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ABSTRACT OF THE DISSERTATION

Hyperbolic polyhedra: volume and scissors congruence

by

Yana Zilberberg Mohanty

Doctor of Philosophy in Mathematics

University of California San Diego, 2002

Professor Justin Roberts, Chair

In this dissertation we solve several problems relating to volumes of hyperbolic

polyhedra and scissors congruence. Regarding volumes, we derive a new formula

for the volume of a general hyperbolic tetrahedron in three dimensions. This

formula is a sum of the Lobachevsky function applied to functions of the dihedral

angles of the tetrahedron, and it was developed by using the hyperboloid model of

hyperbolic space and an exterior algebra on vectors in Minkowski space.

We then make use of Gregory Leibon's formula for the volume of a hyperbolic

tetrahedron to solve a problem posed by Justin Roberts of whether the Regge

symmetry is a scissors congruence in hyperbolic space by producing a constructive

proof. This proof involves permuting certain components of Leibon's construction.

Finally, we show several geometric proofs of the Kubert identities in the cases

n = 2; 3; 4. Some of these are extensions of the geometric proof of the cyclotomic

identities. Others involve exposing the geometry underlying Dupont and Sah's

proof of the generalized Kubert identities in [5].
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Chapter 1

Introduction

1.1 Scissors congruence

Given two polyhedra of equal volume, when can we decompose one of them

into a �nite number of pieces by planar cuts so that these pieces can be rearranged

into the other one? The present dissertation addresses this question in several

examples in hyperbolic space.

The problem is known as scissors congruence, and its solution in 2-dimensional

geometry of constant curvature was found centuries ago: if two polygons have

the same area, they are scissors congruent to one another. Guaranteeing scissors

congruence gets much more diÆcult once the dimension increases to three. It was

only in 1901 that Max Dehn provided a counterexample as an answer to Hilbert's

third problem, which asked whether two Euclidean polyhedra of equal volume are

scissors congruent. The counterexample was the cube and regular tetrahedron of

equal volume. Dehn showed that these two polyhedra are not equidecomposable

by introducing a new quantity pertaining to a polyhedron now known as the Dehn

invariant.

De�nition 1 The Dehn invariant of a polyhedron P is de�ned as

D(P ) =
X
A

l(A)
 (�(A)=�); (1.1)

1



2

where A runs through the collection of the edges of P , l(A) and �(A) are the

respective lengths and dihedral angles, and D takes values in the tensor product

R 
Z (R=(�Z)).

Dehn proved that in order for two polyhedra to be scissors congruent their Dehn

invariants, as well as their volumes, must agree. An easy computation shows that

the Dehn invariant of a cube is 0, while that of a regular tetrahedron is not.

That the volume and Dehn invariant were indeed suÆcient for proving scissors

congruence in Euclidean space was �rst proved by Sydler as recently as 1965. The

completeness of the Dehn invariant and volume in hyperbolic 3-space as well as

Euclidean n-spaces with n > 4 is still unknown.

1.2 Volume of ideal hyperbolic tetrahedra

In hyperbolic three-space there is an intimate connection between �nding the

volumes of polyhedra and showing that they are scissors congruent. This connec-

tion is due to the method of determining volumes of hyperbolic tetrahedra that

was �rst devised by Lobachevsky and later reworked by Milnor in [10].

De�nition 2 The Poincar�e ball model of hyperbolic space, H 3 , is given by the set

B 3 = f(x; y; z)jx2 + y2 + z2 � 1g together with the metric ds2 = 4(dx2 + dy2 +

dz2)=(1� (x2 + y2 + z2))2.

The Poincar�e model is conformal, meaning that it preserves circles and angles.

Geodesics are subsets of circles orthogonal to the sphere S2 = f(x; y; z)jx2 + y2 +

z2 = 1g, while planes are subsets of spheres orthogonal to S2.

Stereographically projecting the Poincar�e model onto S3 = fx; y; z; wjx2+ y2+

z2 + w2 = 1g and then projecting orthogonally down to B 3 gives the Klein model

of projective space. The Klein model is not conformal, but is convenient to use for

representing polyhedra since geodesics in the Klein model are straight lines.

Inverting the Poincar�e model in the sphere of radius 2 centered at a boundary

point of B 3 results in the half-space model of H 3 , which is also conformal.
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De�nition 3 The half-space model of H 3 is given by the set R3+ = f(x; y; z)jz �
0g together with the metric ds =

p
dx2 + dy2 + dz2=z. The plane at in�nity in the

half-space model is the plane z = 0, while the point at in�nity is the image of the

center of the sphere in which the Poincar�e model was inverted.

Geodesics in the half-space models are semicircles and lines orthogonal to the

plane at in�nity, and planes are hemispheres and planes orthogonal to the plane

at in�nity.

De�nition 4 An ideal hyperbolic tetrahedron is the convex hull in H 3 of 4 points

on the boundary of B 3 (in the Poincar�e ball model).

Given any ideal hyperbolic tetrahedron, if we place one of its vertices the point

at in�nity in the half-space model then the three faces meeting at that vertex

will form the walls of a triangular prism, as shown in Figure 1.1. The vertices at

in�nity in that drawing have been denoted by hollow dots. This convention will

be followed throughout the dissertation. Since the half-space model is conformal,

the dihedral angles at the edges which meet at the vertex at in�nity are actually

the same as the angles of the Euclidean triangle that forms the cross section of the

prism. In particular, these dihedral angles add up to �. Applying this condition

to each of the four vertices of the tetrahedron and solving the resulting system of

equations results in the second and third parts of the following lemma.

Lemma 1 The three dihedral angles meeting at a vertex of an ideal hyperbolic

tetrahedron add up to �. It follows that the dihedral angles at each pair of opposite

(non-adjacent) edges are equal. Moreover, the triplet of dihedral angles is the same

at each of the four vertices.

Continuing with this placement of the ideal tetrahedron in the half-space model,

we calculate its volume by integrating the di�erential element of volume dV =

dx dy dz=z3 to obtain

V (T (�; �; )) = L(�) + L(�) + L(); (1.2)
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α
β

γ

Figure 1.1: Ideal hyperbolic tetrahedron with dihedral angles �, �, and  at the

vertex at in�nity in the half-space model

where T (�; �; ) is an ideal tetrahedron whose dihedral angles at any given vertex

are �, �, and  and

L(�) := �
Z

�

0

log 2j sinujdu (1.3)

is the Lobachevsky function. The details of the derivation of (1.2) can be found in

[10].

Lemma 2 The function L de�ned by (1.3) is odd and �-periodic.

Proof . L(��) = �
R
��

0
log 2j sinujdu =

R
�

0
log 2j sinujdu = �L(�), after a

change in the variable of integration. To see that L is �-periodic, we �rst use the

following simple argument to show that L(�=2) = 0 [6]. Note that the symmetry

of the sin function implies that

L(�=2) = �
Z

�=2

0

log 2j sinujdu = �
Z

�=2

0

log 2j cosujdu (1.4)

and

L(�) = �
Z

�

0

log 2j sinujdu = �2
Z

�=2

0

log 2j sinujdu = 2L(�=2): (1.5)
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α
β

γ

O

a) b)

a

b

c

b
c

O

O’

O’

a
p

Figure 1.2: An ideal hyperbolic tetrahedron and its reection in a) the half-space
model b) the Klein model

By (1.4) and (1.5),

2L(�=2) = �
Z

�=2

0

log 2j sinujdu�
Z

�=2

0

log 2j cosujdu

= �
Z

�=2

0

log 2j sin 2ujdu

= �1
2

Z
�

0

log 2j sinujdu

= L(�=2) (1.6)

It follows that L(�=2) = 0, and, therefore, by symmetry of sin, L(�) = 0. Then

the �-periodicity of sin implies that L, too, is �-periodic. 2

It is instructive to illustrate the geometry behind formula (1.2). If we reect the

vertex at in�nity in Figure 1.1 in the plane determined by the other three vertices,

we will end up with two copies of the original tetrahedron. This is illustrated

in Figure 1.2. Note that reecting in a plane modeled by a hemisphere in the

half-space model interchanges the center of the hemisphere which determines that

plane with the point at in�nity. Thus, in Figure 1.2a), the point O is the center

of the circle that determines the plane of the face fa; b; cg.
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a

b

c

α

β

γ

2β
2α

2γ

Figure 1.3: The projection of Figure 1.2a) onto the plane at in�nity

The line through O and O0 that is perpendicular to the plane at in�nity divides

the polyhedron fa; b; c; O;O0g into the three tetrahedra fa; b; O;O0g, fb; c; O;O0g,
and fc; a; O;O0g.

De�nition 5 An isosceles ideal tetrahedron is an ideal hyperbolic tetrahedron hav-

ing two of the three dihedral angles at any of its vertices equal.

Figure 1.3 shows that the projections of fa; b; O;O0g, fb; c; O;O0g, and fc; a; O;O0g
onto the plane at in�nity are isosceles triangles, so all three of these tetrahedra are

isosceles. The classical result that the angle subtended by an arc from the center

of a circle is twice the angle subtended by the same arc from the circumference

of that circle gives the angles labeled as 2�, 2�, and 2 in Figure 1.3. Thus L(�)

is the volume of half of an isosceles ideal tetrahedron with apex angle 2�. In

Figure 1.2b), for example, L() is the volume of the tetrahedron fa; b; p; O0g. Its
apex angle is 2, as seen in Figure 1.3.

As the above discussion shows, equation (1.2) is not only an elegant formulation

of the volume of a tetrahedron, but is also a decomposition of an arbitrary ideal

tetrahedron into the halves of three isosceles ideal tetrahedra. This fact is used

extensively in this dissertation to prove scissors congruence results.
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A
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B

A’
B’

C’

b)

A’

B’
C’

B
C

c)
A

A’

B’
C’

A
B

C

d)

Figure 1.4: a) T (A;B;C) b) T3(A;B;C;A
0; B0; C 0) c) T1(A;B;C;A

0; B0; C 0) d)

T0(A;B;C;A
0; B0; C 0). The hollow circles denote ideal points

1.3 Volumes of non-ideal hyperbolic tetrahedra

We begin by introducing some notation that will be used throughout this work.

Since an ideal hyperbolic tetrahedron has the same set of angles, say A, B, and

C at any of its vertices, we will refer to it as T (A;B;C). Tj(A;B;C;A
0; B0; C 0)

will be used to describe a hyperbolic tetrahedron with at least j ideal vertices and

dihedral angles A, B, C, A0, B0, C 0, where every letter and its prime denote angles

at opposite edges. In the case of a tetrahedron with at least one (three) ideal

vertices, the unprimed letters stand for the edges which meet at an ideal (�nite)

vertex. This notation is summarized in Figure 1.4.

In cases (b) and (c), the six dihedral angles of the tetrahedron are not linearly

independent. In case (b), A0, B0, C 0 can be found by the linear system of three

equations which result from the fact that the dihedral angles at each of the ideal

vertices add up to �. Thus

A0 =
� + A�B � C

2

B0 =
� +B � A� C

2
(1.7)

C 0 =
� + C � A� B

2
:

It follows that T3(A;B;C;A
0; B0; C 0) = T3(A;B;C; (� + A � B � C)=2; (� + B �

A�C)=2; (�+C�A�B)=2). Similarly, in case (c) the constraint A0+B0+C 0 = �

implies the identity T1(A;B;C;A
0; B0; C 0) = T1(A;B; � � A�B;A0; B0; C 0).

The formula for the volume of T3(A;B;C;A
0; B0; C 0) can be derived from the

construction in Figure 1.5. There we extend the edges ap, bp, and cp so that they
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p

a’

A
C

C’

B’

A’

B

b’

b

a

c’

c

B’

C’A’

Figure 1.5: Derivation of the formula for the volume of a hyperbolic tetrahedron
with one �nite vertex

end at the in�nite points a0, b0, and c0, respectively. It follows that

fa; b; c; pg+ fc0; b0; a0; pg = fa; b; c; c0g+ fa; a0; b0; c0g � fa; b; b0; c0g; (1.8)

where fx1; x2; x2; x4g denotes the oriented hyperbolic tetrahedron with vertices x1,

x2, x2, and x4. The two tetrahedra on the left hand side of (1.8) can be viewed

as a \twisted" or non-convex prism determined by the vertices fa; b; c; a0; b0; c0g.
Then the right hand side of (1.8) is the standard decomposition of a triangular

prism into three tetrahdedra. In the case of the convex prism the tetrahedron

fa; b; b0; c0g has negative volume due to its orientation. The orientation is reversed

by the \twisting". The relationship between the object in Figure 1.5 and that of

a convex ideal prism will be discussed further in x3.2.
Since fa0; b0; c0; pg is congruent to fa; b; c; pg = T (A;B;C), (1.8) leads to

2V (T3(A;B;C;A
0; B0; C 0)) = V (T (A0; B0; C)) + V (T (A;B0; C 0))�

V (T ((C � C 0); (� �B); B0)): (1.9)

By (1.2) and (1.9) and the �-periodicity of L,

V (T3(A;B;C;A
0; B0; C 0)) =

1

2
[L(A) + L(A0) + L(B) + L(B0) + L(C) + L(C 0)�

L(
� + A+B + C

2
)]: (1.10)
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α 1

α 2
α 3

γ
2

3
γ γ

1

I

Figure 1.6: Hyperbolic tetrahedron with in�nite vertex I

The ideas used to derive (1.10) can be extended to develop a formula for the volume

of a hyperbolic tetrahedron with at most three �nite vertices. This formula has

been found by Vinberg in [16].

V (T1(1; 2; 3; �3; �1; �2)) =
1

2

3X
i=1

[L(i) + L(
1

2
(� + �i � �i+1 � i))

+L(
1

2
(���i+�i+1�i))�L(

1

2
(���i��i+1+i))�L(

1

2
(��+�i+�i+1+i))];

(1.11)

where �4 = �1. T1(1; 2; 3; �3; �1; �2) denotes the tetrahedron with at least one

ideal vertex which has �1,�2, and �3 as the dihedral angles at the edges connecting

its �nite vertices and 1, 2, and 3 as the dihedral angles at the edges which meet

at one of its in�nite vertices, as shown in Figure 1.6. Vinberg's formula also extends

to the volume of a hyperbolic pyramid with an n-gonal base and an ideal apex.

One simply replaces the 3 in the summation on the right hand side of (1.11) with

n and extends the index on �i and i to n.

We now give a proof of (1.11) that is di�erent from Vinberg's. Our proof takes

inspiration from Figure 1.7 which Thurston uses to prove that a �nite hyperbolic

triangle can be expressed as the di�erence between an ideal triangle and three

2
3
-ideal ones in [15].

Proof . Consider T = T1(A;B;C;A
0; B0; C 0) in the Poincar�e ball model of H3.

Let the face opposite to the in�nite vertex of T be determined by the �nite vertices
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b’

a’c’

a

b

c A’

B’

C’

CA

B

Figure 1.7: Thurston's proof that 4abc = 4a0b0c0 �4aa0b0 �4bb0c0 �4cc0a0

a, b, and c, and let this face coincide with the equatorial plane of the ball, as shown

in Figure 1.7. Now extend each of the edges to in�nity and connect the in�nite

points which are labeled by primed lower case letters in Figure 1.7. The primed

capital letters in Figure 1.7 denote the dihedral angles at the edges connecting the

corresponding vertex of T to its ideal vertex, while the unprimed capital letters

denote the dihedral angles at the corresponding edges of T . Let I be the in�nite

vertex of T . Then

fa; b; c; Ig = fa0; b0; c0; Ig � fa; a0; b0; Ig � fb; b0; c0; Ig � fc; c0; a0; Ig) (1.12)

The dihedral angles of the tetrahedra on the right hand side of (1.12) can be

easily deduced from the dihedral angles of T1(A;B;C;A
0; B0; C 0) by using (1.7).

For instance,

fa; a0; b0; Ig = T3(� � A0; � � C;B;

(� � A0 + C � B)=2; (� + A0 � C � B)=2; (� + A0 + C +B)=2): (1.13)

The dihedral angles of fb; b0; c0; Ig and fc; c0; a0; Ig can be computed by cyclically

permuting the letters in (1.13).

Using these results along with (1.12) and the fact that fa0; b0; c0; Ig inherits

its dihedral angles from those of fa; a0; b0; Ig, fb; b0; c0; Ig and fc; c0; a0; Ig we can
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Figure 1.8: The decomposition of a tetrahedron into six orthoschemes

conclude that

T1(A;B;C;A
0; B0; C 0) =

T ((� + C � A0 � B)=2; (� + A�B0 � C)=2; (� +B � C 0 � A)=2)�

T3(��A0; ��C;B; (��A0+C�B)=2; (�+A0�C�B)=2; (�+A0+C+B)=2)�

T3(��C 0; ��B;A; (��C 0+B�A)=2; (�+C 0�B�A)=2; (�+C 0+B+A)=2)�

T3(��B0; ��A;C; (��B0+A�C)=2; (�+B0�A�C)=2; (�+B0+A+C)=2):

(1.14)

Applying (1.10) to (1.14) yields formula (1.11). Starting with an n-gon instead of

4abc gives the proof for an pyramid with an n-gonal base and an in�nite vertex.

2

Finding the volume formula for a hyperbolic tetrahedron all of whose ver-

tices are �nite is considerably more diÆcult. The oldest method dates back to

Lobachevsky, and involves decomposing the tetrahedron into six orthschemes, as

shown in Figure 1.8. One then uses the formula for the volume of an orthoscheme

derived by Lobachevsky. Orthoschemes, also known as birectangular tetrahedra,

are tetrahedra having the property that that the dihedral edges at the three non-

coplanar edges are �=2. It will be shown in a later chapter how Lobachevsky's

formula can be used to derive an explicit formula for the volume of an arbitrary

hyperbolic tetrahedron in terms of its dihedral angles. One serious disadvantage

of this formula is that it involves sums of L applied to non-linear functions of
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the angles of the orthoschemes. Since the dihedral angles of the orthoschemes

used to decompose a tetrahedron are not, in general, linearly dependent on the

dihedral angles of the tetrahedron, the resulting expression contains two levels of

non-linearity in its dependence on the dihedral angles of the original tetrahedron.

Thus, such a formula obscures the dihedral angle data of the original tetrahedron

in addition to being rather long and complicated.

In 1999 Cho and Kim developed a volume formula for the general tetrahedron

in terms of the L without decomposing the tetrahedron into orthoschemes [2].

However, the arguments of L in their formula are implicitly de�ned by a system

of polynomial equations. In 2001 Murakami and Yano modi�ed Cho and Kim's

formula so as to make it an explicit function of the dihedral angles of a tetrahedron.

Their formula possesses some remarkable symmetries and, but did not have an

obvious geometric interpretation as they presented it. Inspired by the work of

Murakami and Yano, Gregory Leibon came up with a new family of formulas

similar to theirs which did have a very clear geometrical interpretation. In this

dissertation we make use of his construction to solve a problem posed by Justin

Roberts of whether the Regge symmetry is a scissors congruence in hyperbolic

geometry by producing a constructive proof.

We also present an alternate formula for the volume of a tetrahedron which uses

L applied to functiond of its dihedral angles. We do this by a simple geometric

construction which allows us to use (1.11).

The formula has been validated by numerical agreement with Hsiang's formula

for the volume of a tetrahedron [8] as well as the formula derived by decomposing

the tetrahedron into orthoschemes. Hsiang's approach did not use the Lobachevsky

function and was thus completely di�erent from that of Cho-Kim, Murakami-Yano,

and the present thesis.
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1.4 The Kubert identities

It can be easily shown that the function L(�) := �
R
�

0
log 2j sinujdu satis�es

what are known as the Kubert identities:

L(n�) = n
X

k mod n

L(� + k�=n) (1.15)

for every integer n. Furthermore, (1.15) can be used to determine the Fourier series

for L up to a constant.

