (k +mn;n). A vertical move consists of zero or

more vertical steps (of length one); similarly for the horizontal moves. We let

vi = vi(P ) denote the length of the ith vertical move, and we let hi = hi(P ) denote

the length of the ith horizontal move, for i � 0. Set (x0; y0) = (0; 0), which is our

\initial position" on the bounce path. In general, let (xi; yi) denote the position on

the bounce path just before the ith vertical move. (All the quantities de�ned here

and below depend on P , of course. We write xi(P ), yi(P ), etc., if it is necessary to

make this dependence explicit. At other times it is convenient to omit the P and

write B, vi, xi, etc., if there is no danger of confusion.)

(2) The numbers vi and hi are computed as follows. Set vi = 0 and hi = 0 for all i < 0.

Set i = 0 initially. Perform the following steps repeatedly.

a. Go up from the current position (xi; yi) until blocked by a horizontal step of

the original path P . Let the vertical distance traveled be vi. Note that vi

may be zero. Set yi+1 = yi + vi.

b. Go right from the current position (xi; yi+1) by the horizontal distance

hi
def
= vi + vi�1 + � � �+ vi�(m�1) + �(i < k): (3.1)

Set xi+1 = xi + hi, so the new position is (xi+1; yi+1).
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c. If the new position is the upper corner (k+mn;n), the bounce path has been

completed. Otherwise, replace i by i+ 1 and return to step a.

This algorithm can be informally summarized as follows. A \ball" starts at the southwest

corner of the trapezoid. The ball moves up until it \hits" the path P . Then it moves

right by a distance that is the sum of the previous m vertical moves, plus an additional

one unit for the �rst k bounces only. The bouncing continues until the ball reaches the

northeast corner.

Example 3.2. Figure 3.2 shows a trapezoidal path P 2 T12;3;2 and the associated bounce

path B(P ).

Remark 3.3. For special choices of k and m, the bounce path becomes simpler. When

k = 0 and m = 1, we obtain a bounce path that returns to the diagonal x = y after each

bounce. When k = 0 and m > 1, we obtain the bounce paths inside triangles discussed

in Chapter 2. When m = 1 and k > 0, the �rst k horizontal moves are one unit longer

than the immediately preceding vertical moves. After the �rst k bounces, the bounce

path will have reached the diagonal boundary x = y + k. For any further bounces, the

horizontal move is the same as the preceding vertical move. In the degenerate case when

m = 0 (a rectangle), the bounce path essentially coincides with the original path P .

The only di�erence is that the bounce path takes a vertical move of height zero between

consecutive horizontal steps of the original path.

We can use the bounce path B(P ) derived from P to dissect the �gure for P into

smaller geometric components. For this purpose, we introduce the following terminology.

De�nition 3.4. Let P 2 Tn;k;m, and let B be the associated bounce path. De�ne vi,

hi, xi, and yi as in the bouncing algorithm above.

(1) For i � 1, de�ne the ith bounce rectangle Ri to be the rectangle with vertices

(xi�1; yi), (xi�1; yi+1), (xi; yi), and (xi; yi+1). This rectangle consists of the cells

above the i� 1th horizontal bounce move and left of the ith vertical bounce move.

The de�nition also makes sense for i = 0, if we set xj = yj = 0 for j < 0. Note

that we allow degenerate \rectangles" whose height or width is zero.
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path P with bounce path B(P)

path P

2 4
1

03 1 2
2

0
6

3 6 5 3 4 4
vi

ih

n = 12, k = 3, m = 2

i 0 2 3 4 5

Figure 3.2: A trapezoidal path and its associated bounce path.
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(2) For i � 1, de�ne the ith shortened bounce rectangle Si to be the rectangle with

vertices (xi�1 + 1; yi), (xi�1 + 1; yi+1), (xi; yi), and (xi; yi+1). Thus Si consists of

all columns of Ri except the leftmost column. We are interested in Si because any

part of the path P that lies above the bounce bath B(P ) must be contained in one

of the shortened rectangles Si. This fact is immediate from the de�nition of the

bounce path.

(3) For i � 0, de�ne the ith bounce triangle Ti to be the triangle with vertices (k +

myi; yi), (k +myi; yi+1), and (k +myi+1; yi+1). Note that the right edge of the

trapezoid TZn;k;m has equation x = k+my. Thus, each Ti is a right triangle whose

hypotenuse lies on this edge of the trapezoid.

(4) For i � 1, de�ne the ith bounce slab Sli to be the rectangle with vertices (xi; yi),

(xi; yi+1), (k +myi; yi), and (k +myi; yi+1).

It is clear from these de�nitions that the region inside the trapezoid and below

the bounce path is precisely the union of the bounce triangles Ti and the bounce slabs

Sli. (See Figure 3.3 below.)

Example 3.5. Consider the path P from Figure 3.2. Table 3.1 gives the values of vi, hi,

xi, and yi for this path. Figure 3.3 illustrates the bounce rectangles Ri, the shortened

rectangles Si, the bounce triangles Ti, and the bounce slabs Sli for the same path. For

visual clarity, the original path P is not shown in this �gure. Note that R4, S4, Sl4, and

T4 have height zero, so these shapes are not visible in the �gure.

At last, we are ready to introduce the �ve statistics in the \bounce family." We

also mention two other area statistics that can be derived from these.

De�nition 3.6. Let P 2 Tn;k;m. Let B, xi, yi, vi, hi, Ri, Si, Ti, and Sli be as described

above.

(1) De�ne a type-1 area cell of P to be a lattice square completely inside the trapezoid

TZn;k;m and below the bounce path B(P ). Thus, a cell is a type-1 area cell if and

only if it is contained in one of the bounce triangles Ti or bounce slabs Sli. De�ne

the type-1 area of P , denoted a1(P ), to be the number of type-1 area cells of P .
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Table 3.1: Values of xi, yi, vi, and hi for the path P .

i xi yi vi hi

0 0 0 2 3

1 3 2 3 6

2 9 5 1 5

3 14 6 2 3

4 17 8 0 2

5 19 8 4 4

6 23 12 0 4

7 27 12 N/A N/A

1S

4 ,S

3R

T0

T1

T2

T3

T5

Sl 0

Sl 1

Sl 2

Sl3

R 1

R2

n = 12, m = 2, k = 3

R5

R Sl4 , T 44 ,  have height zero.

S2

S3

S5

R 4

Figure 3.3: Using the bounce path to dissect the trapezoid.

(Rectangles Ri are labelled at their northwest corner.)
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(2) De�ne a type-2 area cell of P to be a lattice square inside the trapezoid TZn;k;m,

below the trapezoidal path P , and above the bounce path B(P ). Thus, a cell is a

type-2 area cell if and only if it lies in a shortened rectangle Si and is below the

original path P . De�ne the type-2 area of P , denoted a2(P ), to be the number of

type-2 area cells of P .

(3) De�ne a type-3 area cell of P to be a lattice square inside one of the shortened

rectangles Si and above the trapezoidal path P . De�ne the type-3 area of P ,

denoted a3(P ), to be the number of type-3 area cells of P . Note that the cells in

Ri�Si (the leftmost column of Ri) do not contribute to a3(P ) or a2(P ) or a1(P ).

(4) De�ne the bounce score b(P ) by

b(P ) =
X
i�0

ivi:

It is easy to see that b(P ) is the sum of the number of cells in the trapezoid that

are directly above the �rst horizontal step of each horizontal move in the bounce

path. These cells include, but are not limited to, the cells in the leftmost column

of each Ri.

(5) De�ne the bounce count c(P ) to be the largest integer s such that vs > 0. Roughly

speaking, this statistic keeps track of how many bounces were needed to reach the

top edge of the trapezoid. Note that the �rst vertical move is labelled v0, not v1.

(6) De�ne the ordinary area of P to be a(P ) = a1(P )+a2(P ). This is just the number

of complete lattice squares inside the trapezoid and below the path P .

(7) De�ne the modi�ed area of P to be a0(P ) = a1(P ) + a3(P ). This is the number of

cells either below the bounce path B(P ), or above the original path P and inside

one of the shortened rectangles Si.

(8) Finally, de�ne the bounce generating function for the trapezoid TZn;k;m by

Bn;k;m(q1; q2; q3; t; z) =
X

P2Tn;k;m

q
a1(P )
1 q

a2(P )
2 q

a3(P )
3 tb(P )zc(P ):
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004467

type−1 area cell

type−2 area cell

type−3 area cell

cell counted by b

KEY:

10

Figure 3.4: Special cells in the diagram for P .

We will also frequently be interested in the two specializations

B0
n;k;m(q; t) = Bn;k;m(q; q; 1; t; 1) =

X
P2Tn;k;m

qa(P )tb(P )

B00
n;k;m(q; r; t) = Bn;k;m(qr; q; r; t; 1) =

X
P2Tn;k;m

qa(P )ra
0(P )tb(P ):

Example 3.7. For the path P from Figure 3.2, we compute the following statistics:

a1(P ) = 46; a2(P ) = 14; a3(P ) = 9; b(P ) = 31;

c(P ) = 5; a(P ) = 60; a0(P ) = 55:

Figure 3.4 shows how the statistics a1, a2, a3, and b can be computed by counting cells

in the diagram for P .

Example 3.8. In the special case of a rectangle (m = 0), all the rectangles Ri have

width 1, so all shortened rectangles Si are empty. It follows that, for any path P inside

the rectangle TZn;k;0, we have a2(P ) = a3(P ) = 0, a1(P ) = a(P ) = a0(P ) = the number

of lattice squares below the path P , and b(P ) = the number of lattice squares above the

path P .
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The following lemma will be useful when we derive a formula for the generating

function Bn;k;m(q1; q2; q3; t; z). It provides formulas for the coordinates (xi; yi) and the

dimensions of various components of the bounce picture.

Lemma 3.9. Let P 2 Tn;k;m. Let B, xi, yi, vi, hi, Ri, Si, Ti, and Sli be as described

above.

(1) For i � 0, we have

xi = min(i; k) +

iX
j=1

min(j;m)vi�j

and

yi =
i�1X
j=0

vj :

(2) The bounce path B(P ) always stays inside the trapezoid TZn;k;m and has hj > 0

for j � 0. In particular, the bounce path always reaches the upper-right corner

(k +mn;n), so that the bouncing algorithm does terminate.

(3) For i � 0, the bounce rectangle Ri has height vi and width

vi�1 + � � � + vi�m + �(i < k + 1):

(4) For i � 1, the shortened rectangle Si has height vi and width

vi�1 + � � �+ vi�m � �(i > k):

(5) For i � 0, the bounce triangle Ti has height vi and contains mvi(vi�1)=2 complete

lattice squares.

(6) For i � 0, the bounce slab Sli has height vi and width max(k � i; 0) +
Pm�1

j=1 (m�

j)vi�j , hence contains

vi

0
@max(k � i; 0) +

m�1X
j=1

(m� j)vi�j

1
A

complete lattice squares.
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Proof. (1) Since the bounce path starts at (0; 0), yi is
P

j<i vj, the sum of all preceding

vertical moves. Similarly, xi =
P

j<i hj is the sum of all preceding horizontal moves.

Substituting the de�nition

hj = �(j < k) +

0
@m�1X

p=0

vj�p

1
A

into the formula for xi, we get

xi =

i�1X
j=0

0
@�(j < k) +

m�1X
p=0

vj�p

1
A :

Now, the sum of the terms �(j < k) for 0 � j � i� 1 is just min(i; k). Since v` = 0 for

` < 0, we can rewrite the remaining terms as

X
j<i

m�1X
p=0

vj�p:

Let us count the occurrences of vi�1, vi�2, : : :, v0. The term vi�1 occurs only once

(assuming m > 0), when j = i � 1 and p = 0. The term vi�2 occurs twice (assuming

m > 1), when (j; p) = (i � 1; 1) and when (j; p) = (i � 2; 0). In general, for 1 � t � m,

the term vi�t occurs t times, by letting (j; p) = (i�s; t�s) for 1 � s � t. For t � m, the

term vi�t occurs m times, by letting (j; p) = (i � t+ s; s) for 0 � s � m� 1. Changing

notation, we obtain

xi = min(i; k) +

iX
j=1

min(j;m)vi�j

as claimed.

(2) To prove that B(P ) stays inside the trapezoid TZn;k;m, it suÆces to show that every

point (xi; yi) lies in this trapezoid. It is clear that 0 � yi � n for all i, since the path P

never goes above the line y = n. It is also clear that xi � 0 for all i. To see that (xi; yi)

does not lie to the right of the remaining boundary x = k +my, we need to check that

xi � k +myi. But this is obvious from the formulas in part (1), since

xi = min(i; k) +

iX
j=1

min(j;m)vi�j � k +

i�1X
j=0

mvj = k +myi:
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Next, we show that hi > 0 for all i. This is clear for i < k, since the term �(i < k) in

the de�nition of hi shows that we move at least one step right. Now suppose i � k. To

get a contradiction, assume hi = 0. Then we must have vi�j = 0 for 0 � j � m � 1.

Observe that, in this case,

xi = k +

iX
j=m

mvi�j and yi =

i�1X
`=0

v` =

iX
j=m

vi�j :

Thus, xi = k + myi, so that the point (xi; yi) lies on the right edge of the trapezoid

TZn;k;m. But we also have vi = 0. This can only occur if the original path P passes

through (xi; yi) and does not go up at the next step. If yi < n, this contradicts the

requirement that the path P never go outside the trapezoid. If yi = n, then the path

has reached the upper-right corner of the trapezoid, so the bouncing path was completed

just before step i.

(3) By de�nition of the vertices of Ri, the height of this rectangle is yi+1 � yi = vi. The

width of this rectangle is

xi � xi�1 = hi�1 = vi�1 + � � �+ vi�m + �(i� 1 < k)

= vi�1 + � � �+ vi�m + �(i < k + 1):

(4) The height of the shortened rectangle Si is the same as the height of Ri, while the

width of Si is one less than the width of Ri. The formulas in (4) thus follow from the

ones in (3), together with the identity

�(i < k + 1)� 1 = ��(i > k):

(5) By de�nition of Ti, the height of this triangle is yi+1 � yi = vi. Consider the rows of

this triangle from bottom to top. As shown in Figure 3.3, these rows contain 0 cells, m

cells, 2m cells, etc. The total number of complete cells in the triangle is therefore

0 +m+ 2m+ � � �+ (vi � 1)m = m

�
vi
2

�
=mvi(vi � 1)=2:

(6) By de�nition of Sli, the height of this slab is yi+1�yi = vi and its width is k+myi�xi.
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Using the formula for xi and simplifying, the width is

max(k � i; 0) +
m�1X
j=1

(m� j)vi�j :

This completes the proof.

Table 3.2 summarizes the notation introduced in this subsection for statistics

and constructs related to the bouncing algorithm.

We would like to have interpretations for the generating functions B0
n;k;m(q; t)

in terms of the nabla operator. At present, conjectured interpretations are only available

for special choices of n, k, and m. The case k = 0 was considered in Chapter 2. It follows

directly from the de�nitions above that B0
n;m;m(q; t) = B0

n+1;0;m(q; t), so the conjecture

from Chapter 2 gives

B0
n;m;m(q; t) = rm(s1n+1)js1n+1 :

Next, consider the case m = 1, k = 2. We conjecture that

B0
n;2;1(q; t) � r(s(2;1n))js1n+2 :

(We use the symbol � to indicate the omission of a �xed multiplier �qAtB on one side

of the equation, where � = �1 and A and B are constants.) This has been con�rmed by

computer for 0 � n � 4, which are all the values of n we can currently test. In the case

m = 1, k = 3, we conjecture that

B0
n;3;1(q; t) � r(s(2;2;1n))js1n+4 :

This has been con�rmed by computer for 0 � n � 2, which are all the values of n we

can currently test. However, the pattern suggested here fails for k = 4 and n = 0, since

B0
0;4;1(q; t) 6� r(s(2;2;2))js16 :

3.1.3 Generalized Inversion Statistics

We now de�ne the family of \generalized inversion statistics" for lattice paths.

Let P be a trapezoidal path of type (n; k;m). Before describing the statistics, we describe

a way to represent P as a list of integers.
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Table 3.2: Summary of notation for bounce-related constructions.

Notation Meaning

P the given trapezoidal path

B bounce path derived from P

vi length of ith vertical move in B

hi length of ith horizontal move in B

hi = vi + vi�1 + � � �+ vi�(m�1) + �(i < k)

xi x-coordinate of ith vertical move in B

yi y-coordinate of (i� 1)th horizontal move in B

(xi; yi) location on B just before the ith vertical move

Ri bounce rectangle with southeast corner (xi; yi)

Si shortened bounce rectangle

(Ri without its leftmost column)

Ti bounce triangle right of the ith vertical move

Sli bounce slab right of the ith vertical move

a1(P ) number of type-1 area cells

(cells below B)

a2(P ) number of type-2 area cells

(cells below P in some Si)

a3(P ) number of type-3 area cells

(cells above P in some Si)

b(P ) bounce score
P

i�0 ivi

(cells above vertical bounce moves)

c(P ) bounce count

(largest s with vs > 0)

Bn;k;m(q1; q2; q3; t; z) bounce generating function for paths inside TZn;k;m
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De�nition 3.10. Given P 2 Tn;k;m, the area vector of P , denoted g(P ), is the list

g(P ) = (g0(P ); g1(P ); : : : ; gn�1(P ));

where gi(P ) is the number of complete lattice squares between the path P and the right

boundary x = k +my in the ith row from the bottom. We let Gn;k;m denote the set of

all lists g(P ), for P 2 Tn;k;m.

Example 3.11. For the path P shown in Figure 3.1, we have

g(P ) = (1; 4; 4; 0; 3; 1):

It is clear that P is recoverable from its area vector g(P ). For, given g = g(P ),

we shade in the appropriate number of area cells in each row of the trapezoid. Then P

is the unique path obtained by following the left boundary of the shaded region from

(0; 0) to (k+mn;n). Thus, the map  sending P to g(P ) is a bijection from Tn;k;m onto

Gn;k;m.

Given an arbitrary list of integers h = (h0; h1; : : :), h may not be the area vector

for any trapezoidal path. It is easy to see that h 2 Gn;k;m if and only if the following

conditions hold:

(G1) h is a list of integers of length n.

(G2) hi � 0 for 0 � i � n� 1.

(G3) hi+1 � hi +m for 0 � i � n� 2.

(G4) h0 2 f0; 1; : : : ; kg.

Condition (G1) says that h is the area vector for a shape consisting of n rows. Condition

(G2) says that the path built from h cannot go past the right edge of the trapezoid in

question. Condition (G3) says that the path built from h cannot take any west steps.

In more detail, we have equality hi+1 = hi + m in (G3) if and only if the path takes

two consecutive north steps in rows i and i + 1. If there are any intervening east steps

between the north step in row i and the north step in row i + 1, then we must have

hi+1 < hi +m. Finally, condition (G4) reects the fact that there is room for up to k

area cells in the lowest row of the trapezoid TZn;k;m.
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Now we de�ne the �ve inversion statistics. It is most convenient to de�ne these

statistics on the collection of area vectors Gn;k;m.

De�nition 3.12. Let g 2 Gn;k;m, and let P be the corresponding path in Tn;k;m with

g = g(P ).

(1) De�ne the type-1 inversion statistic h1 for g or P by the formula

h1(g) = h1(P ) =
X

0�i<j�n�1

max(m� jgi � gj j; 0) +
n�1X
i=0

max(k � gi; 0):

(2) De�ne the type-2 inversion statistic h2 for g or P by the formula

h2(g) = h2(P ) =
X

0�i<j�n�1

�(gi � gj 2 f1; 2; : : : ;mg):

(3) De�ne the type-3 inversion statistic h3 for g or P by the formula

h3(g) = h3(P ) =
P

0�i<j�n�1 �(gi � gj 2 f�m; : : : ;�2;�1g)

�
Pn�1

i=0 �(gi > k):

(4) De�ne the ordinary area statistic for g or P by

a(g) = a(P ) =

n�1X
i=0

gi:

This is the number of complete lattice squares inside the trapezoid and below the

path P . Therefore, this de�nition agrees with the de�nition of ordinary area given

in the preceding subsection.

(5) De�ne the height of g or P by

ht(g) = ht(P ) = max
0�i�n�1

gi:

(6) De�ne the positive inversion statistic h+ for g or P to be

h+(P ) = h1(P ) + h2(P ):

(7) De�ne the negative inversion statistic h� for g or P to be

h�(P ) = h1(P ) + h3(P ):
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(8) Finally, de�ne the inversion generating function for the trapezoid

TZn;k;m by

Hn;k;m(q1; q2; q3; t; z) =
X

P2Tn;k;m

q
h1(P )
1 q

h2(P )
2 q

h3(P )
3 ta(P )zht(P ):

We will also frequently be interested in the two specializations

H 0
n;k;m(q; t) = Hn;k;m(q; q; 1; t; 1) =

X
P2Tn;k;m

qh
+(P )ta(P )

H 00
n;k;m(q; r; t) = Hn;k;m(qr; q; r; t; 1) =

X
H2Tn;k;m

qh
+(P )rh

�(P )ta(P ):

Example 3.13. To compute these statistics, it is convenient to list all the numbers

gi(P ) � gj(P ) for i < j. For the path P in Figure 3.1 with n = 6, k = 2, m = 3, and

g(P ) = (1; 4; 4; 0; 3; 1), this list is:

�3;�3; 1;�2; 0; 0; 4; 1; 3; 4; 1; 3;�3;�1; 2:

Hence, we obtain the following statistics for P :

h1(P ) = 16 + 4 = 20; h2(P ) = 6; h3(P ) = 5� 3 = 2; a(P ) = 13; ht(P ) = 4;

h+(P ) = 26; h�(P ) = 22:

3.2 Formula for the Generating Functions

In this section, we show that

Bn;k;m(q1; q2; q3; t; z) = Hn;k;m(q1; q2; q3; t; z)

and give an explicit formula for this generating function. Moreover, we exhibit a bijection

� : Tn;k;m ! Tn;k;m that maps each bounce statistic to its corresponding inversion

statistic.

The formula for the common generating function is:

X
(v0;:::;vs)

zst
P

i�0 iviqpow1

sY
i=1

�
vi + vi�1 + � � �+ vi�m � �(i > k)

vi; vi�1 + � � �+ vi�m � �(i > k)

�
q2;q3

(3.2)
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where we set vj = 0 for all j < 0,

pow = m
X
i�0

�
vi
2

�
+
X
i�0

vi

0
@max(k � i; 0) +

mX
j=1

(m� j)vi�j

1
A ;

and we sum over all sequences v = (v0; : : : ; vs) of nonnegative integers such that vs > 0

and v0 + � � �+ vs = n. Since v may have zero entries, the collection of such sequences is

in�nite. However, if there exists an index i > k such that vi�1 = � � � = vi�m = 0, then

the summand corresponding to this choice of v has a binomial coeÆcient equal to zero.

From this observation, it is easy to see that there is only a �nite collection of v's that

give nonzero summands.

3.2.1 Combinatorial Description of the Formula

We now introduce a combinatorial model of the above formula, consisting of

a collection In;k;m of intermediate objects and �ve statistics on these objects. This

collection will be helpful for de�ning the bijection � and its inverse.

De�nition 3.14. A typical element I of In;k;m consists of the following data:

(1) a nonnegative integer s.

(2) a sequence v = (v0; : : : ; vs) of nonnegative integers such that vs > 0, v0+ � � �+vs =

n, and for 1 � i � s,

vi�1 + � � � + vi�m � �(i > k) � 0:

(As usual, we set vj = 0 for j < 0.)

(3) for 1 � i � s, a word wi 2 R(0
vi1vi�1+���+vi�m��(i>k)).

We write I = (s; v;w1; : : : ; ws).

De�ne �ve statistics on these intermediate objects, as follows.

(1) The �rst q-statistic for I = (s; v;w1; : : : ; ws) is

Q1(I) = m
X
i�0

�
vi
2

�
+
X
i�0

vi

0
@max(k � i; 0) +

mX
j=1

(m� j)vi�j

1
A :

This is exactly the expression pow appearing above.
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(2) The second q-statistic for I = (s; v;w1; : : : ; ws) is

Q2(I) =

sX
i=1

coinv(wi):

(3) The third q-statistic for I = (s; v;w1; : : : ; ws) is

Q3(I) =

sX
i=1

inv(wi):

(4) The t-statistic for I = (s; v;w1; : : : ; ws) is

T (I) =

sX
i=0

ivi:

This is just the power of t in the formula above.

(5) The z-statistic for I = (s; v;w1; : : : ; ws) is

Z(I) = s:

This is just the power of z in the formula above.

(6) Finally, de�ne the intermediate generating function of type

(n; k;m) by

Fn;k;m(q1; q2; q3; t; z) =
X

I2In;k;m

q
Q1(I)
1 q

Q2(I)
2 q

Q3(I)
3 tT (I)zZ(I):

Theorem 3.15. Fn;k;m(q1; q2; q3; t; z) is given by formula (3.2).

Proof. This assertion follows easily from the above de�nitions. The formula (3.2) clas-

si�es objects I = (s; v;w1; : : : ; ws) in In;k;m based on the values of s and v. For �xed s

and v = (v0; : : : ; vs), the powers of q1, t, and z in formula (3.2) are exactly the values of

Q1(I), T (I), and Z(I), respectively. We still must choose the words wi with the appro-

priate number of zeroes and ones. The generating function for the choice of wi, where

q2 counts coinversions and q3 counts inversions, is exactly�
vi + vi�1 + � � �+ vi�m � �(i > k)

vi; vi�1 + � � � + vi�m � �(i > k)

�
q2;q3

:
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Multiplying these factors together, for 1 � i � s, gives us a generating function where the

power of q2 records
Ps

i=1 coinv(wi) = Q2(I) and the power of q3 records
Ps

i=1 inv(wi) =

Q3(I). Thus, (3.2) is the generating function for In;k;m relative to the �ve given statistics.

To show that the bounce generating function Bn;k;m and the inversion gener-

ating function Hn;k;m are also given by formula (3.2), it suÆces to exhibit bijections

� : Tn;k;m ! In;k;m and � : Gn;k;m ! In;k;m that preserve the appropriate statistics.

Recall there is a trivial statistic-preserving bijection  : Tn;k;m ! Gn;k;m sending P to its

area vector g(P ). By looking at the composites � = �1 Æ��1 Æ� and ��1 = ��1 Æ� Æ,

we obtain a bijective proof that Bn;k;m = Hn;k;m.

3.2.2 Mapping Bounce Statistics to Intermediate Statistics

This subsection describes the bijection � : Tn;k;m ! In;k;m, which sends statis-

tics in the bounce family to their counterparts in the intermediate setting. We also

describe ��1.

Let P be a given path in Tn;k;m. To �nd �(P ), we �rst draw the bounce path

of P and compute the quantities listed in Table 3.2. De�ne �(P ) to be the interme-

diate object I = (s; v;w1; : : : ; ws) 2 In;k;m constructed as follows. Set s = c(P ) and

v = (v0(P ); v1(P ); : : : ; vs(P )), the sequence of vertical moves in the bounce path for P .

Clearly, v does satisfy the necessary requirements from the de�nition of In;k;m.

We now describe the construction of the words wi. For each i with 1 � i � s,

consider the portion of the path P contained in the shortened rectangle Si. Call this

partial path Pi. The path Pi goes from the southwest corner (xi�1 + 1; yi) of Si to the

northeast corner (xi; yi+1) of Si. To obtain the word wi, replace each vertical step in Pi

by a zero and each horizontal step by a one. By part (4) of the lemma from x3.1.2, the

resulting word wi does have the appropriate number of zeroes and ones (namely, vi and

vi�1 + � � �+ vi�m � �(i > k), respectively).

We now describe ��1. Let I = (s; v;w1; : : : ; ws) 2 In;k;m. Construct the path

P = ��1(I) 2 Tn;k;m as follows. Start with an empty trapezoid TZn;k;m. Draw a bounce



138

path with successive vertical steps v0; : : : ; vs and horizontal steps given by the usual rule

hi = vi + vi�1 + � � �+ vi�(m�1) + �(i < k):

De�ne (xi; yi) to be the point on the bounce path just prior to the vertical step vi (as

usual). Next, use each word wi to draw a subpath in the shortened rectangle of height vi

and width hi�1 whose southeast corner is (xi; yi). The subpath is obtained by drawing a

vertical step for each zero in wi, and a horizontal step for each one in wi. This procedure

is obviously inverse to the one described in the last paragraph.

We must still check that � has the desired e�ect on the �ve statistics. Fix the

path P and I = �(P ). Consider each of the �ve statistics in turn.

First, recall that a1(P ) is the sum of the number of complete cells in all bounce

triangles Ti and bounce slabs Sli. By parts (5) and (6) of the lemma from x3.1.2,

a1(P ) =

sX
i=0

mvi(vi � 1)=2 +

sX
i=0

vi

0
@max(k � i; 0) +

m�1X
j=1

(m� j)vi�j

1
A = Q1(I):

Second, recall that a2(P ) is the total number of cells in the shortened rectangles

Si below the partial paths Pi. Using the notation from Chapter 1, we can write

a2(P ) =
sX
i=1

a(Pi) =
sX
i=1

coinv(wi) = Q2(I):

Third, recall that a3(P ) is the total number of cells in the shortened rectangles

Si above the partial paths Pi. Using the notation from Chapter 1, we can write

a3(P ) =

sX
i=1

~a(Pi) =

sX
i=1

inv(wi) = Q3(I):

Fourth, it is immediate from the de�nitions that

b(P ) =

sX
i=0

ivi = T (I):

Fifth, we trivially have

c(P ) = s = Z(I):

Theorem 3.16. Bn;k;m(q1; q2; q3; t; z) is given by formula (3.2).
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Proof. This follows immediately from Theorem 3.15 and the existence of the weight-

preserving map � just described.

Example 3.17. Let n = 12, m = 2, k = 3, and let P be the path in Tn;k;m shown in

Figure 3.2. We have s(P ) = 5 and v(P ) = (2; 3; 1; 2; 0; 4). Encoding the partial paths Pi

in each shortened rectangle Si, we get words

w1(P ) = 10010

w2(P ) = 101111

w3(P ) = 101011

w4(P ) = 11

w5(P ) = 00010

Therefore,

�(P ) = I = (5; (2; 3; 1; 2; 0; 4); 10010; 101111; 101011; 11; 00010):

3.2.3 Mapping Inversion Statistics to Intermediate Statistics

This subsection describes the bijection

� : Gn;k;m ! In;k;m;

which sends inversion-type statistics to intermediate statistics. We also describe ��1.

Fix g = (g0; g1; : : : ; gn�1) 2 Gn;k;m. Let �(g) be the intermediate object I =

(s; v;w1; : : : ; ws) constructed as follows. Set s = max0�i�n�1 gi. For 0 � j � s, let vj be

the number of occurrences of j in the list g. Clearly, vj � 0, vs > 0, and v0+ � � �+vs = n.

We will see below that vi�1 + � � � + vi�m � �(i > k) � 0 for 1 � i � s.

We now describe the construction of the words wi. Fix i with 1 � i � s. Form

a word w0i from g as follows. Initially, w0i is empty. Read the entries of g from left to

right. Write down a zero in w0i every time the symbol i is seen in g. Write down a one

in w0i every time a symbol in fi� 1; : : : ; i�mg is seen in g. Ignore all other symbols in

g. By de�nition of vi and w
0
i, there are vi zeroes in w

0
i and vi�1 + � � �+ vi�m ones in w0i.