From the perspective of the earlier discussion about volumes and scissors con-

gruences, the Kubert identities can be interpreted as identities relating volumes of

certain ideal isosceles hyperbolic tetrahedra. This naturally leads to the question

of whether the isosceles ideal tetrahedron T (2n�; �=2�n�; �=2�n�) whose volume

is given by twice the left hand side of (1.15) is scissors congruent to n n-tuples of

isosceles ideal tetrahedra T (2� + k�=n; �=2� �� k�=2n; �=2� � � k�=2n), where
k varies from 0 to n� 1, whose volume is twice the right hand side of (1.15). The

Dehn invariants of these two collections of tetrahedra can be easily computed to be

equal, but this still does not guarantee their equidecomposability since the Dehn

invariant and volume have not yet been been proved to be suÆcient for showing

scissors congruence in H 3 .

In 1982 Dupont and Sah proved that the tetrahedra whose volumes are repre-

sented by (1.15) are indeed scissors congruent [5]. However, their proof is purely

algebraic; that is, it does not attempt to illustrate how these tetrahedra actually

�t together. In this dissertation, we demonstrate the geometry underlying their

proof and show how it connects to the cyclotomic identities

2 sin(n�) =

n�1Y
k=0

2 sin(� + k�=n) (1.16)

which are used to prove the Kubert identities analytically. This scissors congruence

proof of the Kubert identities can be used to determine the Lobachevsky function

up to a constant.



Chapter 2

A new formula for the volume of

a hyperbolic tetrahedron

Let T = T0(A;B;C;A
0; B0; C 0) denote a hyperbolic tetrahedron with �nite ver-

tices and dihedral angles A, B, C, A0, B0, C 0, where every letter and its prime

denote angles at opposite edges (see Figure 2.1). The basic strategy of our calcu-

lation of the volume of T is as follows. As shown in Figure 2.2, where the vertices

of T are labeled as pi, we extend the edge connecting p1 to p2 to the point at

in�nity which we call v11 . After calculating the dihedral angles of the tetrahedron

T 0 determined by the points fv11 ; p2; p3; p4g we �nd that

V (T ) = V (fv11 ; p2; p3; p4g)� V (fv11 ; p1; p3; p4g); (2.1)

where the right hand side of (2.1) is computed by Vinberg's formula (1.11).

In the special case of one of the vertices approaching in�nity, our formula

C’

A
B

A’ B’

C

Figure 2.1: Finite hyperbolic tetrahedron T0(A;B;C;A
0; B0; C 0)

14
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1

2
p

p
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4
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3

Figure 2.2: Hyperbolic tetrahedron T with one of its edges extended to in�nity

reduces to (1.11). In the general case, the formula is a sum of L applied to

non-linear functions of the dihedral angles of the original tetrahedron. One of

the byproducts of our formulation is that calculating the dihedral angles of the

orthsochemes resulting from the decomposition of an arbitrary tetrahedron takes

a few easy extra steps.

2.1 Background

E n;1 , the (n+1)-dimensional Minkowski space, is known the space which results

from imposing on R(n+1) the inner product

hx; yi = �x0y0 + x1y1 + � � �+ xnyn; (2.2)

where x = (x0; x1; : : : ; xn) and y = (y0; y1; : : : ; yn). This inner product determines

a positive de�nite metric when restricted to the set H = fx 2 R(n+1) jhx; xi = �1g.
Let R(n+1)+ denote the halfspace of R(n+1) with x0 > 0, and let H+ = H \R(n+1)+ .

Then H+ together with (2.2) represent the hyperboloid model of hyperbolic space

H n .
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For vectors u; v 2 En;1 of square length �1,

hu; vi =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

cos\(u?; v?) if u; v have square length 1 and u? and v?

intersect

� cosh d(u?; v?) if u; v have square length 1 and u? and v? are

ultraparallel

� sinh d(u; v?) if u has square length �1 and v has

square length 1

� cosh d(u; v) if u; v have square length �1,
(2.3)

where \(u?; v?) denotes angle between the n-dimensional planes u? and v? with

their respective orientations induced by u and v, and d(x; y) denotes the dis-

tance between x and y for any x; y 2 En;1 . The sign ambiguities in (2.3) can

be resolved as follows. In the second case, consider �, the n-dimensional plane

spanned by some geodesic connecting u? and v? and the origin. If the respec-

tive orientations induced on u? and v? by u and v agree with respect to �, then

hu; vi = +cosh d(u?; v?). In the third case the + results if u and v lie in the same

half-space of E n;1 with respect to v?. A detailed discussion and proof of the results

presented in (2.3) can be found in [15].

In the present work we make use of the hyperboloid model with n = 3. Let

T be a tetrahedron in H 3 , and let P = fpig4i=1 be the set of position vectors of

the vertices of T . P is indexed so as to induce a positive orientation on T . The

following construction is adapted from [16]. Let K be the convex hull of P and 0

in E 3;1 . De�ne the set of normals to T , N = feig4i=1, as the unit vectors outwardly
normal to the four three-dimensional faces of K which include the origin. The

normals are indexed so that e?
i
is spanned by the face of T that is opposite to the

vertex pi and the origin.

Each of the normals ei is of square length 1 since it is normal to the subspace

of E 3;1 where the inner product (2.2) is inde�nite. Therefore, by (2.3), the matrix
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of inner products of feig4i=1 is given by

G = [� cos�ij] (2.4)

where �ij is the interior dihedral angle between the i-th and j-th faces of the

tetrahedron if i 6= j and � otherwise. G is known as the Gram Matrix of T .

G not only determines T , but also yields a wealth of quantitative data related

to T . This data will be extracted in the sections to follow.

2.2 Exterior Algebra in Minkowski Space

Let
V

p
E n;1 for p = 0; 1; 2; � � � ; n; n + 1 be the space of p-vectors on En;1 . It

follows that
V0

E n;1 = R,
V

n+1
E n;1 �= R, and

V
n
E n;1 �= En;1 . We are interested

in the case n = 3 and the (Hodge) star operator � :
V3

E 3;1 �! E 3;1 .

We choose N = feig4i=1 as the basis for E 3;1 . It follows that fe1 ^ e2 ^ e3 ^ e4g
and fe1 ^ e2 ^ e3; e1 ^ e4 ^ e2; e1 ^ e3 ^ e4; e3 ^ e2 ^ e4g are bases for

V4
E 3;1 andV3

E 3;1 , respectively. Then � :
V3

E 3;1 �! E 3;1 is de�ned so that

� ^ ei = h��; eiie1 ^ e2 ^ e3 ^ e4; (2.5)

where � is an element of
V3

E 3;1 and h; i is the inner product de�ned in (2.2) [7].

It follows from the alternating property of wedge products that � is determined by

� : ej ^ ek ^ el 7�! (�1)ie�
i
; (2.6)

where j < k < l and i; j; k; l are distinct integers between 1 and 4 and fe�
i
g4
i=1 is

the vector space dual to feig4i=1 in the sense that he�
i
; eji = Æij.

Remark 1 By linearity of the exterior multiplication it follows that �(x ^ y ^ z)
is normal to x, y, and z for any x; y; z 2 E 3;1 . This is a key property in our

development of the formula for the volume of T .

At this point we can use the exterior algebraic results developed so far to extend

the geometric results in x2.1 as follows. For i = 1; 2; 3; 4,

e�
i
= cipi (2.7)
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for some negative scalar ci. This is because pi 2 e?j \ e?k \ e?l for distinct i; j; k; l,

which is precisely the subspace of E 3;1 spanned by e�
i
. Furthermore, ci must be

negative because he�
i
; eii = 1 = cihpi; eii, and hpi; eii is negative since pi and ei are

in two di�erent halfspaces of E 3;1 with respect to e?
i
(see (2.3) and the explanation

following it). Now we can use the facts that the Gram matrix of the dual basis is

G�1 (see [16] or [15]) and that pi is of square length �1 to conclude that

ci = �
p
�g�

ii
= detG; (2.8)

where g�
kl
is the kl-th entry in the matrix of cofactors of G� = G�1 detG.

Remark 2 At this point, the computation of the volume of T by the method of

dissecting T into orthoschemes (see x2.1) becomes quite simple. By (2.3), (2.7),

and (2.8), the length of the altitude ai of T extending from pi and meeting the i-th

face at a right angle is given by

sinh ai = �hpi; eii = �
1

ci
=

s
� detG

g�
ii

; (2.9)

while the length lij of the edge connecting pi and pj is given by

cosh lij = �hpi; pji =
g�
ijp
g�
ii
g�
jj

: (2.10)

Let T be decomposed into orthoschemes so that the altitude of T , ai is dropped from

vertex i. We denote the set of six orthoschemes fOjkg where j and k are distinct

integers between 1 and 4 with j; k 6= i. j refers to the face of T whose subset forms

a face of Ojk, and k refers to the vertex of T shared by Ojk. Furthermore, let Ajk

denote the dihedral angle of Ojk at the edge ai, and let Bjk denote the dihedral

angle of Ojk at the edge joining its vertices i and k. The notation is summarized

in Figure 2.3. Then the volume of Ojk is given in [16] by

V (Ojk) =
1

4
[L(Ajk + Æjk)� L(Ajk � Æjk) + L(�ij + Æjk)� L(�ij � Æjk)

� L(�
2
� Bjk + Æjk) + L(

�

2
�Bjk � Æjk) + 2L(

�

2
� Æjk)]; (2.11)
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i

Bjk

jkAk

j

l

c

p

Figure 2.3: Orthoscheme Ojk shown as part of the tetrahedron which it is used to
decompose. The tetrahedron is drawn with a dotted line

where

Æjk = tan�1
p
cos2Bjk sec2Ajk � tan2Ajk sin

2 �ij

cos�ij
(2.12)

We compute Ajk by using (2.9), (2.10), and the hyperbolic laws of sines and cosines

specialized to right triangles. Referring to Figure 2.3, we have

cosh jkcj = cosh lik

cosh ai
; (2.13)

sinh jpcj = cot�ij tanh ai; (2.14)

and

cosAij = coth jkcj tanh jpcj: (2.15)

Thus

Ajk = cos�1
g�
ikp

g�2
ik
� g�

ii
g�
kk
+ g�

kk
detG

cot�ij
p
� detGp

� cot2 �ij detG+ g�
ii
� detG

: (2.16)

With the addition of the formula for Bjk in [16] we also have

Bjk = cot�1
tanAjk tanh ai

tanh lik
(2.17)
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We �nally have

V (T (�12; �13; �14; �34; �24; �23)) =

4X
j;k

V (Ojk); (2.18)

where j; k take on all the distinct integer values between 1 and 4 except i, and

V (Ojk) are given by (2.11)-(2.17).

2.3 Main Theorem

In the hyperboloid model of H n each point at in�nity corresponds to the span

(over R+) of a vector of zero length in E n;1 . In the following lemma the vectors

which represent the endpoints of a given geodesic in H n are calculated in terms of

the points p1 and p2 which determine that geodesic.

Lemma 3 The endpoints of the geodesic l determined by the oriented geodesic

segment (p1,p2) in H n are represented by the vectors v11 = p1 + �p2 and v12 =

p2 + �p1, where

� = hp1; p2i+
p
(hp1; p2i)2 � 1 (2.19)

and the orientation of (v11 ; p1; p2; v
1
2 ) is consistent with that of (p1,p2).

Proof . v11 and v12 are both in the 2-dimensional plane spanned by p1 and

p2, and they are each of length 0. Therefore, v1
i

for i = 1; 2 can be determined

by �nding the two roots of the quadratic equation h(p1 + �p2); (p1 + �p2)i = 0.

Assuming hpi; pii = �1 for i = 1; 2, we obtain �1 = hp1; p2i +
p
(hp1; p2i)2 � 1

and �2 = hp1; p2i �
p
(hp1; p2i)2 � 1 = 1=�1 as the two solutions. If p2 and l are

�xed and p1 moves towards v11 along l, the distance between p1 and p2 tends to

in�nity. By (2.10), so does hp1; p2i. It follows easily that �1 tends to 0, so that p1

approaches p1 + �1p2. Therefore, v11 = p1 + �1p2. By interchanging 1 and 2 we

obtain that v12 = p2 + �1p1. 2

We now describe the the steps of the calculation of the volume of T as they

were outlined in the Introduction. As shown in Figure 2.4, we extend the edge
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8

v1

1

2

1

p

p
p
4

3

p
3

2

Figure 2.4: Hyperbolic tetrahedron T with one of its edges extended to in�nity

connecting p1 to p2 to the point at in�nity which we call v11 according to the

notation of Lemma 3. In order to calculate the dihedral angles of the tetrahedron

T 0 determined by the points fv11 ; p2; p3; p4g we need an expression for Q, the the

outward unit normal to the face of T 0 determined by the points fv11 ; p3; p4g. By

Remark 1,

Q =
�(v11 ^ p4 ^ p3)p

h�(v11 ^ p4 ^ p3); �(v11 ^ p4 ^ p3)i
(2.20)

But

�(v11 ^ p4 ^ p3) = �(p1 ^ p4 ^ p3) + �(�(p2 ^ p4 ^ p3)) (2.21)

by Lemma 3 and the linearity of the exterior product. Furthermore, by (2.7) and

(2.8)

p1 ^ p4 ^ p3 = �
(
p
� detG)3p
g�11g

�
33g

�
44

e�1 ^ e�4 ^ e�3 (2.22)

and

p2 ^ p4 ^ p3 = �
(
p
� detG)3p
g�22g

�
33g

�
44

e�2 ^ e�4 ^ e�3 (2.23)

From the de�nition of � as described by (2.5) it is easy to verify that

�(e�1 ^ e�4 ^ e�3) = �e2 (2.24)

and

�(e�2 ^ e�4 ^ e�3) = e1 (2.25)
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Therefore, by (2.20)-(2.25) and the linearity of �

Q = �(
p
g�22e2 � �

p
g�11e1) (2.26)

where

� =
1p

g�22 + �2g�11 + 2�
p
g�11g

�
22 cos�12

; (2.27)

� =
�g�12 +

p
g�212 � g�11g

�
22p

g�11g
�
22

(2.28)

by (2.28) and (2.10), and g�
kl
is the kl-th entry in the matrix of cofactors of G. We

now use (2.3) to conclude that

[p3; p4] = cos�1hQ; e2i+ �12 = cos�1(�(
p
g�22 + �

p
g�11 cos�12)) + �12; (2.29)

and

[p3; v
1

1 ] = � � cos�1hQ; e4i

= � � cos�1(�(�
p
g�22 cos�24 + �

p
g�11 cos�14)); (2.30)

where [x; y] denotes the dihedral angle at the edge connecting the vertices of T 0 with

position vectors x and y. Since T 0 is uniquely determined by its angles [p3; p4]+�12,

� � �24, � � �23, [p3; v
1
1 ], and �34, we actually do not need [p4; v

1
1 ] for the �nal

formula, but we compute it by the method developed so far for completeness:

[p4; v
1

1 ] = � � cos�1hQ; e3i

= � � cos�1(�(�
p
g�22 cos�23 + �

p
g�11 cos�13)): (2.31)

The computations in equations (2.27)-(2.30) are summarized in Table 2.1.

Thus we have proved

Theorem 1 The volume of a hyperbolic tetrahedron T with all �nite vertices and

gram matrix G = [� cos�ij] is given by

V = V (T ([p4; v
1

1 ]; [p3; v
1

1 ]; �34; �14; �13; [p3; p4])

� V (T ([p4; v
1

1 ]; [p3; v
1

1 ]; �34; � � �24; � � �23; [p3; p4]� �12); (2.32)

where all the relevant quantities are de�ned in Table 2.1.
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1. Compute G� = [g�
ij
], the matrix of cofactors of G.

2. Compute � =
�g�12+

p
g�212�g

�

11g
�

22p
g�11g

�

22

3. Compute � = 1q
g�22+�

2g�11+2�
p

g�11g
�

22 cos�12

4. Compute [p3; p4] = cos�1(�(
p
g�22 + �

p
g�11 cos�12)) + �12

5. Compute [p3; v
1
1 ] = � � cos�1(�(�pg�22 cos�24 + �

p
g�11 cos�14))

6. Compute [p4; v
1
1 ] = � � cos�1(�(�pg�22 cos�23 + �

p
g�11 cos�13))

7. V = V (T ([p4; v
1
1 ]; [p3; v

1
1 ]; �34; �14; �13; [p3; p4])

�V (T ([p4; v11 ]; [p3; v
1
1 ]; �34; � � �24; � � �23; [p3; p4]� �12),

where V (T (1; 2; 3; �3; �1; �2)) is the volume of a hyperbolic
tetrahedron with one ideal vertex as de�ned in (1.11) and

L is the Lobachevsky function as de�ned in (1.3).

Table 2.1: Procedure for computing the volume V of an arbitrary hyperbolic tetra-
hedron with Gram matrix G = [� cos�ij].
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2.4 Alternative Approach

The method described above does not require the introduction of a coordinate

system and relies entirely on the angle data of a given tetrahedron. We now present

a variation on this method which provides a way to calculate a set of coordinates

for the vertices of the tetrahedron T in the standard Minkowskian basis and then

use these coordinates to calculate the angles [p3; p4], [p3; v
1
1 ], and [p4; v

1
1 ] described

above. The coordinates of p1 are chosen as (1; 0; 0; 0) and the coordinates of p2

are chosen as (a; b; 0; 0), where the positive constants a and b are computed by a

procedure described below. It then follows immediately that the coordinates of

v11 are (1;�1; 0; 0). Once the coordinates the vertices of T 0 (the convex hull of

the vertices 2,3,4 of T and v11 ) are known, the unit normals to the faces of T 0 are

easily computed by exploiting the dual relationship of the normals and the position

vectors of the vertices. The computation of the necessary dihedral angles follows

from taking the inner products of the normal vectors in question. The alternative

method relies on the use of a standard Gram-Schmidt routine such as, for instance,

the one in the Mathematica package. The steps of the method are summarized in

Table 2.2.

Proof of steps 1-10 in Table 2.2

Steps 1-3.

Recall that G, the Gram matrix of T , is the matrix of the inner products of

the outward unit normals of T as given by (2.4). We begin by reversing the order

of rows and columns of G to ensure that the coordinates (1; 0; 0; 0) will correspond

to vertex 1 of T . Hence we get the matrix eG which, together with the standard

Minkowskian basisM = f(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)g (i.e the rows
of the identity matrix), we input to the Gram-Schmidt routine. The output, W , is

a set of four vectors expressed in terms of the basisM that are orthonormal with

respect to the inner product determined by eG. Since eG represents the Lorentz
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Input Computation Output

1. G = [� cos�ij] Reverse the order of the rows eG
and columns

2. I4 and eG Gram-Schmidt procedure with W

respect to the inner product

with matrix eG
3. W Divide the fourth row by i, fW

then reverse the order of the rows

4. fW and D (DfW )T U

5. U Reverse the order of the rows, eU (position
normalize each row with respect vectors of the

to the the metric given by �D. vertices of T )

6. eU Replace the �rst row of eU Z

with (1;�1; 0; 0)

7. Z and D Compute (DZ�1)T N 0 (normals
and normalize each of its to faces of T 0)
rows with respect to (2.2)

8. N 0 and D Compute N 0D(N 0)T G0

9. G012 � � cos�1G012 [p3; p4]

10. G024 � � cos�1G024 [p3; v
1
1 ]

11. G023 � � cos�1G023 [p4; v
1
1 ]

12. [p3; p4], [p3; v
1
1 ], Plug into (2.32) Volume of T

and [p4; v
1
1 ]

Table 2.2: Procedure for computing the volume V of an arbitrary hyperbolic tetra-

hedron with Gram matrix G = [� cos�ij]. D denotes the matrix with diagonal
entries -1,1,1,1 and 0 elsewhere, and W has the vectors outputted by the Gram-

Schmidt routine as its rows.
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inner product given by (2.2) in the basis of the unit normals of T , we should ex-

pect that three of these vectors be spacelike and one timelike. Thus, three of the

vectors should have square length 1 and one should have square length -1. How-

ever, a standard Gram-Schmidt routine will force the fourth vector to have square

length 1, and in doing so will produce a fourth vector all of whose components are

pure imaginary. Hence we divide the fourth vector of W by i. Subsequently, we

reverse the order of the rows of W so that the resulting matrix fW has as its rows

vectors that are orthonormal (in the sense of the timelike vector having negative

unit length) with respect to the inner product (2.2).

Steps 4-5.

Let N = fW�1. Since D2 = I4, it follows that

ND(DfW ) = I4: (2.33)

Thus, if ni is the i-th row of N , and wj is the j-th row of DfW , (2.33) says that

hni; wji = Æij, where h; i denotes the inner product determined by D(�1; 1; 1; 1).
Therefore, when viewed in the framework of x2.2, the rows of N are dual to the

columns of DfW . Now, the rows of N represent the outward normals of T in terms

of the basis determined by the rows of fW . It was shown in x2.2 that the set of

normals of T is dual to the set of the position vectors of the vertices of T up to

a scalar multiple. Therefore, after normalizing the rows of (DfW )T with respect

to the inner product (2.2) we obtain the position vertices of T . Since each row of

(DfW )T is a time-like vector, its square length is negative. In order to insure that

the normalization scales each row by a positive real number we normalize with

respect to the metric given by �D. In the resulting matrix the fourth and third

rows are (1; 0; 0; 0) and (a; b; 0; 0) with a; b 2 R+ , respectively. We end by reversing

the order of the rows to insure that these are the respective coordinates of the �rst

and second vertices of T . This reordering has been accounted for in Step 1 by re-

versing the rows and columns of G to obtain ~G. Thus eU is the 4� 4 matrix whose
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i-th row describes the position of the i-th vertex of T . In particular, the �rst row

of eU is (1; 0; 0; 0), the second row is of the form (a; b; 0; 0) for some positive a and b.

Step 6.

By plotting the coordinates of the �rst two vertices of T on the hyperbola x20�x21 =
1 in the x0x1 plane one can see immediately that the the endpoints of the geodesic

determined by these vertices will be (1;�1; 0; 0) and (1; 1; 0; 0), where the ori-

entation of the segment (p1; p2) is consistent with that imposed by ((1;�1; 0; 0);
(1; 1; 0; 0)). Thus the coordinates of v11 are (1;�1; 0; 0). For Step 7 we need a

matrix whose rows are the position vectors of the vertices of T 0. Therefore, we

replace the �rst row of eU with the coordinates of v11 .

Step 7.

As in Step 4, we use the fact that ZD(DZ�1) = I4 and the duality of the nor-

mals and position vectors of hyperbolic tetrahedra to determine that normalized

columns of DZ�1 are the unit normals of T 0.

Step 8.

We compute G0, the Gram matrix of T 0.

Steps 9-12.

We use the �rst of the equations (2.3) to �nd the angles [p3; p4], [p3; v
1
1 ], and

[p4; v
1
1 ]. At this point the volume of T can be found from (2.32), (1.11), and (1.3).
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2.5 Special Cases

If vertex 1 of T is in�nite, i.e. p1 is of length 0, (2.32) easily reduces to Vinberg's

formula (1.11). In this case g�11 = 0, so that [p3; p4] = �12 , while [p3; v
1
1 ] = �24, and

[p4; v
1
1 ] = �23. If vertex 2 of T is in�nite it is necessary to evaluate limits of type

0
0
in order to use (2.32). In this case (2.32) reduces to a formula for the volume of

a tetrahedron with at least one in�nite vertex that di�ers from Vinberg's formula

yet outputs the same values. The situation is similar in the case when vertex 3

or vertex 4 is in�nite. This points to the general fact that the formula we have

developed in Theorem 1 is highly non-symmetric with respect to the four vertices

of T . One can easily come up with three more formulas like (2.32) by extending

vertices 2,3, or 4 to in�nity. All four formulas give the correct answer but are not

obviously equivalent. The existence of these various formulas for the volumes of

the same tetrahedron apparently has to do with non-linear identities satis�ed by

L. In some special cases the equivalence of these formulas for the volume yields

some of the Kubert identities.

2.6 A numerical example of the computation of

the volume of a hyperbolic tetrahedron using

the method outlined in Table 2.2 of x2.4

Suppose we wish to compute the volume of a hyperbolic tetrahedron T =

T0(�=3:5; �=3:8; �=3:1; �=2:2; �=2:01; �=2:1) whose Gram matrix is given by

G =

0
BBBBB@

�1 � cos(�=3:5) � cos(�=3:8) � cos(�=3:1)

� cos(�=3:5) �1 � cos(�=2:1) � cos(�=2:01)

� cos(�=3:8) � cos(�=2:1) �1 � cos(�=2:2)

� cos(�=3:1) � cos(�=2:01) � cos(�=2:2) �1

1
CCCCCA : (2.34)
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Step 1. We reverse the order of the rows and columns to obtain

eG =

0
BBBBB@

�1 � cos(�=2:2) � cos(�=2:01) � cos(�=3:1)

� cos(�=2:2) �1 � cos(�=2:1) � cos(�=3:8)

� cos(�=2:01) � cos(�=2:1) �1 � cos(�=3:5)

� cos(�=3:1) � cos(�=3:8) � cos(�=3:5) �1

1
CCCCCA : (2.35)

Step 2. We input the inner product given by eG and the basis f(1; 0; 0; 0); (0; 1; 0; 0);
(0; 0; 1; 0); (0; 0; 0; 1)g into a Gram-Schmidt procedure. The output is

W =

0
BBBBB@

1 0 0 0

0:143778 1:01028 0 0

0:0188875 0:0776407 1:00928 0

�1:13184i �1:42773i �1:1991i �1:73789i

1
CCCCCA : (2.36)

Step 3. We divide the fourth row of W by i and then reverse the order of the rows

to obtain

fW =

0
BBBBB@
�1:13184 �1:42773 �1:1991 �1:73789
0:0188875 0:0776407 1:00928 0

0:143778 1:01028 0 0

1 0 0 0

1
CCCCCA : (2.37)

Step 4. Let

D =

0
BBBBB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCCA : (2.38)

Compute

U = (DfW )T =

0
BBBBB@

1:13184 0:0188875 0:143778 1

1:42773 0:0776407 1:01028 0

1:991 1:00298 0 0

1:73789 0 0 0

1
CCCCCA : (2.39)
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Step 5. We normalize each row of U with respect to the metric given by �D to

obtain

eU =

0
BBBBB@

1 0 0 0

1:82465 1:52622 0 0

1:41944 0:0771901 1:00442 0

2:21958 0:0370392 0:281955 1:96104

1
CCCCCA : (2.40)

The rows of eU give the coordinates of the respective vertices of T .

Step 6. We replace the �rst row of eU with the coordinates of the point at in-

�nity which is one of the endpoint of the geodesic determined by vertices 1 and

two. The rows of the resulting matrix,

Z =

0
BBBBB@

1 �1 0 0

1:82465 1:52622 0 0

1:41944 0:0771901 1:00442 0

2:21958 0:0370392 0:281955 1:96104

1
CCCCCA ; (2.41)

are the position vectors of T 0 as shown in Figure 2.4.

Step 7. We compute (DZ�1)T and normalize each of its rows with respect to

the inner product given by D to obtain

N 0 =

0
BBBBB@
�0:57541 �0:687923 �0:7603 �0:528964
�0:568213 0:568213 �0:846665 �0:532127

0 0 0:989821 �0:142315
0 0 0 1

1
CCCCCA : (2.42)

The rows of N 0 are the normal vectors to the respective faces of T 0.
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Step 8. We compute the Gram matrix of T 0,

G0 = N 0D(N 0)T =

0
BBBBB@

1 0:207352 �677282 �0:528964
0:207352 1 �0:762317 �0:532127
�0:677282 �0:762317 1 �0:142315
�0:528964 �0:532127 �0:142315 1

1
CCCCCA :

(2.43)

Steps 9-11. We compute the dihedral angles of T 0,

[p3; p4] = � � cos�1G012 � �12 = 1:77966; (2.44)

[p3; v
1

1 ] = � � cos�1G024 = 1:00969; (2.45)

and

[p4; v
1

1 ] = � � cos�1G023 = 0:70391: (2.46)

Step 12. Plugging [p3; p4], [p3; v
1
1 ], and [p4; v

1
1 ] into (2.32) gives the �nal answer

of .152838 as the volume of T .



Chapter 3

A scissors congruence proof of the

Regge symmetry

The Regge symmetries are a family of involutive linear transformations on the

six edges of a tetrahedron. They are de�ned as follows.

De�nition 6 Let T (A;B;C;A0; B0; C 0) denote a tetrahedron as shown in Fig-

ure 3.1. De�ne

Ra(T (A;B;C;A
0; B0; C 0)) = T (A; sa � B; sa � C;A0; sa � B0; sa � C 0); (3.1)

where sa := (B + C +B0 + C 0)=2. Similarly, de�ne

Rb(T (A;B;C;A
0; B0; C 0)) := T (sb � A;B; sb � C; sb � A0; B0; sb � C 0); (3.2)

and

Rc(T (A;B;C;A
0; B0; C 0)) := T (sc � A; sc �B;C; sc � A0; sc �B0; C 0); (3.3)

C’

A
B

A’ B’

C

Figure 3.1: Tetrahedron T (A;B;C;A0; B0; C 0) with its dihedral angles denoted by

letters

32
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where sb := (A + C + A0 + C 0)=2 and sc := (A + B + A0 + B0)=2. Then Ra, Rb,

and Rc generate the family of Regge symmetries of T (A;B;C;A0; B0; C 0).

Any two maps out of Ra, Rb, and Rc, together with the tetrahedral symmetries,

form a group isomorphic to S3 � S4 [13].

The Regge symmetries �rst arose in conjunction with the 6j-symbol, which is

a real number that can be associated to a labeling of the six edges of a tetrahedron

by irreducible representations of SU(2). In the 1960's, Tullio Regge discovered

that the 6j-symbols are invariant under the linear transformations generated by

Ra, Rb, and Rc. Expanding on his work in [13], Justin Roberts explored the e�ect

of the Regge symmetries on Euclidean tetrahedra associated with the 6j-symbols.

He found that the volumes of Euclidean tetrahedra as well as their Dehn invariants

remain unchanged under the action of the Regge symmetries. Therefore, the Regge

symmetries give rise to a family of scissors congruent Euclidean tetrahedra. In

the hyperbolic case, it was unknown until now whether the Regge symmetries

preserve equidecomposability, since the conjecture concerning the completeness of

the volume and Dehn invariant as scissors congruence invariants is still open. In

this chapter, we show that the Regge symmetries do indeed generate a family

of scissors congruent tetrahedra by an explicit construction. The construction is

based on a volume formula for a hyperbolic tetrahedron �rst developed by Jun

Murakami and Masakazu Yano in [12], and later geometrically interpreted and

generalized by Gregory Leibon in [9].

3.1 Murakami and Yano's formula for the vol-

ume of a hyperbolic tetrahedron

In 2001 Jun Murakami and Masakazu Yano developed the following remarkable

new formula for the volume of a hyperbolic tetrahedron.

Theorem 2 (Murakami and Yano) Let T denote a hyperbolic tetrahedron as

shown in Figure 3.1, and let a = eiA, a0 = eiA
0

,..., b0 = eiB
0

. Let z1 and z2 be the
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two solutions of the quadratic equation

� 1

z
((1� z)(1� aba0b0)(1� aca0c0)(1� bcb0c0)

� (1 + abcz)(1 + ab0c0z)(1 + ba0c0)(1 + ca0b0z)) = 0: (3.4)

Furthermore, let Z1 = arg z1, Z2 = arg z2,W1 = A+B+C��,W2 = A+B0+C 0��,
W3 = B + A0 + C 0 � �, and W4 = C + A0 +B0 � �. De�ne

U(T; Z) = L(
Z

2
)+

L(
Z +W1 +W4

2
� C) + L(

Z +W1 +W3

2
� B) + L(

Z +W1 +W2

2
� A)

� L(Z +W1

2
)� L(Z +W2

2
)� L(Z +W3

2
)� L(Z +W4

2
); (3.5)

e�(W;A;B;C) =
L(W )� L(W � A)� L(W � B)� L(W � C)

2
; (3.6)

and

�(T ) =

e�(
W1

2
; A; B; C) + e�(

W2

2
; A; B0; C 0) + e�(

W3

2
; B; A0; C 0) + e�(

W4

2
; C; A0; B0):

(3.7)

Then the folume of T is given by the absolute value of any of the following three

expressions:

V (T ) = U(T; Z1) + �(T ); (3.8)

V (T ) = U(T; Z2) + �(T ); (3.9)

V (T ) =
U(T; Z1)� U(T; Z2)

2
: (3.10)

This was the �rst formula that produced the volume of the tetrahedron in

terms of a sum of the Lobachevsky function (1.3) and was symmetric with respect

to the group of symmetries of the tetrahedron. In addition, the action of the Regge

symmetries on a tetrahedron merely permutes the terms of U(z; T ) and �(T ) in

equations (3.5) and (3.7). This shows that the Regge symmetries preserve not
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Figure 3.2: Polyhedron D

only the volume but also the scissors congruence class of a tetrahedron, provided

one can �nd a geometric interpretatin of equations (3.8), (3.9), and (3.10). This

geometric interpretation was provided by Gregory Leibon in [9].

3.2 Warm-up for the development Leibon's set

of formulas for the volume of a hyperbolic

tetrahedron

In this section we develop the basic idea that is central to Leibon's geometriza-

tion of Murakami and Yano's formula. We start by revisiting the construction for

�nding the volume of the tetrahedron T3(A;B;C;A
0; B0; C 0) that was presented

in x1.3. As before, we extend the three edges meeting at the non-ideal vertex to

in�nity, and obtain the polyhedron shown in Figure 3.2, which we will call D.

D is symmetric about the point p, so that its volume is twice that of

T3(A;B;C;A
0; B0; C 0). It will be convenient to view D as a simplicial complex

which can be triangulated by oriented simplices as follows.

D = fa; b; c; c0g+ fa; a0; b0; c0g+ fa; b0; b; c0g; (3.11)
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Figure 3.3: An ideal hyperbolic prism

where fx1; x2; x2; x4g denotes the oriented hyperbolic tetrahedron with vertices x1,

x2, x3, and x4. Now consider the ideal hyperbolic prism, P , shown in Figure 3.3.

Viewed as a simplicial complex, P can be triangulated as

P = fa; b; c; c0g+ fa; a0; b0; c0g+ fa; b0; b; c0g: (3.12)

Equations (3.11) and (3.12) indicate that P and D are the same object from the

point of view of homology. Clearly, P and D are embedded in space di�erently. In

particular, P is convex whileD is not. This is accounted for by the term fa; b; b0; c0g
in equations (3.11) and (3.12). In the case of D, fa; b0; b; c0g represents a simplex

with negative volume, while in the case of P , it represents a simplex with positive

volume.

Just as D and P are the same object when viewed as simplicial complexes, they

are also the same type of object from the point of view of hyperbolic geometry.

Both D and P are completely determined by the dihedral angles A, B, and C

(angles A0, B0, and C 0 are determined from the fact that the dihedral angles at any

ideal vertex must add up to �, as discussed in x1.3). In the case ofD, A+B+C > �,

while in the case of P , A + B + C < �. P can be obtained by a continuous

deformation of D which involves moving the point p outside the sphere at in�nity.

In the framework of the hyperboloid model of hyperbolic space presented in x2.1,
this deformation is equivalent to moving the intersection of the planes which span
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Figure 3.4: A triangulation of an ideal hyperbolic prism

the quadrilateral faces of D from the inside to the outside of the cone x20+x
2
1+x

2
2 =

x23. In this process, the angles A, B, and C decrease. Since the volume of D and

P depends only on these three angles, by analytic continuation D and P have the

same volume formula. It is easier to see this formula in the case of P , since the

three tetrahedra triangulating P do not intersect each other.

Letting V (fv0; v1; v2; v3g) represent the signed volume of an oriented simplex

fv0; v1; v2; v3g, and using the fact that the opposite angles of an ideal hyperbolic

tetrahedron are equal, we �nd that

V (fa; b; c; c0g) = T (A0; B0; C)

V (fa; a0; b0; c0g) = T (A;B0; C 0) (3.13)

V (fa; b; b0; c0g) = T (C 0 � C;B; � �B0);

as shown in Figure 3.4. Applying the condition that the sum of the dihedral

angles at an ideal vertex is �, we obtain

A0 =
� + A�B � C

2

B0 =
� +B � A� C

2
(3.14)

C 0 =
� + C � A� B

2
:
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By (3.12) and (3.13)

2V (fa; b; c; a0; b0; c0g) = L(A) + L(A0) + L(B) + L(B0) + L(C) + L(C 0)�

L(
� + A+B + C

2
); (3.15)

where fa; b; c; a0; b0; c0g is either the non-convex prism of Figure 3.2 or the convex

prism of Figure 3.3.

3.3 Leibon's formulas for the volume of a hyper-

bolic tetrahedron

We now extend the ideas developed in x3.2 to a hyperbolic tetrahedron T with

�nite vertices. We start by extending all the edges of T to in�nity. The resulting

polyhedron, C, is shown in Figure 3.5. Clearly,

V (T ) = V (C)

� (V (fc01; a1; b01; p1g)+V (fa01; b02; c1; p2g)+V (fa02; b1; c02; p3g)+V (fa2; b2; c2; p4g))
(3.16)

As discussed in x3.2,

V (fc01; a1; b01; p1g) = V (fc01; a1; b01; c02; a2; b02g)=2; (3.17)

V (fa01; b02; c1; p2g) = V (fa01; b02; c1; a02; b01; c2g)=2; (3.18)

V (fa02; b1; c02; p3g) = V (fa02; b1; c02; a01; b2; c01g)=2; (3.19)

and

V (fa2; b2; c2; p4g) = V (fa2; b2; c2; a1; b1; c1g)=2: (3.20)

Therefore, we can easily �nd the volume of T with the help of (3.15) once we

know the volume of C. In order to triangulate C, we �rst note that it is the

same object as U (see Figure 3.6) from the point of view of homology, follow-

ing the method of x3.2. That is, U can be obtained from C by pulling out the
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Figure 3.5: Polyhedron C

points p1, p2, p3, and p4 outside the sphere at in�nity. So a triangulation of C by

oriented simplices is also a triangulation of U . Under this deformation the non-

convex prisms fc01; a1; b01; c02; a2; b02g, fa01; b02; c1; a02; b01; c2g, fa02; b1; c02; a01; b2; c01g, and
fa2; b2; c2; a1; b1; c1g become convex, but their volume formula stays the same by

analytic continuation. Thus, we have established that

V (T ) = V (U)� V (fc01; a1; b01; c02; a2; b02g)=2� V (fa01; b02; c1; a02; b01; c2g)=2

� V (fa02; b1; c02; a01; b2; c01g)=2� V (fa2; b2; c2; a1; b1; c1g)=2: (3.21)

In order to compute the volume of U we must triangulate it and the compute

the volume of each of the simplices in its triangulation using formula (1.2). It turns

out that no matter which way U is triangulated, some of the tetrahedra comprising

it will have dihedral angles that are aÆne functions of the dihedral angles of T ,

while others will not. Leibon has looked at a particular family of 26 triangulations

of U , each of which divides U up into six tetrahedra with dihedral angles that

depend linearly on the dihedral angles of T and one octahedron whose dihedral

angles are determined by a quadratic equation that is very similar to (3.4). The

number 26 comes from the fact that the vertices of the octahedron can be chosen by
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choosing exactly one of the vertices in each pair fa1; a2g, fb1; b2g, fc1; c2g, fa01; a02g,
fb01; b02g, fc01; c02g. If one chooses both or neither of the vertices in any pair, then it

is impossible to form a non-degenerate octahedron with the remaining vertices.

The 64 ways to cut U down to an octahedron can be grouped in four combina-

torially distinct categories. Each category is described by four numbers between 0

and 3, each one of which indicates how many vertices of the octahedron are taken

from a group of 3 vertices bounding a triangular face. For example, the octahedron

formed by the convex hull of vertices a2, b2, c2, b
0
1, c

0
1, and a01 in Figure 3.6 falls

into the category 3210, since it has 3 vertices from the group (a2; b2; c2), 2 from the

group (a1; b
0
1; c

0
1), 1 from the group (a01; b

0
2; c1) and none from the group (a02; b1; c

0
2).

The four categories are 3210, 2211, 2220, and 3111.