(As usual, we set vj = 0 for j < 0.)
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If i � k, de�ne wi = w0i. If i > k, de�ne wi to be w0i with its �rst symbol

erased. We assert that this erased symbol must be a 1. This is clear if g does not

contain any occurrences of the symbol i. Suppose, instead, that g has at least one i.

Consider the smallest index j such that gj � i. Since g0 � k < i, we have j > 0.

Next, recall that gj � gj�1 +m. Thus, gj�1 � gj � m � i �m. Also, by minimality

of j, gj�1 � i � 1. Finally, the �rst occurrence of i in g occurs at position j or later,

by de�nition of j. It follows that the �rst occurrence of i in g is preceded (at position

j � 1) by an occurrence of some symbol in fi � 1; : : : ; i �mg. This forces the word w0i

to start with 1. (On the other hand, for i � k, the �rst symbol of w0i = wi could be 0,

thanks to the condition g0 � k.) Note that the word wi does consist of vi zeroes and

vi�1 + � � � + vi�m � �(i > k) ones, as required in the de�nition of In;k;m. In particular,

the requirement vi�1 + � � �+ vi�m � �(i > k) � 0 also holds.

Example 3.18. Let n = 6, k = 2, m = 3, and g = (1; 4; 4; 0; 3; 1) = g(P ), where P is the

path from Figure 3.1. Let �(g) = I = (s; v;w1; : : : ; ws). We have s = 4, the maximum

value appearing in g. We have v0 = 1, v1 = 2, v2 = 0, v3 = 1, and v4 = 2. The words w0i

and wi are:

w01 = 010; w1 = 010

w02 = 111; w2 = 111

w03 = 1101; w3 = 101

w04 = 10011; w4 = 0011:

Therefore,

I = (4; (1; 2; 0; 1; 2); 010; 111; 101; 0011):

If we compute ��1(I), we obtain the path shown in Figure 3.5.

Before describing the inverse of �, we introduce the following terminology.

Given g 2 Gn;k;m, de�ne ui to be the subword of g consisting of all symbols gj � i

(for 0 � i � s = max gj). Each word ui clearly satis�es conditions (G2), (G3), and

(G4), since g does. Also, we could use the word ui instead of g to obtain the words w0i

and wi, and the result would be the same. Note that us = g. Finally, observe that any

occurrence of the symbol i in ui is either the �rst symbol of ui (which can only happen

if i � k), or is immediately preceded by one of the symbols i; i � 1; : : : ; i�m.
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Figure 3.5: Path obtained by applying bijections to the path from Figure 3.1.

We now describe the inverse of �. Let I = (s; v;w1; : : : ; ws) be an intermediate

object. For i � k, let w0i = wi. For i > k, let w0i be wi with an additional symbol 1

placed at the beginning. Let u0 be the word consisting of v0 zeroes (u0 might be the

empty word). We shall use the words w01; : : : ; w
0
s and u0 to construct words u1; : : : ; us,

each of which satis�es (G2), (G3), and (G4). Finally, we will de�ne g = ��1(I) to be

us, which also satis�es (G1). In particular, us is an element of the target of ��1, namely

Gn;k;m.

Assume that 1 � i � s, and that the word ui�1 has already been constructed.

We may also assume that ui�1 consists of v0 zeroes, v1 ones, : : :, and vi�1 copies of i�1.

We further assume that ui�1 satis�es (G2), (G3), and (G4). To construct the next word

ui, we use the word w0i to insert vi copies of i into the current word ui�1, as follows.

Place a \marker" at the far left end of ui�1, pointing to the gap just before the leftmost

symbol of ui�1. Scan the word w0i from left to right, and perform the following actions.

� If the next symbol of w0i is a zero, insert one copy of the symbol i in the gap pointed

to by the marker. After the insertion, the marker points to the gap just after the

newly inserted symbol.

� If the next symbol of w0i is a one, scan right in ui�1 from the position of the marker,

looking for the next occurrence of a symbol in the set fi � 1; : : : ; i �mg. Set the

marker to point to the gap immediately to the right of the �rst such symbol found.

This procedure produces the new word ui, which clearly still satis�es all the inductive

assumptions. In particular, condition (G4) holds for the following reason. If i > k, then

w0i starts with 1 by de�nition. Hence, the marker will advance past the far left end of
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ui�1 before the �rst symbol i is inserted. We should also point out that the number of 1's

in w0i is always equal to the number of symbols i�1; : : : ; i�m appearing in ui�1. Hence,

the algorithm that moves the marker right will never run out of symbols in ui�1 before

reaching the end of w0i. Finally, it is evident that this method of producing ui from w0i

is the inverse of the method used in the de�nition of � to go from ui (or equivalently g)

to w0i. It follows that the process just described is the inverse map to �.

Example 3.19. In the example at the end of x3.2.2, we saw that the path P from Figure

3.2 mapped to

�(P ) = I = (5; (2; 3; 1; 2; 0; 4); 10010; 101111; 101011; 11; 00010):

Let us compute ��1(I). Recall that n = 12, m = 2, k = 3 here. First, we write down

the words

w01 = 10010 = w1

w02 = 101111 = w2

w03 = 101011 = w3

w04 = 111 = 1w4

w05 = 100010 = 1w5

Next, we use the insertion algorithm above to compute

u0 = 00

u1 = 01101

u2 = 021101

u3 = 02313101

u4 = 02313101

u5 = 023555135101:

So, ��1(I) = (0; 2; 3; 5; 5; 5; 1; 3; 5; 1; 0; 1). If we apply the trivial map �1 to this last

vector, we get the path shown in Figure 3.6.

We must still check that � sends each inversion statistic to the corresponding

intermediate statistic. Fix g = (g0; : : : ; gn�1) and I = �(g) = (s; v;w1; : : : ; ws). Consider

each of the �ve statistics in turn.
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n = 12, k = 3, m = 2

Figure 3.6: Path obtained by applying bijections to the path from Figure 3.2.

First, recall that h1(g) is given by the formula

h1(g) =
X

0�p<t�n�1

max(0;m � jgp � gtj) +
n�1X
p=0

max(k � gp; 0):

Of course, this formula makes sense for any integer vector g, not just for elements of

Gn;k;m. We will �rst show that rearranging the entries of g does not change the value of

h1. It clearly suÆces to show that interchanging two adjacent entries of g, say gi and

gi+1, does not change the value of h1. Let g0 denote g with gi and gi+1 interchanged.

We certainly have
n�1X
p=0

max(k � gp; 0) =

n�1X
p=0

max(k � g0p; 0):

Consider terms in the two summationsX
0�p<t�n�1

max(0;m� jgp � gtj) and
X

0�p<t�n�1

max(0;m� jg0p � g0tj):

The terms in these two summations are identical (up to rearrangement), except that the

term max(0;m�jgi�gi+1j) in the �rst sum is replaced by the term max(0;m�jg0i�g
0
i+1j)

in the second sum. But the latter term is just max(0;m�jgi+1� gij) = max(0;m�jgi�

gi+1j). Thus, the value of the h1 statistic is the same for g and g0.
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Now, g consists of v0 zeroes, v1 ones, : : :, and vs copies of s, in some order. For

the purposes of computing h1, we can replace g by the word

g00 = 0v01v1 � � � svs

consisting of v0 zeroes, v1 ones, : : :, and vs copies of s in increasing order. Using the

de�nition of h1, it is easy to show that

h1(g) = h1(g
00) =

m
X
i�0

�
vi
2

�
+
X
i�0

vi

0
@max(k � i; 0) +

mX
j=1

(m� j)vi�j

1
A = Q1(I):

To see this, we group terms in the formula

h1(g
00) =

X
0�p<t�n�1

max(0;m� jg00p � g00t j) +
n�1X
p=0

max(k � g00p ; 0):

The terms here with g00t = i and g00p�g
00
t = 0 group together to give the term m

�vi
2

�
above.

The terms here with g00t = i and 0 < jg00p � g00t j = j � m group together to give the term

(m� j)vivi�j above. Finally, the terms in the last sum here with g00p = i group together

to give the term vimax(k � i; 0) above.

Second, recall that h2(g) is given by the formula

h2(g) =
X
u<v

�(gu � gv 2 f1; 2; : : : ;mg):

We can rewrite this formula by classifying contributing terms based on the value of gu. If

gu = i, then a pair u < v contributes to the sum if and only if gv 2 fi�1; i�2; : : : ; i�mg.

This occurs if and only if gu is encoded as a 0 in w0i and gv is encoded as a 1 in w0i and

the 0 precedes the 1 in w0i. In other words, the contributions to h2(g) coming from pairs

u < v with gu = i correspond exactly to the coinversions in w0i. Adding over all possible

i, we get

h2(g) =
X
u<v

�(gu � gv 2 f1; 2; : : : ;mg) =
sX
i=1

coinv(w0i):

Next, recall that wi is either equal to w
0
i (when i � k) or is w0i with the initial 1 deleted

(when i > k). But deleting the initial 1 from w0i (which consists of zeroes and ones only)
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has no e�ect on the number of coinversions. Hence,

h2(g) =

sX
i=1

coinv(w0i) =

sX
i=1

coinv(wi) = Q2(I):

Third, recall that h3(g) is given by the formula

h3(g) =
X
u<v

�(gu � gv 2 f�m; : : : ;�2;�1g) �
n�1X
u=0

�(gu > k):

Rewrite the �rst summation by classifying contributing terms based on the value of gv. If

gv = i, then a pair u < v contributes to the sum if and only if gu 2 fi�m; : : : ; i�2; i�1g.

This occurs if and only if gu is encoded as a 1 in w0i and gv is encoded as a 0 in w0i and

the 1 precedes the 0 in w0i. In other words, the contributions to the �rst summation

coming from pairs u < v with gv = i correspond exactly to the inversions in w0i. Adding

over all possible i, we get

X
u<v

�(gu � gv 2 f�m; : : : ;�2;�1g) =
sX
i=1

inv(w0i):

Thus, we have now shown that

h3(g) =
sX
i=1

inv(w0i)�
n�1X
u=0

�(gu > k):

Let us compare
Ps

i=1 inv(w
0
i) to Q3(I) =

Ps
i=1 inv(wi). Recall that wi is either equal

to w0i (when i � k) or is w0i with the initial 1 deleted (when i > k). Fix a value i > k.

Deleting the initial 1 from w0i will decrease the number of inversions by the total number

of zeroes in w0i, which all come after the initial 1. By de�nition, the number of such

zeroes is vi, which is the number of i's in the list g, which is the number of positions u

such that gu = i. If we add up these losses over all choices of i > k, we see that

Q3(I) =

sX
i=1

inv(wi) =

sX
i=1

inv(w0i)�
n�1X
u=0

�(gu > k) = h3(g):

Fourth, note that there are vi copies of i in the list g, by de�nition of �.

Therefore,

a(g) =

n�1X
j=0

gj =

sX
i=0

ivi = T (I):
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Fifth, by de�nition of �,

ht(g) = max
j
gj = s = Z(I):

Theorem 3.20. Hn;k;m(q1; q2; q3; t; z) is given by formula (3.2).

Proof. This follows immediately from Theorem 3.15 and the existence of the weight-

preserving map � just described.

3.3 Symmetry Properties

The �ve-variable generating function from the previous section has various sym-

metry properties, which are discussed in this section.

Theorem 3.21.

Bn;k;m(q1; q2; q3; t; z) = Bn;k;m(q1; q3; q2; t; z):

Proof. This is obvious from the formula for the generating function, since the q2; q3-

binomial coeÆcients there are symmetric in q2 and q3. There is also an easy bijective

proof of this symmetry. Given a path P , we simply rotate the partial paths inside each

shortened rectangle Si by 180Æ. This action does not a�ect the bounce path, so that

the type-1 area, bounce score, and bounce count are una�ected. However, the rotation

interchanges the number of type-2 area cells and type-3 area cells.

For example, Figure 3.7 shows the result of applying this operation to the path

P from Figure 3.4.

The corresponding bijection acting on the intermediate objects

I = (s; v;w1; : : : ; ws) simply reverses each word wi. This reversal obviously interchanges

inv(wi) and coinv(wi), but the other three intermediate statistics are una�ected.

On the other hand, the symmetry of the statistics h2 and h3 on Gn;k;m is not

immediately evident from their de�nition. To interchange these statistics, one must �rst

use � to obtain an intermediate object I, then reverse each word wi, then apply ��1.

The second symmetry property involves the trivariate generating function

B00
n;k;m(q; r; t) = H 00

n;k;m(q; r; t):
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Figure 3.7: Interchanging type-2 cells and type-3 cells in a trapezoidal path.

Corollary 3.22.

B00
n;k;m(q; r; t) = B00

n;k;m(r; q; t):

Proof. This is obvious from the previous theorem, since

B00
n;k;m(q; r; t) = Bn;k;m(qr; q; r; t; 1) = Bn;k;m(rq; r; q; t; 1) = B00

n;k;m(r; q; t):

Theorem 3.23. The �ve statistics a, a0, b, h+ and h� all have the same univariate

distribution on Tn;k;m, i.e.,X
P2Tn;k;m

qa(P ) =
X

P2Tn;k;m

qa
0(P ) =

X
P2Tn;k;m

qb(P ) =
X

P2Tn;k;m

qh
+(P ) =

X
P2Tn;k;m

qh
�(P ):

Proof. Here is a bijective proof. Consider a path P 2 Tn;k;m. Let Q = ��1(P ). Then

a(P ) = b(Q), so a and b have the same distribution. Also, a(Q) = a1(Q) + a2(Q) =

h1(P ) + h2(P ) = h+(P ), so a and h+ have the same distribution. Finally, the rotation

maps discussed above show that a and a0 have the same distribution, as do h+ and

h�.
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We can write this result in terms of generating functions:

B00
n;k;m(q; 1; 1) = B00

n;k;m(1; q; 1) = B00
n;k;m(1; 1; q)

= H 00
n;k;m(q; 1; 1) = H 00

n;k;m(1; q; 1) = H 00
n;k;m(1; 1; q):

For the bivariate generating functions, we have

B0
n;k;m(q; 1) = B0

n;k;m(1; q) = H 0
n;k;m(q; 1) = H 0

n;k;m(1; q):

Conjecture 3.24 (Joint Symmetry).

B0
n;k;m(q; t) = B0

n;k;m(t; q):

This has been con�rmed by computer experiments for many small values of n,

k, and m. The formula has been proved true for all n only in the case k = 0 and m = 1.

The proof, due to Garsia and Haglund, is long and non-combinatorial (see [14]).

3.4 Recursions

In this section, we derive a recursion that can be used to compute

Bn;k;m(q1; q2; q3; t; z) and related generating functions. The basic idea is to reduce a path

D to a smaller pathD0 by \removing the �rst bounce" from the bounce path B(D). Some

complications arise when m > 1 or k > 0 because the �rst bounce a�ects the dimensions

of subsequent bounces according to the rule (3.1).

To deal with this problem, we must introduce more intermediate generating

functions that will be used in the recursion.

De�nition 3.25. Let (v0; : : : ; vm�1) be a �xed sequence ofm nonnegative integers whose

sum is at most n. Consider the subset I
v0;:::;vm�1
n;k;m of the collection In;k;m consisting of

all intermediate objects I = (s; y;w1; : : : ; ws) such that:

� yi = vi for 0 � i � m� 1.

� wi consists of a string of ones followed by a string of zeroes, for 1 � i � m� 1.
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In terms of bounce paths, the �rst condition says that the �rst m vertical moves in the

bounce path have been �xed to be (v0; : : : ; vm�1). The second condition says that the

�rst m� 1 bounce rectangles contain no type-2 area cells. We refer to such a rectangle

as an empty rectangle.

Assume temporarily that the subset I
v0;:::;vm�1
n;k;m is non-empty. De�ne the gen-

erating function

F
v0;:::;vm�1
n;k;m =

X
I2I

v0;:::;vm�1
n;k;m

q
Q1(I)
1 q

Q2(I)
2 q

Q3(I)
3 tT (I)zZ(I):

There is a summation formula for this generating function similar to formula (3.2) from

x3.2. If v0 + � � �+ vm�1 < n, then we have

F
v0;:::;vm�1
n;k;m =

X
(vm;:::;vs)

zst
Ps

i=0 iviqpow1
1 qpow3

3

sY
i=m

�vi+vi�1+���+vi�m��(i>k)
vi;vi�1+���+vi�m��(i>k)

�
q2;q3

; (3.3)

where

pow1 = m

sX
i=0

�
vi
2

�
+

sX
i=0

vi

0
@max(k � i; 0) +

min(m;i)X
j=1

(m� j)vi�j

1
A ;

and

pow3 =

m�1X
i=1

vi

0
@( i�1X

j=0

vj)� �(i > k)

1
A ;

and we sum over all sequences (vm; : : : ; vs) of nonnegative integers such that vs > 0 and

vm + � � � + vs = n � (v0 + � � � + vm�1). The proof is virtually the same as the proof of

(3.2). Since v0 through vm�1 have been �xed in advance, we only sum over the remaining

indices vm through vs. Furthermore, since the �rst m�1 words wi have been speci�ed in

advance, we omit the �rst m� 1 q2; q3-binomial coeÆcients in (3.2). They are replaced

by �xed powers of q2 and q3 reecting the contributions of the �xed words wi to Q2 and

Q3, namely
m�1Y
i=1

q02q
vi(vi�1+���+v0��(i>k))
3 :

On the other hand, if v0+ � � �+ vm�1 = n, let s be the largest index i such that

vi > 0. Then we have

F
v0;:::;vm�1
n;k;m = zst

Ps
i=0 iviqpow1

1 qpow3

3 : (3.4)
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The preceding discussion assumed that the subset I
v0;:::;vm�1
n;k;m was not empty. If

it is empty, we use formulas (3.3) and (3.4) as the de�nition of F
v0;:::;vm�1
n;k;m in the cases

v0 + � � �+ vm�1 < n and v0 + � � �+ vm�1 = n, respectively.

We now derive a recursion for F
v0;:::;vm�1
n;k;m in the case where v0+ � � �+vm�1 < n.

The initial conditions for this recursion are given by the formulas in (3.4), which cover

the case where v0 + � � �+ vm�1 = n. To obtain the recursion, we break up formula (3.3)

based on the value of the �rst summation index vm. Assume that k > 0 �rst. Consider

a �xed choice of vm in the range from 0 to n� v0� � � � � vm�1. Write down (3.3) with n

replaced by n� v0, k replaced by k � 1, vi replaced by vi+1 for all i, and s replaced by

s� 1:

F v1;:::;vm
n�v0;k�1;m

=

X
(vm+1;:::;vs)

zs�1t
Ps�1

i=0 ivi+1q
pow01
1 q

pow03
3

s�1Y
i=m

� vi+1+���+vi+1�m��(i>k�1)
vi+1;vi+���+vi+1�m��(i>k�1)

�
q2;q3

;
(3.5)

where

pow01 = m

s�1X
i=0

�
vi+1

2

�
+

s�1X
i=0

vi+1

0
@max(k � 1� i; 0) +

min(m;i)X
j=1

(m� j)vi+1�j

1
A ;

and

pow03 =
m�1X
i=1

vi+1

0
@( i�1X

j=0

vj+1)� �(i > k � 1)

1
A :

Replace each summation index i by i� 1 and simplify. The result is:

F v1;:::;vm
n�v0;k�1;m

=X
(vm+1;:::;vs)

zs�1t
Ps

i=1(i�1)viq
pow01
1 q

pow03
3

sY
i=m+1

� vi+���+vi�m��(i�1>k�1)
vi;vi�1+���+vi�m��(i�1>k�1)

�
q2;q3

;
(3.6)

where

pow01 = m
sX
i=1

�
vi
2

�
+

sX
i=1

vi

0
@max(k � i; 0) +

min(m;i�1)X
j=1

(m� j)vi�j

1
A ;

and

pow03 =

mX
i=2

vi

0
@( i�2X

j=0

vj+1)� �(i� 1 > k � 1)

1
A =

mX
i=2

vi

0
@( i�1X

j=1

vj)� �(i > k)

1
A :
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Compare this to the corresponding summand in the expression (3.3):

F
v0;:::;vm�1
n;k;m =

n�v0�����vm�1X
vm=0

X
(vm+1;:::;vs)

zst
Ps

i=0 iviqpow1

1 qpow3

3

sY
i=m

�vi+vi�1+���+vi�m��(i>k)
vi;vi�1+���+vi�m��(i>k)

�
q2;q3

;
(3.7)

where

pow1 = m

sX
i=0

�
vi
2

�
+

sX
i=0

vi

0
@max(k � i; 0) +

min(m;i)X
j=1

(m� j)vi�j

1
A ;

and

pow3 =
m�1X
i=1

vi

0
@( i�1X

j=0

vj)� �(i > k)

1
A :

To go from formula (3.6) to the corresponding summand in (3.7), we need to multiply

the former by

z1tv1+���+vsq
pow1�pow01
1 q

pow3�pow03
3

�
vm + � � �+ v0 � �(m > k)

vm; vm�1 + � � �+ v0 � �(m > k)

�
q2;q3

:

Doing this multiplication, noting that n� v0 = v1+ � � �+ vs, and adding over all choices

of vm, we obtain the recursion

F
v0;:::;vm�1
n;k;m =

ztn�v0q
pow001
1

n�v0�����vm�1X
vm=0

q
pow003
3

� vm+���+v0��(m>k)
vm;vm�1+���+v0��(m>k)

�
q2;q3

F v1;:::;vm
n�v0;k�1;m

;
(3.8)

where

pow001 = pow1 � pow01 = m

�
v0
2

�
+ kv0 +

m�1X
i=1

v0vi(m� i);

and

pow003 = pow3 � pow03 =
m�1X
i=1

v0vi � vm

0
@m�1X

j=1

vj � �(m > k)

1
A :

If k = 0, an entirely analogous computation (left to the reader) shows that

F
v0;:::;vm�1
n;0;m =

ztn�v0q
pow001
1

n�v0�����vm�1X
vm=0

q
pow003
3

�
vm + � � �+ v0 � 1

vm; vm�1 + � � �+ v0 � 1

�
q2;q3

F v1;:::;vm
n�v0;0;m

;
(3.9)
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where now

pow001 = m

�
v0
2

�
+

m�1X
i=1

v0vi(m� i);

and

pow003 =
m�1X
i=1

v0vi � v1 � vm

0
@m�1X

j=1

vj � 1

1
A :

This concludes the derivation of the recursion.

The original generating functions Bn;k;m can easily be recovered from the ex-

pressions F
v0;:::;vm�1
n;k;m . For, given a path D 2 Tn;k;m, we can append m empty columns of

height n at the far left of the �gure. This produces a path D0 counted by the generating

function F 0;0;:::;0
n;k+m;m; moreover, every such pathD0 arises in this way. The bounce statistics

for D0 are the same as those for D, except that b(D0) = b(D)+mn and c(D0) = c(D)+m

because of the m extra bounces at the left side of the diagram for D0. We conclude that

Bn;k;m(q1; q2; q3; t; z) = F 0;0;:::;0
n;k+m;m(q1; q2; q3; t; z)=(t

mnzm):

Remark 3.26. We derived the recursion above using messy, though straightforward,

algebraic manipulations. Here is the combinatorial intuition behind those manipulations.

Assume k > 0 for simplicity. Start with an object D0 counted by F v1;:::;vm
n�v0;k�1;m

. In

terms of bounce statistics, D0 is a path of height n� v0 whose bounce path starts with

vertical moves v1; : : : ; vm and whose �rst m � 1 bounce rectangles are empty. Assume

we are trying to construct an object counted by F
v0;:::;vm�1
n;k;m . Then we get to choose

vm (accounting for the summation over vm), but v0; : : : ; vm�1 are determined for us.

If we add a new initial bounce of height v0 to the beginning of D0, we obtain a larger

path D of height n that now has m empty bounce rectangles. The binomial coeÆcient

in the recursion reects the fact that we can now \�ll in" the mth empty rectangle to

obtain an object counted by F
v0;:::;vm�1
n;k;m . The other �xed powers in the recursion appear

because certain bounce rectangles and bounce slabs at the bottom of the �gure for D0

get \stretched" by the addition of the new initial bounce of height v0. This stretching

also changes the horizontal dimension of certain bounce rectangles, which explains why

we insist that the �rst m� 1 bounce rectangles be empty. Without this restriction, we

would need to multiply and divide by the appropriate q2; q3-binomial coeÆcients, leading

to an even messier recursion.
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Remark 3.27. As an application of the recursion, one can compute simple explicit

formulas for the specialization

F
v0;:::;vm�1
n;k;m (q; q; 1; 1=q; 1)

for certain choices of the parameters. The case k = 0, m = 1 has already been discussed

in Chapter 1. The more complicated case k = 0, m > 1 was treated in Chapter 2.

We now briey consider the case k > 0, m = 1. De�ne Gs
n;k(q) = F s

n;k;1(q; q; 1; 1=q; 1);

observe that B0
n;k;1(q; 1=q) = G0

n;k+1(q) � q
n. Recall from Chapter 1 that

Gs
n;0(q) = q�(n

2+n)=2+ns

 �
2n� s� 1

n� s; n� 1

�
q

� qs
�
2n� s� 1

n� s� 1; n

�
q

!
:

An easy combinatorial argument shows that Gs
n;1(q) = Gs+1

n+1;0(q), so the last formula

also gives

Gs
n;1(q) = q

�(n+1)2�(n+1)
2

+(n+1)(s+1)

 �
2n� s

n� s; n

�
q

� qs+1

�
2n� s

n� s� 1; n+ 1

�
q

!
:

Assume that k � 1 now. Making the appropriate substitutions in the �ve-

variable recursion, we �nd that the specialized generating functions satisfy the recursion

Gs
n;k(q) = qs(s�1)=2+ks+s�n

n�sX
r=0

�
r + s

r; s

�
q

Gr
n�s;k�1(q);

subject to the initial condition

Gn
n;k(q) = qn(n�1)=2+kn:

Substituting the formula for Gr
n�s;1(q) into this recursion, one can obtain the formula

Gs
n;2(q) = q(n�n

2)=2�2n+s(n+3)

 �
2n� s+ 1

n� s; n+ 1

�
q

� q1
�

2n� s+ 1

n� s� 1; n+ 2

�
q

!
:

The proof of this formula is exactly like the corresponding proof for Gs
n;0(q) in Chapter

1, so we omit it.

One would expect this process to continue, leading to formulas for Gs
n;k(q) as

di�erences of two q-binomial coeÆcients multiplied by appropriate powers of q. Unfor-

tunately, this appears not to be true for k � 3. For example, when (n; k; s) = (2; 3; 1),

we have

Gs
n;k(q) = qC(1 + q2 + q4 + q5);
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and this polynomial is not of the expected form

qA
�
5

1; 4

�
q

� qB
�
5

0; 5

�
q

for any choice of A and B. The earlier proofs using the recursion break down at k = 3

because the powers of q occurring in the formula for Gs
n;2(q) are \bad," leading to a

q-series that is not easily evaluated.

Acknowledgement: This chapter is essentially a reprint, with minor modi�cations, of

the paper \Trapezoidal Lattice Paths and Multivariate Analogues" by N. Loehr, which

has been accepted for publication in Advances in Applied Mathematics. The dissertation

author was the primary investigator and sole author of this paper.
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Labelled Lattice Paths and

Generalized Hilbert Series

In Chapter 1, we discussed the Hilbert series of the diagonal harmonics modules

and gave conjectured combinatorial interpretations of these Hilbert series in terms of

labelled Dyck paths. We briey recall the relevant de�nitions.

De�nition 4.1. Let n be a positive integer.

(1) Consider the diagonal harmonics moduleDHn, as discussed in x1.3.5. Let d(h; k; n)

denote the dimension of the (h; k)-component of DHn. Explicitly, d(h; k; n) is the

dimension of the subspace of polynomials f 2 DHn such that f has degree h in

the x-variables and f has degree k in the y-variables. The Hilbert series of DHn is

Hn(q; t) =
X
h�0

X
k�0

d(h; k; n)qhtk:

(2) The symmetric-function formula for the Hilbert series is

SHn(q; t) = r(s1n)js�=f� ;

where r denotes the nabla operator from x1.3.3.

(3) The �rst combinatorial formula for the Hilbert series is

CHn(q; t) =
X
P2Pn

qarea(P )tdinv(P );

155
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where Pn is the collection of labelled Dyck paths of order n, and dinv is the statistic

de�ned in x1.5.1.

(4) The second combinatorial formula for the Hilbert series is

CH 0
n(q; t) =

X
P2Qn

qdmaj(P )tarea
0(P );

where Qn is the second collection of labelled Dyck paths of order n, and dmaj and

area0 are the statistics de�ned in x1.5.2.

It follows from the work of Haiman [18, 21] that Hn(q; t) = SHn(q; t) for all

n. We showed in Chapter 1 that CHn(q; t) = CH 0
n(q; t) for all n. It is a conjecture of

Haglund, Haiman, and the present author [17] that Hn(q; t) = CHn(q; t) for all n.

This chapter begins by describing certain generalizations of the diagonal har-

monics modules, which were �rst studied by Garsia and Haiman. We then introduce

combinatorial statistics on labelled trapezoidal lattice paths that generalize the area

and dinv statistics appearing in CHn(q; t). In the case of labelled lattice paths inside

triangles, these statistics give a conjectured combinatorial model for the Hilbert series

of the generalized diagonal harmonics modules.

We prove an explicit formula for the generating function of these new statistics

on labelled trapezoidal paths. The formula (1.24) mentioned in Chapter 1 follows as

a special case of this new formula. Remarkably, the new formula can be derived in a

completely di�erent way, leading to yet another pair of statistics on labelled paths with

the same generating function. As a corollary, it follows that all statistics being discussed

have the same univariate distribution. In fact, there are explicit bijections on labelled

paths that map any given statistic to any other statistic. These results, when specialized

to labelled Dyck paths, settle one of the open questions from [17]. We also conjecture

that the pairs of statistics introduced here are jointly symmetric. This conjecture has

been con�rmed by computer for small values of the parameters, but remains unproved

(as of this writing) even in the case of labelled Dyck paths.
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4.1 Generalizations of Diagonal Harmonics Modules

This section describes generalizations of the diagonal harmonics modules, which

were introduced by Garsia and Haiman in [15].

De�nition 4.2. Fix integers m;n � 1. We de�ne the generalized diagonal harmonics

module DH
(m)
n of order m in n variables as follows. As in x1.3.5, let Sn act on the

polynomial ring Rn = C [x1 ; : : : ; xn; y1; : : : ; yn] via the diagonal action. Let An denote

the ideal in Rn generated by all polynomials P 2 Rn for which

� � P = sgn(�)P for all � 2 Sn.

Let Am
n denote the ideal inRn generated by all products P1P2 � � �Pm, where each Pi 2 An.

Let Jn denote the ideal in Rn generated by all polarized power sums

nX
i=1

xhi y
k
i (h+ k � 1):

Finally, de�ne

R(m)
n [X;Y ] = Am�1

n =JAm�1
n :

If � 2 Sn and f 2 R
(m)
n [X;Y ], the diagonal action induces an action of Sn on this

module, which we denote by � � f . De�ne a new action of Sn by setting

� ? f = (sgn(�))m�1� � f:

DH
(m)
n is de�ned to be the doubly-graded module R

(m)
n [X;Y ] with this new action.

As with the original diagonal harmonics module, we would like to understand

the Frobenius series F
(m)
n (q; t), the Hilbert series H

(m)
n (q; t), and the generating function

for the sign character RC
(m)
n (q; t) of DH

(m)
n . We have the following results, analogous

to those in x1.3.5.