The computations of the volume of U for each of the four categories are quite

similar. We will illustrate the computation using a 2220 decomposition as an ex-

ample. Here U is decomposed into a prism and three tetrahedra, and octahedron

as shown in Figure 3.7. The prism and three tetrahedra resulting from this decom-
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Figure 3.7: Decomposition of polyhedron U via the 2220 method; the edges of
U are shown with thin and dashed lines, while the cuts of the decomposition are
shown with thicker and dotted lines.

position are shown in Figure 3.8, while the octahedron O is shown in Figure 3.9.

The prism in Figure 3.8 can be decomposed into three ideal tetrahedra, as

demonstrated in x3.2. In Figure 3.8, the dihedral angles other than those belonging
to the original tetrahedron T were computed with the help of (3.14). For exam-

ple, the dihedral angle at the edge (a1; c
0
1) was computed by considering the prism

fc01; a1; b01; c02; a2; b02g. Since the dihedral angles at each pair of opposite edges of

an ideal tetrahedron are equal, the labels in Figure 3.8 are enough to completely

determine each tetrahedron. The dihedral angles of the octahedron O then follow

immediately.

The octahedron in Figure 3.9 can be triangulated by drawing an edge from one

of its vertices to a non-adjacent vertex. There are three distinct ways to do this.

No matter which way is chosen, the dihedral angles of the resulting four tetrahedra

can be determined by a family of 7 linear equations and one quadratic equation.

The following terminology will be used to describe the triangulation of an

octahedron.

De�nition 7 The �repole of an octahedron is a segment joining one of its vertices
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with a another non-adjacent vertex.

In Figure 3.9 the �repole is the dashed line connecting the vertices a2 and a02. At

this point it is easier to view O in the half-space model, with one of the ends of

its �repole at the point at in�nity. This is depicted in Figure 3.10. The segments

fa2; c01g, fa2; b01g, fa2; c2g, fa2; b1g become lines perpendicular to the plane at in-

�nity in the half-space model, and their projection is seen in Figure 3.10 as vertices

vA, vB, vC , and vD (these are vertices c01, b
0
1, c2, and b1, respectively, in Figure 3.9).

The angles of the quadrilateral at each of these vertices are a, b, c, and d, and they

are equal to the angles dihedral angles of O at edges fv0; vag, fv0; vbg, fv0; vcg,
and fv0; vdg, since the half-space model is conformal. As seen in Figure 3.9, these

angles are

a =
� � C 0 + A+B0

2
; b =

� � B0 + A + C 0

2

c =
� � A� B � C

2
; d =

� � A +B + C

2

(3.22)

The edges with dihedral angles e, f , g, h are opposite to edges fva; vbg, fvb; vcg,
fvc; vdg, fvd; vag, respectively, and the angles at those edges have already been

computed (see Figure 3.9). Using the fact that opposite edges of an ideal tetrahe-
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dron have equal dihedral angles, we have

e =
� � A� B0 � C 0

2
; f =

� � A0 +B0 + C

2

g =
� � C + A+B

2
; h =

� � B + A0 + C 0

2

(3.23)

The unknown angles have been denoted as AB, BA, BC, CB, CD, DC, DA, and

AD. These angles are subject to the following linear constraints:

AB + AD = a; AB +BA + e = �

BC +BA = b; BC + CB + f = �

CD + CB = c; CD +DC + g = �

DA+DC = d; DA+ AD + h = �

(3.24)

The matrix expressing conditions (3.24) has a one-dimensional null space, so

one more condition is needed to determine the 8 unknown angles. Geometrically,

this last condition insures that the four ideal tetrahedra �t together. In other

words, one can always �t together four tetrahedra that satisfy (3.24) as shown in

Figure 3.11, since the faces of all ideal tetrahedra are ideal triangles, and, there-

fore, isometric to one another. In order avoid the situation in Figure 3.11, we

need to ensure that once we �t the four tetrahedra together, the length of the

segment fv0; vag does not change as we go around the quadrilateral fva; vb; vc; vdg.
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In particular, if we assume that the length of the segment fv0; vag is equal to 1,

and then express it in terms of the other lengths of the quadrilateral and equate

the two quantities, we will get a non-trivial condition that, together with equations

(3.24), will determine the unknown angles in Figure 3.10.

The equation we need is

sin(AB)

sin(BA)

sin(BC)

sin(CB)

sin(CD)

sin(DC)

sin(DA)

sin(AD)
= 1; (3.25)

and Figure 3.12 suggests how it is obtained. Since scaling is an isometry in

hyperbolic space, we may assume without loss of generality that jv0vaj = 1. Then

by going counter-clockwise around Figure 3.12 and using basic trigonometry we

obtain that jv0p1j = sin(AB), jv0vbj = jv0p1j= sin(BA) = sin(AB)= sin(BA) and so

on, until �nally we arrive at the two equivalent expressions for jv0vaj in (3.25).
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It is easier to solve the system of equations (3.24) and (3.25) if we �rst come

up with a solution in the one-dimensional space that satis�es (3.24) and then use

(3.25) to �nd the remaining unknown. Let (AB;BA;BC;CB;CD;DC;DA;AD)

be a solution to the system of equations (3.24). Then there must be a Z such that

AB + Z = AB; BA� Z = BA

BC + Z = BC; CB � Z = CB

CD + Z = CD; DC � Z = DC

DA+ Z = DA; AD � Z = AD:

(3.26)

No matter what the value of Z is, the quantities on the right hand side of equations

(3.26) still satisfy equations (3.24), since the sums in those equations are unchanged

when Z is added to one summand and subtracted from the other one. After

substituting (3.26) into (3.25) and letting z = exp iZ and

�1 = exp(iAB); �1 = exp(iBA)

�2 = exp(iBC); �2 = exp(iCB)

�3 = exp(iCD); �3 = exp(iDC)

�4 = exp(iDA); �4 = exp(iAD);

(3.27)

we obtain

0 =
1

�1�2�3�4

� �1�2�3�4 + z2(� �1

�2�3�4

� �2

�1�3�4

� �3

�1�2�4

� �4

�1�2�3

+
�1�2�3

�4
+
�1�2�4

�3
+
�1�3�4

�2
+
�2�3�4

�1
)

+ z4(
�1�2

�3�4

+
�1�3

�2�4

+
�2�3

�1�4

+
�1�4

�2�3

+
�2�4

�1�3

+
�3�4

�1�2

� �1�2

�3�4
� �1�3

�2�4
� �2�3

�1�4
� �1�4

�2�3
� �2�4

�1�3
� �3�4

�1�2
)

+ z6(
�1

�2�3�4
+

�2

�1�3�4
+

�3

�1�2�4
+

�4

�1�2�3

� �1�2�3

�4

� �1�2�4

�3

� �1�3�4

�2

� �2�3�4

�1

) + z8(�1�2�3�4 �
1

�1�2�3�4
) (3.28)
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By equations (3.24) and (3.26),

(AB +BC + CD +DA) + (BA+ CB +DC + AD) = 2�;

so that

�1�2�3�4 =
1

�1�2�3�4

by (3.27). This reduces (3.28) to a quadratic equaton in z2.

Let z+ (z�) denote the solution of (3.28) corresponding to adding (subtracting)

the square root of the discriminant. Then z� gives the correct values of the angles

of the octahedron O in Figure 3.9, while z+ is of great signi�cance as well and will

be discussed in the next subsection.

3.3.1 Computation of the volume formula using the root

z
�

of the equation (3.28)

At this point we can write down the volume of the octahedron O (see Figures 3.9

and 3.10) using formula (1.2) for the volume of an ideal hyperbolic tetrahedron):

V (O) = V (fva; vb; v0;1g) + V (fvb; vc; v0;1g) +

V (fvc; vd; v0;1g) + V (fvd; va; v0;1g)

= L(AB) + L(BA) + L(e) + L(BC) + L(CB) + L(f)

L(CD) + L(DC) + L(g) + L(DA) + L(AD) + L(h): (3.29)

Substituting (3.26) and (3.23) into (3.29) and setting Z = arg z�, we have

V (O) = L(AB + arg z�) + L(BA� arg z�) + L(BC + arg z�)

+ L(CB � arg z�) + L(CD + arg z�) + L(DC � arg z�)

+ L(DA+ arg z�) + L(AD � arg z�) + L(
� � A� B0 � C 0

2
)

+ L(
� � A0 +B0 + C

2
) + L(

� � C + A+B

2
) + L(

� � B + A0 + C 0

2
); (3.30)
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where AB, etc. are chosen as

AB =
A+ A0 + 2B0

4
; BA =

2� + A� A0 + 2C 0

4

BC =
A+ A0 � 2B0

4
; CB =

2� � A+ A0 � 2C

4

CD =
�A� A0 � 2B

4
; DC =

2� � A+ A0 + 2C

4

DA =
�A� A0 + 2B

4
; AD =

2� + A� A0 � 2C 0

4
:

(3.31)

The volume of the three tetrahedra and prism in Figure 3.8 that comprise U�O
can be computed using (1.2) and (3.15).

V (U)� V (O) = V (fa02; b1; c02; c01g) + V (fc01; a1; b01; a2g) +

V (fa2; b2; c2; b1g) + V (fa01; b02; c1; a02; b01; c2g)

= L(C 0) + L(
� +B � A0 � C 0

2
+ L(

� + A0 � B � C 0

2
)

+L(A) + L(
� +B0 � A� C 0

2
) + L(

� + C 0 � A�B0

2
)

+L(B) + L(
� + A� B � C

2
) + L(

� + C � A� B

2
)

+L(A0) + L(B0) + L(C) + L(
� + C � A0 �B0

2
)

+L(
� + A0 �B0 � C

2
) + L(

� +B0 � A0 � C

2
)

�L(� + A0 +B0 + C

2
): (3.32)

Combining equations (3.30) and (3.32), and using the fact that L is odd and
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�-periodic gives

V (U) = L(AB + arg z�) + L(BA� arg z�) +

L(BC + arg z�) + L(CB � arg z�) +

L(CD + arg z�) + L(DC � arg z�) +

L(DA+ arg z�) + L(AD � arg z�) +

+L(A) + L(A0) + L(B) + L(B0) + L(C) + L(C 0)

+L(
� � A� B0 � C 0

2
) + L(

� + A0 � B � C 0

2
)

+L(
� +B0 � A� C 0

2
) + L(

� + C 0 � A� B0

2
)

+L(
� + A� B � C

2
) + L(

� + C � A0 �B0

2
)

+L(
� +B0 � A0 � C

2
)� L(� + A0 +B0 + C

2
) (3.33)

Finally, plugging (3.33) into (3.21) and using formulas (3.15) and (3.14) gives

V (T ) = L(AB + arg z�) + L(BA� arg z�) + L(BC + arg z�)

+ L(CB � arg z�) + L(CD + arg z�) + L(DC � arg z�)

+ L(DA+ arg z�) + L(AD � arg z�) +
1

2
[L(

� + A�B � C

2

� L(� +B � A� C

2
)� L(� + C � A�B

2
) + L(

� +B0 � A0 � C

2
)

+ L(
� + A+B + C

2
) + L(

� + C � A0 � B0

2
) + L(

� � A0 +B0 + C

2
)

� L(� + A0 +B0 + C

2
) + L(

� + A0 �B � C 0

2
� L(� + A+B0 + C 0

2
)

� L(� + A�B0 � C 0

2
) + L(

� +B0 � A� C 0

2
)� L(� � A0 �B + C 0

2
)

+ L(
� + A0 � B � C 0

2
) + L(

� + A0 +B + C 0

2
) + L(

� � A� B0 + C 0

2
)]; (3.34)

where the quantities with bars are given by (3.31), and z� is the solution of the

quadratic equation (3.28) with the negative square root.
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a) b)

Figure 3.13: A triangular prism divided into two parts

3.3.2 Computation of the volume formula using the root

z+ of the equation (3.28)

When z� is replaced by z+ in equation (3.34) one gets �V (T ) instead of V (T ).

This surprising result has a very concrete geometrical explanation. The main idea

is that the octahedron O has a dual octahedron O0 associated with it, and that

V (T ) can be expressed in terms of either O or O0. It will be shown below that the

solution z+ of (3.28) solves the angles of a triangulation of the octahedron O0.

To begin with, let us go back to the triangular prism. A plane determined

by any of the 3 vertices of the prism divides it into two polyhedra (one of these

could be the degenerate at polyhedron); for example, see Figure 3.13. One way

we could express half of the volume of the prism is by averaging the volumes of

fa; b; c; b0g and fa; c; c0; a0; b0g, as suggested in Figure 3.13a), so that

V (P )

2
=
V (fa; b; c; b0g) + V (fa; c; c0; a0; b0g)

2
: (3.35)

Due to the symmetry of the prism, fa; b; c; b0g is isometric to fa0; b0; c0; bg, and
fa; c; c0; a0; b0g is isometric to fa0; c0; c; a; bg. Thus we can rewrite (3.35) as

V (P )

2
=
jV (fa; b; c; b0g)j+ jV (fa; c; c0; a0; bg)j

2
: (3.36)

Let us introduce the following notation in order to generalize this discussion.

De�nition 8 Let P be a triangular prism with vertices VP = fa; b; c; a0; b0; c0g, and
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let HP = fvig, where vi 2 VP . Then Hc

P
is the reection of P � HP in the plane

of symmetry P . It follows that jV (HP )j+ jV (Hc

P
)j = 2V (P ).

In the above de�nition, fa; b; c; b0gP = fa; c; c0; a0; b0gc
P
and fa0; b0; c0; bgP =

fa; c; c0; a0; b0gc
P
.

We will now show how to recast equation (3.21) in terms of this basic idea.

First, let us recall the construction of the octahedron O. As described earlier, O

(see Figure 3.9) was constructed by selecting one vertex from each edge of U (see

Figure 3.7). It follows that each of the four hexagonal faces of U coincides with a

face of O. There is a one-to-one correspondence between the other four faces of O

and the four prisms

P1 = fc01; a1; b01; c02; a2; b02g

P2 = fa01; b02; c1; a02; b01; c2g

P3 = fa02; b1; c02; a01; b2; c01g

P4 = fa2; b2; c2; a1; b1; c1g

To be more precise, given each prism, there is exactly one face of the octahedron

O that divides it into two polyhedra in the manner of Figure 3.13 are divided.

For example, P1 is divided into fc01; a1; b01; a2g and fc01; b01; b02; c02; a2g.
Let the four subsets of prisms in Figure 3.8 be labeled as

HP1
= fc01; a1; b01; a2g

HP2
= fa01; b02; c1; a02; b01; c2g

HP3
= fa02; b1; c02; c01g

HP4
= fa2; b2; c2; b1g:
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Then we can rewrite equation (3.21) as follows:

V (T ) = V (U)� V (P1)=2� V (P2)=2� V (P3)=2� V (P4)=2

= V (O) + V (HP1
) + V (HP2

) + V (HP3
) + V (HP4

)

�V (P1)=2� V (P2)=2� V (P3)=2� V (P4)=2

= V (O) + V (HP1
) + V (HP2

) + V (HP3
) + V (HP4

)

�
V (HP1

) + V (Hc

P1
)

2
�
V (HP2

) + V (Hc

P2
)

2

�V (HP3
) + V (Hc

P3
)

2
� V (HP4

) + V (Hc

P4
)

2

= V (O) +
V (HP1

)� V (Hc

P1
)

2
+
V (HP2

)� V (Hc

P2
)

2

+
V (HP3

)� V (Hc

P3
)

2
+
V (HP4

)� V (Hc

P4
)

2
(3.37)

We now introduce O0, the octahedron dual to O. With Figure 3.7 in mind, one

can visualize sliding the vertices of O, fa2; c2; b1; a02; b01; c01g , along the respective

edges labeled as A, C, B, A0, B0, C 0 until they hit the vertex at the end of that

edge. The resulting octahedron is O0. In other words O0 is the convex hull of the

vertices fa1; c1; b2; a01; b02; c02g. Now we can express the volume of U as

V (U) = V (O0) + V (Hc

P1
) + V (Hc

P2
) + V (Hc

P3
) + V (Hc

P4
); (3.38)

so that

V (T ) = V (U)�
V (HP1

) + V (Hc

P1
)

2
�
V (HP2

) + V (Hc

P2
)

2

�V (HP3
) + V (Hc

P3
)

2
� V (HP4

) + V (Hc

P4
)

2

= V (O0) + V (Hc

P1
) + V (Hc

P2
) + V (Hc

P3
) + V (Hc

P4
)

�V (HP1
) + V (Hc

P1
)

2
� V (HP2

) + V (Hc

P2
)

2

�V (HP3
) + V (Hc

P3
)

2
� V (HP4

) + V (Hc

P4
)

2

= V (O0)� V (HP1
)� V (Hc

P1
)

2
� V (HP2

)� V (Hc

P2
)

2

�V (HP3
)� V (Hc

P3
)

2
� V (HP4

)� V (Hc

P4
)

2
(3.39)
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π

π
π

d+g+h−π

Figure 3.14: a) The original octahedron O with its dihedral angles labeled. b) The
dual octahedron O0

Comparing equations (3.37) and (3.39) shows that if V (O) is replaced with�V (O0),
one gets �V (T ) instead of V (T ).

The only thing remaining to be shown is that by replacing z� with z+ in (3.34)

one is swapping V (O) for �V (O0). To see this, let us examine the quantitative

relationship of O and O0.

Recall Figure 3.13, where we saw that fa; b; c; b0g is isometric to fa0; b0; c0; bg.
As stated earlier, we can visualize the process of getting from Figure 3.13a) to

Figure 3.13b) as sliding the vertices a, b0, c along the edges fa; a0g, fb; b0g, fc; c0g,
respectively. If measure the change in the angle � between the oriented faces

fa; c; b0g and fa; b; c0g during this process, we �nd that � changes to � � � in

Figure 3.13b). Extending this process to O and O0, we see that dihedral angles

of O and O0 add up to �, as shown in the Klein model drawings in Figure 3.14.

Finding the dihedral angles of the four tetrahedra that triangulate O0 results in a
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set of linear constraints similar to (3.24):

AB + AD = � � a; AB +BA + � � e = �

BC +BA = � � b; BC + CB + � � f = �

CD + CB = � � c; CD +DC + � � g = �

DA+DC = � � d; DA+ AD + � � h = �

(3.40)

We can choose a solution (gAB;gBA;gBC;gCB;gCD;gDC;gDA;gAD) to equations

(3.40) such that

gAB = �AB; gBC = �BC; gCD = �CD; gDA = �DA (3.41)

and

gBA = � � BA; gCB = � � CB; gDC = � �DC; gAD = � � AD; (3.42)

where the AB, etc. were de�ned in (3.31). With a, b, c, and d de�ned by (3.22)

and e, f , g, h de�ned by (3.23), one can easily see that the quantities de�ned by

equations (3.41) and (3.42) satisfy (3.40). As in the case of O earlier, we need to

�nd W such that

gAB +W = AB; gBA�W = BA

gBC +W = BC; gCB �W = CB

gCD +W = CD; gDC �W = DC

gDA+W = DA; gAD �W = AD:

(3.43)

Proceeding in the manner of x3.3.1, we �nd that W is determined by equations

(3.43) and the equation

sin(gAB +W )

sin(gBA�W )

sin(gBC +W )

sin(gCB �W )

sin(gCD +W )

sin(gDC �W )

sin(gDA+W )

sin(gAD �W )
= 1: (3.44)

After we substitute the values from equations (3.41) and (3.42) and use the oddness

and periodicity of sin, (3.44) becomes

sin(AB �W )

sin(BA +W )

sin(BC �W )

sin(CB +W )

sin(CD �W )

sin(DC +W )

sin(DA�W )

sin(AD +W )
= 1: (3.45)
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After substituting equations (3.27) into (3.45) and letting z = exp(�iW ) we see

that (3.45) becomes the same equation as (3.28). This explains why the second

root of (3.28) solves for the unknown angles of the triangulation of O0.

Now let us see what volume we actually compute when we replace z� with z+

in (3.30). With this change, the right hand side of (3.30) becomes

L(AB + arg z+) + L(BA� arg z+) + L(BC + arg z+)

+ L(CB � arg z+) + L(CD + arg z+) + L(DC � arg z+)

+ L(DA+ arg z+) + L(AD � arg z+) + L(
� � A� B0 � C 0

2
)

+ L(
� � A0 +B0 + C

2
) + L(

� � C + A+B

2
) + L(

� � B + A0 + C 0

2
) (3.46)

Substituting (3.41), (3.42) and W = arg z+ gives

L(�gAB �W ) + L(� �gBA+W ) + L(�gBC �W )

+ L(� �gCB +W ) + L(�gCD �W ) + L(� �gDC +W )

+ L(�gDA�W ) + L(� �gAD +W ) + L(
� � A� B0 � C 0

2
)

+ L(
� � A0 +B0 + C

2
) + L(

� � C + A+B

2
) + L(

� � B + A0 + C 0

2
) (3.47)

Using the �-periodicity and oddness of L and rewriting the last 4 terms of (3.47)

in terms of equations (3.23), we see that the expression (3.47) is none other than

the negative of the volume of O0:

� V (O0) = �L(gAB +W )� L(gBA�W )� L(gBC +W )� L(gCB �W )

� L(gCD +W )� L(gDC �W )� L(gDA+W )� L(gAD �W )

� L(� � e)� L(� � f)� L(� � g)� L(� � h); (3.48)

where W = � arg z+ and e, f , g, h are given by (3.23).

Thus, we have shown that one of the roots of (3.28) gives V (T ) when used

in (3.34), while the other root gives �V (T ). This is analagous to Murakami and
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Yano's formulas (3.8) and (3.9). Looking back at equations (3.37) and (3.39), we

see that their sum gives

2V (T ) = V (O) + V (O0): (3.49)

Substituting expressions (3.30) and (3.48) into (3.49) gives

2V (T ) = L(AB + arg z�) + L(BA� arg z�) + L(BC + arg z�)

+ L(CB � arg z�) + L(CD + arg z�) + L(DC � arg z�)

+ L(DA+ arg z�) + L(AD � arg z�) + L(gAB + arg z+)

+ L(gBA� arg z+) + L(gBC + arg z+) + L(gCB � arg z+)

+ L(gCD + arg z+) + L(gDC � arg z+) + L(gDA+ arg z+)

+ L(gAD � arg z+); (3.50)

which is analagous to Murakami and Yano's (3.10).

Thus we have demonstrated that twice a hyperbolic tetrahedron is scissors

congruent to two octahedra, O and O0. This formula will be used extensively in

the next section to prove that the Regge symmetry is a scissors congruence.

3.4 A scissors congruence proof of the Regge

symmetry

Based on the formula (3.50) we can now construct a simple proof that 2T is

scissors congruent to 2R(T ), where R denotes any compositon of Ra, Rb, and Rc

as de�ned in (3.1), (3.2), and (3.3).

Recall Figure 3.10, which shows a triangulation of O in the half-space model.

In other words,

O = fva; vb; v0;1g+ fvb; vc; v0;1g+ fvc; vd; v0;1g+ fvd; va; v0;1g: (3.51)

We will now subdivide each of the tetrahedra fva; vb; v0;1g, fvb; vc; v0;1g,
fvc; vd; v0;1g, and fvd; va; v0;1g into three tetrahedra, as described in x1.2 and
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illustrated in Figure 1.2. In fact, this subdivision was implicitly done in x3.3,
since it is used to derive formula (1.2). This formula was used to write down the

volume of O. This time the construction will be used explicitly to show the scissors

congruence.

Recall that in order to subdivide an ideal hyperbolic tetrahedron as shown

in Figure 1.2, we drop a perpendicular from one of its vertices to the opposite

face. If we are in the half-space model and the vertex from which we drop the

perpendicular is the point at in�nity, the perpendicular must meet the plane at

in�nity at the center of the hemisphere that determines the opposite face. In other

words, the projection of this con�guration onto the plane at in�nity must look like

Figure 1.3, where the end of the perpendicular coincides with the circumcenter

of the triangle determined by 3 vertices of the tetrahedron. We now apply this

construction to the 4 tetrahedra that triangulate the octahedron in Figure 3.9,

ending up with 12 tetrahedra each of which has 3 ideal vertices and 1 non-ideal

vertex. The projection of this construction onto the plane at in�nity is shown in

Figure 3.15. In that �gure, the projections of the vertices pe, pf , pg, and ph are

the respective circumcenters of the triangles vavbv0, vbvcv0, vcvdv0, and vdvav0. The

actual positions of the vertices pe, pf , pg, and ph are on the planes determined by

the respective triangles. The dashed lines are the edges of the new trianglulation,

and they coincide with the planes determined by the triangles.

Remark 3 As Figure 3.15 indicates, the vertex ph is outside of the triangle vdvav0.

As one might expect, formula (1.2) still applies to the tetrahedron fvd; va; v0;1g.
Since the angle h exceeds �=2, L(h) < 0. So in the formula

V (fvd; va; v0;1g) = L(AD) + L(DA) + L(h);

the �rst two terms correspond to the volumes of the tetrahedra fva; v0; ph;1g and
fv0; vd; ph;1g, while the last term corresponds to the negative volume of the tetra-

hedron fva; ph; vd;1g. Thus one can see how formula (1.2) still makes geometric

as well as analytic sense in the case of a tetrahedron such as fvd; va; v0;1g.
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Figure 3.15: Octahedron O in the half-space model, triangulated according to the

construction in x1.2

Looking back at formula (3.50), and formulas (3.49), (3.29) and (3.48), we see

that the terms L(e), L(f), L(g), L(h) corresponding to tetrahedra fva; vb; pe;1g,
fvb; vc; pf ;1g, fvc; vd; pg;1g, and fvd; va; ph;1g in Figure 3.16 cancel in the for-

mula for the volume of T . Therefore, in our scissors congruence proof we will only

be concerned with the tetrahedra fv0; va; pe;1g, fvb; v0; pe;1g, fv0; vb; pf ;1g,
fvc; v0; pf ;1g, fv0; vc; pg;1g, fvd; v0; pg;1g, fv0; vd; ph;1g, fva; v0; ph;1g, and
their conterparts in O0.

With this in mind, we redraw those tetrahedra in the new triangulation of O

that are involved in the scissors congruence proof in Figure 3.16. These tetrahedra

correspond to the �rst 4 terms in formula (3.50). Triangulating O0 in the same

way as O, we get the tetrahedra corresponding to the last 8 terms in formula (3.50),

shown in Figure 3.17.

We have found that certain permutations of the tetrahedra in Figure 3.16 (and

corresponding permutations of the tetrahedra in Figure 3.17) give us new octa-

hedra that correspond to Rb(T ) and Rc(T ). In other words, given that 2T is
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Figure 3.16: Tetrahedra in the triangulation of the octahedron O that correspond

to the �rst 8 terms in formula (3.50)
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Figure 3.17: Tetrahedra in the triangulation of the octahedron O0 that correspond

to the last 8 terms in formula (3.50)
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scissors congruent to O + O0, we have found that 2Rb(T ) is scissors congruent to

P (O) + P (O0), where P (O) and P (O0) are the octahedra obtained by permuting

the tetrahedra in the triangulations of O and O0.

Before stating this fact and its proof formally, we address the fact that there

are no permutations of the tetrahedra that give us Ra(T ). This can be traced back

to the choice of the �repole (see De�nition 7) in triangulating O. The �repole,

as shown in Figure 3.9, connects the vertices a2 and a02. From the position of

these vertices in Figure 3.6, we see that this choice of the �repole \favors" the

pair of opposite edges A and A0. Similarly, the Regge symmetry Ra is singles out

the edge A and its opposite, as seen in De�nition 6. The other two choices of

the �repole for O are the segments [b1; b
0
1] and [c01; c2], which have preferred pairs

of edges B, B0 and C, C 0. The �rst of these choices yields a triangulation of O

that admits permutations that correspond to Ra(T ) and Rc(T ), while the second

allows permutations that give Ra(T ) and Rb(T ). In fact, no matter which of the 26

possible decomposition one uses to cut down to octahedron, it is always true that

for every choice of a �repole that prefers a certain pair of opposite edges one cannot

obtain the octahedron corresponding to exactly one of the Regge symmetries Ra,

Rb or Rc by simply permuting tetrahedra.

The formal statement of the results obtained is as follows.

Theorem 3 Let T = T (A;B;C;A0; B0; C 0) be a hyperbolic tetrahedron, and let

Rb(T ) = T (sb �A;B; sb�C; sb�A0; B0; sb�C 0) denote the action on T of one of

the Regge symmetries, as de�ned in De�nition 6. Then 2T is scissors congruent

to 2Rb(T ).

Proof . Let OT denote the octahedron obtained from T by the construction in

x3.3, and let O0
T
denote the corresponding dual tetrahedron. As shown in x3.3.2,

2T is scissors congruent to OT + O0
T
. We apply the construction described in

x3.3 to Rb(T ) by �rst extending its edges to in�nity and obtaining the octahedron

URb(T ) shown in Figure 3.18. Then we triangulate URb(T ) so that ORb(T ) has as

its vertices the points fa1; b01; a02; c02; b2; c2g, while O0
Rb(T )

has vertices the points
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2
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Figure 3.18: Polyhedron URb(T )

fa2; b02; a01; c01; b1; c1g. ORb(T ) is depicted in Figure 3.19. O0
Rb(T )

has dihedral

edges that are �-dihedral edges of ORb(T ), as shown in x3.3.2. Just as in the case

of T , 2Rb(T ) is scissors congruent to ORb(T ) + O0
Rb(T )

. What remains to be shown

is that OT +O0
T
is scissors congruent to ORb(T ) +O0

Rb(T )
. This is done as follows.

Let O be triangulated as shown in Figure 3.15. We need not consider the tetra-

hedra fva; vb; pe;1g, fvb; vc; pf ;1g, fvc; vd; pg;1g, and fvd; va; ph;1g as they can-
cel when O is added to O0. Therefore, it is suÆcient to consider the polyhedron

shown in Figure 3.16. The scissors congruence move consists of interchanging the

tetrahedra fva; pe; v0;1g and fv0; vc; pg;1g, while leaving all the other tetrahedra
in place. The resulting polyhedron is shown in Figure 3.20, where the tetrahedra

that were moved are shaded. The pieces in the resulting �gure still �t together (i.e.

the situation depicted in Figure 3.11 does not occur) because the new polyhedron

satis�es equation (3.25). In fact, the permutation merely interchanges the terms

sin(BA) and sin(DC) in (3.25). As a �nal step, we translate the 8 tetrahedra mak-

ing up the polyhedron of Figure 3.20 to obtain the mirror image of that polyhedron.
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Figure 3.19: Octahedron ORb(T )
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Figure 3.20: Polyhedron of Figure 3.16 with two tetrahedra interchanged. These

two tetrahedra have been shown as shaded
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Figure 3.21: Mirror image of the polyhedron of Figure 3.20

The result is shown in Figure 3.21. After adding the tetrahedra fva; vb; pe;1g,
fvb; vc; pf ;1g, fvc; vd; pg;1g, and fvd; va; ph;1g to the polyhedron in Figure 3.21

(these tetrahedra will subsequently cancel) we obtain the octahedron P (O) shown

in Figure 3.22. The angles in Figure 3.22 were given in equations (3.26), (3.23)

and (3.31). Using these equations in adding up the dihedral angles at the edges , we

obtain the Klein model picture of P (O) shown in Figure 3.23. It is isometric to the

octahedron OR(T ) depicted in Figure 3.19. The discussion above applies verbatim

to the dual octahedra. Since their dihedral angles are dependent on the dihedral

angles of the original tetrahedra, we need to perform the same permutation on the

tetrahedra making up O0 as we did on the tetrahedra making up O. In other words

we interchange the tetrahedra fv0
a
; p0

e
; v00;1g and fv00; v0c; p0g;1g in Figure 3.17 and

take the mirror image of the result. The result is shown in Figure 3.24. Adding

in the tetrahedra fv0
a
; v0

b
; p0

e
;1g, fv0

b
; v0

c
; p0

f
;1g, fv0

c
; v0

d
; p0

g
;1g, and fv0

d
; v0

a
; p0

h
;1g

gives the octahedron shown in Figure 3.25. Recall from x3.3.2 that
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Figure 3.22: OctahedronP(O)
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Figure 3.23: Octahedron P (O) in the Klein model
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Figure 3.24: Mirror image of the polyhedron of Figure 3.17 where the interchanged
tetrahedra have been shown as shaded
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Figure 3.25: Octahedron P (O0)
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Figure 3.26: Octahedron P (O0) in the Klein model

gAB +W = AB0; gBA�W = BA0

gBC +W = BC 0; gCB �W = CB0

gCD +W = CD0; gDC �W = DC 0

gDA+W = DA0; gAD �W = AD0;

(3.52)

where the gAB, etc. are given by (3.41) and (3.42) and W is one of the solutions

to (3.45). Using these values, we �nd that the Klein model of the octahedron in

Figure 3.25 is the octahedron in Figure 3.26. Comparing the octahedra in Fig-

ure 3.23 and Figure 3.26, we see that their dihedral angles add up to �. Therefore,

the octahedron in Figure 3.26 is isometric to O0
R(T ). Thus we have shown that

O + O0 is scissors congruent to OR(T ) + O0
R(T ) by a permutation. This completes

the proof. 2

Corollary 1 Let T and Rb(T ) be hyperbolic tetrahedra as de�ned in Theorem 3.

Then T is scissors congruent to Rb(T ).

Proof . The fact that we can \divide by 2" the construction that led to the proof

of Theorem 3 follows from Dupont's result of unique divisibility in [3]. Dupont
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va
vd

vc

hp

gp

fp

ep

v
b

v
0

Figure 3.27: Dividing the polyhedron of Figure 3.16 into two scissors congruent
parts

shows how an ideal hyperbolic tetrahedron can be divided into two parts that are

scissors congruent to one another (this is expressed in (4.75) in the next chapter).

The fact that this 2-divisibility is unique means that it is well-de�ned with respect

to the di�erent ways to divide a tetrahedron into 2 scissors congruent sets of

polyhedra. In other words, suppose we �nd that T = A
F
B, where A and B is

each a collection of polyhedra found by means of (4.75). Now suppose that we can

also express T as T = A0
F
B0, where A0 and B0 are also scissors congruent to one

another. Then by unique 2-divisibility, A, A0, B, and B0 are all scissors congruent

to one another.

We saw in the proof of Theorem 3 that 2T is scissors congruent to eO + eO0,
where eO is the polyhedron in Figure 3.16 and eO0 is the polyhedron in Figure 3.17.

We now divide each of the 8 tetrahedra comprising eO into two scissors congruent

(in fact, congruent) halves as shown in Figure 3.27. The result is the polyhedroneO=2 shown in Figure 3.28. We perform the same division by 2 procedure on eO0
to obtain eO0=2, as depicted in Figure 3.29.
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Figure 3.28: One of the two congruent halves comprising the polyhedron of Fig-
ure 3.16
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Figure 3.29: One of the two congruent halves comprising the polyhedron of Fig-
ure 3.17
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Figure 3.30: One of the two congruent halves comprising the polyhedron of Fig-
ure 3.21

By Dupont's unique 2-divisibility result, T is scissors congruent to eO=2+ eO0=2,
that is to the sum of the octahedra in Figures 3.28 and 3.29. Permuting the

indicated tetrahedra in eO=2 and eO0=2 results in eOR(T )=2 and eO0
R(T )=2, shown in

Figures 3.30 and 3.31. eOR(T )=2 ( eOR(T )=2) is one of the two congruent halves

of eOR(T ) ( eO0R(T )), obtained the same way as eO=2 and eO0=2 were. Thus Rb(T ) is

scissors congruent to eOR(T )=2 + eO0R(T )=2. Since eO=2 + eO0=2 is scissors congruent

to eOR(T )=2 + eO0R(T )=2 by a permutation of tetrahedra, it follows that T is scissors

congruent to Rb(T ). 2

Corollary 2 All the tetrahedra in the family generated by the Regge symmetries

are scissors congruent to one another.

Proof . By Theorem 3, the tetrahedron T is scissors congruent to Rb(T ). By

applying the construction in the proof of that theorem to the rigid rotations of T

we can prove that T is scissors congruent to Ra(T ) and Rc(T ). The corrollary then

follows from the fact that any two maps out of Ra(T ), Rb(T ) and Rc(T ) generate
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Figure 3.31: One of the two congruent halves comprising the polyhedron of Fig-
ure 3.24

the group of Regge symmetries, so we can obtain any member of the family of

Regge symmetric tetrahedra by a sequence of procedures described in the proof of

Theorem 3. 2

Remark 4 Alternatively to the above corrolary, it can be proved directly that T

is scissors congruent to Rc(T ) by slightly altering the proof of Theorem 3. The

change consists of rotating the polyhedron URb(T ) of Figure 3.18 so that the face

fa; b0; cg is replaced by the face fa; c0; bg. One can then proceed with the rest of the

proof.



Chapter 4

On the geometric proof that the

Lobachevsky function satis�es the

Kubert identities

The Kubert identities are equations of the form

f(x) = ms�1

m�1X
n=0

f((x+ k)=m); (4.1)

where m can be any positive integer, x is a real number, and s is some �xed

complex parameter. In [11] Milnor shows that for every s there are exactly two

linearly independent functions, de�ned and continuous on (0; 1) that satisfy the

identities (4.1). These two functions can be chosen so that one is even and one is

odd. We will be interested in the case s = 2, where the odd function that satis�es

the Kubert identities is L(��) = �
R
��

0
log 2j sinujdu which was introduced in x1.2.

Rewriting the Kubert identities of order 2 for the L function, we have

L(n�) = n

n�1X
k=0

L(� + k�=n): (4.2)

The even function is the Bernoulli polynomial

�2(x) = x2 � x+
1

6
; : : :

72
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and will not be studied here. Henceforth the special case (4.2) of (4.1) will be

referred to as the Kubert identities. The importance of the Kubert identities can

be seen in the following easy lemma:

Lemma 4 The assumptions that a function L is odd, �-periodic, and satis�es

(4.2) are suÆcient to determine L up to a constant.

Proof . Since L is odd and �-periodic, it is also odd about �=2, so we can

assume that its Fourier series is

L(x) =

1X
n=1

b2n sin 2nx; (4.3)

where

b2n =
1

�

Z
�

��

L(x) sin 2nx dx: (4.4)

Equation (4.3) gives

L(mx) =

1X
n=1

b2n sin 2mnx (4.5)

where m is any natural number. On the other hand, by (4.2)

L(mx) = m

m�1X
k=0

L(x+ k�=m)

=

1X
n=1

c2n sin 2nx; (4.6)

where

c2n =
m

�

Z
�

��

[

m�1X
k=0

L(x + k�=m)] sin 2nx dx: (4.7)

Note that for any real constant a and any integer n

1

�

Z
�

��

L(x + a) sin 2nx dx = b2n cos 2na:

Therefore, (4.7) becomes

c2n = mb2n

m�1X
k=0

cos
2�kn

m
: (4.8)
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Thus

c2n =

(
m2b2n if m divides n

0 otherwise.
(4.9)

We can now rewrite (4.6) as

L(mx) =

1X
n=1

m2b2mn sin 2mnx: (4.10)

Comparing (4.5) and (4.10) gives

b2mn = b2n=m
2

for all natural numbers m. In particular,

b2m = b2=m
2:

Plugging this result into expression (4.3) gives

L(x) = b2

1X
n=1

sin 2nx

n2
: (4.11)

The constant b2 can be found by evaluating L(x) at a point. 2

The above lemma provides some of the motivation for �nding a geometric construc-

tion that proves the Kubert identities. The other motivation is to provide some

evidence for the yet unproved conjecture that the volume and Dehn invariants

form a complete system of invariants for the scissors congruence class of hyper-

bolic polyhedra. Why we should expect the conjecture to apply in this case will

be shown in the sections to follow.

4.1 Analytic proof of the Kubert identities

We present the straightforward analytic proof of the Kubert identities which

can be found in [10]. We start with the identities

jzn � 1j =
n�1Y
k=0

jz � e2�ik=nj;
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where we consider small positive values of �. The general result follows by analytic

continuation. Substituting z = e�2i� gives

je�2in� � 1j =
n�1Y
k=0

je�2i� � e2�ik=nj;

and factoring out some expressions of modulus 1 gives

je�in�jje�in� � ein�j =
n�1Y
k=0

je�i(���k=n)jje�i(�+�k=n) � ei(�+�k=n)j: (4.12)

The result is the cyclotomic identities

2j sinn�j =
n�1Y
k=0

2j sin(� + �k=n)j: (4.13)

Taking the negative log of both sides and integrating gives

L(n�)=n =

n�1X
k=0

L(� + �k=n) + C; (4.14)

where the constant C can be determined by substituting � = 0 in the n = 2 case,

L(2�)=2 = L(�) + L(� + �=2) + C: (4.15)

Since L(�=2) = 0 as shown in x1.2, C = 0.