First, Haiman's work implies that the Frobenius series of DH
(m)
n is given by

F (m)
n (q; t) = rm(s1n):

By Theorem 1.29 and the de�nition of nabla, we have

rm(s1n) =
X
�`n

~H�t
mn(�)qmn(�0)(1� t)(1� q)��(q; t)B�(q; t)

h�(q; t)h0�(q; t)
: (4.1)
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As in the case m = 1, there are nice formulas for the specializations at t = 1 and t = 1=q.

Recall from De�nition 2.6 that D
(m)
n denotes the collection of m-Dyck paths of order n.

Theorem 4.3. (1) For an m-Dyck path D of order n, de�ne ai(D) to be the number

of vertical steps taken by the path along the line x = i. Then

rm(s1n)jt=1 =
X

D2D
(m)
n

qarea(D)
mn�1Y
i=0

eai(D);

where ej denotes an elementary symmetric function, as usual.

(2)

qmn(n�1)=2rm(s1n)
���
t=1=q

=
X
�`n

s�
s�0(1; q; q

2; : : : ; qmn)

[mn+ 1]q
:

Proof. See Theorem 4.3 and Corollary 4.1 in [15].

Formula (4.1) gives the Frobenius series of DH
(m)
n in terms of the symmetric

functions ~H�. To get the Hilbert series of DH
(m)
n , we can expand ~H� in terms of Schur

functions and replace each s� by f�.

4.2 Statistics for Labelled Trapezoidal Lattice Paths

In Chapter 2, we discussed combinatorial statistics on m-Dyck paths whose

generating functions are conjectured to give OC
(m)
n (q; t). This section generalizes some

of those statistics to labelled trapezoidal paths. The new statistics for triangular paths

give a conjectured combinatorial interpretation for the Hilbert series of the modules

DH
(m)
n .

De�nition 4.4. Fix integers n; k;m � 0.

(1) A labelled lattice path of height n consists of a lattice path having n vertical steps

labelled 1; 2; : : : ; n and an unspeci�ed number of unlabelled horizontal steps. When

drawing a labelled path, our convention is to place the label for each vertical step

in the lattice square directly right of that vertical step. We call a labelled lattice

path valid if and only if the labels in each column increase from bottom to top.
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(2) A labelled trapezoidal path of type (n; k;m) is a valid labelled lattice path whose

underlying unlabelled path P lies in Tn;k;m. Let Pn;k;m denote the collection of all

such labelled paths.

As in the case of labelled Dyck paths, we can specify a labelled trapezoidal path

P by giving a pair of vectors

~g(P ) = (g0; g1; : : : ; gn�1); ~p(P ) = (p0; p1; : : : ; pn�1);

where gi(P ) is the number of area cells in the ith row from the bottom, and pi is the

label of the vertical step in the ith row from the bottom. It is easy to see that a vector of

n integers (g0; : : : ; gn�1) corresponds to a legal path in Tn;k;m if and only if the following

conditions hold:

(A) g0 2 f0; 1; : : : ; kg.

(B) gi � 0 for all i.

(C) gi+1 � gi +m for all i.

Moreover, the associated vector of integers ~p(P ) represents a valid labelling if and only

if:

(D) p0; : : : ; pn�1 is a permutation of 1; 2; : : : ; n.

(E) For all i, if gi+1 = gi +m, then pi < pi+1.

Thus, when convenient, we may regard Pn;k;m as the set of all pairs of vectors (~g; ~p)

satisfying (A)|(E).

Example 4.5. Figure 4.1 shows a typical labelled path in P6;2;3. This object corresponds

to the vector pair

((1; 4; 4; 0; 3; 1); (3; 5; 4; 1; 6; 2)):

We have the following analogues of the area and dinv statistics.

De�nition 4.6. (1) The area of P = (~g; ~p) 2 Pn;k;m is de�ned by

area(P ) =
n�1X
i=0

gi:

This is the number of area cells in the diagram of P , as usual.
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n = 6 
 m = 3

 k = 2
(0, 0)

(20, 6)

1

2

3

4
5

6

Figure 4.1: A labelled trapezoidal path.

(2) As above, set r+ = max(r; 0) for any integer r. The inversion statistic of P is

de�ned by letting

h(P ) = h1(P ) + h2(P ) + h3(P )� h4(P ); where:

h1(P ) =
X
i<j

(m� jgi � gjj)
+

h2(P ) =
n�1X
i=0

(k � gi)
+

h3(P ) =
X
i<j

�(gi � gj 2 f1; 2; : : : ;mg and pi > pj)

h4(P ) =
X
i<j

�(gi � gj 2 f0;�1;�2; : : : ;�(m� 1)g and pi > pj)

Equivalently, we can de�ne

h(P ) = h2(P ) +
X
i<j

m�1X
d=0

�(Ai;j;d);

where Ai;j;d is the logical statement

(gi � gj + d = 0 and pi < pj) or

(gi � gj + d 2 f1; 2; : : : ;m� 1g) or

(gi � gj + d = m and pi > pj):

The veri�cation of this equivalence involves checking that the summands corre-

sponding to a �xed choice of i and j in h1(P ) + h3(P ) � h4(P ) always add up

to the corresponding summand
Pm�1

d=0 �(Ai;j;d). This is done by considering cases
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Table 4.1: Checking the equivalence of the two formulas for h(P ).

Value of Order of labels Contribution to Value of

z = gi � gj pi; pj h1(P ) + h3(P )� h4(P )
Pm�1

d=0 Ai;j;d

z > m pi > pj 0 0

z > m pi < pj 0 0

1 � z � m pi > pj m� z + 1 m� z + 1

1 � z � m pi < pj m� z m� z

�m < z � 0 pi > pj m� jzj � 1 m� jzj � 1

�m < z � 0 pi < pj m� jzj m� jzj

z � �m pi > pj 0 0

z � �m pi < pj 0 0

based on the value of gi � gj and whether pi > pj or pi < pj holds. These cases

are checked in Table 4.1.

(3) De�ne

CHn;k;m(q; t) =
X

P2Pn;k;m

qarea(P )th(P ):

It is easy to check that CHn;0;1(q; t) = CHn(q; t).

Example 4.7. For the path

P = ((1; 4; 4; 0; 3; 1); (3; 5; 4; 1; 6; 2)):

shown in Figure 4.1, where n = 6, k = 2, m = 3, the values of gi � gj for i < j are:

i = 1 : �3;�3; 1;�2; 0;

i = 2 : 0; 4; 1; 3;

i = 3 : 4; 1; 3;

i = 4 : �3;�1;

i = 5 : 2:

Hence, we compute:

area(P ) = 13; h1(P ) = 16; h2(P ) = 4; h3(P ) = 4; h4(P ) = 2; h(P ) = 22:
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Conjecture 4.8. For all n;m � 1, we have

CHn;0;m(q; t) = H(m)
n (q; t):

In other words, the statistics for labelled paths inside the triangle with vertices (0; 0),

(0; n), and (mn;n) give a combinatorial interpretation for the Hilbert series of the gen-

eralized diagonal harmonics module DH
(m)
n .

This conjecture has been con�rmed for small values of n and m by computer,

using the formula

H(m)
n (q; t) = rm(s1n)js�=f� :

Conjecture 4.9. For all n;m � 1, we have the specializations

qmn(n�1)=2CHn;0;m(q; 1=q) = [mn+ 1]n�1q ;

qn+mn(n�1)=2CHn;1;m(q; 1=q) = (1 + qn+1) � [mn+ 2]n�1q :

The author has recently proved the �rst conjecture when m = 1; this proof

will appear in a later work. At present, there are no conjectures for the corresponding

specializations when k > 1.

Conjecture 4.10. For all n; k;m, we have the joint symmetry

CHn;k;m(q; t) = CHn;k;m(t; q):

As evidence for this conjecture, we will prove the univariate symmetry

CHn;k;m(q; 1) = CHn;k;m(1; q):

The proof will use a generalization of the bounce statistic to labelled paths, which is

de�ned later. First, we need to establish an explicit summation formula for CHn;k;m(q; t).

4.3 Summation Formula for CHn;k;m(q; t)

In this section, we will derive a formula for the generating function CHn;k;m(q; t)

as a summation over a collection of functions (equation (4.2) below). One application
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of this formula is the proof of the univariate symmetry CHn;k;m(q; 1) = CHn;k;m(1; q)

mentioned above.

Here are some remarks that explain how the new formula was discovered. Ex-

amining the proof of the corresponding formula (1.24), which appears in [17], suggests

that we should look at subcollections of Pn;k;m where the labels appearing on each \di-

agonal" are �xed in advance. More precisely, suppose we are given an ordered partition

S0; S1; : : : ; Sk+mn of the set of labels f1; 2; : : : ; ng into pairwise disjoint subsets, some

of which may be empty. Then we can consider only those labelled paths P = (~g; ~p) in

Pn;k;m such that pi 2 Sj implies gi = j. In other words, the set of labels in Sj must

appear in rows of P that contain exactly j area cells.

In the original formula (1.24), where k = 0 and m = 1, it was convenient to

represent the set partition S0; S1; : : : ; as a permutation � as follows. First, write down

the word

w = j Sn j Sn�1 j � � � S3 j S2 j S1 j S0

in which the elements of each Sj (read from left to right) appear in increasing order, and

a bar symbol is drawn between consecutive sets Sj. Now, it is easy to see that conditions

(A)|(E) imply the following properties of w when k = 0 and m = 1:

� Sj = ; implies Sk = ; for all k > j.

� The largest element of Sj is greater than the smallest element of Sj�1 whenever

both sets are nonempty.

Let � denote w with all bar symbols erased; clearly, � is a permutation of f1; 2; : : : ; ng.

The �rst property says that there are never two or more consecutive bar symbols, except

possibly at the beginning of the word w. The second property says that the descents of

w occur precisely at the locations of the erased bars (occurring after the beginning of

the word). Therefore, w is recoverable from �: given �, we simply draw bars wherever

descents occur, and then draw extra bars at the beginning of w until there are n bars

total. Of course, the sets S0; S1; : : : are recoverable from w.

Unfortunately, the two properties above are no longer guaranteed in the case

where k > 0 or m > 1. Hence, we are led to seek another representation for the

set partition S0; S1; : : :. It is convenient to introduce functions for this purpose. Let
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f : f1; 2; : : : ; ng ! f0; 1; : : : ; k + mng be a function. Then we obtain a set partition

of f1; 2; : : : ; ng by setting Sj = f�1(fjg) for 0 � j � k + mn. In this notation, we

wish to consider the subcollection of paths P = (~g; ~p) in Pn;k;m such that f(pi) = gi for

1 � i � n. It is also convenient to set up further notation to describe these functions.

De�nition 4.11. Fix n; k;m. Let f : f1; 2; : : : ; ng ! f0; 1; : : : ; k+mng be any function.

(1) De�ne the subcollection of labelled paths of type (n; k;m) associated to f by

Pn;k;m(f) = fP = (~g; ~p) 2 Pn;k;m : f(pi) = gi for 1 � i � ng:

Note that, for certain choices of f , this subcollection may be empty.

(2) For any set T , de�ne the usual inverse image of T under f by

f�1(T ) = fx 2 f1; 2; : : : ; ng : f(x) 2 Tg:

Also, for any integer i, de�ne

f�1<i (T ) = fx : x < i and f(x) 2 Tg;

f�1>i (T ) = fx : x > i and f(x) 2 Tg:

For brevity, we may write f�1(j) instead of f�1(fjg), etc.

(3) De�ne the set partition associated to f to be the list (S0; : : : ; Sk+mn), where Sj =

f�1(j) for each j.

(4) De�ne the word of f by

w(f) = S0 j S1 j S2 j � � � j Sk+mn j

where the elements of each Sj appear in decreasing order from left to right, followed

by a bar symbol. Consecutive bar symbols appear in the word if and only if some

Sj is empty. Note that this is the reversal of the word w described in the special

case k = 0, m = 1 above. Also note that f is recoverable from w(f), thanks to the

bar symbols. We may safely omit bar symbols that occur together at the far right

of the word of f .
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(5) Let Fn;k;m denote the set of all functions f : f1; 2; : : : ; ng ! f0; 1; : : : ; k+m(n�1)g.

For f 2 Fn;k;m, de�ne

maj(f) =
nX
j=1

f(j)

count(f; j) = �(f(j) � k) + jf�1<j (f(j) �m)j+ jf�1>j (f(j))j

+jf�1(ff(j) � 1; : : : ; f(j)� (m� 1)g)j:

x0(f) =
X
j1<j2

(m� jf(j1)� f(j2)j)
+ +

nX
j=1

(k � f(j))+

xj(f) = �jf�1>j (ff(j); f(j) � 1; : : : ; f(j)� (m� 1)g)j

Example 4.12. Let n = 7, k = 2, m = 2. Let the function f be given by

f(1) = 2; f(2) = 0; f(3) = 0; f(4) = 3; f(5) = 0; f(6) = 2; f(7) = 2:

The word of f is

w(f) = 5 3 2 j j 7 6 1 j 4 jjjjjjjjjjjj;

where there are 12 trailing bar symbols. Also

maj(f) = 9; count(f; 1) = 3; count(f; 2) = 3; count(f; 3) = 2;

count(f; 4) = 3; count(f; 5) = 1; count(f; 6) = 5; count(f; 7) = 4;

x0(f) = 15 + 6 = 21; x1(f) = �2; x2(f) = �2; x3(f) = �1;

x4(f) = �2; x5(f) = 0; x6(f) = �1; x7(f) = 0:

The goal of the rest of this section is to establish the following formula.

Theorem 4.13.

CHn;k;m(q; t) =
X

f2Fn;k;m

qmaj(f)tx0(f)
nY
j=1

txj(f)[count(f; j)]t: (4.2)

In the coming proofs, it will be convenient to use the following notation. Given

a labelled path P = (~g; ~p), we can think of P as a single list of n \tiles"

P =
g1

p1

g2

p2
� � �

gn

pn
: (4.3)
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In this notation, specifying a function f 2 Fn;k;m is equivalent to specifying a collection

of n tiles, namely
f(i)

i
for 1 � i � n. The subcollection Pn;k;m(f) consists precisely

of all rearrangements of these n tiles that satisfy the restrictions (A)|(E) above. Note

that (B) and (D) are guaranteed to hold, by de�nition of f .

We will be interested in building the object P by putting down tiles one at a

time. Thus, it is of interest to consider \partial" objects Q satisfying (A)|(C) and (E)

but not necessarily (D).

Lemma 4.14. Suppose P 2 Pn;k;m(f), so P satis�es conditions (A)|(E). Let i1; : : : ; in

be the word of f with all bar symbols erased. Let S = fis; : : : ; ing be any suÆx of this

word, where 2 � s � n. Let Q be obtained from P by removing all tiles of the form
f(i)

i

for i 2 S. Then Q satis�es conditions (A)|(C) and (E).

Proof. We prove the contrapositive in each case. If Q does not satisfy condition (A),

then it begins with a tile of the form
x

y
, where x > k. By de�nition of the word of f

and S, all the removed tiles must have had top entries x0 � x. Thus, the �rst tile of P

must have had top entry at least x, and so P does not satisfy condition (A).

If Q does not satisfy condition (B), then P does not satisfy (B) either, since

every tile in Q is a tile in P .

Suppose Q does not satisfy condition (C), so that there are consecutive tiles

x

y

x0

y0
in Q with x0 > x+m. As before, the de�nitions of w(f) and S show that any

tiles in P that were between these two tiles of Q before being removed must have had

top entry x00 � x0. Hence, the tile immediately following
x

y
in P still has top entry

larger than x+m. So P does not satisfy condition (C).

Finally, suppose Q does not satisfy condition (E), so that are consecutive tiles

x

y

x0

y0
in Q with x0 = x+m and y > y0. Let

x00

y00
be the tile immediately following

x

y

in P . If x00 = x0 and y00 = y0, then P fails condition (E) already. Otherwise, by de�nition

of w(f) and S, we must have x00 � x0 = x +m. Since P satis�es condition (C), we in
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fact have x00 = x+m = x0. Now, since the elements of Sx+m appear in decreasing order

in the word of f , the presence of the tile
x+m

y0
in Q is only possible if the value y00 in

the removed tile is less than y0. But then y > y00, so that P fails condition (E) in this

case too.

Lemma 4.15. Given n; k;m and f 2 Fn;k;m, we have

jPn;k;m(f)j =
nY
j=1

count(f; j):

Proof. We can uniquely construct every object P 2 Pn;k;m(f) as follows. Start with a

pool of n available tiles
f(i)

i
, for 1 � i � n. Let i1; : : : ; in be the word of f with all bar

symbols erased. Starting with an empty list of tiles, form the object P by successively

inserting each tile

f(i1)

i1
;

f(i2)

i2
; � � � ;

f(in)

in

into the list of previously inserted tiles. At each step, the new tile may be inserted

anywhere in the existing list, provided that conditions (A), (C), and (E) hold. The

previous lemma guarantees that all objects in Pn;k;m(f) can be constructed under these

restrictions on tile insertions. Since the tiles are distinct, it is clear that there is a unique

insertion order that will produce any given object P .

Thus, we need only count how many legal positions are available when each

tile
f(j)

j
is inserted. Fix j. First, observe that the insertion order ensures that f(j) �

f(i) for all previously inserted tiles
f(i)

i
. This means that conditions (C) and (E)

automatically hold for the tile
f(j)

j
and the tile immediately following it (if any).

Thus, to check that conditions (A), (C), and (E) continue to hold after the insertion of

tile
f(j)

j
, we need only check that: (i) f(j) � k if

f(j)

j
is inserted in the leftmost
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position; or (ii) conditions (C) and (E) hold for the pair of tiles
f(`)

`

f(j)

j
, where

f(`)

`
is the tile immediately preceding

f(j)

j
. By condition (C), we must have f(`) 2

ff(j); f(j) � 1; : : : ; f(j) �mg. By condition (E), if f(`) = f(j)�m, then we must also

have ` < j.

Now, consider the various places where the new tile
f(j)

j
may be inserted.

� The tile may be inserted at the far left position, becoming the new �rst tile in

the list. By condition (A), this is allowable if and only if f(j) � k. So, we get a

contribution of �(f(j) � k) to the position count.

� The tile may be inserted immediately after a tile of the form
f(j)�m

`
, where we

need ` < j by condition (E). By de�nition of w(f) and the tile insertion order, all

such tiles have already been placed when tile
f(j)

j
is being inserted. Therefore,

the number of such tiles is

jf�1<j (f(j)�m)j:

� The tile may be inserted immediately after a tile of the form
f(j)� u

`
, where

1 � u < m and ` is arbitrary. By de�nition of w(f) and the tile insertion order, all

such tiles have already been placed when tile
f(j)

j
is being inserted. Therefore,

the number of such tiles is

jf�1(ff(j) � 1; : : : ; f(j)� (m� 1)g)j:

� The tile may be inserted immediately after a tile of the form
f(j)

`
, where ` is

arbitrary. However, by de�nition of w(f) and the tile insertion order, only those

tiles with ` > j have been inserted prior to the insertion of tile
f(j)

j
. Therefore,
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the number of such tiles is only

jf�1>j (f(j))j:

� The new tile can only be inserted in positions of the type described in the last four

cases, thanks to condition (C).

In summary, for each j between 1 and n, the number of ways to place tile
f(j)

j
is

precisely

�(f(j) � k) + jf�1<j (f(j)�m)j+ jf�1(ff(j) � 1; : : : ; f(j)� (m� 1)g)j + jf�1>j (f(j))j;

which is just count(f; j). The formula in the statement of the lemma now follows from

the product rule.

Corollary 4.16.

CHn;k;m(q; 1) =
X

f2Fn;k;m

qmaj(f)
nY
j=1

count(f; j): (4.4)

Proof. Note that Pn;k;m is the disjoint union of the sets Pn;k;m(f) over all f 2 Fn;k;m.

Fix f , and consider any P 2 Pn;k;m. We have

area(P ) =
n�1X
i=0

gi =
n�1X
i=0

f(pi) =
nX
i=1

f(i) = maj(f);

since the labels pi are a permutation of 1; 2; : : : ; n. Thus, all paths in Pn;k;m(f) contribute

a summand qmaj(f) to the generating function CHn;k;m(q; 1). The stated formula then

follows immediately from the previous lemma.

Example 4.17. Let n,k,m, and f be as in the previous example. To construct an object

P 2 Pn;k;m(f), we should insert tiles in the following order:

0

5

0

3

0

2

2

7

2

6

2

1

3

4

An example of an object created in this way is

P =
2

6

0

3

2

7

3

4

2

1

0

5

0

2

Note that area(P ) = 9 = maj(f).
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Our next goal is to extend formula (4.4) to keep track of the statistic h(P ) =

h1(P )+h2(P )+h3(P )�h4(P ). The �nal formula, equation (4.2), will be proved in two

steps. The �rst (easier) step involves analyzing the contribution of h1(P ) + h2(P ). The

next result shows that this quantity is constant for all objects P in a given subcollection

Pn;k;m(f).

Lemma 4.18.X
P2Pn;k;m

qarea(P )th1(P )+h2(P ) =
X

f2Fn;k;m

qmaj(f)tx0(f)
nY
j=1

count(f; j): (4.5)

Proof. In light of formula (4.4) and its proof, we need only show that

h1(P ) + h2(P ) = x0(f) for all P 2 Pn;k;m(f).

Recall that for P 2 Pn;k;m(f), we have gi = f(pi) for all i. Also, p0; : : : ; pn�1 is a

rearrangement of 1; 2; : : : ; n, so we have

h2(P ) =

n�1X
i=0

(k � gi)
+ =

n�1X
i=0

(k � f(pi))
+ =

nX
j=1

(k � f(j))+:

Next, recall that

h1(P ) =
X
i<j

(m� jgi � gj j)
+:

This sum extends over all ordered pairs (i; j) with 0 � i < j � n � 1. However, since

jgi � gj j = jgj � gij, we could equally well sum over all unordered pairs fi; jg with

0 � i; j � n� 1 and i 6= j. Hence,

h1(P ) =
X

fi1;i2g:i1 6=i2

(m� jgi1 � gi2 j)
+

=
X

fi1;i2g:i1 6=i2

(m� jf(pi1)� f(pi2)j)
+

=
X

fj1;j2g:j1 6=j2

(m� jf(j1)� f(j2)j)
+

=
X
j1<j2

(m� jf(j1)� f(j2)j)
+:

Combining these calculations and comparing to the de�nition of x0(f), we get h1(P ) +

h2(P ) = x0(f) as desired.
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The next step is to analyze the value of h3(P ) � h4(P ) for P 2 Pn;k;m(f).

Consider the partial objects

P0; P1; : : : ; Pn = P

that are constructed in Lemma 4.15 by inserting tiles in the order given by the word

of f . We think of each newly inserted tile as contributing a certain increment to the

statistic h3(P )� h4(P ). More speci�cally, let y0 = 0 and, for 1 � i � n, let

yi = [h3(Pi)� h4(Pi)] � [h3(Pi�1)� h4(Pi�1)] :

Then h3(P )�h4(P ) =
Pn

i=1 yi; note that yi is the change in the statistic h3�h4 (which

may be positive or negative) resulting from the insertion of the ith tile.

It will be convenient to alter the indexing scheme slightly, as follows. Suppose

the ith tile in the insertion order is
f(j)

j
. Then de�ne zj = yi. In words, zj is the change

in the statistic h3 � h4 due to the insertion of tile
f(j)

j
. Note that h3(P ) � h4(P ) =Pn

j=1 zj .

We have shown, in the proof of Lemma 4.15, that there are exactly cj =

count(f; j) valid positions in which tile
f(j)

j
may be inserted. Temporarily number

these valid positions 0; 1; : : : ; cj � 1 reading from right to left. We will show later that,

if the tile is placed in the valid position numbered p, then

zj = xj(f) + p (0 � p < cj): (4.6)

Thus, the contribution to h3 � h4 due to this particular tile insertion can be accounted

for by the polynomial

txj(f)
cj�1X
p=0

tp = txj(f) � [count(f; j)]t;

which is a t-analogue of the number count(f; j) in (4.4). By the product rule for gener-

ating functions, we conclude that

X
P2Pn;k;m

th3(P )�h4(P ) =
X

f2Fn;k;m

nY
j=1

xj(f) � [count(f; j)]t:
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Combining this with the previous analysis for area and h1+h2, the desired formula (4.2)

will follow immediately.

To prove the claims in the last paragraph, we need to consider the e�ect of

inserting tile
f(j)

j
in arbitrary positions in the current tile con�guration, not just the

valid positions. We will now label each position with the change in h3 � h4 caused by

inserting tile
f(j)

j
in this position, regardless of the validity of the resulting partial

object.

Example 4.19. Continuing Example 4.17, consider the partial object

Q =
2

6

0

3

2

7

0

5

0

2
;

which has h3(Q)�h4(Q) = 3. The next tile to be inserted is
2

1
. The following diagram

shows the change in h3 � h4 when we insert this tile in all possible positions. We have

also labelled which positions are valid.

2

6

0

3

2

7

0

5

0

2

validity: yes yes no yes no no

change in h3 � h4: 0 �1 �1 �2 �2 �2

Note that if we look at only the valid positions, from right to left, the changes we get

are �2, �1, and 0, which are exactly the numbers x1(f) + p for 0 � p < 3 = count(f; 1).

Now, as in the previous example, assume that we choose to insert tile
2

1

immediately after
2

7
, producing the partial object

Q0 =
2

6

0

3

2

7

2

1

0

5

0

2
;
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with h3(Q
0) � h4(Q

0) = 1. The next tile to be inserted is
3

4
. The following diagram

shows the change in h3 � h4 when we insert this tile in all possible positions. We have

also labelled which positions are valid.

2

6

0

3

2

7

2

1

0

5

0

2

validity: no yes no yes yes no no

change in h3 � h4: 1 0 0 �1 �2 �2 �2

Note that if we look at only the valid positions, from right to left, the changes we get

are �2, �1, and 0, which are exactly the numbers x4(f) + p for 0 � p < 3 = count(f; 4).

Let us make some observations about these examples. First, note that there

are blocks of consecutive insertion positions for which the change in h3� h4 is the same.

Each such block (except possibly the leftmost block) consists of zero or more invalid

positions terminated by one valid position, scanning from right to left. The leftmost

block may or may not end with a valid position, depending on the value of k. Next,

note that the change in h3 � h4 for positions in the rightmost block is xj(f). As we

pass from one block to the next, scanning from right to left as always, the change in

h3 � h4 increases by 1 each time. Finally, we have already proved (in Lemma 4.15) that

the number of valid positions is exactly count(f; j). Combining all these observations,

we deduce that the claim (4.6) does hold in these two examples. The next lemma shows

that these observations are true in general, and hence claim (4.6) always holds.

Lemma 4.20. Fix n, k, m, and f 2 Fn;k;m. Let Q be a partial object, constructed as in

the proof of Lemma 4.15 by inserting tiles in the order given by the word of f . Suppose

Tj =
f(j)

j
is the next tile to be inserted into Q. Label each insertion position with the

change in h3 � h4 caused by inserting the new tile in that position. Then we have the

following properties:

(1) The rightmost position is labelled xj(f).

(2) Suppose two consecutive insertion positions in Q are separated by a tile Tp =
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f(p)

p
.

(a) If the position just right of Tp is an invalid position for Tj, then the position

just left of Tp has the same label as the position just right of Tp.

(b) If the position just right of Tp is a valid position for Tj, then the label of the

position just left of Tp is one more than the label of the position just right of

Tp.

(3) Hence, when scanning the count(f; j) valid insertion positions from right to left,

their labels are precisely the numbers

xj(f) + p (0 � p < count(f; j)):

Proof. We begin by observing that, for any tile Tp =
f(p)

p
in the partial object Q, we

must have f(j) � f(p); moreover, if f(j) = f(p), then p > j. This follows directly from

the de�nition of the word of f and the tile insertion order.

To prove (1), recall the de�nitions of h3 and h4:

h3(Q) =
X
i1<i2

�(gi1 � gi2 2 f1; 2; : : : ;mg and pi1 > pi2)

h4(Q) =
X
i1<i2

�(gi1 � gi2 2 f0;�1;�2; : : : ;�(m� 1)g and pi1 > pi2)

Suppose we insert tile Tj in the far right position, after all the tiles Tp =
f(p)

p
in Q.

The change in h3 caused by this insertion is

X
Tp2Q

�(f(p)� f(j) 2 f1; 2; : : : ;mg and p > j) = 0;

since the observation above gives f(p)� f(j) � 0. On the other hand, the change in h4

caused by the insertion is

X
Tp2Q

�(f(p)� f(j) 2 f0;�1; : : : ;�(m� 1)g and p > j)
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= jf�1>j (ff(j); f(j) � 1; : : : ; f(j) � (m� 1)g)j:

The last equality uses the fact that all tiles with lower entries in the set

f�1>j (ff(j); : : : ; f(j)� (m� 1)g)

have already been inserted in Q before tile Tp is inserted; this again follows from the

de�nition of the insertion order. To summarize, the change in h3�h4 caused by inserting

Tp at the far right is

0� jf�1>j (ff(j); : : : ; f(j)� (m� 1)g)j = xj(f);

which proves (1).

In the proof of (2), we will consider con�gurations where the new tile Tj is

inserted immediately right or left of an existing tile Tp. Note that passing from the con-

�guration � � � TpTj � � � to � � � TjTp � � � simply amounts to interchanging the two adjacent

tiles Tp and Tj. This interchange will only a�ect a single term in the formulas for h3 and

h4. Speci�cally, in h3, the term

t1 = �(f(p)� f(j) 2 f1; 2; : : : ;mg and p > j)

will be replaced by the term

t2 = �(f(j)� f(p) 2 f1; 2; : : : ;mg and j > p):

In h4, the term

t3 = �(f(p)� f(j) 2 f0;�1; : : : ;�(m� 1)g and p > j)

will be replaced by the term

t4 = �(f(j)� f(p) 2 f0;�1; : : : ;�(m� 1)g and j > p):

The net change in the statistic h3 � h4 due to the interchange is therefore (t2 � t4) �

(t1 � t3) = t2 + t3 � t1 � t4.

To prove (2a), assume that p and j are such that the position just right of Tp

is an invalid position for Tj . This situation occurs in the following two cases.
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(i) We have f(p) � f(j) < �m, so that the position right of Tp is invalid because

condition (C) fails. We have t1 = t2 = t3 = t4 = 0, so the change in h3 � h4 when

we move Tj to the left of Tp is zero.

(ii) We have f(p) � f(j) = �m and p > j, so that the position right of Tp is invalid

because condition (E) fails. We have t1 = t2 = t3 = t4 = 0, so the change in h3�h4

when we move Tj to the left of Tp is zero.

To prove (2b), assume that p and j are such that the position just right of Tp

is a valid position for Tj . This situation occurs in the following four cases.

(iii) We have f(p)� f(j) = �m and p < j. Then t1 = t4 = 0, while t2 = 1 and t3 = 0.

Hence, the change in h3 � h4 when we move Tj to the left of Tp is +1.

(iv) We have �(m� 1) � f(p)� f(j) � �1 and p > j. Then t1 = t4 = 0, while t2 = 0

and t3 = 1. Hence, the change in h3 � h4 when we move Tj to the left of Tp is +1.

(v) We have �(m� 1) � f(p)� f(j) � �1 and p < j. Then t1 = t4 = 0, while t2 = 1

and t3 = 0. Hence, the change in h3 � h4 when we move Tj to the left of Tp is +1.

(vi) We have f(p) � f(j) = 0, which forces p > j by de�nition of w(f) and the tile

insertion order. Then t1 = t2 = 0, while t3 = 1 and t4 = 0. Hence, the change in

h3 � h4 when we move Tj to the left of Tp is +1.