4.2 The Kubert identities viewed as identities on

simplices; the Dehn invariant

We saw in x1.2 that L(�) is half of the volume of an isosceles ideal tetrahedron

with apex angle 2�. Recall that in Figure 1.2b) of x1.2, L() was the volume

of the tetrahedron fa; b; p; O0g, whose projection onto the plane at in�nity in the

half-space model can be seen in Figure 1.3. Let us adopt the notation of [5] and

refer to such a tetrahedron as L(). With this in mind, we see that the left hand

side of (4.2) is the volume of L(n�), while each term on the right hand side is the
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Figure 4.1: Calculation of the Dehn invariant of an ideal hyperbolic tetrahedron

volume of L(�+k�=n) for k = 0; 1; : : : ; n�1. It is then natural to wonder whether

one can assemble the simplex L(n�) by cutting and pasting the n2 simplices on the

right hand side of (4.2). Certainly the volumes of both groups of simplices agree.

So do the Dehn invariants, as we will now see.

The Dehn invariant of a polyhedron P was de�ned in x1.1 as

D(P ) =
X

edges of P

l(E)
 (�(E)=�); (4.16)

where l(E) and �(E) are the respective lengths and dihedral angles at edge E,

and D takes values in the tensor product R 
Z (R=(�Z)). The de�nition applies

to polyhedra in any geometry, but in the case of hyperbolic polyhedra with an

in�nite vertex one runs into a potential problem since all the edges meeting at

such a vertex have in�nite lengths. The solution given by Thurston consists of

excising a horospherical neighborhood around each in�nite vertex and applying

(4.16) to the remaining lengths. For example, if we wish to compute the Dehn

invariant of an ideal hyperbolic tetrahedron we need only consider the lengths of

the thickly outlined segments in Figure 4.1. Thurston's modi�ed de�nition of

the Dehn invariant is well de�ned with respect to the choice of diameters of the
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horospheres. For if we consider horospheres of diameters d1 and d2 around a given

ideal point with d1 > d2, the di�erence in the edge lengths chopped o� by the

corresponding spheres is d1 � d2 for every edge that meets at that ideal point. So

the di�erence in the value of the Dehn invariant would be (d1� d2)

P

�i, where

�i is the dihedral angle at each edge. But we saw earlier that in the case of a

tetrahedron
P

�i = �. The argument in x1.2 that was used to prove this fact can

be applied to deduce that in the case of an arbitrary polyhedron
P

�i = n� for

some natural number n. Since integral multiples of � are 0 in the group R=(�Z),

(d1 � d2)

P

�i has no e�ect on the Dehn invariant for any values of d1 and d2.

Using a construction similar to that of Figure 4.1 along with some basic trigo-

nometry, Dupont and Sah [5] derive the Dehn invariant of L(�) to be

D(L(�)) = 2 log 2 sin � 
 (�=2�): (4.17)

Applying (4.17) to the tetrahedra in (4.2) we have

D(L(n�)) = 2 log 2 sin(n�)
 (n�=2�)

= 2n log 2 sin(n�)
 (�=2�) (4.18)

and

D(n

n�1X
k=0

L(� + k�=n)) = n

n�1X
k=0

2 log 2 sin(� + k�=n)
 ((� + k�=n)=2�)

= n

n�1X
k=0

2 log 2 sin(� + k�=n)
 (�=2�)

= 2n log

n�1Y
k=0

2 sin(� + k�=n)
 (�=2�)

= 2n log 2 sin(n�)
 (�=2�); (4.19)

where the last equality follows by the cyclotomic identities (4.13). Thus,

D(L(n�)) = D(n

n�1X
k=0

L(� + k�=n)):
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4.3 Attempts and obstacles in the geometric

proof of the Kubert identitities

The geometric proof of the Kubert identity in the case n = 2 follows immedi-

ately from applying the construction in Figure 1.2 to an isosceles ideal tetrahedron

with apex angle 2�, T (2�; �=2� �; �=2� �). From that construction, we see that

T (2�; �=2� �; �=2� �) = L(2�) + 2L(�=2� �): (4.20)

On the other hand,

T (2�; �=2� �; �=2� �) = 2L(�): (4.21)

Since V (L(�)) = L(�), (4.20) and (4.21) give

2L(�) = L(2�) + 2L(�=2� �): (4.22)

By the oddness and periodicity of L, L(�=2� �) = �L(�+ �=2), so that equation

(4.22) is equivalent to the Kubert identity in the case n = 2.

4.3.1 Two geometric proofs of the Kubert identity in the

case n = 3

As n increases, the proofs rapidly get more diÆcult. In [14] Sah proved the n =

3 case using a rather complicated geometrical construction due to Thurston that

did not lead to an obvious generalization for higher n. The details of Thurston's

construction can be found in [14], but we attempt to present the gist of it here.

Consider the ideal prism fv�1 ; v�2 ; v�3 ; v+1 ; v+2 ; v+3 g in Figure 4.2. The horizontal

plane of symmetry of the prism intersects in an equilateral hyperbolic triangle.

Because of this symmetry, the volume of the prism is 3 times the volume of the

polyhedron Q = fp+; p�; v+1 ; v�1 ; v+2 ; v�2 g. In addition, Sah considers the isometric

tetrahedra R+ = fp+; q+; v+1 ; v+2 g and R� = fq�; p�; v�1 ; v�2 g. The essence of Sah's
proof consists of noting that R� is also isometric to fp�; q+; v�1 ; v�2 g by reection in
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Figure 4.2: A geometric proof of the Kubert identity in the case n = 3 based on a
construction by Thurston

the plane fv�1 ; v�2 ; v�3 g, and writing down the volumes of both sides of the following

equality:

Q
a

R+ = fq+; p�; v�1 ; v�2 g
a
fq+; v+1 ; v+2 ; v�1 ; v�2 g:

An alternative way to prove the n = 3 Kubert identity that also does not seem to

generalize but is much simpler than Thurston's construction involves the tetrahe-

dron T depicted in Figure 4.3. On the one hand, the volume of T , as given by

v
3

v
2

v
1

2α
2α

2α

p

O

2π/3

Figure 4.3: A geometric proof of the Kubert identity in the case n = 3
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(1.10), is

V (T ) =
1

2
[3L(2�) + 3L(

�

2
� �)� L(�

2
+ 3�)]: (4.23)

On the other hand, the volume of T is 3 times the volume of the tetrahedron

fv1; v2; p; Og, and

V (fv1; v2; p; Og) =
1

2
[2L(2�) + L(

5�

6
� �) + L(

�

6
� �)] (4.24)

by formula (1.11). Equating (4.23) with 3 times (4.24), and using the n = 2

Kubert identity along with the oddness and �-periodicity of L gives the n = 3

Kubert identity.

4.3.2 The geometric proof of the cyclotomic identities

Another approach to the geometric proof of the Kubert identities is to take the

cyclotomic identities (4.13) as a starting point, just as was done in the analytic

proof of x4.1. The idea here is to �rst produce a geometric proof of the cyclotomic

identities, and then extend that proof to H 3 .

The geometric proof of the n-th cyclotomic identity is accomplished by gluing

together n isosceles triangles with apex angles 2�, 2�+2�=n, 2�+2(2)�=n; : : : ; 2�+

2(n � 1)�=n. The result is a polygon whose side lengths indicate that the right

and left hand sides of (4.13) are equal to one another. For the n = 2 case, the

situation is depicted in Figure 4.4. Assuming jOBj = 1 and considering the

isosceles triangle OBA, we have that

jABj = 2 sin 2�: (4.25)

On the other hand, we can also calculate jABj in terms of jCBj. The isosceles

triangleABC has apex angle ��2�, so jABj = jCBj(2 sin(�=2��)) = 2jCBj sin(�+
�=2). By considering the isosceles triangle OBC, we see that jCBj = 2 sin �.

Therefore,

jABj = (2 sin �)(2 sin(� + �=2)): (4.26)

Equating (4.25) and (4.26) gives the n = 2 cyclotomic identity.
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2sinθ

2θ2θ
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1

O

2sinθ

2sin(π/2−θ)

Figure 4.4: A geometric proof of the identity 2 sin 2� = (2 sin �)(2 sin(� + �=2))

We can repeat this procedure in the case of the n = 3 cyclotomic identity,

continuing to glue the side of each isosceles triangle to the base of the preceding

one, keeping the same orientation of the apex angle throughout the costruction.

The result is shown in Figure 4.5. It must be noted that the order in which the

trangles are glued does not matter, since it only a�ects the order of the terms in

the right hand side of (4.13). In the next section it will become clear how to

generalize this proof for higher n.

4.3.3 Obstacles in extending the geometric proof of the cy-

clotomic identities to a geometric proof of the Kubert

identities

In order to extend the results of the preceding subsection to a geometric proof

of the Kubert identities, we consider the vertices in Figures 4.4 and 4.5 as ideal

vertices at the plane at in�nity in the half-space model, and the edges in those

�gures as projections of geodesics onto the plane at in�nity. So we now view the

polygons as faces of polyhedra. In addition, we consider the point at in�nity and
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D
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2sinθ 2sin(2θ+2π/3)

1

2sin

Figure 4.5: A geometric proof of the identity 2 sin 3� = (2 sin �)(2 sin(� + 2�=3))
(2 sin(� + 4�=3))

the polyhedron G that results from taking the convex hull of the vertices plus

the point at in�nity. The Kubert identities then arise from equating two di�erent

triangulations of G.

Let us take a closer look at how this works in the cases n = 2 and n = 3. In

Figure 4.4

G = fO;B;C;1g+ fO;C;A;1g: (4.27)

A di�erent triangulation yields

G = fO;B;C;Ag+ fO;B;A;1g+ fA;B;C;1g: (4.28)

It is evident from Figure 4.4 that

fO;B;C;1g = fO;C;A;1g = 2L(�); (4.29)

and

fO;B;A;1g = 2L(2�); fA;B;C;1g = 2L(�=2� �) (4.30)

We calculate the dihedral angles of fO;B;C;Ag using the following lemma.
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b

c

a

d

bac

cdb

Figure 4.6: Calculating the dihedral angle between two planes in H 3

Lemma 5 The angle between two ideal hyperbolic triangles in fa; b; cg and fc; b; dg
in H 3 whose projection onto the plane at in�nity in the half-space model is shown

in Figure 4.6 is \bac + \cdb.

Proof . The angle between the hyperbolic triangles fa; b; cg and fc; b; dg is the
sum of the angle between fa; b; cg and fb; c;1g and the angle between fc; b; dg and
fb; c;1g. Considering the ideal hyperbolic tetrahderon fa; b; c;1g, we see that

by Lemma 1 in x1.2, the angle between fa; b; cg and fb; c;1g is equal to \bac,
since they are angles at opposite edges of fa; b; c;1g. Similarly, the angle between

fc; b; dg and fb; c;1g is equal to \cdb. This proves the lemma. 2

Remark 5 The above lemma depends on the orientation of the triangles and their

angles, which has been encoded in the notation. For example, reecting fc; b; dg
about the segment fc; bg negates the sign of \cdb.

With the help of the above lemma, we can easily calculate that

fO;B;C;Ag = T (� � 2�; �; �)

= 2L(�=2� �): (4.31)

Equations (4.27)-(4.31) yield

2L(�) = L(2�) + 2L(�=2� �): (4.32)

Since V (L(�)) = L(�), (4.32) is equivalent to the Kubert identity in the case n = 2.

For the n = 3 Kubert identity, we consider Figure 4.5 withG = fA;B;C;D;O;1g.
Adding the edge connecting points A and C completes the triangulation of G.
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On the one hand,

G = fO;B;C;1g+ fO;C;A;1g+ fC;B;D;1g+ fA;C;D;1g

= 2L(�) + 2L(2�) + 2L(� + �

3
) + T (

�

6
;
�

2
� �;

�

3
+ �)

= 2L(�) + 2L(2�) + 2L(� + �

3
) + L(�

6
) + L(�

2
� �) + L(�

3
+ �): (4.33)

On the other hand, G = fO;A;B; C;Dg + fA;B;D;1g + fA;O;B;1g. Since

fO;A;B; C;Dg = fO;A;C;Bg+ fA;B;C;Dg we have

G = fO;A;C;Bg+ fA;B;C;Dg+ fA;B;D;1g+ fA;O;B;1g

= T (� � 3�; 2�; �) + T (
�

2
+ �;

�

3
� �;

�

6
) + 2L(�

3
� �) + 2L(3�)

= L(� � 3�) + L(2�) + L(�) + L(�
2
+ �) + L(�

3
� �) + L(�

6
)

+2L(�
3
� �) + 2L(3�)

= L(2�) + L(�) + L(�
2
+ �) + 3L(�

3
� �) + L(�

6
) + L(3�): (4.34)

Equating (4.33) and (4.34) gives

L(�) + L(2�) + 3L(� + �

3
) + L(�

2
� �) = L(�

2
+ �) + 3L(�

3
� �) + L(3�): (4.35)

Now, L(�
2
� �) = �L(� + �

2
), and L(�

3
� �) = �L(� + 2�

3
). By Kubert n = 2

identity,

L(2�) = 2L(�) + 2L(� + �

2
); (4.36)

So (4.35) is equivalent to

3L(�) + 3L(� + �

3
) + 3L(� + 2�

3
) = L(3�); (4.37)

which is the Kubert n = 3 identity.

One can start to see the diÆculties in generalizing this method for higher n in

the n = 4 case. The geometric proof of the cyclotomic identities in this case is

shown in Figure 4.7 in solid lines. The diÆculties arise when we try to triangulate

the polyhedron fA;B;C;D;Eg. After we add the dashed edge fC;Dg and then

try to calculate the dihedral angles of the tetrahedron fC;B;E;Dg, we �nd that
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Figure 4.7: A geometric proof of the identity n = 4 cyclotomic identity shown in
solid lines. The dashed lines are needed in addition to the solid lines to prove the

Kubert n = 4 identities
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the angle  is a non-linear function of the angle �. This means that when we write

down the two di�erent triangulations of G = fA;B;C;D;E;O;1g, we can hope

to get the Kubert n = 4 identity only if all the terms involving  cancel each other!

It turns out that if we triangulate fA;B;C;D;Eg by simply adding the edges

fC;Dg and fC;Ag and carry out the calculations similar to the ones in the n = 2

and n = 3 cases, the terms involving  will not cancel. The problem is solved by

introducing the point F . In light of the n = 2 and n = 3 cases, both of which

had n isosceles triangles with apex angle 2� glued to one another, this is a natural

point to consider. We then express the polyhedron G = fA;B;C;D;E; F;O;1g
as follows.

G = fA; F;D;1g+ fF;C;D;1g+ fC;B;E;1g+ fC;E;D;1g

+fA;O; F;1g+ fF;O;C;1g+ fC;O;B;1g

= 2L(� + �

4
) + T (

�

4
� � � ;

�

2
+ �;

�

4
+ ) + 2L(� + �

4
)

+T (� + ;
3�

4
� �;

�

4
� ) + 2L(2�) + 4L(�)

= 2L(� + �

4
) + L(�

4
� � � ) + L(�

2
+ �) + L(�

4
+ ) + 2L(� + �

4
)

+L(� + ) + L(3�
4
� �) + L(�

4
� ) + 2L(2�) + 4L(�)

= 4L(� + �

4
) + L(�

4
� � � ) + L(�

2
+ �) + L(�

4
+ )

+L(� + ) + L(3�
4
� �) + L(�

4
� ) + 2L(2�) + 4L(�)

= 4L(� + �

4
) + L(�

4
� � � ) + 5L(�

2
+ �) + L(�

4
+ )

+L(� + ) + L(3�
4
� �) + L(�

4
� ) + 8L(�); (4.38)

where the last equality was obtained by applying the n = 2 Kubert identity.
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Alternatively,

G = fC;B;E;Dg+ fF;B; C;Dg+ fA;B; F;Dg+ fO;B;C; Fg

+fO;B; F;Ag+ fO;B;A;1g+ fA;B;D;1g+ fD;B;E;1g

= T (
�

2
+ �;

�

4
+ ;

�

4
� � � ) + T (

3�

4
� �;

�

4
� ; � + ) + 2L(�

4
� �)

+2L(�
2
� �) + 2L(�

2
� 2�) + 2L(4�) + 2L(�

4
� �) + 2L(�

2
� �)

= L(�
2
+ �) + L(�

4
+ ) + L(�

4
� � � ) + L(3�

4
� �) + L(�

4
� ) +

L(� + ) + 2L(�
4
� �) + 2L(�

2
� �) + 2L(�

2
� 2�) + 2L(4�)

+2L(�
4
� �) + 2L(�

2
� �)

= L(�
2
+ �) + L(�

4
+ ) + L(�

4
� � � ) + L(3�

4
� �) + L(�

4
� )

+L(� + ) + 4L(�
4
� �) + 4L(�

2
� �) + 2L(�

2
� 2�) + 2L(4�)

= L(�
2
+ �) + L(�

4
+ ) + L(�

4
� � � ) + 5L(3�

4
� �) + L(�

4
� )

+L(� + ) + 8L(�
4
� �) + 4L(�

2
� �) + 2L(4�); (4.39)

where the last equality was obtained by applying the n = 2 Kubert identity.

Comparing equations (4.38) and (4.39), we see that all the terms involving 

cancel each other, and we are left with the n = 4 Kubert identity.

This fortuitous turn of events does not occur in the n = 5 case. Of all the

points that were added to the cyclotomic n = 5 proof, every one resulted in a

number of angles such as , and the terms involving them in the triangulation of

G did not cancel. This indicates that one needs a further algebraic insight into

this problem in order to solve it for the general n. This insight was provided by

Dupont and Sah in [5].
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4.4 A scissors congruence proof of the Kubert

identities based on the algebraic proof of Du-

pont and Sah

4.4.1 Dupont and Sah's proof of the Kubert identities

In [5] Dupont and Sah give an algebraic proof of a slightly generalized form

of the Kubert identities. In fact, they show that L(n�) is scissors congruent to
n
P

n�1
j=0 L(� + j�=n) using purely algebraic techniques.

In order to state their result we �rst need to introduce some notation. Consider

an ideal tetrahedron in the half-space model, and identify the half-space model with

the extended complex plane C [1. Then this tetrahedron can be determined up

to orientation by the cross ratio of the complex coordinates of its vertices, which

is de�ned as follows.

De�nition 9 Let a; b; c; d 2 C [ 1. Then the cross ratio of a; b; c; d, denoted as

(a; b; c; d), is de�ned as
(a�c)(b�d)

(a�d)(b�c)
.

Following the convention in [5], we will denote the ideal tetrahedron with ver-

tices f1; 0; 1; zgwhose projection onto the plane at in�nity is shown in Figure 4.8a)
as fzg. This tetrahedron can also represented as f1=(1 � z)g or f(z � 1)=zg as
shown in Figure 4.8. The tetrahedron in b) was obtained by scaling the tetrahe-

dron in a) by a factor of 1=z and rotating it, and the tetrahedron in c) is a result of

scaling the tetrahedron in a) by a factor of 1=(1� z) and rotating it. Since scaling

and rotation are hyperbolic isometries, all three tetrahedra are isometric to each

other.

Note that �f1=zg = fzg in the sense that f1=zg is isometric to fzg by an

orientation reversing isometry. This can be seen in Figure 4.9a), which shows

that the tetrahedron �f1=zg = f1; 1=z; 1; 0g can be obtained from the tetrahe-

dron fzg = f1; 0; 1; zg by multiplication by z, which is an orientation-preserving

isometry. Similarly, Figure 4.9b) shows that �f1� zg = fzg.
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Figure 4.8: An illustration of the three ways to describe an ideal hyperbolic tetra-
hedron by its cross ratio. The triangles in a), b) and c) are all similar to each
other.
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1a

2a

3a

4a

0a

Figure 4.10: Geometric interpretation in the Klein model of the cocycle relation

as stating that the union along faces of two hyperbolic tetrahedra can be divided
into three tetrahedra

The cross ratio is subject to the cocycle relation:

4X
j=1

(�1)jfa0 : � � � : eaj : � � � : a4g = 0; (4.40)

for any aj 2 C [1. One can interpret (4.40) as stating that there are two ways to

triangulate a the convex hull of 5 distinct points in hyperbolic space, as shown in

Figure 4.10. The �ve tetrahedra on the left hand side (4.40) can be viewed as the

boundary of a 4-simplex that has been collapsed to 3-space. The cocycle relation

is key in the proof of the following theorem of Dupont and Sah.

Theorem 4 (Dupont-Sah)

fzng = n

n�1X
j=0

f�jzg; (4.41)

where � is a primitive n-th root of unity.

When z = ei2��, fzg is an isosceles ideal tetrahedron with apex angle arg z.

In that case the left hand side of (4.41) becomes L(n�), while the right hand side
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becomes n
P

n�1
j=0 L(�+j�=n). However, jzj = 1 need not be true for (4.41) to hold.

So (4.41) is a generalization of the Kubert identitites.

We now give an outline of Dupont and Sah's proof. Details can be found in

[5] and [4]. Following Bloch in [1], Dupont and Sah de�ne the operation � on two

rational functions in C (x) as follows:

Let f(t) = a
Q
(�i� t)d(i); and g(t) = b

Q
(�i� t)e(i); d(i) 2 Z, where d(i); e(i) 2

Z; the �i 2 C are distinct, and the �i 2 C distinct. Then de�ne

f� � g =
X
i;j

d(i)e(j)f��1
i
�jg; (4.42)

where the sum extends over i and j and the expression is 0 if f or g 2 C . f� � g is
clearly bimultiplicative (that is, f� � (gh) = f� � g� � h) and, in view of the fact

that �f1=zg = �fzg, alternating. The key ingredient in the proof of Theorem 4

is the fact that

f� � (1� f) = ff(0)g � ff(1)g (4.43)

for all f 2 C (t). We will assume this fact for now, and return to its proof shortly.

Next, we consider

f(t) =
1� tn

1� zn
:

Since � is a primitive n-th root of unity, we can write

f(t) =

Q
0�j�n�1(�

j � t)

1� zn
;

so that

1� f(t) =

Q
0�j�n�1(�

jz � t)

zn � 1
:

Then by the de�nition (4.42),

f� � (1� f) = n
X

0�j�n�1

f�jzg; (4.44)

while by Theorem 4

f� � (1� f) = ff(0)g � ff(1)g = f 1

1� zn
g � f1g = fzng: (4.45)



92

Comparing equations (4.44) and (4.45) proves the theorem.

The proof of the identity (4.43) ultimately boils down to induction on the

maximum degree of the numerator and denominator of f , which is done in [4]. To

begin with, Dupont and Sah de�ne the set H = ff 2 C jf obeys (4.43)g and prove

that H has the following three properties:

(i) (at+ b)=(ct + d) 2 H for all a; b; c; d 2 C with ct+ d 6= 0.

(ii) f 2 H implies that 1� f 2 H and that f�1 2 H when f 6= 0.

(iii) If f1, f2, f2=f1, and (1� f2)=(1� f1) 2 H, then (1� f2)f1=((1� f1)f2) 2 H.

Proof of property (i). Let f(t) = (at+ b)=(ct+d), so that 1�f(t) = ((c�a)t+
(d� b))=(ct + d). Then

f� � (1� f) = f(d� b)a

(c� a)b
g � f (d� b)c

(c� a)d
g+ f bc

da
g

= fz1(1� z2)

z2(1� z1)
g � f1� z2

1� z1
g+ fz2

z1
g; (4.46)

where z1 = a=c and z2 = b=d. On the other hand,

ff(0)g � ff(1)g = fb=dg � fa=cg

= fz2g � fz1g (4.47)

But

fz1g � fz2g+ f
z1(1� z2)

z2(1� z1)
g � f1� z2

1� z1
g+ fz2

z1
g = 0 (4.48)

by the cocycle relation (4.40), where

fa0; a1; a2; a3; a4g = f1; 0; 1; z1; z2g

for some z1; z2 2 C . Property (i) then follows from the cocycle relation.

Proof of property (ii). De�ne L(f) = f��(1�f) and R(f) = ff(0)g�ff(1)g.
Then

L(f) + L(f�1) = 0 and L(f) + L(1� f) = 0 (4.49)
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easily follow from the fact that f� � g is alternating. Letting R(f) = ff(0)g �
ff(1g, we see that

R(f) +R(f�1) = 0 and R(f) +R(1� f) = 0; (4.50)

since, as noted earlier, fzg = �f1=zg = �f1 � zg. Equations (4.49) and (4.50)

imply that if L(f) = R(f), then L(1� f) = R(1� f) and L(f�1) = R(f�1). This

proves property (ii).

Proof of property (iii). Using just the fact that f� � g is bimultiplicative and

alternating, Dupont and Sah prove that for any f1; f2 2 C (t)

L(f1)�L(f2)+L(f2=f1)�L((1�f2)=(1�f1))+L((1�f2)f1=(1�f1)f2) = 0: (4.51)

The reader is referred to the proof of Lemma 5.17 in [5] for details. Relation (4.51)

holds equally well if L is replaced by R, as can be easily veri�ed by using (4.48).

Property (iii) then follows.

What remains to be shown is

H = C (t): (4.52)

A generalization of this result is proved by Dupont and Poulsen in [4]. The outline

of their proof goes as follows.

Let deg(P ) denote the degreee of a polynomial P = P (x), and de�ne

Hk = ff = P=Q 2 H j deg(P ) � k; deg(Q) � kg: (4.53)

Dupont and Poulsen then proceed to show that Hk � H by induction on k. The

base case of the induction was already proved by Property (i) above, which showed

that all linear fractional transformations are in H. For the induction step, assume

that H � M for k � 1, and consider f 2 Hk+1 of the form P=Q with degP =

degQ. It is suÆcient to consider only f of this form by Property (ii). Let

f(x) =
P1(x)(x� a)

Q1(x)(x� b)
; (4.54)
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where deg(P1) = deg(Q1) = k, a 6= b, and Q1(a) 6= 0. The authors then give a

procedure for �nding polynomials f1; f2 2 Hk such that

f =
f1(1� f2)

f2(1� f1)
: (4.55)

They choose f1 and f2 of the form

f1(x) =
P1(x)

R(x)(x� d)
; f2(x) = c

x� b

x� d
; (4.56)

where c, d, and the polynomial R are determined from the equation f = f1(1 �
f2)=[f2(1 � f1)] using f , f1 and f2 from (4.54) and (4.56). After making the

necessary substitutions we see that the condition we need is

c(x� a)(x� d)R(x) = [(x� d)� c(x� b)]Q1(x) + c(x� a)P1(x): (4.57)

Equation (4.57) can only hold if d is a root of the right hand side. That is, as long

as c 6= 0, we should have

(d� b)Q1(d) = (d� a)P1(d): (4.58)

Looking back at (4.54), we see that d must be chosen to satisfy

f(d) = 1: (4.59)

If there does not exist d that satis�es (4.59), f can be replaced by F = f Æ ',
where '(x) = 1=x. In that case, F (0) = 1. It then follows by a Lemma in [4] that

f = F Æ ' 2 H. Therefore, we can assume, without the loss of generality, that

a solution to (4.59) does exist. We �nd the constant c that appears in (4.57) by

enforcing the condition that the right hand side of (4.57) must vanish when x = a.

This leads to

[(a� d)� c(a� b)]Q1(a) = 0: (4.60)

Since Q1(a) 6= 0 and a 6= b, c is determined by

c = (a� d)=(a� b): (4.61)
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Once d and c have been determined such that they are both roots of the right hand

side of (4.57), R is uniquely determined as a polynomial of degree at most k � 1,

and the proof is complete. Note that in general there is more than one way to �nd

R since if the numerator or the denominator of f is of degree at least 2, one makes

a choice in picking the a or the b in (4.54).

4.4.2 The method used to apply Dupont and Sah's proof

to a get a geometric proof of the Kubert identities

In order to use the proof in x4.4.1 to produce a picture of how the various

tetrahedra in the Kubert identities �t together, we go through all the steps of the

proof Theorem 4 using

f(t) =
tnzn � 1

tn � 1
(4.62)

in place of Dupont and Sah's f(t) = 1�tn

1�zn
. The f in (4.62) has the property

f� � (1� f) = �n
n�1X
j=0

f�jzg;

and its numerator and denominator are of equal degrees. Therefore, we can show

that f 2 H = ff 2 C jf obeys (4.43)g by going through the steps of the inductive

proof of Dupont and Poulsen, as described in x4.4.1. We illustrate the process in

the cases n = 2; 3; 4 of the Kubert identities.

4.4.3 \Geometrization" of Dupont and Sah's proof of the

Kubert identity n=2

We wish to see the geometry underlying Dupont and Sah's proof of the Kubert

identity in the case n = 2. This is equivalent to the geometry in the proof of

f� � (1� f) = ff(0)g � ff(1g when

f(x) =
x2z2 � 1

x2 � 1
: (4.63)
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Following the proof of Dupont and Poulsen described in x4.4.1, we write

f(x) =
P1(x)(x� 1=z)

Q1(x)(x� 1)
;

where

P1(x) = z2(x + 1=z) and Q1(x) = x + 1: (4.64)

This is similar to (4.54) with

a = 1=z and b = 1: (4.65)

Solving (4.59) with f given by (4.63), we have

d = 0: (4.66)

Equation (4.61) gives

c =
1

1� z
: (4.67)

Substituting (4.64)-(4.67) into (4.57) gives

R(x) = z2 � z: (4.68)

It follows by (4.56) that

f1(x) =
P1(x)

R(x)(x� d)

=
zx + 1

(z � 1)x
(4.69)

and

f2(x) = c
x� b

x� d

=
1� x

(z � 1)x
: (4.70)

Therefore,
f1

f2
=

1 + xz

1� x
(4.71)
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h h(0) h(1)

f1 = (zx + 1)=[(z � 1)x] 1 z=(z � 1)

f2 = (1� x)=[(z � 1)x] 1 1=(1� z)

f1=f2 = (1 + xz)=(1� x) 1 �z
(1� f2)=(1� f1) = (1� xz)=(1 + x) 1 �z
f1(1� f2)=[f2(1� f1)] = (x2z2 � 1)=(x2 � 1) 1 z2

Table 4.1: Values of f1, f2, f1=f2, (1� f2)=(1� f1), f1(1� f2)=f2=(1� f1) at 0 and
1

and
1� f2

1� f1
= � 1� xz

(1 + x)
: (4.72)

From the equations (4.69)-(4.72) one can easily �gure out the values in Table 4.1.

Recalling the de�nition R(f) = ff(0)g � ff(1)g and (4.63) we �nd that

R(f) = f1g � fz2g = �fz2g (4.73)

On the other hand, we see from Table 4.1 that

R(f1)�R(f2)�R(
f1

f2
)� R(

1� f2

1� f1
) = f z

z � 1
g � f 1

1� z
g � f�zg � f�zg

= �2fzg � 2f�zg: (4.74)

By (4.48) and (4.55), the left hand sides of (4.73) and (4.74) are equal to each

other. Therefore,

fz2g = 2fzg + 2f�zg; (4.75)

which is the generalized Kubert identity in the case n = 2. Note that in this case

there was no need to go further in the induction process by proving that f1, f2,

f1=f2, and (1�f2)=(1�f1) all obey (4.43) since this is evident by simply applying

the de�nition (4.42).

The above proof shows that the generalized n = 2 Kubert identity can be

proved using only the relation (4.48) with z1 = z2 = z. The half-plane model

of the proof can be seen in Figure 4.11. In that �gure, f1 : 0 : 1 : z2g =

fz2g = ff(1)g, with f de�ned in (4.63). The other 4 tetrahedra in the �gure
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1

z

z 2

Figure 4.11: A geometric proof of the generalized Kubert identity fz2g = 2fzg +
2f�zg

are f1 : 0 : 1 : zg = fzg = �ff1(1)g, f1 : 0 : z : z2g = fzg = ff2(1)g,
f1 : z2 : z : 0g = f�zg = ff1(1)=f2(1)g, and fz : 1 : z2 : 1g = f�zg =

f(1� f2(1))=(1� f1(1)g. (Admittedly, there were some arbitrary choices made

in matching a given tetrahedron with the terms on the left hand side of (4.74).)

Thus, the identity (4.75) can be read o� Figure 4.11. In the case jzj = 1, Figure 4.11

becomes Figure 4.4, up to rotation. In fact, if one views Figure 4.11 as living in

the Euclidean plane, it becomes a geometric proof of the exponential version of

the cyclotomic identity

z2 � 1 = (z + 1)(z � 1): (4.76)

For if we think of complex numbers as vectors, Figure 4.11 shows that the vector
�!

1z2 (representing the complex number z2�1) equals
�!

1z +
�!

zz2=
�!

1z +z(
�!

1z ), which,

by the distributive property, is equivalent to (z + 1)(z � 1). Thus Figure 4.11

can be viewed as a graphical representation of multiplication of complex numbers,

Figure 4.4 is a special case of Figure 4.11 when jzj = 1.
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4.4.4 \Geometrization" of Dupont and Sah's proof of the

Kubert identity n=3

In order to use Dupont and Sah's result to produce a geometric proof of the

n = 3 Kubert identity, the cocycle relation (4.48) needs to be applied repeatedly.

We give a brief overview of this process before describing it in detail. To begin with,

the cocycle relation states that the tetrahedron fz3g equals 4 other tetrahedra.

Then we apply the cocycle relation to 3 of those 4 tetrahedra as follows: we

attach a new tetrahedron to one of the 4 tetrahedra, and we divide the union of

2 tetrahedra into 3 in the manner of Figure 4.10. We continue this process of

replacing a tetrahedron by 4 other tetrahedra as dictated by the cocycle relation

until we arrive at equation (4.41) in the case n = 3. Our goal is to come up with a

concrete simplicial chain comprised by the tetrahedra 3fzg, 3fexp(2�i=3)zg, and
3fexp(4�i=3)zg whose boundary equals to the boundary of the tetrahedron fz3g.

In this process following Dupont and Poulsen's induction proof one has to make

certain choices. For example, any time one writes

f(x) =
x3z3 � 1

x3 � 1
:

as

f(x) =
P1(x)(x� a)

Q1(x)(x� b)
;

one needs to choose which of the 3 roots of unity to make a and b. As expected,

the choice of a primitive root of unity is unimportant because it corresponds to

the order in which one multiplies the terms z�! and z�!2 with ! = exp(2�i=3).

The more diÆcult choice one must make is to which face of a given tetrahedron

one should attach a new tetrahedron. Once a face is �xed, there is only one way

a new tetrahedron can be attached in order to get the correct 5-term relation. So,

for instance, in Figure 4.10 if only the bottom tetrahedron were rotated so that

the vertices a1, a2, and a3 were acted on by the permutation (1 2 3), and then

glued back to the top one, the line fa0; a4g would divide the resulting polyhe-

dron into 3 tetrahedra that are completely di�erent from the original 3 tetrahedra
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fa0; a1; a2; a4g, fa0; a2; a3; a4g, fa0; a3; a1; a4g.
Given any one of the 4 faces of fa0; a1; a2; a3g there is exactly one way to to glue

to it the tetrahedron fa1; a2; a3; a4g so that the result is isometric to the polyhedron

in Figure 4.10. This is due to the fact that the dihedral angles at each vertex of

an ideal hyperbolic tetrahedron are the same, as discussed in x1.2.
The steps of the Dupont-Poulsen-Sah proof specify which new tetrahedra need

to be attached, and how they need to be attached, but they do not specify which

face they need to be attached to. Certainly, the choice of the face does not a�ect the

validity of the proof, so that one could program a computer to generate a (possibly

very messy) diagram that embodies the Dupont-Poulsen-Sah proof. However, with

a proper choice of faces, it can be demonstrated that the geometric version of the

proof of Theorem 4 is based on and implies the geometric proof of the cyclotomic

identities that was presented in x4.3.2. We will now demonstrate how this works.

We start out with

f(x) =
x3z3 � 1

x3 � 1
: (4.77)

Since f(0) = 1,

d = 0: (4.78)

We write

f(x) =
P1(x)(x� a)

Q1(x)(x� b)
;

and choose

a = 1=z and b = 1: (4.79)

Then (4.61) gives

c = 1=(1� z): (4.80)

Also, we have

P1(x) = (x� !=z)(x� !2=z)z3 (4.81)

and

Q1(x) = (x� !)(x� !2); (4.82)
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h h(0) h(1)

f1 =
z
2(x�!=z)(x�!2=z)

x(z�1)(1+x+xz)
1 z2=(z2 � 1)

f2 =
x�1

x(1�z)
1 1=(1� z)

f1

f2
= � z2(x�!=z)(x�!2=z)

(x�1)(1+x+xz)
1 �z2=(z + 1)

1�f2
1�f1

= � z(z+1)(x+1=(z+1))(x�1=z)

(x�!)(x�!2)
1 �z(z + 1)

f1(1�f2)

f2(1�f1)
= x

3
z
3�1

x3�1
1 z3

Table 4.2: Values of f1, f2, f1=f2, (1� f2)=(1� f1), f1(1� f2)=f2=(1� f1) at 0 and
1

where ! = exp(2�i=3) for the rest of this subsection. Then by (4.57)

R(x) = (z � 1)z(1 + x + xz); (4.83)

and by (4.56)

f1(x) =
z2(x� !=z)(x� !2=z)

x(z � 1)(1 + x+ xz)
(4.84)

and

f2(x) =
x� 1

x(1� z)
: (4.85)

It follows that
f1

f2
= �z

2(x� !=z)(x� !2=z)

(x� 1)(1 + x + xz)
(4.86)

and
1� f2

1� f1
= �z(z + 1)(x+ 1=(z + 1))(x� 1=z)

(x� !)(x� !2)
: (4.87)

Using equations (4.84)-(4.87) we generate the data in Table 4.2. Using the values

in Table 4.2 and the fact that

R(f) = �R(f1) +R(f2) +R(
f1

f2
) +R(

1� f2

1� f1
); (4.88)

where R(f) = ff(0)g � ff(1)g, we get the relation

fz3g = �f z2

z2 � 1
g+ f 1

1� z
g+ f� z2

z + 1
g+ f�z(z + 1)g: (4.89)

Figure 4.12a) shows the simplices corresponding to each term in the equation

above. The correspondence is fz2=(z2 � 1)g = f1; 0; z; z3g, f1=(1 � z)g =
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f1; 1; 0; zg, f�z2=(z + 1g = f0; z; 1; z3g, and f�z(z + 1)g = f1; 1; z; z3g. Thus

we can now convert (4.89) into a statement involving simplicial complexes:

f1; 1; 0; z3g = �f1; 0; z; z3g+ f1; 1; 0; zg+ f0; z; 1; z3g+ f1; 1; z; z3g: (4.90)

Taking the boundary of a 3-simplex using the formula

@(fv0; v1; v2; v3g) =
3X

i=0

fv0; � � � ; v̂i; � � � ; v3g; (4.91)

we can easily compute the boundaries of both sides of (4.90) and see that they are

equal.