Note that the cases (i)|(vi) are exhaustive, since the tile insertion order rules out the

possibility that f(p)� f(j) > 0. This completes the proof of (2).

To prove (3), note that (1) shows the rightmost position has label xj(f). Read-

ing the positions from right to left, (2a) implies that there will be a block of positions

with label xj(f), consisting of zero or more invalid positions followed by one valid posi-

tion. By (2b), the next position to the left will have label xj(f) + 1. Then (2a) implies

that there is another block of positions labelled xj(f) + 1, consisting of zero or more

invalid positions followed by one valid position. This process continues until all valid

positions have been encountered. We saw in the proof of Lemma 4.15 that the number

of valid positions is exactly count(f; j). Note that the leftmost block of positions may or

may not end with a valid position, depending on k. This ambiguity does not a�ect the
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correctness of the present argument, since we stop as soon as the last (leftmost) valid

position has been scanned. (This is illustrated by the two preceding examples, where

the leftmost position is valid in one case and invalid in the other.)

This lemma, together with the discussion preceding it, completes the proof of

formula (4.2). We leave to the reader the task of showing that this formula reduces to

formula (1.24) from Chapter 1 in the case m = 1, k = 0. This is merely a matter of

notation translation, keeping in mind that the permutation � corresponds to the reversal

of the word of f .

4.4 Statistics based on Parking Policies

Recall from Chapter 1 that there are two pairs of statistics (area; dinv) and

(dmaj; area0) on parking functions that give conjectured combinatorial interpretations

for the Hilbert series Hn(q; t) of DHn. This section introduces a third pair of statistics

(pmaj; area) on parking functions that has the same generating function as the previous

two. In symbols, we have

X
Q2Qn

qdmaj(Q)tarea
0(Q) =

X
P2Pn

qarea(P )tdinv(P ) =
X
P2Pn

qpmaj(P )tarea(P ):

Letting q = 1 here shows that area, dinv and area0 have the same univariate distribu-

tion, while letting t = 1 shows that pmaj, area, and dmaj have the same univariate

distribution. Hence, all �ve individual statistics have the same univariate distribution.

This result settles one of the open questions from [17]. We will prove the analogous

result for labelled trapezoidal paths in the next section.

Our starting point is the formula

CHn(q; t) =
X
P2Pn

qarea(P )tdinv(P ) =
X
�2Sn

qmaj(�)
nY
i=1

wi(�)�1X
p=0

tp: (4.7)

It is convenient to represent this formula combinatorially. To do this, consider objects

I = (�;u1; : : : ; un), where � 2 Sn and ui are integers satisfying 0 � ui < wi(�). Let In

denote the collection of such objects. De�ne qstat(I) = maj(�) and tstat(I) =
Pn

i=1 ui.
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It is obvious from these de�nitions and formula (4.7) that

CHn(q; t) =
X
I2In

qqstat(I)ttstat(I): (4.8)

In particular, letting q = t = 1 here, we obtain

jInj = jPnj = (n+ 1)n�1: (4.9)

We will de�ne a statistic pmaj on Pn and give a bijection G : In ! Pn such

that

qstat(I) = pmaj(G(I)) and tstat(I) = area(G(I)):

It will then follow that

CHn(q; t) =
X
P2Pn

qpmaj(P )tarea(P ):

The simplest way to de�ne pmaj involves parking functions, which were dis-

cussed in x1.5.5. Let P 2 Pn, and let f be the associated parking function. Recall that

f(x) = j is interpreted to mean that car x prefers spot j. Let Sj = f�1(j) be the set

of cars that want to park in spot j. Let Tj =
Sj
k=1 Sk be the set of cars that want to

park at or before spot j. The de�nition of a parking function states that jTj j � j for

1 � j � n.

We introduce the following new parking policy. Consider parking spots 1; : : : ; n

in this order. These spots will be �lled with cars �1; : : : ; �n according to certain rules.

The car �1 that gets spot 1 is the largest car x in the set S1 = T1. The car �2 that

gets spot 2 is the largest car x in T2 � f�1g such that x < �1; if there is no such car,

then x is the largest car in T2 � f�1g. In general, the car �i that gets spot i is the

largest car x in Ti � f�1; : : : ; �i�1g such that x < �i�1; if there is no such car, then x is

the largest car in Ti � f�1; : : : ; �i�1g. Since jTij � i, the set Ti � f�1; : : : ; �i�1g is never

empty. So this selection process makes sense. At the end of this process, we obtain a

parking order � = �1; : : : ; �n, which is a permutation of 1; : : : ; n. We let � = �(P ) be

the reversal of � , so that �j = �n+1�j and �j = �n+1�j for 1 � j � n. Finally, we de�ne

pmaj(f) = pmaj(P ) = maj(�(P )). Recall that maj(�1 � � � �n) =
Pn�1

i=1 i�(�i > �i+1).
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5

4
6

8
3

2
7
1

Figure 4.2: The labelled path used in Example 4.21.

Example 4.21. For the parking function f corresponding to the labelled path P in

Figure 4.2, the new parking policy gives

� = 5; 1; 7; 6; 4; 3; 2; 8:

Hence, � = 8 > 2; 3; 4; 6; 7 > 1; 5, and so pmaj(P ) = maj(�) = 1 + 6 = 7.

Example 4.22. Consider the labelled path P in Figure 4.3, in which the labels 1 to n

appear in order from bottom to top.

The new parking policy gives

� = 1; 3; 2; 6; 5; 4; 8; 7:

Hence, � = 7; 8 > 4; 5; 6 > 2; 3 > 1, and so pmaj(P ) = maj(�) = 14: On the other hand,

drawing the bounce path for the corresponding unlabelled path (starting at (0; 0), as in

Chapter 2) gives bounces of lengths 1; 2; 3; 2. Thus, the bounce statistic for this path is

also 14.

Remark 4.23. As in the previous example, it is easy to see that the pmaj statistic

always reduces to the bounce statistic in the case where the labels 1 to n increase from

bottom to top. The proof, which is by induction on the number of bounces, is left to the

reader.
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1
2
3

8
7

6
5

4

Figure 4.3: A labelled path with labels in increasing order.

We now de�ne a map G : In ! Pn. Let I = (�;u1; : : : ; un) 2 In. We de�ne

G(I) to be the function f : f1; 2; : : : ; ng ! f1; 2; : : : ; ng such that

f(�i) = (n+ 1� i)� ui for 1 � i � n. (4.10)

Lemma 4.24. The function G does map into the set Pn.

Proof. By de�nition, wi(�) is no greater than the length of the list �i; �i+1; : : : ; �n.

Hence,

0 � ui < wi(�) � n+ 1� i;

which shows that

1 � f(�i) � n+ 1� i � n:

In particular, the image of f is contained in the codomain f1; 2; : : : ; ng. This inequality

also shows that the set f�1(f1; 2; : : : ; ig) contains at least the i elements �n; : : : ; �n+1�i,

so that f is a parking function. This shows that the image of G is contained in the set

Pn.

We will see shortly that G is a weight-preserving bijection.

Example 4.25. Let n = 8 and let I = (�;u1; : : : ; un), where

� = 8 > 2; 3; 4; 6; 7 > 1; 5;
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w1 = 5; w2 = 5; w3 = 4; w4 = 3;

w5 = 3; w6 = 2; w7 = 2; w8 = 1;

u1 = 2; u2 = 4; u3 = 1; u4 = 1;

u5 = 0; u6 = 1; u7 = 0; u8 = 0:

Using the formula above, we have G(I) = f , where

f(1) = f(�7) = 2; f(2) = f(�2) = 3; f(3) = f(�3) = 5; f(4) = f(�4) = 4;

f(5) = f(�8) = 1; f(6) = f(�5) = 4; f(7) = f(�6) = 2; f(8) = f(�1) = 6:

The labelled path P corresponding to this f appears in Figure 1.15. Note that

qstat(I) = 6 = pmaj(f) and tstat(I) = 9 = area(f):

We now de�ne a map H : Pn ! In that will turn out to be the inverse of G.

Let P 2 Pn, and let f be the associated parking function. Construct a permutation �,

as in the de�nition of pmaj, by reversing the parking permutation � . De�ne

ui = n+ 1� i� f(�i) for 1 � i � n. (4.11)

Finally, set H(P ) = H(f) = (�;u1; : : : ; un).

Lemma 4.26. H does map Pn into the set In. Moreover,

G ÆH = IdPn ; (4.12)

pmaj(P ) = qstat(H(P )) and area(P ) = tstat(H(P )):

Proof. Let f 2 Pn. As usual, we set Sj = f�1(j) and Tj = f�1(f1; 2; : : : ; jg). To see

that H maps into In, we need only show that 0 � ui < wi(�). Observe that �i = �n+1�i

is an element of Tn+1�i, and so 1 � f(�i) � n + 1 � i. Hence, ui = n + 1 � i � f(�i)

always satis�es the inequalities

0 � ui � n� i < n+ 1� i: (4.13)

We now consider several cases.
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(I) �i occurs in the rightmost ascending run of �. By de�nition of wi, this implies

wi(�) = n + 1 � i. In this case, inequality (4.13) immediately gives the desired

conclusion 0 � ui < wi(�).

(II) �i is not in the rightmost ascending run of �, and � can be written

� = � � � �i � � � �k > �k+1 � � � �j � � � ;

where: �k is the last entry in the ascending run containing �i (so k � i); �j

and �k+1 are in the same ascending run; �j < �i; and either: (a) j = n, or (b)

�j > �j+1, or (c) �j < �j+1 and �j+1 > �i. By de�nition, wi(�) = j � i. It suÆces

to check that ui < wi(�). Substituting ui = n+ 1� i� f(�i) and wi(�) = j � i, it

suÆces to check that f(�i) > n+ 1 � j. If this inequality did not hold, we would

have f(�i) � n+1�j, hence �i 2 Tn+1�j . This will contradict the de�nition of the

parking policy used to create � , as follows. Consider �j = �n+1�j. In subcase (a),

�j = �n = �1 = max T1. But our assumption gives �i 2 T1 and �i > �j , a

contradiction. In subcase (b), �j > �j+1 means that �n+1�j > �n�j, which implies

that all elements of the set

Tn+1�j � f�1; : : : ; �n�jg = Tn+1�j � f�j+1; : : : ; �ng

are larger than �n�j = �j+1, and �j is the largest element in this set. But �i is

also an element of this set, and it is larger than �j , a contradiction. In subcase (c),

�j < �j+1 implies that �j is the largest element in the set

Tn+1�j � f�1; : : : ; �n�jg = Tn+1�j � f�j+1; : : : ; �ng

that is smaller than �j+1. But our assumption gives that �i is in this set and

satis�es �j < �i < �j+1, a contradiction. Thus, the desired inequality must hold

in all subcases.

(III) �i is not in the rightmost ascending run of �, and � can be written

� = � � � �i � � � �j > �j+1 � � � ;

where: �j is the last entry in the ascending run containing �i (so j � i); and �i <

�j+1. These inequalities force �i < �j . By de�nition, wi(�) = j� i. As in case (II),
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the desired inequality ui < wi(�) is equivalent to the inequality f(�i) > n+1�j. If

the latter inequality fails, then �i 2 Tn+1�j . As in case (II) subcase (b), �j > �j+1

means that �n+1�j > �n�j, which implies that all elements of the set

Tn+1�j � f�1; : : : ; �n�jg = Tn+1�j � f�j+1; : : : ; �ng

are larger than �n�j = �j+1, and �j is the largest element in this set. But �i is

an element of this set that is smaller than �j+1, which is a contradiction. So the

desired inequality must hold.

This completes the proof that H maps into In.

Next, the de�nitions of ui and G in (4.11) and (4.10) make it clear that

G ÆH = IdPn :

It is also obvious from the de�nition of H that

pmaj(P ) = qstat(H(P )):

On the other hand, note that

tstat(H(P )) =
Pn

i=1 ui =
Pn

i=1(n+ 1� i)�
Pn

i=1 f(i)

= n(n+ 1)=2 �
Pn

i=1 f(i) = area(P );

where the last equality is formula (1.25).

Example 4.27. Let n = 8 and let f 2 P8 be given by

f(1) = 2; f(2) = 3; f(3) = 5; f(4) = 4;

f(5) = 1; f(6) = 4; f(7) = 2; f(8) = 6:

As in Example 4.21, we compute � = 8 > 2; 3; 4; 6; 7 > 1; 5. We then compute

u1 = 2; u2 = 4; u3 = 1; u4 = 1;

u5 = 0; u6 = 1; u7 = 0; u8 = 0:

Note that H(f) = I, where I is the object in In from Example 4.25. We have G(H(f)) =

f and H(G(I)) = I.
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Theorem 4.28. The maps G : In ! Pn and H : Pn ! In are bijections with H = G�1.

G and H are weight-preserving in the sense that

pmaj(P ) = qstat(H(P )) and area(P ) = tstat(H(P )); (4.14)

qstat(I) = pmaj(G(I)) and tstat(I) = area(G(I)): (4.15)

Consequently,

X
P2Pn

qpmaj(P )tarea(P ) = CHn(q; t) =
X
P2Pn

qarea(P )tdinv(P ) =
X
Q2Qn

qdmaj(Q)tarea
0(Q);

(4.16)

and so all these statistics have the same univariate distribution.

Proof. We have already shown that G maps into Pn, H maps into In, and GÆH = IdPn .

The last equation implies that H is an injection and G is a surjection. But we have seen

in (4.9) that

jInj = jPnj = (n+ 1)n�1 <1:

Since the sets are �nite, H is automatically a surjection, G is automatically an injection,

and H = G�1. The properties in (4.14) were proved in the previous lemma, and (4.15)

follows by replacing P by G(I) and simplifying. Finally, the �rst equality in (4.16)

follows from (4.8) and the existence of the weight-preserving map bijection G. The other

formulas for CHn(q; t) have already been discussed. Letting q = 1 or t = 1 in (4.16)

gives the �nal assertion of the theorem.

Remark 4.29. It can be shown directly from the de�nitions of H and G that H ÆG =

IdIn , without using the identity jPnj = jInj. Given a labelled path of the form G(I),

where I = (�;u1; : : : ; un), one shows by backwards induction that the algorithm de�ning

H(G(I)) correctly recovers �n; �n�1; : : : ; �1. The argument is similar to the case analysis

in the proof of Lemma 4.26, and is left to the interested reader.

4.5 Univariate Symmetry of CHn;k;m(q; t)

This section generalizes the constructions of x4.4 to labelled trapezoidal paths

of type (n; k;m). We obtain another combinatorial interpretation of the right side of
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formula (4.2) in which t keeps track of area and q keeps track of a new statistic pmaj.

As in x4.4, we can conclude that the ordered pairs of statistics (area; h) and (pmaj; area)

have the same bivariate distribution on labelled paths. Therefore, all three statistics have

the same univariate distribution. Unfortunately, the arguments given here are not strong

enough to prove the conjectured joint symmetry of CHn;k;m(q; t).

4.5.1 Combinatorial Model of the Generating Function

We begin by introducing a simple combinatorial model for the formula (4.2).

De�nition 4.30. (1) Given n, k, m, and f 2 Fn;k;m, de�ne the right limit of j relative

to f by

Rj(f) = jf�1>j (ff(j); : : : ; f(j)� (m� 1)g)j = jxj(f)j;

and de�ne the left limit of j relative to f by

Lj(f) = xj(f) + count(f; j)� 1:

Formula (4.2) can then be rewritten

CHn;k;m(q; t) =
X

f2Fn;k;m

qmaj(f)tx0(f)
nY
j=1

p=Lj(f)X
p=�Rj(f)

tp:

(2) Fix n, k, and m. De�ne an intermediate object of type (n; k;m) to be a pair

I = (f ; u1; u2; : : : ; un);

where f 2 Fn;k;m and where uj are integers such that �Rj(f) � uj � Lj(f) for all

j. Denote the collection of such intermediate objects by In;k;m.

(3) De�ne the intermediate q-statistic for I to be

qstat(I) = maj(f) =

nX
j=1

f(j):

De�ne the intermediate t-statistic for I to be

tstat(I) = x0(f) +

nX
j=1

uj:
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It is obvious from the de�nition of the intermediate objects and statistics that

X
I2In;k;m

qqstat(I)ttstat(I) =
X

f2Fn;k;m

qmaj(f)tx0(f)
nY
j=1

p=Lj(f)X
p=�Rj(f)

tp = CHn;k;m(q; t):

Theorem 4.31. There exists a bijection F : Pn;k;m ! In;k;m such that

area(P ) = qstat(F (P )) and h(P ) = tstat(F (P )) for all P 2 Pn;k;m:

Proof. The bijection F is based on the tile insertion process from the last section (see

Lemma 4.15). If P = (~g; ~p) is a labelled path, we de�ne f 2 Fn;k;m by setting f(pi) = gi,

and we de�ne uj to be the change in the statistic h3 � h4 caused by the insertion of the

tile
f(j)

j
. We then set F (P ) = (f ;u1; : : : ; un). Lemma 4.20 shows that each uj satis�es

the required inequalities

�Rj(f) � uj � Lj(f):

The discussion in the last section shows that area(P ) = qstat(F (P )) and h(P ) =

tstat(F (P )). The map F�1 is de�ned similarly: given I = (f ;u1; : : : ; un), the func-

tion f tells us which tiles to use, and the numbers uj tell us where to insert each tile to

reconstruct P . Lemma 4.20 shows that there exists a unique valid insertion position for

tile
f(j)

j
that causes a change of uj in the statistic h3�h4, so that F

�1 is well-de�ned.

Thus F is a bijection.

Corollary 4.32.

jIn;k;mj = jPn;k;mj for all n; k;m: (4.17)

Proof. This is immediate from the existence of the bijection F : Pn;k;m ! In;k;m.

Example 4.33. Let us compute F (P ), where P is the path given in tile notation by

P =
2

6

0

3

2

7

3

4

2

1

0

5

0

2

and (n; k;m) = (7; 2; 2). First, examination of the tiles in P gives

f(1) = 2; f(2) = 0; f(3) = 0; f(4) = 3; f(5) = 0; f(6) = 2; f(7) = 2:
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Recall that w(f), count(f; j), etc., were computed before in Example 4.12. To �nd the

numbers uj , we build up P by inserting tiles in the order given in Example 4.17. For

instance, Example 4.19 discusses the last two steps of the tile insertion. From that

example, we see that u1 = �2 and u4 = �1. Similar analysis of the earlier tile insertions

shows that

u5 = 0; u3 = 0; u2 = �2; u7 = 2; u6 = 3:

We conclude that

F (P ) = (f ;�2;�2; 0;�1; 0; 3; 2):

The reader should consult Example 4.12 to con�rm that �Rj(f) � uj � Lj(f) for

1 � j � 7.

Our goal in the rest of this section is to describe another bijection G : In;k;m !

Pn;k;m such that tstat maps to area. The de�nition of the new statistic pmaj on labelled

paths is engineered so that qstatmaps to pmaj underG. Indeed, we will use the equation

pmaj(P ) = qstat(G�1(P )) as the de�nition of pmaj. Except in the case m = 1 and

k = 0 considered earlier, the pmaj statistic does not seem to have a particularly simple

direct de�nition (not relying on the bijection G).

4.5.2 Generalized Parking Functions

It is convenient to introduce the notion of generalized parking functions, which

give an alternate notation for describing labelled trapezoidal paths. Some combinatorial

properties of generalized parking functions were studied by C. Yan in [31, 32].

De�nition 4.34. Fix integers n � 1, k � 0, and m � 1.

(1) Let TZn;k;m denote the region bounded by the lines x = 0, y = 0, x = k+my, and

y = n. Number the rows of this region 1 to n, starting at the bottom. Number the

columns in each row of this region 1; 2; 3; : : : from left to right. De�ne

B(i) = k +m(i� 1) + 1:

Note that a labelled lattice path with n labels stays within the region TZn;k;m

if and only if the label in row i appears in one of the columns 1; 2; : : : ; B(i) for

1 � i � n.
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(2) Given any function g with domain f1; 2; : : : ; ng, set

Sj(g) = g�1(j) and Ti(g) = g�1(f1; 2; : : : ; ig) =
i[

j=1

Sj(g):

(3) A generalized parking function or generalized preference function of type (n; k;m)

is a function g : f1; 2; : : : ; ng ! f1; 2; : : : ; B(n)g such that

jTB(i)(g)j � i for 1 � i � n:

Let P 0n;k;m denote the collection of parking functions of type (n; k;m).

Lemma 4.35. There exists a bijection D0 between functions

g : f1; 2; : : : ; ng ! f1; 2; : : :g

and valid labelled lattice paths of height n starting at the origin and ending with a vertical

step. This bijection yields a bijection D : P 0n;k;m ! Pn;k;m between generalized parking

functions and labelled trapezoidal paths.

Proof. Let g be any function mapping f1; 2; : : : ; ng into the positive integers. Starting

in the bottom row of the region f(x; y) : x � 0; 0 � y � ng, place the elements of S1(g)

in increasing order in the �rst column of the diagram, one per row. Starting in the next

empty row, place the elements of S2(g) in increasing order in the second column of the

diagram, one per row. Continue similarly: after listing all elements x with g(x) < i,

start in the next empty row and place the elements of Si in increasing order in column i.

Finally, draw a lattice path starting at (0; 0) by drawing vertical steps immediately left

of each label, and then drawing the necessary horizontal steps to get a connected path.

D0(g) is de�ned to be the resulting labelled path.

The inverse of D0 is de�ned as follows. Let P be any valid labelled lattice

path of height n starting at the origin and ending with a vertical step. For 1 � j � n,

de�ne g(j) to be the number of the column in which label j appears. This construction

obviously gives an inverse to D0, hence D0 is a bijection.

Now, consider a function g and its associated path P = D0(g). Note that each

row in the diagram of P contains exactly one label. We claim that jTx(g)j � i if and



189

only if the label ` in row i of P appears in one of the columns 1; 2; : : : ; x. We prove

the contrapositive of each direction. First, assume that label ` appears in some column

z > x. By de�nition of D0, there can be at most i� 1 numbers c such that g(c) < z. In

particular, the size of Tx(g) is at most i� 1. Conversely, assume that jTx(g)j < i. In the

construction of P , we will have exhausted all numbers c with g(c) � x before reaching

row i. Thus, the label ` in row i must satisfy g(`) > x, so it appears in a column z > x.

This proves the claim.

Letting x = B(i) in the claim for 1 � i � n, we see that g belongs to P 0n;k;m

if and only if the associated path D0(g) belongs to Pn;k;m. (Technically, we may need

to add some horizontal steps to the path D0(g) at the top level y = n to get a path

in Pn;k;m ending at (k + mn;n). These extra steps are obviously harmless.) Hence,

restricting D0 to the set of generalized parking functions gives the desired bijection

D : P 0n;k;m ! Pn;k;m.

From now on, we will identify the set of generalized parking functions P 0n;k;m

with the set of labelled trapezoidal paths Pn;k;m.

Example 4.36. For the labelled trapezoidal path P 2 P6;2;3 shown in Figure 4.1, the

associated parking function g is

g(1) = 12; g(2) = 17; g(3) = 2;

g(4) = 5; g(5) = 2; g(6) = 12:

Remark 4.37. It is easy to get a recurrence for labelled trapezoidal paths by removing

the steps in the �rst column and their associated labels. If there are ` � 0 vertical steps

in this column, the associated increasing sequence of labels can be chosen in
�n
`

�
ways.

What remains in the upper-right part of the diagram is a labelled trapezoidal path of

height n � ` with the same value of m and a new base length of k +m` � 1. Setting

P (n; k;m) = jPn;k;mj, we obtain the recurrence

P (n; k;m) =

nX
`=0

�
n

`

�
P (n� `; k +m`� 1;m)

with initial conditions

P (n; k;m) = 0 if n < 0 or k < 0;
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P (0; k;m) = 1 for all k � 0;m � 1.

From this recurrence, it is easily veri�ed by induction that

P (n; k;m) = (k + 1) � (mn+ k + 1)n�1:

These calculations (and other more general ones) appear in [32].

Lemma 4.38. Let P 2 Pn;k;m correspond to the generalized parking function g. Then

area(P ) = n(k + 1) +mn(n� 1)=2 �
nX
i=1

g(i): (4.18)

Proof. It is easy to see that the region TZn;k;m contains nk + mn(n � 1)=2 complete

lattice cells. Since label i occurs somewhere in column g(i), there are g(i)�1 lattice cells

inside the region TZn;k;m and left of label i. These lattice cells lie outside the labelled

path associated to g. Subtracting, we �nd that

area(P ) = kn+mn(n�1)=2�
nX
i=1

[g(i)�1] = n(k+1)+mn(n�1)=2�
nX
i=1

g(i): (4.19)

For instance, in the example above we have

area(P ) = 63� (12 + 17 + 2 + 5 + 2 + 12) = 13:

4.5.3 Formal Bounce Paths

Before de�ning the map G, we need to prove a few technical facts about bounce

paths. The basic idea is that a bounce path can be constructed from any sequence of

vertical moves vj by using the usual rule to determine the horizontal moves hj .

Chapter 3 discussed the bouncing algorithm that assigns to each trapezoidal

path P 2 Tn;k;m its associated bounce path B(P ). Recall that B(P ) consists of a

sequence of alternating vertical and horizontal moves, which we will denote here as vj(P )

and hj(P ). Each vertical move vj(P ) was determined from the path P (and the partial

bounce path already constructed), while the horizontal move hj(P ) was calculated from

the formula

hj(P ) =

m�1X
i=0

vj�i(P ) + �(j < k): (4.20)
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In the last paragraph, a given path P 2 Tn;k;m was used to construct the lists

of numbers vj(P ) and hj(P ). Suppose, instead, that we are given only a list of numbers

vj that does not necessarily come from executing the bouncing algorithm on a path P .

Then we can still create a \formal bounce path" from the list vj by using a formula like

(4.20) to de�ne numbers hi in terms of n, k, m, and the vj 's. The precise construction

is as follows.

De�nition 4.39. Fix integers n � 1, k � 0, and m � 1. Suppose fvj : j 2 Zg is an

indexed family of nonnegative integers satisfying the following conditions:

(a) For all j < 0, vj = 0.

(b) There exists j� � 0 such that vj� > 0 and v` = 0 for all ` > j�.

(c)
Pj�

j=0 vj = n.

We introduce the following notation.

(1) Let J = max(j� + (m� 1); k � 1).

(2) For 0 � j � J , let

hj =

m�1X
i=0

vj�i + �(j < k): (4.21)

(3) For 0 � j � J , let

Hj =

jX
i=0

hi and Vj =

jX
i=0

vi:

It will be convenient to set H�1 = h�1 = V�1 = 0.

(4) Let Q = Q(fvjg) be a path constructed as follows. Q starts at the origin and

makes alternating vertical moves and horizontal moves. For 0 � j � J , Q moves

up vj units from its current position and then right hj units. We refer to this move

as the \jth bounce." After the jth bounce, Q has reached coordinates (Hj ; Vj). Q

is called the formal bounce path associated to the sequence fvjg.

Example 4.40. Let (n; k;m) = (7; 2; 2). Suppose we are given v0 = 3, v1 = 0, v2 = 3,

v3 = 1, and vj = 0 for all other j. Here, j� = 3 and J = max(3 + 1; 1) = 4. Table 4.2

shows the vertical moves and horizontal moves for the formal bounce path Q(fvjg).
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Table 4.2: The vertical and horizontal moves of a formal bounce path.

j 0 1 2 3 4

vj 3 0 3 1 0

hj 4 4 3 4 1

Figure 4.4: A formal bounce path.

The path Q = Q(fvjg) is shown in Figure 4.4. Observe that Q happens to lie

in the trapezoid TZn;k;m, and Q ends exactly at the upper-right corner (k +mn;n) of

this trapezoid. We have B(Q) = Q, i.e., the bounce path associated to Q is Q itself.

Furthermore, the vertical moves vj(Q) of this bounce path are precisely the numbers vj

that we were originally given.

Example 4.41. Let (n; k;m) = (4; 0; 2). Suppose we are given v0 = 1, v1 = 0, v2 = 0,

v3 = 3, and vj = 0 for all other j. Here, j� = 3 and J = max(3 + 1; 0) = 4. Table 4.3

shows the vertical moves and horizontal moves for the formal bounce path Q(fvjg).

The path Q = Q(fvjg) is shown in Figure 4.5. As before, Q lies in the trapezoid

TZn;k;m, and ends exactly at the upper-right corner (k +mn;n) of this trapezoid. The

vertical moves vj(Q) of the bounce path B(Q) are

v0(Q) = 1; v1(Q) = 0; v2(Q) = 3; v3(Q) = 0:

This is almost the same as the original sequence vj , except that the element v2 = 0 has

disappeared. This occurred because the corresponding horizontal move h2 was zero.
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Table 4.3: The vertical and horizontal moves of another formal bounce path.

j 0 1 2 3 4

vj 1 0 0 3 0

hj 1 1 0 3 3

Figure 4.5: Another formal bounce path.

The phenomenon in the two examples above is typical. We will show that the

path Q = Q(fvjg) is always a valid trapezoidal path. Furthermore, under the additional

condition that hj > 0 for 0 � j � J , the vertical moves vj(Q) for the bounce path

B(Q) are precisely the original numbers vj. Hence, in this situation, the list vj can be

recovered from the path Q by performing the bouncing algorithm.

Lemma 4.42. Let n, k, m, and fvjg be given as in De�nition 4.39. Let hj, Vj, Hj,

and Q = Q(fvjg) be given as in that de�nition. Then:

(1) For 0 � j � J , we have

Hj = min(k; j + 1) +

jX
i=0

min(m; j + 1� i)vi:

(2) For 0 � j � J , we have

Hj � k +mVj;

with equality if and only if j � k � 1 and vj�i = 0 for 0 � i < m� 1.

(3) Q is a path from (0; 0) to (k+mn;n) that always stays inside the trapezoid TZn;k;m.
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(4) The path Q reaches the right edge of the trapezoid TZn;k;m after the jth bounce if

and only if j � k � 1 and vj�i = 0 for 0 � i < m� 1.

(5) Assume that hj > 0 for 0 � j � J . Then B(Q) = Q and vj(Q) = vj for 0 � j � J ,

so that the original list fvjg can be recovered by performing the bouncing algorithm

on Q.

Proof. To prove (1), use (4.21) to compute

Hj =

jX
u=0

hu =

jX
u=0

2
4�(u < k) +

uX
i=u�(m�1)

vi

3
5

= min(k; j + 1) +

jX
i=0

vi

jX
u=0

�(u� (m� 1) � i � u)

= min(k; j + 1) +

jX
i=0

min(m; j + 1� i)vi:

To justify the last equality, �x i with 0 � i � j. If 0 � i � j � (m � 1), then there are

exactly m choices of the index u for which �(u � (m � 1) � i � u) = 1, namely u = i,

u = i+1, � � � , u = i+(m�1). In this case, j+1� i �m, so that min(m; j+1� i) = m.

On the other hand, if j � (m� 1) < i � j, then there are exactly j +1� i choices of the

index u for which �(u � (m� 1) � i � u) = 1, namely u = i, u = i + 1, � � � , u = j. In

this case, j + 1� i < m, so that min(m; j + 1� i) = j + 1� i.

Now, we use (1) to compute

Hj = min(k; j + 1) +

jX
i=0

min(m; j + 1� i)vi � k +m

jX
i=0

vi = k +mVj:

Equality is attained here if and only if min(k; j + 1) = k and vi = 0 for all i such that

min(m; j + 1 � i) = j + 1 � i < m. In other words, equality is attained if and only if

j � k � 1 and vj�i = 0 for 0 � i < m� 1, giving (2).

Recall that the right boundary of the trapezoid TZn;k;m is the line x = k+my.

Q lies inside this trapezoid if and only if all the points (Hj; Vj) lie weakly left of this line,

for 0 � j � J . This is exactly what the inequality in (2) asserts. Also, equality holds in

(2) for some j if and only if (Hj; Vj) lies exactly on the line x = k +my. The de�nition
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of J guarantees that equality holds in (2) for j = J and that VJ = n. Hence, Q ends at

the upper-right corner (k +mn;n). We have now proved (3) and (4).

To prove (5), let 0 � j � J . We can assume by induction on j that vi(Q) = vi

and hi(Q) = hi for all i with 0 � i < j. In particular, just before the jth bounce, both Q

and B(Q) are at coordinates (Hj�1; Vj�1). Where does Q go from here? By de�nition

of Q, Q goes up vj � 0 units and then over hj units. Now, by the de�nition of the

bouncing algorithm in Chapter 3, B(Q) also goes up vj units, since it is blocked there

by a horizontal step of Q. This step must exist because of the assumption that hj > 0.

Therefore, vj(Q) = vj . Comparing formulas (4.20) and (4.21) and using the induction

hypothesis, it is immediate that hj(Q) = hj also. This completes the induction.

4.5.4 The Map G : In;k;m ! Pn;k;m

We are now ready to de�ne the map G from intermediate objects to generalized

parking functions. Let I = (f ;u1; : : : ; un) be an intermediate object in In;k;m. For all

integers j, let Sj = f�1(j) and vj = jf�1(j)j = jSj j. Note that, for 0 � j � k+m(n�1),

Sj consists of the vj labels appearing in the jth descending block of the word of f . Let

j� be the largest value of j for which vj > 0. It is clear that the sequence fvj : j 2 Zg

satis�es conditions (a), (b), and (c) in De�nition 4.39.

We will de�ne G(I) in three steps.

� First, draw the formal bounce path Q = Q(fvjg) associated to the sequence fvjg.

� Second, attach labels to the path Q. Place the vj labels in Sj in the cells to the

right of the vj vertical segments in the jth vertical move of the path Q, in increasing

order from bottom to top. Let g0 be the function associated to this labelled lattice

path via D�1
0 .

� Third, de�ne a function g by

g(i) = g0(i)� ui for 1 � i � n, (4.22)

and set G(I) = g.

In terms of labelled paths, the diagram for g is obtained from the diagram of g0

as follows. For each label i in the diagram of g0, move the label juij cells to the right if
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2
3
5

1
6
7

4

Figure 4.6: Labelled path diagram for g0.

ui < 0, or ui cells to the left if ui � 0. Then reorder the rows of the diagram to produce

a valid con�guration of labels (in which labels in a given column increase from bottom

to top, and for r < s, the labels in column r appear in lower rows than the labels in

column s). This construction explains why we called Rj(f) and Lj(f) the right and left

limits of j relative to f .

Example 4.43. Let (n; k;m) = (7; 2; 2), and let I = (f ;�2;�2; 0;�1; 0; 3; 2) 2 In;k;m,

where

f(1) = 2; f(2) = 0; f(3) = 0; f(4) = 3; f(5) = 0; f(6) = 2; f(7) = 2:

Let us compute G(I). By looking at f , we �nd that

v0 = 3; v1 = 0; v2 = 3; v3 = 1; vj = 0 for other j.

The unlabelled path Q = Q(fvjg) is shown in Figure 4.4. The corresponding labelled

path is shown in Figure 4.6. The arrows in this �gure show the motion of the labels

caused by the numbers uj .

Applying D�1
0 , we compute

g0(1) = 9; g0(2) = 1; g0(3) = 1; g0(4) = 12; g0(5) = 1; g0(6) = 9; g0(7) = 9:

By (4.22), we get

g(1) = 11; g(2) = 3; g(3) = 1; g(4) = 13; g(5) = 1; g(6) = 6; g(7) = 7:
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3
5

2
6

7
1

Figure 4.7: Labelled path diagram for g.

The labelled path diagram for g is shown in Figure 4.7. This �gure can be

obtained from the previous one by moving labels as indicated by the arrows, and then

rearranging the rows as explained above. Note that g and g0 are indeed generalized

parking functions of type (n; k;m).

Lemma 4.44. Let I = (f ;u1; : : : ; un) 2 In;k;m, and let Q and g0 be computed from I as

indicated above.

(1) Q is a path from (0; 0) to (k +mn;n) that always stays inside TZn;k;m. Hence, g0

is a parking function of type (n; k;m).

(2) For 0 � j � J , the horizontal moves hj of Q satisfy hj > 0.

(3) The function f can be uniquely recovered from g0.

(4) For 1 � x � n, we have

g0(x) = 1 +Hf(x)�1:

Proof. Statement (1) is immediate from Lemma 4.42(3) and Lemma 4.35.

To prove (2), we suppose that hj = 0 for some j with 0 � j � J and derive

a contradiction. First note that the existence of the object I = (f ;u1; : : : ; un) 2 In;k;m

implies that count(f; i) > 0 for 1 � i � n, by de�nition of ui. By (4.21), the assumption

hj = 0 forces j � k and

vj = vj�1 = � � � = vj�(m�1) = 0:
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Assume that j� � j � J . Since vj� > 0, the last condition forces j� +m � j � J . But

we also have j � k, so that J � max(j� +m; k). This contradicts the de�nition of J .

Therefore, 0 � j < j�. Since vj� > 0, there exists some ` > j with v` > 0. Choose the

minimal ` with this property; note that ` > k since j � k, and we have

v`�1 = � � � = v`�m = 0:

Next, choose i to be the maximum element of the nonempty set f�1(`). Recall that

count(f; i) = �(f(i) � k) + jf�1<i (f(i)�m)j+ jf�1>i (f(i))j

+jf�1(ff(i)� 1; : : : ; f(i)� (m� 1)g)j:

By our choice of i and `, we get count(f; i) = 0, which is a contradiction.

Now we can prove that f is uniquely recoverable from g0. Given g0, draw the

path Q corresponding to g0 and perform the bouncing algorithm to compute the vertical

moves vj(Q). By Lemma 4.42(5) and part (2), we have vj(Q) = vj for 0 � j � J . In

particular, vj(Q) = vj for 0 � j � j�. So, we can recover the numbers vj = jf�1(fjg)j

from g0. The labels attached to the jth vertical move of Q are the elements of f�1(j),

so we can now recover f itself. Of course, it is possible that vj = 0 for some j; in this

case, f�1(j) = ;.

To prove (4), consider the labelled path diagram for g0. In that diagram, all

the labels in the set Sj = f�1(j) occur in the column numbered 1 +Hj�1, since the j
th

vertical move of Q is drawn just to the left of this column, beginning at (Hj�1; Vj�1).

By de�nition of D�1
0 , we must have g0(x) = 1 +Hj�1 whenever f(x) = j, i.e.,

g0(x) = 1 +Hf(x)�1 for 1 � x � n.

The next lemma shows that G does map into the set Pn;k;m.

Lemma 4.45. For each I 2 In;k;m, g = G(I) is a parking function of type (n; k;m).

Proof. We must check that g(i) > 0 for all i and that

jTB(i)(g)j � i for 1 � i � n.
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Recall the following de�nitions:

Rj(f) = jf�1>j (ff(j); : : : ; f(j)� (m� 1)g)j = �xj(f);

Lj(f) = xj(f) + count(f; j)� 1;

count(f; j) = �(f(j) � k) + jf�1<j (f(j)�m)j+ jf�1>j (f(j))j

+jf�1(ff(j) � 1; : : : ; f(j) � (m� 1)g)j:

Comparing these formulas, we see that

Lj(f) = jf�1<j (ff(j) � 1; : : : ; f(j)�mg)j � �(f(j) > k): (4.23)

Recall that g0 was constructed from the formal bounce path Q = Q(fvig), where vi =

jf�1(i)j and

hi = vi + vi�1 + � � � + vi�(m�1) + �(i < k) for 0 � i � J: (4.24)

Let 1 � j � n. If f(j) � 1, we may take i = f(j) � 1 in (4.24). Comparing to formula

(4.23), we �nd that

Lj(f) � vf(j)�1 + � � �+ vf(j)�m � hf(j)�1: (4.25)

If f(j) = 0, then (4.25) holds trivially since h�1 = 0. Thus, (4.25) holds for all j with

1 � j � n.

Now, since Rj(f) � �uj � �Lj(f) by de�nition of uj , we have

g(j) = g0(j) � uj � g0(j) � Lj(f) = 1 +Hf(j)�1 � Lj(f) � 1:

The last inequality follows since Lj(f) � hf(j)�1 � Hf(j)�1.

Recall that B(i) = k +m(i� 1) + 1, so B(1) � B(2) � � � � . Let w1; w2; : : : ; wn

be the permutation of 1; 2; : : : ; n obtained from the word of f by erasing all bar symbols.

To check that jTB(i)(g)j � i for all i, it suÆces to show that g(wi) � B(i) for all i, for

this will imply that

fw1; : : : ; wig � TB(i)(g):

Fix i0 2 f1; 2; : : : ; ng, and set j0 = f(wi0). By de�nition of the word of f , we can write

i0 = r + t, where

r = jfx : f(x) < j0gj = Vj0�1 and t = jfx : f(x) = j0 and x � wi0gj:
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Now consider two cases.

Case 1: Hj0�1 6= k +mVj0�1. Let us construct a new formal bounce path Q0

from a sequence fv0j : j 2 Zg, as follows. Set v0j = vj for 0 � j < j0, and set v0j = 0

for all other j. Let Q0 = Q(fv0jg), and let h0j be the horizontal moves of Q0. (Here,

n0 =
P

j<j0
vj .) Using Lemma 4.42(2) and the assumption Hj0�1 6= k +mVj0�1, it is

easy to see that J 0 � j0. From (4.21), we have h0j = hj for �1 � j < j0, so H
0
j = Hj for

�1 � j < j0. On the other hand,

h0j0 = 0 + vj0�1 + � � � + vj0�(m�1) + �(j0 < k):

Lemma 4.42(2), applied to Q0 with j = j0 � J 0, states that H 0
j0
� k +mV 0

j0
. In other

words, Hj0�1 + h0j0 � k +mr, which yields

1 +Hj0�1 + h0j0 � 1 + k +m(r + 1� 1) = B(r + 1):

Case 2: Hj0�1 = k +mVj0�1. In this case, lemma (4.42) says that vj0�1 =

� � � = vj0�(m�1) = 0 and j0 � 1 � k � 1, hence j0 � k. So, if we de�ne h0j0 by the same

equation

h0j0 = 0 + vj0�1 + � � �+ vj0�(m�1) + �(j0 < k)

used above, then h0j0 = 0. So we trivially have Hj0�1 + h0j0 � k +mr, and

1 +Hj0�1 + h0j0 � B(r + 1)

in this case as well.

Recalling that f(wi0) = j0 and using Lemma 4.44(4), we now compute

g(wi0) = g0(wi0)� uwi0
� g0(wi0) +Rwi0

(f)

= 1 +Hj0�1 + f�1>wi0
(fj0; j0 � 1; : : : ; j0 � (m� 1)g):

Now, using the de�nition of t,

f�1>wi0
(fj0; j0 � 1; : : : ; j0 � (m� 1)g) = t� 1 + f�1>wi0

(fj0 � 1; : : : ; j0 � (m� 1)g)

� t� 1 + vj0�1 + � � � + vj0�(m�1) + �(j0 < k)

= t� 1 + h0j0 ;
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and so

g(wi0) � t� 1 + (1 +Hj0�1 + h0j0) � B(r + 1) + (t� 1) � B(r + t) = B(i0);

as desired.

Lemma 4.46. For each I = (f ;u1; : : : ; un) 2 In;k;m, we have area(G(I)) = tstat(I).

Proof. Let g0 and g = G(I) be de�ned as above. In x3.2.3, we saw that the area of

the bounce path corresponding to g0 is precisely x0(f). Let C denote the constant

n(k + 1) +mn(n� 1)=2. Using Lemma 4.38 for g and for g0, we get

area(g) = C �
nX
i=1

g(i) = C �
nX
i=1

g0(i) +
nX
i=1

ui

= area(g0) +

nX
i=1

ui = x0(f) +

nX
i=1

ui

= tstat(I):

4.5.5 The map G�1 : Pn;k;m ! In;k;m

We now de�ne a map H : Pn;k;m ! In;k;m that will turn out to be the inverse

of G. The basic idea is to use a labelled path P 2 Pn;k;m to recover the symbols in the

word of f (including bars) from left to right. As w(f) is being reconstructed, we obtain

partial information about f and g0 that is used to continue the reconstruction process.

When the full word has been found, we know f and g0. We then de�ne

ui = g0(i)� g(i); (4.26)

where g is the parking function corresponding to P , and set H(P ) = (f ;u1; : : : ; un).

Comparing (4.26) to (4.22) makes it clear that G Æ H = IdPn;k;m . It is less clear that

H ÆG is also an identity map, and that H does map into In;k;m. The former will follow

from the latter by a pigeonhole-type argument, as in the m = 1 case worked out earlier.

A key observation is the following \pre�x property" of w(f): if j is any label,

then the quantities

xj(f); count(f; j); Lj(f); Rj(f)
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can all be computed using only the symbols preceding j (including bars) in the word of

f . This observation is immediate from the de�nitions of these quantities and the word

of f . In particular, here we use the fact that the elements of each set f�1(i) appear in

decreasing order in w(f).

We now give the detailed de�nition of H. Let P 2 Pn;k;m be a given labelled

path, and let g = g(P ) be the corresponding generalized parking function. We compute

H(P ) using the algorithm given below. The algorithm uses variables pw(f), pf , and

pg0 to represent partially reconstructed versions of w(f), f , and g0, respectively. The

observation in the previous paragraph says that if j occurs in pw(f) at some step, then

we can compute xj(f) = xj(pf), etc., and the answer obtained is independent of how

pw(f) is extended in later steps to w(f). Note that every time we add a label j to pw(f),

the de�nitions of w(f) and g0 allow us to deduce the values of f(j) and g0(j). Thus, pf

and pg0 can now be de�ned for input j. The following example illustrates this process.

Example 4.47. Let (n; k;m) = (7; 2; 2). Suppose that we are given the following partial

reconstruction of the word of f :

pw(f) = 5 3 2 j j 7:

From this pre�x of w(f), we can deduce that v0 = 3, v1 = 0, and v2 � 1. We can further

deduce that h0 = H0 = 4, h1 = 4, and H1 = 8. Therefore, regardless of the value of v2

or h2, Lemma 4.44(4) gives

pg0(5) = 1; pg0(3) = 1; pg0(2) = 1; pg0(7) = 9:

Moreover,

pf(5) = 0; pf(3) = 0; pf(2) = 0; pf(7) = 2:

The domain of de�nition for pf and pg0 is currently f2; 3; 5; 7g.

Now suppose that we are told the next symbol in w(f) is 6. Then we can

conclude that v2 � 2, that pg0(6) = 9, and that pf(6) = 2.

Figure 4.8 gives the algorithm de�ning H. It is obvious from this algorithm

and the pre�x property of w(f) that the required inequalities

�Rj(f) � uj � Lj(f)
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Algorithm for H: Input: a labelled path P 2 Pn;k;m.

1. Initialize pw(f) be the empty word. Let pf and pg0 be unde�ned for every input.

Initialize a variable v to be 0. Let g = D�1(P ) be the parking function associated

to the labelled path P .

2. While pw(f) does not contain all the labels from 1 to n, perform the following

steps.

(a) Loop through all labels x 2 f1; 2; : : : ; ng that do not yet appear in pw(f),

from largest to smallest. For each such label x, perform the following step.

Temporarily assume that the next symbol in pw(f) is x. Use this

assumption to compute pg0(x) using the formal bouncing rules. Set

ux = pg0(x)� g(x).

� If ux > Lx(pf), declare an error condition and abort the algorithm.

� If ux < �Rx(pf), assert that f(x) > v and discard the assumption

that the next symbol in pw(f) is x. At this point, reset pg0(x) and

ux to be unde�ned again.

� Otherwise, we must have �Rx(pf) � ux � Lx(pf). In this case,

assert that f(x) = v. Retain the assumption that the next symbol in

pw(f) is x, and retain the values of pg0(x) and ux already computed.

De�ne pf(x) = v.

(b) We have now (greedily) determined all values x for which f(x) = v. Append

a bar symbol at the end of pw(f), and increment v by 1.

3. Add the appropriate number of trailing bar symbols to the end of pw(f), so that

the total number of bars is k +m(n � 1) + 1. We now know w(f) and f and g0.

The output of the algorithm is the object

H(P ) = (f ;u1; : : : ; un);

where ui = g0(i) � g(i) for 1 � i � n.

Figure 4.8: De�nition of H.
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all hold. To see that H(P ) does belong to In;k;m, we must still prove that the algorithm

produces a function f 2 Fn;k;m, i.e., that 0 � f(x) � k +m(n� 1) for 1 � x � n. We

must also show that the algorithm always terminates and that it never encounters the

error condition.

Lemma 4.48. If P 2 Pn;k;m, then the algorithm de�ning H(P ) never declares an error.

Proof. The proof is by induction on the value of the variable v. First, assume v = 0.

Suppose that the processing of label x causes an error. Note that pg0(x) = 1, since

the bounce path starts in the �rst column. On the other hand, g(x) � 1, so that

ux = pg0(x)� g(x) � 0. But the error occurred because ux > Lx(pf), where Lx(pf) = 0

by (4.23). This is a contradiction.

Next, assume by induction that v = j > 0 and that the algorithm has executed

the loop iterations for v = 0; 1; : : : ; j � 1 with no error. Suppose that the algorithm

declares an error in the loop iteration for v = j while processing label x. Then, in

particular, label x was not added to pw(f) in the previous iteration when v = j � 1. So,

in iteration j�1 we must have had ux < �Rx(pf). Using Lemma 4.44(4) and expanding

the de�nitions, this says that

Hj�2 + 1� g(x) < �jpf�1>x(fj � 1; : : : ; j �mg)j: (4.27)

Multiplying by �1 and noting that all quantities are integers, we can rewrite this as

�Hj�2 � 1 + g(x) � jpf�1>x(fj � 1; : : : ; j �mg)j + 1: (4.28)

Next, the assumption that x caused an error in iteration j means that ux > Lx(pf) in

iteration j. Translating the de�nitions gives

Hj�1 + 1� g(x) > jpf�1<x(fj � 1; : : : ; j �mg)j � 1 + �(j � k): (4.29)

Adding the last two inequalities, we conclude that

hj�1 > jpf�1(fj � 1; : : : ; j �mg)j+ �(j < k + 1): (4.30)

(To justify the simpli�cation of the right side, observe that we cannot have pf(x) 2

fj � 1; : : : ; j � mg; otherwise the algorithm would not be considering label x during

iteration j.) But, on the other hand, the de�nition of the bounce path gives

hj�1 = jpf�1(fj � 1; : : : ; j �mg)j+ �(j � 1 < k); (4.31)
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which contradicts the preceding inequality and completes the induction proof. Note that

the pre�x property of the word of f is needed to ensure that certain quantities appearing

in the equations above do not change from one iteration to the next.

Lemma 4.49. Let P 2 Pn;k;m. Suppose that, at some stage of the algorithm de�ning

H(P ), pw(f) contains exactly i numbers, where 0 � i � n� 1. Then pw(f) contains at

most k +mi bar symbols.

Proof. We use induction on the length ` of pw(f). The result obviously holds when

pw(f) is the empty word. Suppose that the result holds when pw(f) has length ` � 0.

Let pw(f) have i numbers and b bar symbols. If b < k +mi and the algorithm appends

a number next, then the result still holds since b < k +m(i+ 1). If b < k +mi and the

algorithm appends a bar symbol next, then the result still holds since b + 1 � k +mi.

We are reduced to the case where b = k +mi. It suÆces to show that, in this case, the

next symbol appended by step 2 of the algorithm will be a number, not a bar.

To prove this, we establish a number of claims.

Claim 1: If i > 0 and y is the rightmost label in pw(f), then pw(f) has at least

m bar symbols following y. Proof: If, instead, there were s < m bar symbols after y,

consider the pre�x p0 with y and these s bar symbols erased. This shorter pre�x has

i � 1 � 0 numbers and k +mi � s > k +m(i � 1) bar symbols in it, which contradicts

the induction hypothesis.

For the next few claims, assume x is a label not already appearing in pw(f).

Let us tentatively append x to pw(f) to obtain a new partial word pw0(f), as in step 2

of the algorithm de�ning H. Then pf(x) = b, since there are b bars preceding x in the

word of f .

Claim 2: Vb�1 = i. Recall that Vb�1 = jfx : pf(x) � b� 1gj. The claim is clear

when i = 0, since x is the �rst number in pw0(f) and pf(x) = b > b� 1. If i > 0, claim

1 shows that pw(f) ends in a bar symbol. So, the i� 1 numbers y preceding x in pw0(f)

must satisfy pf(y) � b� 1. The numbers following x (and x itself) have function values

at least b, so claim 2 follows.

Claim 3: b � 1 � k � 1 and vb�1�u = 0 for 0 � u < m � 1. We have

b � 1 = k +mi � 1 � k � 1. If i = 0, so that x is the �rst number in pw0(f), then we
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certainly have vb�1�u = 0 for all u � 0. If i > 0, claim 1 shows that pw(f) ends in m

(or more) bar symbols. It again follows that vb�1�u = 0 for 0 � u < m� 1.

Claim 4: pg0(x) = b + 1. Recalling that pf(x) = b, Lemma 4.44(4) gives

pg0(x) = 1 + Hb�1. Next, Lemma 4.42(2) and claim 3 show that Hb�1 = k +mVb�1.

Combining this with claim 2, we get pg0(x) = 1 + k +mi = b+ 1.

Now we can prove the earlier assertion that the next symbol appended to pw(f)

by the algorithm will be a number, not a bar. By claim 1, the last symbol (if any)

generated by the algorithm was a bar symbol. So, without loss of generality, we can

assume the algorithm is at the beginning of step 2(a).

To get a contradiction, suppose that all labels considered in this iteration of

step 2(a) are rejected. This happens if and only if ux < �Rx(pf) for all unusued labels

x. Now, by de�nition of Pn;k;m, jTB(i+1)(g)j � i+ 1. So there exist at least i+ 1 labels

x 2 f1; : : : ; ng such that

g(x) � B(i+ 1) = 1 + k +mi = b+ 1:

Choose such an x that does not already appear in pw(f). Consider what happens when

step 2(a) tentatively appends this x to pw(f) to give pw0(f). We have pg0(x) = b+1 by

claim 4, and so

ux = pg0(x)� g(x) � b+ 1� (b+ 1) = 0:

But the assumption that x was rejected means that

ux < �Rx(pf) � 0:

We obtain the contradiction ux < 0 and ux � 0.

Corollary 4.50. Let P 2 Pn;k;m.

(1) When executing the algorithm de�ning H(P ), all n labels in f1; 2; : : : ; ng are even-

tually added to pw(f). Consequently, the algorithm always terminates.

(2) If f is the function produced by the algorithm de�ning H(P ), then

f(x) 2 f0; 1; : : : ; k +m(n� 1)g for 1 � x � n:

Consequently, H is a well-de�ned map from Pn;k;m to In;k;m.
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Proof. To prove (1), suppose that the algorithm only adds i < n labels to pw(f). After

the ith label is appended, each subsequent iteration of step 2 of the algorithm will add

one more bar symbol to pw(f). Eventually, there will be more than k+mi bar symbols,

contradicting the previous lemma. Thus, all n labels are eventually added to pw(f), at

which point the algorithm exits the loop in step 2 and terminates after step 3.

To prove (2), consider the value of pw(f) just before the nth label x is appended

to it. This pre�x of w(f) contains i = n�1 labels. By the lemma, the number of bars in

pw(f) is at most k +m(n� 1). Since f(x) is always the number of bars preceding x in

w(f), we have f(x) � k+m(n�1). For the same reason, we have f(y) � k+m(n�1) for

all labels y preceding x in w(f). So, the image of f is contained in f0; 1; : : : ; k+m(n�1)g.

This also shows, incidentally, that step 3 of the algorithm de�ning H makes sense. We

observed earlier that the numbers uj produced by the algorithm satisfy the required

inequalities. Hence, we �nally conclude that H is a well-de�ned map from Pn;k;m to

In;k;m.

As remarked earlier, it is clear that G ÆH = IdPn;k;m . Our �nal theorem says

that H is the two-sided inverse for G.

Theorem 4.51. The maps G : In;k;m ! Pn;k;m and H : Pn;k;m ! In;k;m are bijections

with H = G�1. For P 2 Pn;k;m, de�ne pmaj(P ) = qstat(H(P )). Then:

pmaj(P ) = qstat(H(P )) and area(P ) = tstat(H(P )); (4.32)

qstat(I) = pmaj(G(I)) and tstat(I) = area(G(I)): (4.33)

Consequently, P
P2Pn;k;m

qpmaj(P )tarea(P ) =
P

I2In;k;m
qqstat(I)ttstat(I)

=
P

P2Pn;k;m
qarea(P )th(P )

= CHn;k;m(q; t);

(4.34)

and so all these statistics have the same univariate distribution.

Proof. We have already shown that G maps into Pn;k;m, H maps into In;k;m, and GÆH =

IdPn;k;m . The last equation implies that H is an injection and G is a surjection. But

Corollary 4.32 showed that

jIn;k;mj = jPn;k;mj <1:
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Since the sets are �nite, H is automatically a surjection, G is automatically an injection,

and H = G�1. The properties in (4.33) follow from Lemma 4.46 and the very de�nition

of pmaj, and (4.32) follows by replacing I by H(P ) and simplifying. The equalities in

(4.34) follow from the existence of the weight-preserving bijections G and F . Letting

q = 1 or t = 1 in (4.34) gives the �nal assertion of the theorem.
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More Results in Lattice Path

Enumeration

This chapter presents some further results and open problems in the theory of

lattice path enumeration. First, we use a generalization of Andr�e's famous reection

principle to count trapezoidal lattice paths. Second, we prove various identities for

counting lattice paths including a new determinantal formula for the Carlitz-Riordan

generating function Carea
n (q), which enumerates Dyck paths by area. Third, we discuss

bijections that connect Haglund's combinatorial q; t-Catalan sequence (see Chapter 1) to

classical permutation statistics. As a byproduct of these bijections, we obtain two new

collections of permutations that are enumerated by the Catalan numbers.

5.1 Andr�e's Reection Principle and Trapezoidal Paths

This section presents a generalization of Andr�e's reection principle, which

gives a new combinatorial proof of a formula for the number of lattice paths lying within

certain trapezoids. This section is completely self-contained.

Consider paths in the xy-plane that go from (W;H) to (0; 0) by taking W west

steps and H south steps of length one. The number of such paths is�
H +W

H;W

�
=

(H +W )!

H!W !
;

209
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since each such path has H +W steps total, and we can choose any set of W steps to

be west steps. We prefer to write the binomial coeÆcient as a multinomial coeÆcient,

so that both the height H and width W explicitly appear.

Next, consider lattice paths going from (n; n) to (0; 0) by taking n west steps

and n south steps that never go strictly below the diagonal line y = x. As is well-known,

the number of such paths is the Catalan number

1

n+ 1

�
2n

n

�
=

�
2n

n; n

�
�

�
2n

n� 1; n+ 1

�
:

The famous reection principle of Andr�e [1] gives a combinatorial proof of this last

result, in which paths descending below the diagonal are matched o� bijectively with

paths �tting in an (n� 1)� (n+ 1) rectangle.

We will prove a more general result for lattice paths contained in certain trape-

zoids. Let k � 0, H > 0, and m > 0 be integers. Set W = k +mH, and let D denote

the diagonal line whose equation is x = k+my. How many lattice paths go from (W;H)

to (0; 0) by taking W west steps and H south steps that never go strictly below the

diagonal D? The well-known answer is�
H +W

H;W

�
�m

�
H +W

H � 1;W + 1

�
:

It is hard to use reections to prove this result, since the symmetry group of a (non-

square) rectangle does not include reection through a diagonal. However, this symmetry

group does include a half-turn, which sends each corner of the rectangle to the diagonally

opposite corner. Hence, our new combinatorial proof of this identity will be based on a

\rotation principle."

Label each lattice point P = (x; y) with the integer x� (k +my), which is the

signed horizontal distance from D to P . Note that lattice points on D have label zero,

lattice points left of D have negative labels, and lattice points right of D have positive

labels. Let S denote the set of all paths from (W;H) to (0; 0), and let T denote the set

of all paths from (W +1;H � 1) to (0; 0). Let S0 denote the set of paths in S that never

go strictly below D; so S0 consists of paths that only visit points having nonpositive

labels. For 1 � i � m, let Si denote the set of paths in S that do go below D, and whose

�rst positive label (reading southwest from (W;H)) is i. Since taking a single south step
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causes the label to increase by m, the �rst positive label (if any) for each path in S must

be an element of f1; 2; : : : ;mg. Therefore, S is the disjoint union of S0; S1; : : : ; Sm.

We will de�ne m bijections fi : Si ! T . This will prove the desired result,

since jSj =
�H+W
H;W

�
and jT j =

� H+W
H�1;W+1

�
and jSj =

Pm
j=0 jSj j. To de�ne fi, let � be a

path in Si. Augment the beginning of � with a horizontal step from (W;H) to the point

Q = (W+1;H), whose label is 1. By assumption, there exists a point R where � descends

below D for the �rst time, and the label of R is i. Rotate the portion of the augmented

path between R and Q by 180Æ about the midpoint of the line segment QR. Then erase

the resulting vertical step from (W +1;H�1) to (W +1;H) to obtain a path fi(�) in T .

If we encode the augmented path as a sequence of h's and v's representing horizontal and

vertical steps, the rotation corresponds to reversing the part of this sequence between

Q and R and then erasing the initial v. This v must be present, since � can only go

below D for the �rst time by taking a vertical step. See Figure 5.1 for an example where

m = 3, k = 5, H = 9, and W = 32.

To see that fi is a bijection, we display a two-sided inverse map gi : T ! Si.

Given a path � 2 T from (W + 1;H � 1) to (0; 0), augment the beginning of this path

with a vertical move to Q = (W + 1;H). Call this augmented path � 0. Let S be the

�rst point on � 0 after Q whose label is i. Such a point must exist, since the label of

(W +1;H � 1) is m+1, the label of (0; 0) is nonpositive, and each west step decrements

the current label by one. Form a path �0 by rotating the portion of � 0 between S and Q

by 180Æ. Finally, de�ne the path � = gi(�) to be the path �0 with the initial horizontal

step from (W;H) to (W + 1;H) deleted. This step must exist, since � arrives at S by

taking a west step.

We must check that � = gi(�) is an element of the set Si. Let d0; : : : ; ds be

the labels of the lattice points visited by � 0, starting from Q. Similarly, let e0; : : : ; es be

the labels of the lattice points visited by �0, starting from Q. Let j � 1 be the smallest

index such that dj = i. Thus, the path � 0 reaches the point S after taking j steps from

Q. Note that d0 = 1, d1 = m + 1, dj�1 = i + 1, and dj = i. Also, e0 = 1, e1 = 0,

ej�1 = i�m, and ej = i. More generally, we claim that ek = (i+1)�dj�k for 0 � k � j.

This is certainly true for k = 0. Suppose it is true for some k < j. Since the rotation
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map reverses the sequence of j steps in � 0 leading from Q to S, it follows that

ek+1 � ek = dj�k � dj�(k+1):

More speci�cally, both sides are m if the (j � k)th step of � 0 is vertical, and both sides

are �1 if the (j � k)th step of � 0 is horizontal. Either way,

ek+1 = (ek + dj�k)� dj�(k+1) = (i+ 1)� dj�(k+1);

which proves that the claim holds with k + 1 in place of k. Now, since dj�k > i for

0 < j�k < j, the claim shows that ek � 0 for 0 < k < j. On the other hand, ej = i > 0.

This says that the path � = gi(�) goes below the diagonal D for the �rst time at step

j, where it hits the point S whose label is i. This shows that � does belong to Si.

Furthermore, it is now clear that fi(gi(�)) = � , since fi will just rotate the portion of

�0 between Q and S and produce � 0 again. Similarly, it is easy to see from the labelling

rules that gi(fi(�)) = � for any � 2 Si. The crucial observation is that every point in

fi(�) between Q and S has a label larger than i. This follows from the claim, since

every point in � between Q and S has a nonpositive label. We conclude that each fi is

a bijection with inverse gi, and the proof is complete.

The rotation technique given here fails if we consider a diagonal line D whose

equation is x = k + (r=s)y, where r > 1 and s > 1. We leave it as an open problem to

�nd a combinatorial proof of the appropriate formula in this more general case.

5.2 Enumerating Lattice Paths by Area and Major Index

This section presents a number of recursions and formulas for counting special

collections of lattice paths. Most of these identities involve the area generating function

for these paths, which is the sum of terms qarea(P ) over all paths P in the collection. One

new result proved here is a determinantal formula for the Carlitz-Riordan q-analogue of

the Catalan number, which was de�ned in Chapter 1 as

Carea
n (q) =

X
P2Dn

qarea(P ):

This section is essentially self-contained.
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path C in S3

Q

Q

Q

R

R

R

2

path B in S 2

path D = f  (A) = 1 f  (B) = 2 f  (C). 3

Figure 5.1: Example of the rotation maps.
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5.2.1 Counting Paths inside Arbitrary Shapes

De�nition 5.1. Let n � 0, and suppose B : f0; 1; : : : ; ng ! Z is a function such that

0 � B(0) � B(1) � � � � � B(n). The function B determines a region in the �rst quadrant

R(B) = f(x; y) : 0 � y � n and 0 � x � B(y)g:

A lattice path that goes from (0; 0) to (x; y) by taking x horizontal steps and y vertical

steps is said to be valid relative to B if and only if it is contained in the region R(B).

This means that 0 � y � n and 0 � c � B(d) for all points (c; d) on the path. Let

P(x; y;B) denote the collection of such paths.

There is a simple recursion for computing the numbers jP(x; y;B)j.

Proposition 5.2. For x > 0 and y > 0, we have

jP(x; y;B)j = jP(x� 1; y; B)j + jP(x; y � 1; B)j:

The initial conditions are

jP(0; y; B)j = 1 = jP(x; 0; B)j for all x; y � 0,

jP(x; y;B)j = 0 whenever (x; y) 62 R(B).

Proof. We can uniquely construct each path P 2 P(x; y;B) either by appending a hori-

zontal step to a valid path from the origin to (x�1; y), or by appending a vertical step to

a valid path from the origin to (x; y� 1). The recursion above follows immediately. The

initial conditions are clear, since there is only one path from (0; 0) to (0; y), consisting of

y vertical steps. Similarly, there is only one path from (0; 0) to (x; 0). Finally, if (x; y)

is outside the region of validity, then there are no valid paths ending at (x; y).

The previous result can also be rewritten

jP(x; y;B)j = �((x� 1; y) 2 R(B))jP(x� 1; y; B)j+�((x; y� 1) 2 R(B))jP(x; y� 1; B)j

for (0; 0) 6= (x; y) 2 R(B), with initial condition jP(0; 0; B)j = 1.
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Example 5.3. Fix an integerm � 1, and let B(i) = bi=mc for i � 0. The set P(H;W;B)

consists of lattice paths from (0; 0) to (H;W ) contained in the trapezoid bounded by the

lines x = 0, y =W , x = H and y = mx. (This is essentially the same collection of paths

considered in x5.1, but the orientation and position of the trapezoid is di�erent.) Using

the recursion above, we can now give an algebraic proof of the formula

jP(H;W;B)j =

�
H +W

H;W

�
�m

�
H +W

H � 1;W + 1

�
for W � mH (5.1)

This formula evaluates to 1 when H = 0, which is the correct value for the initial

condition. Given H > 0 and W � mH, assume by induction that (5.1) holds for paths

ending at (H � 1;W ) and (H;W � 1). If W = mH, the point (H;W � 1) is outside

R(B), and the recursion gives

jP(H;W;B)j = jP(H � 1;W;B)j =

�
H � 1 +W

H � 1;W

�
�m

�
H � 1 +W

H � 2;W + 1

�

=

�
(m+ 1)H � 1

H � 1;mH

�
�m

�
(m+ 1)H � 1

H � 2;mH + 1

�
:

Routine manipulation of factorials shows that this expression does equal�
(m+ 1)H

H;mH

�
�m

�
(m+ 1)H

H � 1;mH + 1

�
;

as desired. If W > mH, the point (H;W � 1) is inside R(B), and the recursion gives

jP(H;W;B)j =

�
H +W � 1

H � 1;W

�
�m

�
H +W � 1

H � 2;W + 1

�
+

�
H +W � 1

H;W � 1

�
�m

�
H +W � 1

H � 1;W

�
:

Two applications of the identity
�a+b
a;b

�
=
�a+b�1
a�1;b

�
+
�a+b�1
a;b�1

�
show that this expression

does equal �
H +W

H;W

�
�m

�
H +W

H � 1;W + 1

�
;

which completes the induction.

Example 5.4. The recursion can be used to rapidly compute values of jP(x; y;B)j even

when no explicit formula is available. Figure 5.2 illustrates such a computation when

B(i) = b3 + (3=2)ic. Each lattice point in R(B) is labelled by the number jP(x; y;B)j;

the label is drawn just below and left of the lattice point. Points on the far left and

bottom of the �gure have label 1. For a point inside the region, its label is the sum of

the label of the point to its left and the point below it, provided that the latter point is

still within the region R(B). From Figure 5.2, we see that jP(9; 4; B)j = 241.
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4 10 20 34 48 62 62

15 35 695 241 241241179117
(9, 4)
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1
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1
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Figure 5.2: Counting lattice paths with the recursion.

De�nition 5.5. For a path P 2 P(x; y;B), de�ne the area of P to be the number of

complete lattice cells lying to the right of P and inside the region R(B). These cells are

called area cells for P . De�ne the area generating function

F (x; y;B; q) =
X

P2P(x;y;B)

qarea(P ):

The recursion above generalizes easily to a recursion for these area generating

functions.

Proposition 5.6. Assume B(i � 1) � B(i) for 1 � i � n. For x > 0 and y > 0, we

have

F (x; y;B; q) = F (x� 1; y; B; q) + qB(y�1)�xF (x; y � 1; B; q):

The initial conditions are

F (x; 0; B; q) = 1 for all x � 0,

F (0; y; B; q) = qB(0)+B(1)+���+B(y�1) for all y � 0.

Proof. Let P 2 P(x; y;B). If P is obtained by appending a horizontal step to some path

P 0 2 P(x�1; y; B), then clearly area(P ) = area(P 0). This gives the term F (x�1; y; B; q)

in the recursion. Suppose instead that P is obtained by appending a vertical step to

some path P 0 2 P(x; y� 1; B). Since B is increasing, P will have B(y� 1)� x new area

cells in its top row, in addition to all the area cells of P 0. This gives the other term in

the recursion. The initial conditions follow since the path ending at (x; 0) has no area

cells, while the path ending at (0; y) has B(0) +B(1) + � � �+B(y � 1) area cells.
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The reader can readily generalize this result to the case where B is not neces-

sarily increasing.

5.2.2 Recursions for Counting Dyck Paths by Area

We now return to the special case of Dyck paths.

De�nition 5.7. For each integer n > 0, let Dn denote the collection of Dyck paths

ending at (n; n). For n > 0 and all k, let Dn;k denote the collection of paths in Dn

terminating in exactly k horizontal steps. Let Cn = jDnj and Cn;k = jDn;kj.

Clearly, Cn;k = 0 for k � 0 and k > n, while Cn;n = 1. It is easy to see that

Cn+1;1 = Cn =
Pn

k=1Cn;k. Recall from Chapter 1 that Cn is the nth Catalan number.

De�nition 5.8. For n � 1 and 1 � k � n, set

Cn;k(q) =
X

P2Dn;k

qarea(P );

Cn(q) =
X
P2Dn

qarea(P ):

Cn(q) is the Carlitz-Riordan q-analogue of the Catalan numbers, which was called

Carea
n (q) in Chapter 1. It is convenient to set C0(q) = 1.

The following recursion characterizes the quantities Cn(q).

Proposition 5.9. We have C0(q) = C1(q) = 1 and, for n > 1,

Cn(q) =
nX

k=1

qk�1Ck�1(q)Cn�k(q):

Proof. We have C0(q) = 1 by de�nition, while C1(q) = 1 = q0 because the unique Dyck

path of order 1 has zero area cells. To get the recursion for Cn(q), classify the paths

P 2 Dn based on the smallest value k > 0 such that (k; k) is on the path P . Such a k

must exist, since (n; n) is on the path P . Let P1 be the portion of P going from (0; 1)

to (k � 1; k), and let P2 be the portion of P going from (k; k) to (n; n). See Figure 5.3.

If we shift P1 down one unit, we get an element of Pk�1; the minimality of k

guarantees that this shifted path does not go below the line y = x. Similarly, if we shift
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P
2

P1
k

n

Figure 5.3: Dissecting a Dyck path based on the �rst return to the main diagonal.

P2 left k units and down k units, we get an element of Pn�k. This process is obviously

reversible. We have

area(P ) = area(P1) + area(P2) + (k � 1);

since the path P has k�1 area cells in rows 2 through k that do not count as area cells of

P1 after shifting it down one unit. The recursion follows immediately from the product

rule for generating functions [3]. (The reader may check that the convention C0(q) = 1

gives the correct summand in the extreme cases where k = 1 or k = n.)

We can get an even simpler recursion for the quantities Cn;k(q).

Theorem 5.10.

Cn;k(q) = qk�1Cn�1;k�1(q) + q�1Cn;k+1(q) for 0 < k < n (5.2)

with initial conditions Cn;n = qn(n�1)=2; Cn;k = 0 for k > n and k � 0:
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Proof. For 0 < k < n, each path in Dn;k can be constructed uniquely in one of the

following two ways. First, we can append a new top row containing k � 1 area cells

to an arbitrary path of order n � 1 that ends in exactly k � 1 horizontal steps. This

produces a path in Dn;k in which there are at least two vertical steps just before the last

k horizontal steps. Second, we can remove the leftmost area cell in the top row of an

arbitrary path of order n that ends in exactly k + 1 horizontal steps. This produces a

path in Dn;k in which there is exactly one vertical step just before the last k horizontal

steps. The recursion follows immediately. (Alternatively, letting B(i) = i for all i, the

recursion can be derived from (5.6) by noting that Cn;k(q) = F (n� k; n;B; q):) For the

initial conditions, note that the unique path of order n ending in n horizontal steps has

area n(n� 1)=2. Also, if k > n or k � 0, then there are no Dyck paths of order n ending

in k horizontal steps.

This recursion can be used to compute Cn(q) too, since we clearly have

Cn(q) = Cn+1;1(q):

We now derive some consequences of recursion (5.2), which follow by iteratively

expanding (5.2) in various ways.

Proposition 5.11.

Cn;k(q) = qk�1
n�1X

m=k�1

Cn�1;m(q): (5.3)

Cn;k(q) = q(k�1)+(k�2)+���+(k�i)
n�kX
m=0

�
m+ i� 1

i� 1

�
q

Cn�i;k�i+m(q) for 1 � i � k. (5.4)

Cn;k(q) =

k�1X
j=0

qkj�1�((j+1)j=2)Cn�j;k�j+1(q): (5.5)

Cn;k(q) =
X

0�j<k=2

(�1)jqk+j
2�j�1

�
k � 1� j

j

�
q

Cn�j;1(q) for 1 � k < 2n. (5.6)

Proof. For each identity, we outline both an algebraic proof and a combinatorial proof.

To get equation (5.3), we iterate (5.2) to eliminate terms involving Cn;k+1(q), then
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Cn;k+2(q), Cn;k+3(q), and so on:

Cn;k(q) = qk�1Cn�1;k�1(q) + q�1Cn;k+1(q)

= qk�1Cn�1;k�1(q) + q�1
�
qkCn�1;k(q) + q�1Cn;k+2(q)

�
= qk�1 (Cn�1;k�1(q) + Cn�1;k(q))

+q�2
�
qk+1Cn�1;k+1(q) + q�1Cn;k+3(q)

�
= qk�1 (Cn�1;k�1(q) + Cn�1;k(q) + Cn�1;k+1(q))

+q�3
�
qk+2Cn�1;k+2(q) + q�1Cn;k+4(q)

�
= � � � :

Ultimately, we obtain

Cn;k(q) = qk�1 (Cn�1;k�1(q) + � � �+ Cn�1;n�2(q))

+qk�n
�
qn�1Cn�1;n�1(q)

�
= qk�1

n�1X
m=k�1

Cn�1;m(q):

To get a combinatorial proof of the same identity, observe that the top row of a path

counted by Cn;k(q) contains k � 1 area cells. Removing this row, we get a path counted

by Cn�1;m(q), where the number of horizontal steps m at the end of this smaller path

must satisfy k � 1 � m � n � 1. Identity (5.3) now follows immediately from the sum

rule.

To prove the equations (5.4), use induction on i. The base case i = 1 is just

(5.3). Assuming that (5.4) holds for some i < k, we can get the analogous identity for

i+ 1 by substituting

Cn�i;k�i+m(q) = qk�(i+1)+m
n�i�1X

j=k�(i+1)+m

Cn�(i+1);j(q);

interchanging the order of summation, and simplifying. Alternatively, Figure 5.4 shows

how to prove (5.4) combinatorially. Fix i with 1 � i � k. To construct an arbitrary path

P 2 Dn;k, �rst choose an integer m between 0 and n�k inclusive. Second, choose a path

P 0 2 Dn�i;k�i+m. The generating function for this choice is Cn�i;k�i+m(q). Third, draw

a vertical line from (n� k; n� i) to (n� k; n), and shade in the cells to the right of this

line. There are (k� i) + � � �+ (k� 2) + (k� 1) such cells. Fourth, draw a lattice path Q
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in the rectangle with southwest corner (n� i� (k � i+m); n� i) and northeast corner

(n� k; n� 1). This rectangle has height i� 1 and width m, so the generating function

for this fourth choice is
�
m+i�1
m;i�1

�
q
. Multiplying the generating functions for these choices

and adding over all m, we obtain (5.4).

n

Q

k − i + m

i

k

P’

n − i

Figure 5.4: Dissecting a Dyck path by removing the top i rows.

We note that the case i = k of (5.4) yields the relation

Cn;k(q) =

n�kX
m=1

�
m+ k � 1

m

�
q

qk(k�1)=2Cn�k;m(q);

which is Haglund's recursion for the q; t-Catalan sequence with t = 1 (see Chapter 1).

To prove (5.5), iterate (5.2) to eliminate the terms involving Cn�1;k�1(q), then
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Cn�2;k�2(q), Cn�3;k�3(q), and so on:

Cn;k(q) = qk�1Cn�1;k�1(q) + q�1Cn;k+1(q)

= qk�1
�
qk�2Cn�2;k�2(q) + q�1Cn�1;k(q)

�
+ q�1Cn;k+1(q)

= q2k�3
�
qk�3Cn�3;k�3(q) + q�1Cn�2;k�1(q)

�
+qk�2Cn�1;k(q) + q�1Cn;k+1(q) = � � � :

Note that this iteration produces terms of the form qpowjCn�j;k�j+1(q), for j � 0. It is

easily checked by induction that

powj = �1 + (k � 1) + (k � 2) + � � � + (k � j) = kj � 1� j(j + 1)=2:

During the iteration, there is also an extra term qpowCn�m;k�m(q), which is expanded

using (5.2) to obtain the next formula in the iteration. This process ends when m = k,

since Cn�k;0(q) = 0. What remains is the sum of terms qpowjCn�j;k�j+1(q) for 0 � j �

k � 1. This completes the algebraic proof of (5.5).

To prove (5.5) combinatorially, classify paths in Dn;k by the number of vertical

steps immediately preceding the last run of k horizontal steps in the path. If there are

j +1 such vertical steps, then we must have 0 � j � k� 1 by de�nition of a Dyck path.

We can uniquely construct each path in Dn;k as follows.

� Choose j with 0 � j � k � 1.

� Choose a path P 0 in Dn�j;k�j+1. The generating function for this choice is

Cn�j;k�j+1(q):

� Remove the leftmost area cell in the top row of P 0. The generating function for

this step is q�1, since the area decreases by one.

� Add a trapezoidal region consisting of j rows of area cells, whose lengths from top

to bottom are k � 1; k � 2; : : : ; k � j. The generating function for this step is

q(k�1)+���+(k�j) = qkj�(j+1)j=2:
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k − j + 1

j

n − j

n

k

P’

deleted cell

Figure 5.5: Classifying Dyck paths based on the size of the last vertical segment.

See Figure 5.5. Observe that this process of combining P 0 and j to produce P is re-

versible. Multiplying the generating functions from each step and adding over all j, we

obtain (5.5).

Equation (5.6) is proved by induction on n and k. Note that (5.6) is equivalent

to

Cn;k(q) =
1X
j=0

(�1)jqk+j
2�j�1

�
k � 1� j

j

�
q

Cn�j;1(q);

since
�
a
b

�
q
= 0 if b > a. If k = 1 and n is arbitrary, this equation says Cn;1(q) = Cn;1(q),

which is true. In particular, the equation holds when n = 1 and 1 � k < 2. For the

induction step, �rst rewrite (5.2) as

Cn;k+1(q) = qCn;k(q)� qkCn�1;k�1(q):
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Use the induction hypothesis to rewrite the right-hand side:

Cn;k+1(q) = q

1X
j=0

(�1)jqk+j
2�j�1

�
k � 1� j

j

�
q

Cn�j;1(q)

�qk
1X
j=0

(�1)jqk�1+j
2�j�1

�
k � 2� j

j

�
q

Cn�1�j;1(q):

In the �rst summation here, separate the summand corresponding to j = 0. In the

second summation, make the substitution i = j + 1. The result is

Cn;k+1(q) = qkCn;1(q) +

1X
i=1

(�1)iqk+i
2�i

�
k � 1� i

i

�
q

Cn�i;1(q)

+

1X
i=1

(�1)iq2k�1+(i�1)2�(i�1)�1

�
k � 1� i

i� 1

�
q

Cn�i;1(q):

The last two summations combine to give

Cn;k+1(q) = qkCn;1(q)

+
1X
i=1

(�1)iq(k+1)+i2�i�1

 �
k � 1� i

i

�
q

+ qk�2i
�
k � 1� i

i� 1

�
q

!
Cn�i;1(q):

Applying Theorem 1.51(3) with C = i and D = k � 1� 2i, we see that�
k � 1� i

i

�
q

+ qk�2i
�
k � 1� i

i� 1

�
q

=

�
k � i

i

�
q

:

Using this above, we get

Cn;k+1(q) = +
1X
i=0

(�1)iq(k+1)+i2�i�1

�
(k + 1)� 1� i

i

�
q

Cn�i;1(q):

This completes the induction step. Note that the induction breaks down when we reach

k = 2n, because one of the summands for that k is C0;1(q), which is unde�ned. Thus,

the stated formula (5.6) for Cn;k(q) is valid for 1 � k < 2n.

A combinatorial proof of (5.6) is less obvious, since both positive and negative

terms appear in this equation. Such a proof can be given by de�ning a weight-preserving,

sign-reversing involution on a suitable collection of objects. This will be done in a more

general setting in the next subsection.
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Example 5.12. Setting q = 1 in (5.6), we �nd that

Cn;k =
X

0�j<k=2

(�1)j
�
k � 1� j

j

�
Cn�j;1 for 1 � k < 2n:

Since Cn;n = 1 and Cn;k = 0 for k > n, we obtain recursions that only involve the

Catalan numbers (recall Cn�j�1 = Cn�j;1). In particular, replacing n by n + 1, k by

n+ 2, and solving for Cn = Cn+1;1 we obtain a recursion

Cn =
X

1�j�n+1
2

(�1)j�1
�
n+ 1� j

j

�
Cn�j:

Similarly, replacing n by n+ 1 and k by 2n+ 1 < 2(n+ 1) gives a recurrence

0 =
nX
j=0

(�1)j
�
2n� j

j

�
Cn�j;

from which we get an expression for Cn in terms of all of the preceding Catalan numbers.

Of course, (5.6) also gives q-analogues of these recursions for Carlitz's q-Catalan numbers.

Example 5.13. Let n = 3 and k = 5 = 2n� 1. Then (5.6) gives the true identity

0 = q4
�
4

0

�
q

(1 + q)� q4
�
3

1

�
q

� 1 + q6
�
2

2

�
q

� 1:

If, instead, n = 3 and k = 6 = 2n, (5.6) becomes

0 = q5
�
5

0

�
q

(1 + q)� q5
�
4

1

�
q

� 1 + q7
�
3

2

�
q

� 1;

which is false since the right side is q9. This shows that the requirement 1 � k < 2n

imposed in the proposition cannot be relaxed.

5.2.3 Using Involutions to Count Lattice Paths

This subsection describes some sign-reversing, weight-preserving involutions

that can be used to prove additional identities for counting lattice paths. One appli-

cation is an explicit determinantal formula for the Carlitz-Riordan q-analogue of the

Catalan numbers.

We begin with an involution involving the numbers Cn;k, which will later be

extended to the area generating functions Cn;k(q). First, recall that Cn;k = jDn;kj, where
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Dn;k is the set of Dyck paths of height n ending in exactly k horizontal steps. Let D0
n;k

denote the set of Dyck paths of height n beginning with exactly k vertical steps. It is

easy to see that Cn;k = jD0
n;kj, since reection about the line y = n� x gives a bijection

between Dn;k and D
0
n;k. Since this reection preserves area, we also have

Cn;k(q) =
X

P2Dn;k

qarea(P ) =
X

P2D0
n;k

qarea(P ):

Theorem 5.14. For all i; j � 1, we have

�(i = j)(�1)i =
X
k�1

(�1)k
�

k

i� k; 2k � i

�
Ck;j: (5.7)

Proof. Fix i and j. If j > i, it is easy to see that both sides of the given identity are

zero, so we can assume i � j. We will interpret the right side of this identity as counting

a collection S of signed objects. By de�nition, an object of S is a triple (k; P;w), where

k � 1 is an integer, P is a path in D0
k;j, and w 2 R(02k�i1i�k) is a rearrangement of

2k � i zeroes and i � k ones. We may as well take k � i here (lest w not exist), so S

is �nite with cardinality
Pi

k=1

�
k

i� k; 2k � i

�
Ck;j. Next, de�ne the sign of the object

(k; P;w) to be (�1)k. Then the sum of the signs of all objects in S is precisely the right

side of (5.7).

We now de�ne an involution � : S ! S such that for all x 2 S, either �(x) = x

or the sign of �(x) is the opposite of the sign of x. Intuitively, � pairs o� objects with

opposite signs, and � may also have some unpaired �xed points of unspeci�ed sign. Since

the sign of x cancels the sign of �(x) when �(x) 6= x, we have

X
x2S

sign(x) =
X

x2S:x=�(x)

sign(x):

This will imply the desired result, since the left side of (5.7) will turn out to be the sum

of the signs of the �xed points of �.

Let us describe at the outset the �xed points of �. If i > j, then � will

have no �xed points. If i = j, then � will have one �xed point, which is the object

x0 = (k0; P0; w0) such that k0 = i = j, P0 is a path consisting of i north steps and i east

steps, and w = 0i. Note that x0 does belong to S, and its sign is (�1)i. So, whatever
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P

j

k

l

w = 0 0 . . . 0 1 . . .
m

Figure 5.6: Quantities used to de�ne the involution.

the values of i and j are,

X
x2S:x=�(x)

sign(x) = �(i = j)(�1)i

as required.

To de�ne � in general, let x = (k; P;w) 2 S with x 6= x0. Let ` � 1 be the

number of east steps at the end of the path P , so that P has `� 1 area cells in its top

row. Let m � 0 be the number of zeroes at the beginning of the word w. See Figure 5.6.

Consider two cases.

Case 1: m � `. De�ne �(x) = (k0; P 0; w0) 2 S as follows. Let k0 = k + 1. Let P 0 be P

with a new top row that contains exactly m area cells. Let w0 be w with the leftmost

one replaced by two zeroes.

Case 2: m > `. De�ne �(x) = (k0; P 0; w0) 2 S as follows. Let k0 = k � 1. Let P 0 be P

with its top row erased. (Thus, P 0 has `� 1 fewer area cells than P .) Let w0 be w with

the `th and (`+ 1)th zeroes replaced by a single one.

Since k0 = k� 1, it is clear that � is sign-reversing. However, we need to check

that the de�nition of � makes sense and that � is an involution.
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Consider the actions performed on x = (k; P;w) in case 1.

� First, k0 = k + 1 � 1 since k � 1.

� Second, we claim that P 0 does belong to D0
k0;j. Proof: Since m � `, there is enough

room above the top row of P to put m area cells in the top row of P 0 with no

overhanging cells. So P 0 is a Dyck path of height k0 = k + 1. Does P 0 begin

with exactly j vertical steps, as required? The only way this could fail is if the m

new area cells in the top row of P 0 extend to the leftmost column of the diagram.

This happens if and only if P consists of j vertical steps followed by j horizontal

steps, and moreover j = ` = m = k. Now, m � 2k � i, since m is the number of

zeroes at the beginning of w. So, i � 2k �m = 2j � j = j. But we are already

assuming i � j, so that i = j. Note that w 2 R(02k�i1i�k) = R(0k), so w must be

0k. Finally, we see that x = x0, the �xed point of �, contrary to our assumption.

Therefore, P 0 does begin with exactly j vertical steps.

� Third, we claim that w does have at least one 1 in it. For otherwise, we must

have i = k, forcing w = 0k = 0i and m = k. Since P 2 D0
k;j and ` � m = k, we

must in fact have ` = k and P ends in k horizontal steps. The total height of P

is k, so P must be the path consisting of k vertical steps followed by k horizontal

steps. But then j = k = i, as P starts with j vertical steps, and we again reach

the contradiction x = x0.

� Fourth, we claim that w0 2 R(02k
0�i1i�k

0
). By de�nition, w has i � k ones and

2k � i zeroes. According to the de�nition of �, w0 has i� k � 1 = i� k0 ones and

2k � i+ 2 = 2k0 � i zeroes, as required.

� Fifth, let us compute �(x0) = �((k0; P 0; w0)). Let m0 and `0 be computed from x0 in

the same way that m and ` were computed from x. We have `0 = m+ 1, since the

top row of P 0 has m area cells. We have m0 > m+ 1, since w0 must begin with at

least m+ 2 zeroes by de�nition of m. Thus m0 > `0, so we follow the instructions

in case 2 to compute �(x0) = (k00; P 00; w00). We have k00 = k0 � 1 = k. We obtain

P 00 by erasing the top row of P 0, which gives the original path P again. Finally, we

obtain w00 by replacing the (`0)th and (`0 + 1)th zeroes in w0 by a single one. But
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`0 = m+ 1, so the two zeroes being replaced are exactly the ones that were added

to w in case 1. Thus, w00 = w. Finally, we see that �(x0) = x, as desired.

Next, we must check the analogous assertions for the actions performed in

case 2. So assume that x = (k; P;w) was such that m > `.

� First, we claim that k0 = k � 1 is at least 1. Since k � 1, we need only rule out

the possibility k = 1. Now, k = 1 forces j = 1 = `, and we are assuming ` < m.

Thus, w begins with m > 1 zeroes. But w has only 2k � i � 1 zeroes total, which

is a contradiction.

� Second, we claim that P 0 does belong to D0
k0;j . Proof: P

0 is clearly a Dyck path of

height k0 = k � 1. Does P 0 begin with exactly j vertical steps, as required? The

only way this could fail is if the top row of P extends to the leftmost column of the

diagram. This happens if and only if P consists of j vertical steps followed by j

horizontal steps, and moreover j = ` = k. Now, m � 2k� i, since m is the number

of zeroes at the beginning of w. Also recall that i � k since the number of ones in

w cannot be negative. So, m � 2k � i � 2k � k = k = `, contradicting the fact

that we are in case 2. Therefore, P 0 does begin with exactly j vertical steps.

� Third, note that the initial string of zeroes in w has length at least ` + 1, by

de�nition of m. So it makes sense to replace the `th and (`+1)th zeroes by a single

one to obtain w0. Note that this new one is the leftmost one in w0.

� Fourth, we claim that w0 2 R(02k
0�i1i�k

0

). By de�nition, w has i � k ones and

2k � i zeroes. According to the de�nition of �, w0 has i� k + 1 = i� k0 ones and

2k � i� 2 = 2k0 � i zeroes, as required.

� Fifth, let us compute �(x0) = �((k0; P 0; w0)). Let m0 and `0 be computed from x0

in the same way that m and ` were computed from x. We have m0 = ` � 1, by

de�nition of w0. Also, `0 � `� 1, lest the top row of P have overhanging area cells

that are forbidden by the de�nition of Dyck path. So, `0 � m0, and we use the

directions in case 1 to compute �(x0) = (k00; P 00; w00). We have k00 = k0+1 = k. We

obtain P 00 by adding a new top row with m0 = ` � 1 area cells to P 0, which gives

the original path P again. Finally, we obtain w00 by replacing the leftmost one in



230

w0 by two zeroes. This exactly reverses the transformation used to create w0 from

w, so w00 = w. Finally, we see that �(x0) = x, as desired.

Identity (5.7) can be interpreted as a matrix inversion result.

Corollary 5.15. Let M � 1. Consider the lower triangular matrices

C = jjCn;kjj1�n;k�M and B = jjbk;jjj1�k;j�M ;where bk;j = (�1)k�j
�

j

k � j

�
:

B and C are inverse matrices, i.e.,

CB = BC = I = jj�(i = j)jj1�i;j�M :

Proof. Writing out what the identity BC = I means entry by entry, we get

�(i = j) =
iX

k=1

(�1)i�k
�

k

i� k

�
Ck;j for 1 � i; j �M:

This is just a rearrangement of (5.7). It follows that CB = I as well, which says that

jX
k=1

Ci;k(�1)
k�j

�
j

k � j

�
= �(i = j) for 1 � i; j �M:

The reader may enjoy giving a direct algebraic derivation of CB = I by induction on i,

using (5.2) (with q = 1) and the identity

m�j+1X
u=0

(�1)u
�
j

u

�
= (�1)m�(j�1)

�
j � 1

m� (j � 1)

�
(5.8)

as intermediate steps.

We now give q-analogues of the last two results.

Theorem 5.16. For each i; j � 1, we have

�(i = j)(�1)iq�i(i�1)=2 =
X
k�1

(�1)k
�

k

i� k; 2k � i

�
q

Ck;j(q)q
k(k+1)�2ki: (5.9)
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Proof. We use the set of signed objects S and the sign-reversing involution � from the

proof of Theorem 5.14. We will assign weights to these objects in such a way that � is

weight-preserving. This means that weight(�(x)) = weight(x) for all x 2 S. It follows

that X
x2S

sign(x)qweight(x) =
X

x2S:x=�(x)

sign(x)qweight(x): (5.10)

For x = (k; P;w) 2 S, de�ne the weight of x by

weight((k; P;w)) = area(P ) + coinv(w) + k(k + 1)� 2ki:

Let us check that � is weight-preserving. First, using the notation in the proof of Theorem

5.14, assume x 6= x0 and that m � `. Following the instructions in case 1, we see that

area(P 0) = area(P ) +m, since the new path P 0 has m additional area cells in its top

row. Note that the leftmost one in w is preceded by m zeroes, so deleting this one will

decrease the coinversion count by m. However, the two zeroes that replace this one will

increase the coinversion count by 2(i�k� 1), since there are i�k� 1 ones following the

position where these zeroes are inserted. Thus, coinv(w0) = coinv(w)�m+2(i�k� 1).

Finally, k0 = k + 1 in this case. Hence,

weight(�(x)) = [area(P ) +m] + [coinv(w) �m+ 2i� 2k � 2]

+[(k + 1)(k + 2)� 2(k + 1)i]

= area(P ) + coinv(w) + k(k + 1)� 2ki

= weight(x):

Next, assume that x 6= x0 and that m > `. Following the instructions in case 2,

we see that area(P 0) = area(P ) � (` � 1), since the new path P 0 does not include the

` � 1 area cells in the top row of P . Arguing as above, removing the two zeroes from

w at positions ` and ` + 1 (which occur before the leftmost one in w) will decrease

the coinversion count by 2(i � k). Putting a one in place of these zeroes increases the

coinversion count by ` � 1. Thus, coinv(w0) = coinv(w) � 2(i � k) + (` � 1). Finally,
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k0 = k � 1 in this case. Hence,

weight(�(x)) = [area(P )� (`� 1)] + [coinv(w) � 2i+ 2k + (`� 1)]

+[(k � 1)k � 2(k � 1)i]

= area(P ) + coinv(w) + k(k + 1)� 2ki

= weight(x):

So, � is weight-preserving.

Finally, let us compute each side of (5.10). Fix k � 1. To construct an object

(k; P;w) 2 S, we choose any path P 2 D0
k;j and any word w 2 R(02k�i1i�k). The

generating functions for these choices, relative to area and coinv respectively, are Ck;j(q)

and
�

k
2k�i;i�k

�
q
(see Chapter 1). Adding over all k, we see that

X
x2S

sign(x)qweight(x) =
X
k�1

(�1)k
�

k

i� k; 2k � i

�
q

Ck;j(q)q
k(k+1)�2ki: (5.11)

On the other hand, � has no �xed points if i 6= j. If i = j, one easily checks that

weight(x0) = i(i� 1)=2 + 0 + i(i+ 1)� 2i2 = �i(i� 1)=2;

where x0 is the unique �xed point of �. Therefore,

X
x2S:�(x)=x

sign(x)qweight(x) = �(i = j)(�1)iq�i(i�1)=2: (5.12)

Combining these calculations with (5.10), the theorem follows.

This last result can also be phrased in terms of matrices.

Corollary 5.17. Consider the lower triangular matrices Cq = jjCi;j(q)jj1�i;j�M and

Bq = jjbi;j(q)jj1�i;j�M , where

bi;j(q) = (�1)j�i
�

j

i� j; 2j � i

�
q

qj(j+1)�2ji+i(i�1)=2:

Then Bq and Cq are inverse matrices, i.e.,

CqBq = BqCq = I = jj�(i = j)jj1�i;j�M :
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Proof. Writing out what BqCq = I means, entry by entry, we get

iX
k=1

(�1)k�i
�

k

i� k; 2k � i

�
q

qk(k+1)�2ki+i(i�1)=2Ck;j(q) = �(i = j):

But this is just a rearrangement of (5.9).

We now obtain the promised determinantal formula for the Carlitz-Riordan

q-analogues of the Catalan numbers.

Theorem 5.18. For all n � 1, we have

Cn(q) = det

�����
�����(�1)m�kq(m�k)2+(m�k)

�
k

m+ 1� k

�
q

�����
�����
1�m;k�n

:

Proof. Let M = n+1 in the previous corollary, so that Bq and Cq are (n+ 1)� (n+ 1)

matrices. On the one hand, the n+ 1; 1-entry of the inverse of Bq is the n + 1; 1-entry

of Cq, which is Cn+1;1(q) = Cn(q). On the other hand, the adjoint formula for the

n+ 1; 1-entry of the inverse of Bq yields

Cn(q) =
(�1)ndetjjbm+1;k(q)jj1�m;k�n

detjjbm;k(q)jj1�m;k�n+1
;

where

bm+1;k(q) = (�1)m+1�kq(k+1)k+(m+1)m=2�2k(m+1)

�
k

m+ 1� k

�
q

:

The lower triangular matrix jjbm;k(q)jj1�m;k�n+1 has determinant

detjjbm;k(q)jj1�m;k�n+1 =

n+1Y
m=1

qm
2+m+(m2�m)=2�2m2

=

n+1Y
m=1

q�m(m�1)=2:

Using these relations and doing routine simpli�cations of the determinants, we arrive at

the stated formula for Cn(q).

Of course, there are similar formulas for Cn;k(q) with k > 1.

Next, we discuss lattice paths contained in more general shapes. Fix i and j

with i � j, and �x integers n1; : : : ; ni � 0. Set ni+1 = 0, and set Ns = n1 + � � � + ns for

0 � s � i+ 1. De�ne a shape � whose successive rows, counting from the bottom, have

Ns cells. See Figure 5.7 for an example.
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Figure 5.7: A lattice path inside a general shape.

Consider lattice paths starting at (0; 0) consisting of a series of north and east

steps that never go strictly outside the shape �. For j � k � i de�ne Ek;j to be the set

of all such paths ending at (Nk+1; k) that begin with exactly j north steps. Also de�ne

Ek;j(q) =
X

P2Ek;j

qarea(P );

where area(P ) is the number of cells right of the path P contained in the shape �.

Theorem 5.19.

�(i = j)(�1)iqj�j+
Pi

t=1(t�i)(nt+1+1) =

iX
k=j

(�1)k
�
Nk+1

i� k

�
q

q
Pk

t=1(t�i)(nt+1+1)Ek;j(q):

(5.13)

Proof. We de�ne a sign-reversing, weight-preserving involution on a suitable collection

S of objects. De�ne an object of S to be a triple (k; P;w), where j � k � i, P 2 Ek;j,

and w 2 R(0Nk+1+k�i1i�k). De�ne the sign of the object (k; P;w) to be (�1)k. De�ne

the weight of the object (k; P;w) by

weight((k; P;w)) = area(P ) + coinv(w) +
kX
t=1

(t� i)(nt+1 + 1):
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The generating function for all the objects in S, taking into account the signs and weights,

is precisely the right side of (5.13).

Next, we de�ne the involution �. Let us describe the �xed points �rst. If i 6= j,

then � has no �xed points. If i = j, then � will have one �xed point x0 = (i; p0; w0), where

p0 is the path that goes up i steps and then rightNi = Ni+1 steps, and w0 consists entirely

of zeroes. Note that sign(x0) = (�1)i and weight(x0) = j�j +
Pi

t=1(t � i)(nt+1 + 1).

Hence, the generating function for the �xed points of � is precisely the left side of (5.13).

Now, we describe the action of � on elements x 6= x0 in S. Suppose x =

(k; P;w) 6= x0. Let ` be the number of horizontal steps at the end of P , so that nk+1 �

` � Nk+1. See Figure 5.7. Let m be the number of zeroes at the beginning of w, so that

0 � m � Nk+1+ k� i. We construct �(x) = (k0; P 0; w0) according to the following rules.

Case 1: m � `. Let k0 = k+1. Form P 0 from P by adding a new top row with exactly

m (right-justi�ed) area cells. Form w0 from w by replacing the leftmost one in w with

nk+2 + 1 zeroes.

Case 2: m > `. Let k0 = k � 1. Form P 0 from P by erasing the top row, which has

`� nk+1 area cells. Form w0 from w by replacing the nk+1 + 1 zeroes at positions `+ 1,

` + 1 � 1, � � � , ` + 1 � nk+1 with a single one. Note that these deleted zeroes all occur

in the initial string of zeroes, since m > `. Also, there are enough zeroes to delete, since

` � nk+1.

It is easy to check that the rules given in the two cases above make sense and

always produce a well-de�ned element of S. For instance, we would encounter problems

in case 1 if the given object x = (k; P;w) had k = i or (equivalently) if w contained no

one. But, in this situation, the de�nitions of m and ` imply that m = Nk+1 � ` � Nk+1,

so that m = ` = Nk+1. This forces j = k = i and P = P0 and w = w0, so that x = x0,

contrary to our assumption. Another possible problem in case 1 occurs if the new path

P 0 does not start with exactly j vertical steps. This happens if and only ifm = ` = Nk+1,

from which we can deduce that k = j, k = i (lest w have fewer than m zeroes), P = P0,

w = w0, and �nally x = x0. Problems occur in case 2 if k = j or (equivalently) if the

new path P 0 does not start with exactly j vertical steps. But in this situation,

` = Nk+1 < m � Nk+1 + k � i � Nk+1 = `;

which is a contradiction.
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It is clear that � is sign-reversing. To check that � is an involution, consider

what happens in each case. Let `0 be the number of horizontal steps at the end of P 0,

and let m0 be the number of zeroes at the beginning of w0. If we were originally in case 1

(where m � `), note that

m0 � m+ nk+2 + 1 = `0 + 1 > `0;

so we use the rules in case 2 to compute �((k0; P 0; w0)). It is easy to see that the actions

here just reverse the actions performed in case 1. Similarly, suppose we were originally

in case 2 (where m > `). Then m0 = ` � nk+1, and inspection of Figure 5.7 shows that

`0 � `�nk+1 = m0, so we use the rules in case 1 to compute �((k0; P 0; w0)). Again, these

rules just reverse the actions performed in case 2.

Finally, we check that � is weight-preserving. In case 1, the weight of �(x) is

easily seen to be

area(P ) +m+ coinv(w) �m+ (nk+2 + 1)(i� (k + 1)) +
k+1X
t=1

(t� i)(nt+1 + 1)

by comparing coinv(w) to coinv(w0) as in the proof of Theorem 5.16. This expression

simpli�es to

area(P ) + coinv(w) +

kX
t=1

(t� i)(nt+1 + 1) = weight(x):

Similarly, in case 2, the weight of �(x) is

area(P )� (`� nk+1) + coinv(w) + (`� nk+1)� (nk+1+ 1)(i� k) +
k�1X
t=1

(t� i)(nt+1 + 1);

which again simpli�es to

area(P ) + coinv(w) +
kX
t=1

(t� i)(nt+1 + 1) = weight(x):

The theorem now follows from the existence of the sign-reversing, weight-preserving

involution �.

Of course, this result can also be rephrased in terms of matrices, and one can

solve for the quantities Ek;j(q) using Cramer's Rule. We leave these routine tasks to the

interested reader.
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mj+1
P l

i−j

Figure 5.8: Setup for Theorem 5.20.

We end this subsection with a variant of the preceding involution. Let a shape

� be constructed from given numbers n1; : : : ; ni+1 as in Figure 5.7. For convenience, set

ms = ni+1�s and Ms = m1 + � � � +ms for 0 � s � i. Let F�
n;k denote the set of lattice

paths contained in � that go from (0; 0) to (Nn+1; n) whose top row contains exactly k

area cells, for k � 0. Note that F�
n;k is empty if k > Nn. Let

Fn;k(q) =
X

P2Fn;k

qarea(P ):

Theorem 5.20. For 0 � k � Ni + i� 1, we have

F�
i;k(q)q

�k =
i�1X
j=0

(�1)jq
Pj

s=1(ms+1)(s�1)

�
k �Mj

j

�
q

F�
i�j;0(q):

Proof. Fix i, k, and �. De�ne a set S of objects consisting of all triples (j; P; w), where

0 � j � i � 1, P 2 F�
i�j;0, and w 2 R(1j0k�Mj�j). See Figure 5.8. De�ne the sign of

(j; P; w) to be (�1)j , and de�ne

weight((j; P; w)) = area(P ) + coinv(w) +

jX
s=1

(ms + 1)(s� 1):

The right side of the equation in the theorem is the generating function for S.

De�ne an involution � on S as follows. First, the �xed points of � consist of

all objects x = (0; P; 0k) such that P 2 F�
i;0 and the last vertical step of P is preceded

by exactly ` � k horizontal steps. By adding k area cells to the top row of P , we obtain

a bijection between the set of all such objects x and the set F�
i;k, such that the weight
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of x is k less than the area of the corresponding path in F�
i;k. Therefore, the left side of

the equation in the theorem is the generating function for the set of �xed points of �.

In the special case when k > Ni, note that � has no �xed points, and the left side of the

equation in the theorem is zero in this case.

Now, let us de�ne � for a non-�xed point x = (j; P; w). Let ` be the number of

east steps in P preceding the last vertical step of P , so that P has ` �mj+1 area cells

in the second row from the top. Let m be the number of initial zeroes in w.

Case 1: m > `. Let j0 = j + 1. Form P 0 from P by removing the empty top row of P

and erasing all `�mj+1 area cells in the second row of P . Form w0 from w by replacing

the mj+1 + 1 zeroes at positions `+ 1; : : : ; `+ 1�mj+1 in w by a single one.

Case 2: m � `. Let j0 = j � 1. Form P 0 from P by putting m new area cells in

the empty top row of P , and then adding a new empty top row above it. Replace the

leftmost one in w with mj + 1 zeroes.

The usual computations, which we leave to the reader, show that � is a well-

de�ned sign-reversing, weight-preserving involution. To see how the choice of k dictates

the �xed points of �, note that the rules in case 2 make no sense if w does not contain

a 1. This happens when j = 0 and w = 0k. So, x = (0; P; 0k) for some path P 2 F�
i;0.

Since we are in case 2, k = m � `, which shows that the number of horizontal steps in P

preceding the last vertical step must be at least k. We have arrived at the description of

the �xed points of � given above. Next, let us see why we require k � Ni+i�1. Consider

an object x = (j; P; w) with j = i � 1. For such an object, P must be a path of height

1 with no area cells, so that ` = mi. We need to rule out the possibility m > `, which

would cause us to set j0 = j + 1 = i, a forbidden value. Now, m � k �Mi�1 � (i � 1),

and equality can occur if all zeroes in w occur at the beginning. Thus, we require that

k �Mi�1 � (i� 1) � mi;

which is equivalent to k �Mi + i� 1 = Ni + i� 1.

Corollary 5.21. (1) Let m0 = mi = 0 and mj = m for 0 < j < i, so that � is an

m-staircase. Then

F�
i;k(q)q

�k =

i�1X
j=0

(�1)jq(m+1)
�
j
2

��
k �mj

j

�
q

F�
i�j;0(q) for 0 � k � (m+ 1)(i � 1):
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(2) For i � 1 and ` � 1,

qi`�` =
i�1X
j=0

(�1)jq
�j
2

��
`

j

�
q

�
i� j � 1 + `

i� j � 1; `

�
q

:

Proof. Equation (1) follows immediately by substituting mj = m into the previous

theorem.

To get equation (2), let mi = ` and let all other mj's be zero. Then � is a

rectangle of width ` and height i. Choosing k = `, we have F�
i;`(q) = qi`: Also, F�

i�j;0(q)

is the generating function for lattice paths in a rectangle of width ` and height i� j � 1

(since the top row must be empty), which is
�i�j�1+`
i�j�1;`

�
q
.

Remark 5.22. Suppose we let m = 1 in equation (1). Setting i = n, replacing k by

k � 1, and noting that Ca;b(q) = F�
a;b�1(q), we obtain

Cn;k(q)q
�(k�1) =

n�1X
j=0

(�1)jqj(j�1)
�
k � 1� j

j

�
q

Cn�j;1(q) for 0 � k � 1 � 2n� 2:

This is just a rearrangement of (5.6) from Proposition 5.11. Thus, we have now given a

combinatorial proof of that identity.

Example 5.23. Letting ` = 4 and i = 5 in (2), we get the identity�
4

0

�
q

�
8

4

�
q

�

�
4

1

�
q

�
7

4

�
q

+ q

�
4

2

�
q

�
6

4

�
q

� q3
�
4

3

�
q

�
5

4

�
q

+ q6
�
4

4

�
q

�
4

4

�
q

= q16:

5.2.4 Counting Dyck Paths by Major Index

We conclude this section by presenting a recursion similar to (5.2) that keeps

track of the major index of paths in Dn;k. Recall that any P 2 Dn can be encoded

as a string of n zeroes and n ones by replacing vertical steps by zeroes and horizontal

steps by ones. Let w(P ) denote the word encoding P . A path P 2 Dn belongs to the

subcollection P 2 Dn;k if and only if w(P ) ends in 01k. We de�ne the major index of P

by setting maj(P ) = maj(w(P )), which is the sum of the positions i in w(P ) where a 1

is followed by a 0. We de�ne

Mn;k(q) =
X

P2Dn;k

qmaj(P ):
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Theorem 5.24. For 1 � k < n, we have

Mn;k(q) =Mn�1;k�1(q) + qMn;k+1(q) +Mn�1;k(q) � (q
2n�k�1 � q): (5.14)

The initial condition is

Mn;n(q) = 1:

Proof. The initial condition is clear, since the only path in Dn;n corresponds to the word

0n1n, which has no descents. To derive the recursion, we introduce some temporary

notation. Let

An;k = fP 2 Dn;k : w(P ) = v001k for some vg;

Bn;k = fP 2 Dn;k : w(P ) = v1101k for some vg;

Hn;k = fP 2 Dn;k : w(P ) = v0101k for some vg;

An;k(q) =
X

P2An;k

qmaj(P );

Bn;k(q) =
X

P2Bn;k

qmaj(P );

Hn;k(q) =
X

P2Hn;k

qmaj(P ):

Evidently, each Dn;k can be written as a disjoint union

Dn;k = An;k [ Bn;k [Hn;k;

where some of these sets may be empty. We therefore have

Mn;k(q) = An;k(q) +Bn;k(q) +Hn;k(q): (5.15)

We claim that there is a weight-preserving bijection � : An;k ! Dn�1;k�1. If n � 1

or k � 1, both sets mentioned are empty and the result is trivial. Now assume n > 1

and k > 1. If P 2 An;k has word w(P ) = v001k, we de�ne �(P ) to be the path P 0

whose word is v01k�1. It is easy to see that this path does belong to Dn�1;k�1, and

maj(P ) = maj(�(P )). Furthermore, � is a bijection: the inverse map ��1 simply

replaces the word v01k�1 of a path P 0 2 Dn�1;k�1 by v001
k. It follows that

An;k(q) =Mn�1;k�1(q): (5.16)
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Next, we de�ne a bijection � : Bn;k ! Dn;k+1 �An;k+1 as follows. If P 2 Bn;k has word

w(P ) = v1101k , let �(P ) be the path whose word is v1011k = v101k+1. It is immediate

that �(P ) does lie in Dn;k+1 � An;k+1 and that � maps Bn;k one-to-one onto this set.

Furthermore,

maj(�(P )) = maj(P ) � 1;

since applying � causes the last descent to move one position to the left. Expressing this

fact in terms of generating functions and using (5.16), we see that

Bn;k(q) = q(Mn;k+1(q)�An;k+1(q)) = qMn;k+1(q)� qMn�1;k(q): (5.17)

Finally, we de�ne a bijection  : Hn;k ! Dn�1;k as follows. If P 2 Hn;k has word

w(P ) = v0101k , let (P ) be the path whose word is w0 = v01k. Again, it is easy to

check that  maps Hn;k one-to-one onto Dn�1;k. Note that the only di�erence between

the descent set of w(P ) and the descent set of w0 is that w(P ) has an extra descent just

before its last zero. The position of this descent is 2n� k � 1, and so

maj(P ) = maj((P )) + 2n� k � 1:

Since  is a bijection, we conclude that

Hn;k(q) = q2n�k�1Mn�1;k(q): (5.18)

Putting (5.16), (5.17), and (5.18) into (5.15) and rearranging, we obtain the desired

recursion.

Using this recursion, one can prove by induction that

Mn;k(q) = qn�k

 �
2n� k � 1

n� k; n� 1

�
q

�

�
2n� k � 1

n� k � 1; n

�
q

!
for k < n. (5.19)

The proof is a dreary manipulation of q-binomial coeÆcients making heavy use of The-

orem 1.51(3) and (4). We leave this manipulation to the interested reader. An elegant

combinatorial proof of formula (5.19) appears in [13].

Finally, we observe that Cmaj
n (q) =

P
D2Dn

qmaj(D) can be recovered from the

quantities Mn;k(q) using the identity

Mn+1;1(q) = q2nCmaj
n (q);
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which follows easily from the de�nitions. Using (5.19) in this equation and simplifying,

one can derive MacMahon's identity [25]

Cmaj
n (q) =

1

[n+ 1]q

�
2n

n; n

�
q

;

which was mentioned in Chapter 1.

5.3 Permutation Statistics and Catalan Numbers

The Catalan numbers occur ubiquitously in combinatorics. R. Stanley's book

Enumerative Combinatorics and its addendum [29, 30] list over 95 collections of objects

counted by the Catalan numbers. This section augments this list with two additional col-

lections of permutations that are enumerated by the Catalan numbers. Furthermore, we

show that the generating function for either collection, relative to the classical coinver-

sion and major index statistics, is precisely the q; t-Catalan sequence OCn(q; t) discussed

in Chapter 1. This is proved by exhibiting weight-preserving bijections between the given

collections and the set of Dyck paths.

Recall from x1.4.1 the following three statistics on the collection Dn of Dyck

paths of order n.

1. The area statistic, denoted a(D) in this section, is the number of lattice cells

between the path D and the line y = x.

2. The bounce statistic, denoted b(D) in this section, is the sum of the x-coordinates

(excluding n) where the bounce path of D hits the line y = x. As in Chapter 1,

the bounce paths in this section will go from (n; n) to (0; 0).

3. The number of bounces, denoted c(D) in this section, is the number of times the

bounce path of D touches the line y = x strictly between (n; n) and (0; 0).

Consider the trivariate generating function

Cn(q; t; z) =
X
P2Dn

qa(P )tb(P )zc(P ):

We will show that this generating function coincides with the generating function for the

triple of permutation statistics (coinv;maj; des) on two special subcollections of Sn.
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5.3.1 Special Permutations

This subsection discusses the two special collections of permutations that are

counted by the Catalan numbers. The de�nition of these collections involves the factor-

ization of a permutation into ascending runs.

De�nition 5.25. Let � = �1 � � � �n be a permutation of f1; 2; : : : ; ng. Let i1; i2; : : : ; is

be the set of all indices i < n such that �i > �i+1, where i1 < i2 < : : : < is.

(1) The s+ 1 lists of contiguous elements

Rs+1 = �1�2 � � � �i1 ; Rs = �i1+1 � � � �i2 ; � � � ; R1 = �is+1 � � � �n

are called the ascending runs of �. We have labelled these runs R1; : : : ; Rs+1

from right to left. Let ni be the number of symbols in Ri. Let N0 = 0 and

Ni = n1 + � � �+ ni for i > 0.

(2) Let mi be the smallest (leftmost) entry in ascending run Ri, and let Mi be the

largest (rightmost) entry in Ri. We call mi and Mi the minimum and maximum

of run Ri, respectively.

Example 5.26. Suppose � = 4; 7; 1; 5; 8; 3; 2; 6. Then

R1 = 2; 6; m1 = 2; M1 = 6; n1 = 2; N1 = 2:

R2 = 3; m2 = 3; M2 = 3; n2 = 1; N2 = 3:

R3 = 1; 5; 8; m3 = 1; M3 = 8; n3 = 3; N3 = 6:

R4 = 4; 7; m4 = 4; M4 = 7; n4 = 2; N4 = 8:

De�nition 5.27. Fix a permutation � of f1; 2; : : : ; ng. Assume � has s ascending runs.

For i > s, set ni = 0 and Ni = Ns = n.

(1) We say � has the decreasing-minimum property if and only if

ms > ms�1 > � � � > m2 > m1:

(In particular, m1, the smallest entry in the rightmost ascending run of �, must

equal 1 in this case.)
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(2) We say � has the bounded-maximum property if and only if

Mi � Ni+1 for 1 � i < s.

In words, the maximum element in the ith run from the right is no larger than the

total length of the rightmost i+ 1 runs.

(3) We say � has the bounded-minimum property if and only if

mi+1 > Ni�1 + 1 for 1 < i < s.

In words, the minimum element in the (i+1)th run from the right is strictly larger

than the total length of the rightmost i� 1 runs plus one.

(4) De�ne the �rst special collection of permutations to be the set Un of permuta-

tions of f1; 2; : : : ; ng that have the decreasing-minimum property and the bounded-

maximum property.

(5) De�ne the second special collection of permutations to be the set Vn of permuta-

tions of f1; 2; : : : ; ng that have the decreasing-minimum property and the bounded-

minimum property.

We will show that jUnj = Cn = jVnj for all n. The proof gives a bijection

between each collection and the collection of Dyck paths of order n.

Example 5.28. Consider the following permutations of f1; 2; : : : ; 9g.

(1) The permutation � = 4; 6; 9; 2; 8; 1; 3; 5; 7 has the decreasing-minimum property,

but not the bounded-maximum or bounded-minimum property.

(2) The permutation � = 7; 9; 5; 8; 1; 2; 3; 4; 6 has the decreasing-minimum property,

the bounded-maximum property, and the bounded-minimum property.

(3) The permutation  = 3; 4; 2; 8; 9; 1; 5; 6; 7 has the decreasing-minimum property

and the bounded-maximum property, but not the bounded-minimum property.

(4) The permutation Æ = 6; 7; 2; 3; 4; 1; 5; 8; 9 has the decreasing-minimum property

and the bounded-minimum property, but not the bounded-maximum property.
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5.3.2 Statistics on Permutations

This subsection reviews the de�nitions of some classical permutation statistics.

If A is any logical statement, we set �(A) = 1 if A is true, and �(A) = 0 if A is false. It

is convenient to de�ne these statistics for lists of distinct integers that are not necessarily

permutations of f1; 2; : : : ; ng.

De�nition 5.29. Let w = w1w2 : : : wn be a sequence of n distinct integers wi.

(1) The coinversion count of w is de�ned by

coinv(w) =
X

1�i<j�n

�(wi < wj):

(2) The descent set of w is de�ned by

Des(w) = fi : 1 � i < n and wi > wi+1g:

(3) The descent count of w is de�ned by

des(w) = jDes(w)j =
n�1X
i=1

�(wi > wi+1):

(4) The major index of w is de�ned by

maj(w) =
X

i2Des(w)

i =

n�1X
i=1

i�(wi > wi+1):

Example 5.30. Let w = 4; 7; 1; 2; 9; 8; 11. Then

coinv(w) = 4 + 3 + 4 + 3 + 1 + 1 + 0 = 16

Des(w) = f2; 5g

des(w) = 2

maj(w) = 7:

De�nition 5.31. De�ne two trivariate generating functions

Un(q; t; z) =
X
�2Un

qcoinv(�)tmaj(�)zdes(�);

Vn(q; t; z) =
X
�2Vn

qcoinv(�)tmaj(�)zdes(�):
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5.3.3 Pictures of Permutation Statistics

We will show that each of the special collections of permutations Un and Vn

has size Cn, the Catalan number. This follows from the trivariate identity

Un(q; t; z) = Cn(q; t; z) = Vn(q; t; z);

which we prove by exhibiting weight-preserving bijections between the collections Un,

Dn, and Vn. Setting z = 1, this result implies that the q; t-Catalan sequence of Garsia

and Haiman [15] can be de�ned in terms of classical permutation statistics.

The idea behind our weight-preserving bijections comes from the following ob-

servation. We can draw a picture that illustrates permutation statistics in a suggestive

way. For example, consider the permutation

w = 10; 5; 6; 12; 14; 2; 7; 9; 11; 13; 1; 3; 4; 8 2 U14:

In Figure 5.9, we have entered the entries of w in a diagonal line of lattice cells, going

northeast from (0; 0) to (14; 14). A capital D marks each descent of w. In this case, the

descents occur at coordinates (1; 1), (5; 5), and (10; 10). Note that maj(w) = 16, which

is the sum of the x-coordinates where the D's are located. Also, des(w) = 3, which is

the total number of D's.

Next, for all i < j, shade in the unique lattice cell located above wi and left

of wj if and only if wi < wj . Clearly, the number of cells shaded is exactly coinv(w).

Also note that each ascending run of w will cause a certain triangular group of cells to

be shaded. These cells are shaded darker in Figure 5.9. Now, compare this �gure to the

Dyck path and bounce path shown in Figure 1.4. The three statistics agree, and there is

an obvious correspondence between the bounce path for D and the darkly shaded cells in

the diagram for w. On the other hand, the cells above the bounce path and below D do

not appear in the same place as the lightly shaded cells in the diagram for w, although

the number of these cells is the same.

These remarks suggest the following strategy for de�ning a weight-preserving

bijection. First, we show how to convert a bounce path into a permutation in such a

way that the positions of the bounces on the main diagonal correspond to descents of

the permutation. Second, we describe how to modify two consecutive ascending runs
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Figure 5.9: Picturing permutation statistics.

in a permutation to account for area cells above a given horizontal move in the bounce

path. Third, we use this \local" modi�cation of the permutation repeatedly to account

for all the area cells above the entire bounce path. The �nal permutation we get depends

on the order in which these modi�cations are performed. The two most natural orders,

which roughly correspond to going forwards or backwards along the bounce path, lead

us to the special collections Un and Vn de�ned above.

The rest of this section �lls in the details of this strategy. In x5.3.4, we set up

notation to describe how the bounce path dissects the diagram of a Dyck path into smaller

components. In x5.3.5, we discuss bounce paths and their corresponding permutations.

In x5.3.6, we describe a local modi�cation to a word that increases its coinversions by the

area of a given partition. x5.3.7 uses the preceding ideas to de�ne the required weight-

preserving bijections. Finally, x5.3.8 contains some further remarks and open problems
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involving these bijections.

5.3.4 Dissecting Dyck Paths

We begin by rephrasing the bounce path construction in a more convenient

form. Recall that a composition of n is an ordered list (v1; v2; : : : ; vs) of positive integers

such that v1 + v2 + � � � + vs = n.

De�nition 5.32. Fix a positive integer n. A dissected Dyck path of order n consists of

a composition (v1; : : : ; vs) of n, together with a list of s�1 partitions (�1; : : : ; �s�1) such

that the Ferrers diagram of �i is contained in a rectangle of height vi�1 and width vi+1.

(The diagram consists of right-justi�ed rows of cells, with the lowest row corresponding

to the largest part of �i.) Let D0
n denote the set of all dissected Dyck paths of order n.

A typical element of D0
n looks like

P = ((v1; : : : ; vs); (�
1; : : : ; �s�1)):

Lemma 5.33. There is a bijection between Dn and D0
n. If the Dyck path D 2 Dn

corresponds to the dissected path P as in the de�nition above, then

a(D) =

sX
i=1

vi(vi � 1)=2 +

s�1X
i=1

j�ij

b(D) =
s�1X
i=1

sX
j=i+1

vj

c(D) = s� 1:

Proof. Given a Dyck path D, draw its derived bounce path starting from (n; n). De�ne

P by letting s be the number of horizontal moves in the bounce path, letting vi be

the length of the ith horizontal move, and letting �i be the partition whose diagram

consists of the cells below the path D that are above the (i + 1)th horizontal move of

the bounce path and left of the ith vertical move of the bounce path. It is immediate

from the de�nitions that P does belong to D0
n. Note that vi(vi � 1)=2 is the number of

area cells of D in the triangle bounded by the ith horizontal move of the bounce path,

the ith vertical move of the bounce path, and the diagonal y = x; whereas j�ij is the
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number of area cells of D above the i+1th horizontal move of the bounce path. Adding

up all the area cells, we obtain the stated formula for a(D). When the bounce path

returns to the main diagonal for the ith time, its vertical coordinate is just the sum of

the remaining vertical moves in the bounce path vi+1; : : : ; vs. This observation yields

the stated formula for b(D). The formula for c(D) is clear, since c(D) was de�ned to be

one less than the number of horizontal moves in the bounce path.

Furthermore, the process of creating � from D is reversible. Given any P 2 D0
n,

use the numbers vi to draw a bounce path inside an empty triangle. Then stack the

diagrams of the partitions �i above the horizontal moves of the bounce path in the

obvious way to recover the Dyck path D.

Henceforth, we will identify a Dyck path D 2 Dn with its associated dissected

path P 2 D0
n, regarding D and P as the same object.

Example 5.34. The Dyck path D shown in Figure 1.4 in Chapter 1 corresponds to the

dissected path

P = ((4; 5; 4; 1); ((1; 1; 4); (2; 2; 3; 4); (0; 1; 1))):

The bounce path corresponding to this path is

B = ((4; 5; 4; 1); ((0; 0; 0); (0; 0; 0; 0); (0; 0; 0))):

More generally, to go from an arbitrary Dyck path P to its associated bounce

path B, we simply replace all partitions �i in the dissected path by partitions consisting

of all zero parts.

5.3.5 Bounce Paths and Skeletal Permutations

De�nition 5.35. Let � = (v1; : : : ; vs) be a composition of n. Set V0 = 0 and Vi =

v1 + v2 + � � �+ vi for i > 0.

(1) The bounce path determined by � is

P (�) = ((v1; : : : ; vs); (0; 0; : : : ; 0));

where each 0 denotes a partition with the appropriate number of zero parts.

Clearly, this is a bijection between the set of all compositions of n and the set

of all bounce paths of order n.
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(2) The skeletal permutation determined by � is the permutation �0(�) = Rs � � �R2R1,

where

Ri(�
0) = Vi�1 + 1; Vi�1 + 2; � � � ; Vi for 1 � i � s.

(Since Vi+1 > Vi�1 + 1, this notation is consistent with that used in De�nition

5.25.)

Example 5.36. If n = 14 and � = (4; 5; 4; 1), then

P (�) = ((4; 5; 4; 1); ((0; 0; 0); (0; 0; 0; 0); (0; 0; 0)));

�0(�) = 14; 10; 11; 12; 13; 5; 6; 7; 8; 9; 1; 2; 3; 4:

If n = 11 and � = (2; 6; 3), then

�0(�) = 9; 10; 11; 3; 4; 5; 6; 7; 8; 1; 2:

Lemma 5.37. Let w be a skeletal permutation. Then w has the decreasing-minimum

property, the bounded-maximum property, and the bounded-minimum property. If i < j

and x 2 Ri and y 2 Rj, then x < y.

Proof. Write w = Rs � � �R2R1, where Ri = Vi�1+1; Vi�1+2; � � � ; Vi, as in the de�nition

above. Using the notation of De�nition 5.25, we have ni = vi, Ni = Vi, mi = Vi�1 + 1,

and Mi = Vi = Ni for all i. In particular, ms > � � � > m2 > m1 by de�nition of the Vj 's,

so w has the decreasing-minimum property. Since Mi = Ni � Ni+1, w has the bounded-

maximum property. Since mi+1 = Vi + 1 = Ni + 1 > Ni�1 + 1 for 1 < i < s, w has the

bounded-minimum property. The last assertion of the lemma follows immediately from

the de�nition of Ri and Rj .

The next lemma shows that the path statistics for P (�) agree with the permu-

tation statistics for �0(�).

Lemma 5.38. Let � = (v1; : : : ; vs) be a composition of n. Let P = P (�) be the associated

bounce path, and let w = �0(�) be the associated permutation. Then

a(P ) = coinv(w); b(P ) = maj(w); c(P ) = des(w):
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Proof. Write w = Rs � � �R2R1, where Ri = Vi�1 + 1; Vi�1 + 2; � � � ; Vi, as usual. To

compute the coinversion count of w, consider two indices r < s. Let r belong to run Rj

and let s belong to run Ri, so that j � i. If j > i, then the previous lemma implies that

wr > ws, so that the pair (r; s) does not contribute to the coinversion count. On the

other hand, if j = i, then wr < ws since Rj = Ri is an ascending run. So the pair (r; s)

does contribute to the coinversion count. There are nj(nj � 1)=2 = vj(vj � 1)=2 such

pairs (r; s) coming from each run Rj . Therefore,

coinv(w) =

sX
j=1

vj(vj � 1)=2 = a(P );

where the last equality follows from Lemma 5.33. Next, the de�nition of w = �0(�)

shows that w has s� 1 descents, so

des(w) = s� 1 = c(P ):

Moreover, the ith descent of w (counting descents from right to left) occurs at positionPs
j=i+1 vj. Hence,

maj(w) =

s�1X
i=1

sX
j=i+1

vj = b(P );

where we have again used Lemma 5.33.

5.3.6 The Local Modi�cation Algorithm

De�nition 5.39. Let a and b be �xed positive integers.

(1) Let P (a; b) denote the set of partitions � such that

0 = �1 � �2 � � � � � �a = b:

In other words, � 2 P (a; b) if and only if � is a partition consisting of a parts of

size at most b, where the smallest part (and possibly others too) has size 0. These

are exactly the partitions � whose diagrams �t in a rectangle of width b and height

a� 1.
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(2) Let S be a set of a+ b distinct integers. Choose notation so that the elements of

S are

x1 < x2 < � � � < xa < xa+1 < � � � < xa+b:

The basic word associated to S, a, and b is de�ned to be

w0 = w0(S; a; b) = xa+1; xa+2; � � � ; xa+b; x1; x2; : : : ; xa:

Let G(S; a; b) denote the set of rearrangements w of the elements of S such that

Des(w) = fbg and wb+1 = x1. This means that

w = w1 < w2 < � � � < wb > wb+1 < wb+2 < � � � < wb+a and wb+1 = x1:

In particular, the basic word is an element of G(S; a; b).

Lemma 5.40. Fix a; b; S as in the de�nition above. There is a bijection h between P (a; b)

and G(S; a; b) such that, if h(�) = w, then coinv(w) = coinv(w0) + j�j. Furthermore,

w1 � w0
1 and wa+b � w0

a+b and wb+1 = w0
b+1 = x1, the minimum element of S.

Proof. The map h is de�ned as follows. Given � 2 P (a; b), set �i = �i + i for 1 � i � a.

Then �1 = 1 and �1; : : : ; �a are a distinct indices between 1 and a + b. We construct

w = h(�) as follows. Let the rightmost ascending run of w be

x�1 ; x�2 ; : : : ; x�a ; (5.20)

and let the leftmost ascending run of w consist of the remaining b elements of S in

ascending order. Since x�1 = x1 is the minimum element of S, it follows that Des(w) =

fbg and that w 2 G(S; a; b).

We claim that w1 � w0
1 = xa+1. For, if this were not true, then w1; : : : ; wb would

be a list of b distinct integers belonging to the set fxa+2; : : : ; xa+bg of b � 1 elements,

which is absurd. The inequality wa+b � w0
a+b = xa is proved in the same way.

Next, let us compare the coinversion counts of w0 and w. Direct calculation

shows that

coinv(w0) = b(b� 1)=2 + a(a� 1)=2;

since all elements in the left ascending run of w0 exceed all elements in the right ascending

run of w0. As for w, the two ascending runs of lengths b and a in w will also give us
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b(b�1)=2+a(a�1)=2 coinversions. However, we must also count coinversions caused by

elements in the left ascending run of w that are less than elements in the right ascending

run of w. Observe that there are �1 � 1 elements in the left run less than x�1 , namely

x1; : : : ; x�1�1. Next, there are �2�2 elements in the left run less than x�2 , namely, those

in the set

fx1; : : : ; x�2g � f�1; �2g:

In general, the ith element of the right run of w is x�i . The set of elements in the left

run of w less than this element is

fx1; : : : ; x�ig � f�1; �2; : : : ; �ig;

so there are �i � i = �i such elements. Adding up all these extra coinversions, we see

that

coinv(w) = b(b� 1)=2 + a(a� 1)=2 + �1 + � � �+ �a = coinv(w0) + j�j;

as desired.

Finally, h is a bijection, because we can recover � from w as follows. Given

any w 2 G(S; a; b), look at which elements xi appear in the rightmost ascending run of

w to determine the numbers �1; : : : ; �a, as in (5.20). Then set �i = �i � i to recover �.

It is easy to check that w 2 G(S; a; b) implies that � 2 P (a; b); in particular, wb+1 = x1

ensures that �1 = 0.

Example 5.41. (1) Let a = 4, b = 5, S = f1; 2; 3; 4; 5; 8; 9; 11; 14g, and � = (0; 1; 1; 4).

We have

w0(a; b; S) = 5; 8; 9; 11; 14; 1; 2; 3; 4; coinv(w0) = 16:

We compute � = (1; 3; 4; 8), and hence

h(�) = x2; x5; x6; x7; x9 > x1; x3; x4; x8 = 2; 5; 8; 9; 14; 1; 3; 4; 11:

Note that coinv(h(�)) = 22 = coinv(w0) + j�j. Also, as promised in the lemma,

2 � 5, 11 � 4, and the minimum element 1 of S is the �rst element of the rightmost

run of h(�).

(2) Let a = 3, b = 4, S = f1; 2; 3; 4; 5; 6; 7g, and w = 2; 4; 5; 7; 1; 3; 6 2 G(S; a; b). We

have � = (1; 3; 6) and so � = (0; 1; 3) 2 P (a; b). Note that w = h(�).
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Let � = Rs � � �R2R1 be a permutation with ascending runs Rj . Assume there

is some i such that ni+1 = a, ni = b, and mi+1 > Mi. The last inequality implies that

every element of Ri+1 is larger than every element of Ri. So, letting S be the set of

elements in Ri or Ri+1, w
0 = Ri+1Ri is the basic word w

0(S; a; b).

Now, let � 2 P (a; b), and let w = h(�). Let �0 be the permutation obtained

from � by replacing the subord w0 = Ri+1Ri in � by its rearrangement w. The following

lemma shows how this local modi�cation a�ects the permutation statistics.

Lemma 5.42. Let �0 be obtained from � and � as described above. Then

coinv(�0) = coinv(�) + j�j;

Des(�0) = Des(�);

des(�0) = des(�);

maj(�0) = maj(�):

Moreover, if � has the decreasing-minimum property, then �0 also has the decreasing-

minimum property.

Proof. In general, given any word abc consisting of subwords a, b, and c, and given a

rearrangement b0 of the letters of b, the de�nition of coinversion shows that

coinv(ab0c)� coinv(abc) = coinv(b0)� coinv(b):

In particular, letting abc = �, b = w0, b0 = w, so that ab0c = �0, we obtain

coinv(�0)� coinv(�) = coinv(w) � coinv(w0) = j�j;

which is the �rst assertion of the lemma.

Assume temporarily that i > 1 and i+ 1 < s, so that w0 occurs somewhere in

the middle of �:

� = � � �Mi+2 > mi+1 < � � � < Mi+1 > mi < � � � < Mi| {z }
w0

> mi�1 � � � :

To check that Des(�0) = Des(�), it clearly suÆces to show that the three descents

displayed here are preserved. Now,

�0 = � � �Mi+2 ; w1 < � � � < wb > wb+1 < � � � < wb+a| {z }
w

; mi�1 � � � ;
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where the ascents and descents shown within w are correct by de�nition of w. The

previous lemma shows that w1 � w0
1 = mi+1 < Mi+2 and wa+b � w0

a+b = Mi > mi�1,

so that there are descents at the required positions in �0. The same argument obviously

works in the special cases i = 1 and i + 1 = s. Therefore, Des(�0) = Des(�), which

implies that des(�0) = des(�) and maj(�0) = maj(�).

Finally, assume that � has the decreasing-minimum property. Then ms >

ms�1 > � � � > m1. Now, the minima of the new permutation �0 are

ms; : : : ;mi+2; w1; wb+1;mi�1; : : : ;m1:

It suÆces to check that mi+2 > w1 > wb+1 > mi�1. First, mi+2 > mi+1 = w0
1 � w1.

Second, w1 > wb+1 since the latter is the minimum element of S. Third, wb+1 = w0
b+1 =

mi > mi�1.

5.3.7 Bijections from Paths to Permutations

We now have all the tools needed to produce the weight-preserving bijections

from Dyck paths to special permutations.

Theorem 5.43. Fix n � 1.

(1) There exists a bijection f : Dn ! Un such that, for all P 2 Dn,

coinv(f(P )) = a(P ); maj(f(P )) = b(P ); des(f(P )) = c(P ):

(2) There exists a bijection g : Dn ! Vn such that, for all P 2 Dn,

coinv(g(P )) = a(P ); maj(g(P )) = b(P ); des(g(P )) = c(P ):

(3) We have

Un(q; t; z) = Cn(q; t; z) = Vn(q; t; z):

Therefore, each of the collections Un and Vn has cardinality equal to the Catalan

number Cn.



256

Proof. Step 1. We de�ne a function f : Dn ! Un that preserves the three statistics. Let

D be a path in Dn, which we write in dissected form as

D = ((v1; : : : ; vs); (�
1; : : : ; �s�1)):

Let �0 = R0
s � � �R

0
2R

0
1 be the skeletal permutation determined by � = (v1; : : : ; vs), as

discussed in x5.3.5. Let P be the bounce path for D. By Lemma 5.38, �0 2 Un and

coinv(�0) = a(P ); maj(�0) = b(P ) = b(D); des(�0) = c(P ) = c(D):

We now perform a sequence of modi�cations on consecutive ascending runs of �0, as

described in the last section. For i = 1; 2; : : : ; s�1 (in that order), consider the ascending

runs w = Ri+1Ri in the current permutation �. We replace w by its rearrangement

h(�i) to obtain the new value of � (more details below). The � obtained after doing

modi�cation i = s� 1 is de�ned to be f(D).

To see that this procedure works, we make the following induction hypothe-

sis. Let � denote the value of the permutation just before modi�cation i is performed.

Assume that:

(a) � = Rs � � �R2R1 factors into s ascending runs.

(b) The entries of Ri belong to the set R0
1 [ � � � [R

0
i .

(c) For all j > i, Rj = R0
j ;

(d) � has the same values of Des, des, and maj as �0.

(e) coinv(�) = coinv(�0) + j�1j+ � � �+ j�i�1j.

(f) � 2 Un.

Lemma 5.37 shows that these conditions hold when i = 1, for � = �0 in this case. Next,

assume that i � 1 and that these conditions hold. Modi�cation i will replace the subword

w = Ri+1Ri = mi+1 < � � � < Mi+1 > mi < � � � < Mi by a rearrangement depending on

�i, as in Lemma 5.42. To use that lemma, we need to know that mi+1 > Mi. Since the

induction hypothesis guarantees that mi+1 2 R
0
i+1 andMi 2 R

0
1[� � �[R

0
i , this inequality

follows from Lemma 5.37. So, we may replace w by its rearrangement h(�i) = R0i+1R
0
i.
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Properties (d), (e), and (a) still hold for i+ 1, by Lemma 5.42. Note that all entries in

R0i+1 come from R0
1[� � �[R

0
i [R

0
i+1, so (b) holds for i+1. Also, for j > i+1, the entries

of Rj were not changed, so (c) holds for i + 1. Finally, consider (f). The new � still

has the decreasing-minimum property, by Lemma 5.42. To check the bounded-maximum

property, it suÆces to check that the two new maxima M 0
i and M

0
i+1 satisfy M

0
i � N 0

i+1

and M 0
i+1 � N 0

i+2. Note that Mi+1 is the largest value occurring in w, so that M 0
i and

M 0
i+1 are at most Mi+1. Also, Mi+1 = M0

i+1 = Ni+1 by (c) and the de�nition of R0
i+1.

Note that N 0
j = Nj = N0

j for all j, by (a) and (d). Since (f) holds for i, we have

M 0
i �Mi+1 = Ni+1 = N 0

i+1 and M
0
i+1 �Mi+1 = Ni+1 � Ni+2 = N 0

i+2;

and so (f) holds for i+ 1. This completes the induction.

After doing all s � 1 local modi�cations, (d) and (e) show that the �nal per-

mutation � = f(D) has

coinv(�) = a(D); maj(�) = b(D); des(�) = c(D);

since a(D) = a(P ) +
Ps�1

i=1 j�
ij. By (f), the function f does map into the set Un.

Step 2. We exhibit f�1 : Un ! Dn, which shows that f is a bijection. Start

with � = Rs � � �R2R1 2 Un. The run lengths ni = jRij of � allow us to recover the bounce

path (n1; : : : ; ns) of f
�1(�). For s > 1, we then recover the partitions �s�1; �s�2; : : : ; �1

in this order. First, look at the subword w = RsRs�1 of �. This is an element of

G(S; a; b) for S = Rs[Rs�1, a = ns�1, b = ns, because ms > ms�1. So, we can compute

�s�1 = h�1(w) 2 P (a; b). Next, replace the subword w in � by the corresponding basic

word w0(S; a; b) = R0sR
0
s�1. Iterate this process, considering the subword w = Rs�1Rs�2

of the current � to obtain �s�2, etc. The last step uses w = R2R1 to recover �1. If the

process succeeds, it clearly reverses the action of f , hence gives an inverse map for f .

We show that this process succeeds for � 2 Un by induction on s. If s = 1, so

that � = 1; 2; : : : ; n 2 Un, then f
�1(�) = ((n); ;) 2 Dn. Now assume s > 1. As noted

above, the decreasing-minimum property of � shows that ms > ms�1, so that the �rst

subword w = RsRs�1 does belong to G(S; a; b). We claim that the largest b elements

n; n� 1; : : : ; n� (b � 1) all appear in S = Rs�1 [ Rs. For, suppose x > n� b belonged

to Rj where j < s� 1. Then

Mj � x > n� b = Ns�1 � Nj+1;
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and this contradicts the bounded-maximum property of �. Now, in the basic word

w0(S; a; b) = R0sR
0
s�1, the largest b elements of S all occur in R0s. Hence, the new � after

this step looks like

� = n� (b� 1); � � � ; n� 1; n > R0s�1; Rs�2; : : : ; R1:

Consider �� = R0s�1; Rs�2; : : : ; R1 2 Sn�b. Since m0
s�1 = ms�1 and � 2 Un, �

� still

has the decreasing-minimum property. Furthermore, �� still has the bounded-maximum

property since that property does not constrain the value of M 0
s�1. To summarize, ��

belongs to Un�b.

Note that the rest of the algorithm for computing f�1 depends only on ��,

which has s�1 runs. By induction, the rest of the algorithm proceeds successfully. This

completes the proof that f�1 : Un ! Dn exists.

Step 3. We de�ne a function g : Dn ! Vn that preserves the three statistics.

Let D be a path in Dn, which we write in dissected form as

D = ((v1; : : : ; vs); (�
1; : : : ; �s�1)):

Let �0 = R0
s � � �R

0
2R

0
1 be the skeletal permutation determined by � = (v1; : : : ; vs), as

discussed in x5.3.5. Let P be the bounce path for D. By Lemma 5.38, �0 2 Vn and

coinv(�0) = a(P ); maj(�0) = b(P ) = b(D); des(�0) = c(P ) = c(D):

We now perform a sequence of modi�cations on consecutive ascending runs of �0, as

described in the last section. For i = s � 1; s � 2; : : : ; 1 (in that order), consider the

ascending runs w = Ri+1Ri in the current permutation �. We replace w by its rear-

rangement h(�i) to obtain the new value of � (more details below). The � obtained after

doing modi�cation i = 1 is de�ned to be g(D).

To see that this procedure works, we make the following induction hypothe-

sis. Let � denote the value of the permutation just before modi�cation i is performed.

Assume that:

(a) � = Rs � � �R2R1 factors into s ascending runs.

(b) The entries of Ri+1 belong to the set R0
i+1 [ � � � [R

0
s.
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(c) For all j � i, Rj = R0
j ;

(d) � has the same values of Des, des, and maj as �0.

(e) coinv(�) = coinv(�0) + j�s�1j+ � � �+ j�i+1j.

(f) � 2 Vn.

Lemma 5.37 shows that these conditions hold when i = s � 1, for � = �0 in this case.

Next, assume that i � s� 1 and that these conditions hold. Modi�cation i will replace

the subword w = Ri+1Ri = mi+1 < � � � < Mi+1 > mi < � � � < Mi by a rearrangement

depending on �i, as in Lemma 5.42. To use that lemma, we need to know thatmi+1 > Mi.

Since the induction hypothesis guarantees that mi+1 2 R0
i+1 [ � � � [ R

0
s and Mi 2 R0

i ,

this inequality follows from Lemma 5.37. So, we may replace w by its rearrangement

h(�i) = R0i+1R
0
i. Properties (d), (e), and (a) still hold for i � 1, by Lemma 5.42. Note

that all entries in R0i come from R0
i [ � � � [R

0
s, so (b) holds for i� 1. Also, for j � i� 1,

the entries of Rj were not changed, so (c) holds for i� 1. Finally, consider (f). The new

� still has the decreasing-minimum property, by Lemma 5.42. To check the bounded-

minimum property, it suÆces to check that the two new minima m0
i and m0

i+1 satisfy

m0
i > N 0

i�2+1 (when i > 2) andm0
i+1 > N 0

i�1+1 (when i < s). Note that N 0
j = Nj = N0

j

for all j, by (a) and (d). Also, mi is the smallest value occurring in w. By Lemma 5.42,

m0
i = mi, and mi = m0

i = Ni�1+1 by (c) and the de�nition of R0
i . Since m

0
i = mi is the

smallest value in w, we have

m0
i+1 � mi + 1 = Ni�1 + 2 > Ni�1 + 1:

Since (f) holds for i, we have (when i > 2)

m0
i = mi = Ni�1 + 1 > N 0

i�2 + 1

and so (f) holds for i� 1. This completes the induction.

After doing all s � 1 local modi�cations, (d) and (e) show that the �nal per-

mutation � = g(D) has

coinv(�) = a(D); maj(�) = b(D); des(�) = c(D);

since a(D) = a(P ) +
Ps�1

i=1 j�
ij. By (f), the function g does map into the set Vn.
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Step 4. We exhibit g�1 : Vn ! Dn, which shows that g is a bijection. Start with

� = Rs � � �R2R1 2 Vn. The run lengths ni = jRij of � allow us to recover the bounce path

(n1; : : : ; ns) of f
�1(�). For s > 1, we then recover the partitions �1; �2; : : : ; �s�1 in this

order. First, look at the subword w = R2R1 of �. This is an element of G(S; a; b) for S =

R2 [R1, a = n1, b = n2, because m2 > m1. So, we can compute �1 = h�1(w) 2 P (a; b).

Next, replace the subword w in � by the corresponding basic word w0(S; a; b) = R02R
0
1.

Iterate this process, considering the subword w = R3R2 of the current � to obtain �2,

etc. The last step uses w = RsRs�1 to recover �s�1. If the process succeeds, it clearly

reverses the action of g, hence gives an inverse map for g.

We show that this process succeeds for � 2 Vn by induction on s. If s = 1, so

that � = 1; 2; : : : ; n 2 Vn, then g
�1(�) = ((n); ;) 2 Dn. Now assume s > 1. As noted

above, the decreasing-minimum property of � shows that m2 > m1, so that the �rst

subword w = R2R1 does belong to G(S; a; b). We claim that the smallest a+1 elements

1; 2; : : : ; a+ 1 all appear in S = R2 [R1. For, suppose x � a+ 1 belonged to Rj where

j > 2. Then

mj � x � a+ 1 = N1 + 1 � Nj�2 + 1;

and this contradicts the bounded-minimum property of �.

Now, in the basic word w0(S; a; b) = R02R
0
1, the smallest a elements of S all

occur in R01. Hence, the new � after this step looks like

� = Rs; Rs�1; : : : ; R3; R
0
2; 1; 2; : : : ; a:

Since a + 1 2 R1 [ R2 = R01 [ R
0
2 and R01 = 1; 2; : : : ; a, we must have m0

2 = a + 1.

Since all elements smaller than m0
2 occur in R

0
1, we must have m3 > m0

2. Now, consider

�� = Rs; : : : ; R3; R
0
2. Subtract a from every element of ��. This is a harmless notation

change, since the decisions made later in the algorithm depend only on the relative

ordering of the symbols in the permutation. It is easy to see that �� still has the

decreasing-minimum property. Furthermore, subtracting a from each element of � and

deleting the last run of size a does not destroy the bounded-minimum property, since

mj and Nj�2 will both decrease by a. To summarize, �� belongs to Vn�a.

Note that the rest of the algorithm for computing g�1 depends only on ��,

which has s�1 runs. By induction, the rest of the algorithm proceeds successfully. This
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completes the proof that g�1 : Vn ! Dn exists.

Step 5. We prove (3). The existence of the weight-preserving bijection f shows

that Un(q; t; z) = Cn(q; t; z). Similarly, the existence of g shows that Cn(q; t; z) =

Vn(q; t; z). The �nal assertion follows by setting q = t = z = 1 in these generating

functions, and noting that jDnj = Cn.

Corollary 5.44. Let OCn(q; t) denote the q; t-Catalan number of Garsia and Haiman.

Then

OCn(q; t) =
X
�2Un

qcoinv(�)tmaj(�) =
X
�2Vn

qcoinv(�)tmaj(�):

Proof. As noted in Chapter 1, the identity Cn(q; t; 1) = OCn(q; t) follows from a theorem

of Garsia and Haglund [14]. Thus, the corollary follows by setting z = 1 in part (3) of

the last theorem.

Example 5.45. (1) Consider the path

D = ((4; 5; 4; 1); ((1; 1; 4); (2; 2; 3; 4); (0; 1; 1)))

shown in Figure 1.4. We compute f(D) in steps, as follows:

�0 = 14 > 10; 11; 12; 13 > 5; 6; 7; 8; 9 > 1; 2; 3; 4

i = 1 : w = 5; 6; 7; 8; 9 > 1; 2; 3; 4; �1 = (0; 1; 1; 4); �1 = (1; 3; 4; 8)

� = 14 > 10; 11; 12; 13 > 2; 5; 6; 7; 9 > 1; 3; 4; 8

i = 2 : w = 10; 11; 12; 13 > 2; 5; 6; 7; 9; �2 = (0; 2; 2; 3; 4); �2 = (1; 4; 5; 7; 9)

� = 14 > 5; 6; 10; 12 > 2; 7; 9; 11; 13 > 1; 3; 4; 8

i = 3 : w = 14 > 5; 6; 10; 12; �3 = (0; 0; 1; 1); �2 = (1; 2; 4; 5)

� = 10 > 5; 6; 12; 14 > 2; 7; 9; 11; 13 > 1; 3; 4; 8 = f(D):

This is the permutation shown in Figure 5.9.
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(2) Let us compute g(D), for D as in (1).

�0 = 14 > 10; 11; 12; 13 > 5; 6; 7; 8; 9 > 1; 2; 3; 4

i = 3 : w = 14 > 10; 11; 12; 13; �3 = (0; 0; 1; 1); �2 = (1; 2; 4; 5)

� = 12 > 10; 11; 13; 14 > 5; 6; 7; 8; 9 > 1; 2; 3; 4

i = 2 : w = 10; 11; 13; 14 > 5; 6; 7; 8; 9; �2 = (0; 2; 2; 3; 4); �2 = (1; 4; 5; 7; 9)

� = 12 > 6; 7; 10; 13 > 5; 8; 9; 11; 14 > 1; 2; 3; 4

i = 1 : w = 5; 8; 9; 11; 14 > 1; 2; 3; 4; �1 = (0; 1; 1; 4); �1 = (1; 3; 4; 8)

� = 12 > 6; 7; 10; 13 > 2; 5; 8; 9; 14 > 1; 3; 4; 11 = g(D):

(3) Consider � = 7; 9 > 5; 8 > 1; 2; 3; 4; 6 2 U9 \ V9. We can compute f�1(�) as follows:

� = 7; 9 > 5; 8 > 1; 2; 3; 4; 6

i = 2 : �2 = (1; 3); �2 = (0; 1); w0 = 8; 9 > 5; 7

� = 8; 9 > 5; 7 > 1; 2; 3; 4; 6

i = 1 : �1 = (1; 2; 3; 4; 6); �1 = (0; 0; 0; 0; 1); w0 = 6; 7 > 1; 2; 3; 4; 5

�0 = 8; 9 > 6; 7 > 1; 2; 3; 4; 5

f�1(�) = ((5; 2; 2); ((0; 0; 0; 1); (1))):

Similarly, we can compute g�1(�):

� = 7; 9 > 5; 8 > 1; 2; 3; 4; 6

i = 1 : �1 = (1; 2; 3; 4; 6); �1 = (0; 0; 0; 0; 1); w0 = 6; 8 > 1; 2; 3; 4; 5

� = 7; 9 > 6; 8 > 1; 2; 3; 4; 5

i = 2 : �2 = (1; 3); �2 = (0; 1); w0 = 8; 9 > 6; 7

� = 8; 9 > 6; 7 > 1; 2; 3; 4; 5

g�1(�) = ((5; 2; 2); ((0; 0; 0; 1); (1))):
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By chance, we have f�1(�) = g�1(�) in this example.

5.3.8 Further Remarks on Paths and Permutations

We can obtain an in�nite family of weight-preserving bijections from Dyck

paths to certain collections of permutations, as follows. For each s � 1, let �s be

a �xed permutation of f1; 2; : : : ; sg. De�ne a bijection based on the collection �s as

follows. Beginning with a Dyck path D, �nd its derived bounce path and construct the

associated skeletal permutation �0, as usual. Next, visit each descent of �0 in turn, and

modify the two ascending runs before and after this descent using the local modi�cation

algorithm. If �0 has s descents, use �s to determine the order in which the descents of

�0 are visited. It is easy to see that this process does yield a weight-preserving bijection

from Dn to some subcollection of the permutations of n letters. The two bijections

above correspond to the cases where �s = 1; 2; : : : ; s for all s or where �s = s; : : : ; 2; 1 for

all s. These bijections are particularly nice because their images have relatively simple

descriptions. It is unclear how to describe the image of the bijection constructed from

an arbitrary collection �s, although it is easy to see that every permutation in this image

must have the decreasing-minimum property.

One of the motivations for considering these bijections is the problem of proving

combinatorially that OCn(q; t) = OCn(t; q). By Theorem 5.43, this is equivalent to

showing that X
�2Un

qcoinv(�)tmaj(�) =
X
�2Un

qmaj(�)tcoinv(�) or

X
�2Vn

qcoinv(�)tmaj(�) =
X
�2Vn

qmaj(�)tcoinv(�):

Now, Foata and Sch�utzenberger [8, 11] give a bijective proof that the inv and maj

statistics are jointly symmetric on all of Sn. Foata [9] has given a simple modi�cation of

this bijection showing thatX
�2Sn

qcoinv(�)tmaj(�) =
X
�2Sn

qmaj(�)tcoinv(�):

Unfortunately, this bijection and many variants tried by the present author do not map

Un onto itself, nor do they map Vn onto itself. Thus, proving joint symmetry of OCn(q; t)

by this method is still an open question.
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