Proceeding with the iterative proof, we now need to show that f1, f2, f1=f2,

and (1� f2)=(1� f1) all satisfy (4.43). For f1 = (z2(x � !=z)(x� !2=z))=(x(z �
1)(1 + x + xz)) we repeat the procedure that was just used for f . The auxiliary

functions used in the following proof will be denoted as P1(f1); f1(f1), etc.

f1(x) = 1 has solutions ! and !2. We choose

d = !: (4.92)

Then we choose

a = !=z and b = 0; (4.93)

so that by (4.61)

c = 1� z: (4.94)

Then

P1(f1)(x) = (x� !2=z)z2 (4.95)

and

Q1(f1)(x) = (z � 1)(1 + x+ xz); (4.96)

and, by (4.57),

R(x) = �z: (4.97)

It follows by (4.56)

f1(f1)(x) = �
z(x � !2=z)

x� !
(4.98)
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z
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z
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Figure 4.12: A geometric proof of the generalized Kubert identity fz3g = 3fzg +
3f!zg+ 3f!2zg, where ! = exp(2�i=3)
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h h(0) h(1)

f1(f1) =
�z(x�!2=z)

x�!
�! �z

f2(f1) =
x(1�z)

x�!
0 1� z

f1(f1)

f2(f1)
= z(x�!2=z)

x(z�1)
1 z

z�1
1�f2(f1)

1�f1(f1)
= z(x�!=z)

1+x+xz
�! z=(z + 1)

f1(1�f2(f1))

f2(1�f1(f1))
= z

2(x�!=z)(x�!2=z)

x(z�1)(1+x+xz)
1 z2

z2�1

Table 4.3: Values of f1(f1), f2(f1), f1(f1)=f2(f1), (1� f2(f1))=(1� f1(f1)), f1(1�
f2)=f2=(1� f1) at 0 and 1

and

f2(f1)(x) =
x(1� z)

x� !
: (4.99)

Then
f1(f1)(x)

f2(f1)(x)
=
z(x� !2=z)

x(z � 1)
(4.100)

and
1� f2(f1)(x)

1� f1(f1)(x)
=
z(x� !=z)

1 + x + xz
: (4.101)

We now have all the data necessary to generate Table 4.3. Applying (4.88) to the

values in Table 4.3, we get

f z2

z2 � 1
g = �f�zg + f1� zg+ f z

z � 1
g+ f z

z + 1
g (4.102)

Therefore, we can now replace f z
2

z2�1
g in (4.89) with the right hand side of (4.102).

This brings us a step closer to proving (4.41) for the case n = 3, since the terms

�f1� zg = �f z

z�1
g = fzg actually appear on the right hand side of (4.41).

In order to implement this move geometrically, we need to attach one of the

four simplices on the right hand side of (4.102) to the simplex f z2

z2�1
g in such a

way that the resulting two tetrahedra triangulate to give the 3 simplices that are

left over. In Figure 4.12a) it is the tetrahedron f1; 0; z; z3g that has cross ratio
z2

z2�1
. We �nd that attaching to it the tetrahedron f0; z; z2; z3g = f�zg as shown

in Figure 4.12b) gives us the simplicial chain version of (4.102),

f1; z; 0; z3g = �f0; z2; z; z3g+ f1; 0; z; z3g+ f1; 0; z2; z3g+ f1; z2; z; z3g;
(4.103)
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since f1; 0; z; z2g = f1 � zg, f1; 0; z2; z3g = fz=(z � 1)g, and f1; z2; z; z3g =
z=(z + 1).

The next step in the iterative process is to show that f1(f1) = �z(x�!2=z)=(x�
!) satis�es (4.43). Since f1(f1) is just a linear fractional transformation, we can

use the proof of Property(i) in x4.4.1 for this. That proof tells us that for f of the

form f(x) = (ax+ b)=(cx + d),

f(1) = fa
c
g = �f(d� b)a

(c� a)b
g+ f (d� b)c

(c� a)d
g+ fda

bc
g+ f b

d
g (4.104)

Substituting a = �z, b = !2, c = 1, and d = �! gives the relation

f�zg = �f� !z

z + 1
g+ f �!

2

z + 1
g+ f!2zg+ f�!g: (4.105)

We implement (4.105) in terms of simplicial complexes by gluing the tetrahedron

fz; z2; z3; xg, where x = z=(!(z�1)+z), on to the face fz; z2; z3g of the tetrahedron
f0; z; z2; z3g. This is shown in Figure 4.12c). Applying the cocycle relation to these
two tetrahedra gives

f0; z2; z; z3g = �f0; z3; z; xg + fz3; z; z2; xg+ f0; z3; z2; xg+ f0; z2; z; xg: (4.106)

Why we chose to attach fz; z3; z2; xg to this particular face of f0; z2; z; z3g will
become clear later.

Coming back to the expression for f2(f1) given in (4.99), we �nd that f2(f1)

satis�es (4.43) just by de�nition. Therefore, we need not construct any simplices

to prove this geometrically. The same goes for f1(f1)=f2(f1) given by (4.100). As

for (1� f2(f1))=(1 � f1(f1)), it is a linear fractional transformation, as shown by

(4.101). So we prove that it satis�es (4.43) the same way as we did for f1(f1).

Applying (4.104) with a = z, b = �!, c = z + 1 and d = 1, we have

f z

z + 1
g = �f!zg+ f�!2(z + 1)g+ f� !2z

z + 1
g+ f�!g: (4.107)

The simplicial complex version of (4.107) is

f1; z2; z; z3g = �f1; y; z2; z3g+ f1; y; z; z3g+ fy; z2; z; z3g+ f1; z; y; z2g;
(4.108)
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where y = z � z(z � 1)!. The simplices in (4.108) are shown in Figure 4.12d).

It remains to be shown that f1=f2 and (1�f2)=(1�f1) satisfy (4.43) (f2 satis�es
(4.43) by de�nition). This will require two applications of the cocycle equation.

The unexpected result is that we need not introduce any more points in order to

implement these two cocycle equations in terms of simplices. This is not at all

obvious! Certainly, we could get a valid geometric proof of the generalized Kubert

identity by introducing two more new points, just as we introduced the points z2,

x = z2=(!(z � 1) + z), and y = z � z(z � 1)!. However, if we attach the new

tetrahedra in a certain way, the introduction of new points will be avoided. Thus,

in the end we will need only the vertices of the polygon in Figure 4.12f). In the

case jzj = 1 this diagram is none other than the rotated diagram of Figure 4.5

with vertices z2 and x added. The correspondence between the vertices other than

these two in the two diagrams is

O ! 0; B  ! 1; C  ! z; A ! z3; D  ! y

The fact that Figure 4.5 is just a special case of Figure 4.12f) means that Figure 4.5,

and hence Dupont and Sah's proof of the generalized Kubert identities actually

implies the trigonometric cyclotomic identities. This fact can be easily proved

analytically by simply di�erentiating both sides of (4.2) with respect to � and

then exponentiating both sides. Figure 4.12f) is a geometric proof of this fact.

We now �nish the geometrization of Dupont's and Sah's proof by showing that

f1=f2 and (1�f2)=(1�f1) satisfy (4.43). We spare the reader of any more tedious

computations and summarize the relevant data. For f1=f2 (see (4.86)) we choose

a = !=z and b = 1. For (1�f2)=(1�f1) (see (4.87)) we choose a = 1=z and b = !.

Both (4.86) and (4.87) have value 1 only when x = 0, so we choose d = 0 for both

f1=f2 and (1� f2)=(1� f1).

The rest of the information we need is contained in the �rst columns of Table 4.4

and Table 4.5. All the linear fractional transformations in Tables 4.4 and 4.5

satisfy the relation (4.43) by de�nition, so we need not introduce any simplices in

addition to the ones listed in these tables.
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h h(0) h(1) Simplex representing

fh(1)g in Fig. 4.12e)

f1(
f1

f2
) = � (x�!2=z)z

x(�!2+!z)
1 1

1+(z+1)=!z
f0; z; z3; xg

f2(
f1

f2
) =

!(x�1)

x(!�z)
1 1

1�!2z
f0; z; 1; xg

f1(
f1

f2
)=f2(

f1

f2
) = !xz�1

x�1
1 !z f0; x; 1; z3g

1�f2(
f1
f2
)

1�f1(
f1
f2
)
= 1�!2xz

1+x+xz
1 �!2z

z+1
f1; z; z3; xg

f1(
f1
f2
)(1�f2(

f1
f2
))

f2(
f1
f2
)(1�f1(

f1
f2
))
= � (x�!=z)(x�!2=z)z2

(x�1)(1+x+xz)
1 � z

2

z+1
f0; z; 1; z3g

Table 4.4: Data needed to prove that f1(x)

f2(x)
= � (x�!=z)(x�!2=z)z2

(x�1)(1+x+xz)
obeys the relation

(4.43)

h h(0) h(1) Simplex representing
fh(1)g in Fig. 4.12f)

f1(
1�f2
1�f1

) =
(x+ 1

z+1
)(z+1)

x(z�!2)
1 1

1+ !
z+1

f1; z; y; z3g
f2(

1�f2
1�f1

) = !�x

x(!z�1)
1 1

1�!z
f1; y; 1; zg

f1(
1�f2
1�f1

)=f2(
1�f2
1�f1

) = �!(x+ 1
z+1

)(z+1)

x�!
1 �!(z + 1) f1; z; y; z3g

1�f2(
1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
= xz�1

!x�1
1 !2z f1; 1; y; z3g

f1(
f1
f2
)(1�f2(

f1
f2
))

f2(
f1
f2
)(1�f1(

f1
f2
))
= 1 �z(z + 1) f1; 1; z; z3g

� (x+1=(z+1))(x�1=z)z(z+1)

(x�!)(x�!2)

Table 4.5: Data needed to prove that 1�f2(x)

1�f1(x)
= � (x+1=(z+1))(x�1=z)z(z+1)

(x�!)(x�!2)
obeys the

relation (4.43)
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Summarizing the information contained in equations (4.89), (4.102), (4.105),

(4.107) and the third columns in Tables 4.4 and 4.5 we get

fz3g = �f� !z

z + 1
g+ f �!

2

z + 1
g+ f!2zg + f�!g � f1� zg � f z

z � 1
g+ f!zg

� f�!2(z + 1)g � f� !2z

z + 1
g � f�!g+ f 1

1� z
g � f 1

1 + (z + 1)=!z
g

+ f 1

1� !2z
g+ f!zg+ f�!

2z

z + 1
g � f 1

1 + !

z+1

g+ f 1

1� !z
g

+ f�!(z + 1)g+ f!2zg: (4.109)

The simplicial complex version of (4.109) is obtained from (4.90), (4.103), (4.106),

(4.108):

f1; 1; 0; z3g = �f0; z3; z; xg + fz; z2; z3; xg+ f0; z3; z2; xg+ f0; z2; z2; xg

� f1; z; 0; z2g � f1; z2; 0; z3g+ f1; y; z2; z3g � f1; y; z; z3g � fy; z2; z; z3g

� f1; y; z; z2g+ f1; 1; 0; zg � f0; z; z3; xg+ f0; z; 1; xg+ f0; x; 1; z3g

+ f1; z; z3; xg � f1; z; y; z3g+ f1; y; 1; zg+ f1; z; y; z3g+ f1; 1; y; z3g: (4.110)

An easy calculation shows that the boundary of both sides of (4.110) is equal.

Thus (4.110) is a homological proof of the generalized n = 3 Kubert identity. One

can also see from equations (4.109) and (4.110) that the terms corresponding to

the simplices f� !z

z+1
g = f0; z3; z; xg and f�!2(z + 1)g = f1; y; z; z3g cancel each

other even without going to the boundary equation. This is due to the way the

right hand side of (4.110) is constructed, and is not an obvious consequence of

Dupont and Sah's proof.

4.4.5 \Geometrization" of Dupont and Sah's proof of the

Kubert identity n=4

As expected, producing the geometric version of Dupont and Sah's proof in the

case n = 4 is considerably more involved than in the case n = 3. For one thing,
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one now needs to use the roots of the polynomial

p(x) = 1 + x(1 + z) + x2(1 + z + z2): (4.111)

In general, to follow throgh Dupont and Sah's proof for n, one needs to solve the

polynomial equations

1 + x(1 + z) + � � �+ xn�2(1 + z + � � �+ zn�2) = 0 (4.112)

for x. When n = 3, (4.112) is just the linear equation

1 + x(1 + z) = 0;

which occured, in, for example, the denominator of (4.84).

The solutions of (4.111) are

�1� z � s

2(1 + z + z2)
;

where

s =
p
�3� 2z � 3z2: (4.113)

The notation in (4.111) and (4.113) will be used for the rest of this subsection, and

! will denote
p
�1. The �nal diagram is shown in Figure 4.13. In order to avoid

making this diagram too cluttered, all the vertices but not all the edges have been

shown. Note that when rotated, the diagram in Figure 4.13 in the case jzj = 1

contains the diagram in Figure 4.7. The coordinates of the vertices in Figure 4.13
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h h(1) Simplex representing

fh(1)g in Fig. 4.13

f1 =
(x�!=z)(x�!2=z)(x�!3=z)z3

x(z�1)p(x)
z3

z3�1
f1; 0; z; z4g

f2 =
x�1

x(1�z)
1

1�z
f1; 0; z3; z4g

f1

f2
= � (x�!=z)(x�!2=z)(x�!3=z)z3

(x�1)p(x)
� z3

1+z+z2
f1; z; 1; z4g

1�f2
1�f1

= � z(x�1=z)p(x)

(x�!)(x�!2)(x�!3)
�z(1 + z + z2) f1; 1; z; z4g

f1(1�f2)

f2(1�f1)
= x4z4�1

x4�1
z4 f1; 1; 0; z4g

Table 4.6: Expanding fz4g by the cocycle relation; a = 1=z, b = 1, d = 0.

are as follows:

r = z + !3(z2 � z)

t = z(! + z � !z2)

b1 =
1

2
z(2 + ! � !z2 � !(z � 1)s)

b2 =
z(1 + 3z + z2 + z3 + (z2 � 1)s)

2(1 + z + z2)

b3 =
z(1� ! + (2� !)z + z2 + 2z3 + (1� ! + z)s

2 + z(1� ! + z)(1 + z + s)

g1 =
z(1 + z � !z3)

1� ! + z

g2 =
!z3

z2 + z! � 1

g3 = !(1� z3) + z (4.114)

where s =
p
�3� 2z � 3z2.

Rather than go through all the steps needed to generate the diagram in Fig-

ure 4.13 the way we did in x4.4.4, we have summarized the necessary data in

Tables 4.6- 4.20. As in the case n = 3, replacing R(f) = ff(0)g � ff(1)g witheR(f) = ff(1)g does not change (4.88), so there is no need to consider ff(0)g for
any of the polynomials f listed below. The choices of factors a, b, and d (see (4.54)

and (4.59)) have been indicated in the captions of all the tables.

We prove that f1(
1�f2(f1)

1�f1(f1)
) = 2!(x+1=z)z(1+z)

(x�!3)(1�2!+z+s)
in Table 4.10 satis�es the relation
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Figure 4.13: Partial sketch of the geometric proof of the generalized Kubert identity
fz4g =

P4
j=0 4f!jzg, where ! = i and the coordinates of the vertices r, t, bi, and

gi are given in (4.114)

h h(1) Simplex representing

fh(1)g in Fig. 4.13

f1(f1) = � (x�!=z)(x�!3=z)z2

x(1+x)(1+z)
� z

2

1+z
f0; z2; z; z4g

f2(f1) =
x(1�z)

x+1
1� z f1; 0; z; z2g

f1(f1)

f2(f1)
= (x�!=z)(x�!3=z)z2

x2(z2�1)
z2

z2�1
f1; 0; z2; z4g

1�f2(f1)

1�f1(f1)
= x(1+z)(1+xz)

p(x)

z(1+z)

1+z+z2
f1; z2; z; z4g

f1(f1)(1�f2(f1))

f2(f1)(1�f1(f1))
= (x�!=z)(x�!2=z)(x�!3=z)z3

x(z�1)p(x)
z3

z3�1
f1; 0; z; z4g

Table 4.7: Expanding fz3=(z3 � 1)g by the cocycle relation; a = �1=z, b = 0,
d = �1.
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h h(1) Simplex representing

fh(1)g in Fig. 4.13

f1(
f1(f1)

f2(f1)
) = � (x�!=z)z

x+!
�z f1; z2; z3; z4g

f2(
f1(f1)

f2(f1)
) = x(1�z)

x+!
1� z f1; 0; z2; z3g

f1(
f1(f1)

f2(f1)
)

f2(
f1(f1)

f2(f1)
)
= � (x�!=z)z)

x(1�z)
z

z�1
f1; 0; z3; z4g

1�f2(
f1(f1)

f2(f1)
)

1�f1(
f1(f1)

f2(f1)
)
= (x�!3=z)z

x(z+1)
z

z+1
f0; z2; z3; z4g

f1(
f1(f1)

f2(f1)
)(1�f2(

f1(f1)

f2(f1)
)

f2(
f1(f1)

f2(f1)
)(1�f1(

f1(f1)

f2(f1)
)
= (x�!=z)(x�!3=z)z2

x2(z2�1)
z2

z2�1
f1; 0; z2; z4g

Table 4.8: Expanding fz2=(z2 � 1)g by the cocycle relation; a = !3=z, b = 0,
d = !3.

h h(1) Simplex repre-
senting fh(1)g
in Fig. 4.13

f1(
1�f2(f1)

1�f1(f1)
) = 2!(x+1=z)z(1+z)

(x�!3)(1�2!+z+s)

2!z(1+z)

1�2!+z+s
f1; z2; z4; b1g

f2(
1�f2(f1)

1�f1(f1)
) = !(2(1+z+z2)x+1+z+s)

(!+x)(1+z+s)

2!(1+z+z2)

1+z+s
f1; z; z4; b1g

f1(
1�f2(f1)

1�f1(f1)
)

f2(
1�f2(f1)

1�f1(f1)
)
= (x+1=z)z(1+z)(1+z+s)

(1+z+z2)(1�2!+z+s)(x+ 1+z+s

2(1+z+z2)
)

z(1+z)(1+z+s)

(1+z+z2)(1�2!+z+s)
fb1; z2; z; z4g

1�f2(
1�f2(f1)

1�f1(f1)
)

1�f1(
1�f2(f1)

1�f1(f1)
)
= x((1�2!)(1+z)�2!z2+s)

(1+z+s)(!+x�
2!(1+z)(1+xz)

1�2!+z+s
)

1�2!+z+s
1+z+s

f1; z; b1; z
2g

f1(
1�f2(f1)

1�f1(f1)
)(1�f2(

1�f2(f1)

1�f1(f1)
))

f2(
1�f2(f1)

1�f1(f1)
)(1�f1(

1�f2(f1)

1�f1(f1)
))
= x(1+z)(1+xz)

p(x)

z(1+z)

1+z+z2
f1; z2; z; z4g

Table 4.9: Expanding fz3=(z3 � 1)g by the cocycle relation; a = 0, b = �(1 + z +

s)=2=(1 + z + z2), d = !3. b1 = z(2 + ! � !z2 � !(z � 1)s)=2
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(4.43) by using (4.104). ff1(1�f2(f1)1�f1(f1)
)(1)g = 2!z(1+z)

1�2!+z+s
corresponds to the left hand

side of (4.104). The terms on the right hand side of (4.104) have been denoted as

Term 1: f (d�b)a
(c�a)b

g

Term 2: f (d�b)c
(c�a)d

g

Term 3: fda
bc
g

Term 4: f b
d
g:

As (4.104) indicates,

ff1(
1� f2(f1)

1� f1(f1)
)(1)g = �fTerm 1g+ fTerm 2g+ fTerm 3g+ fTerm 4g:

Based on Tables 4.6- 4.20 we get the following identity.

fz4g = f� z2

z + 1
g � f1� zg + f�zg � f1� zg � f z

z � 1
g � f z

z + 1
g

� f z(1 + z � s)

2(1 + z + z2)
g+ f� 2!

1 + z + s
g+ f!zg+ f 2(1 + z)

1� 2! + z + s
g

� f2!(1 + z + z2)

1 + z + s
g+ f!3zg � f�2!(1 + z + z2)

1 + z + s
g � f z(1 + z + s)

2(1 + z + z2)
g

� f 2(1 + z)

1� 2! + z + s
g � f1� 2! + z + s

1 + z + s
g+ f 1

1� z
g � f� z2

z + 1
g+ f 1

z + 1
g

� f z

z � !
g+ f �!

z � !
g+ 2f!zg � f 2z

�1 + z � s
g+ f 2(1 + z + z2)

1 + z + 2z2 � s
g

+ f z(1 + z + s)

2(1 + z + z2)
g+ f 2

1 + z + s
g � f 2(1 + z + z2)

(1� ! + z)(1 + z + s)
g

+ f 1

1� ! + z
g+ f1 + z � s)

2
g+ f1� 2! + z � s

2(1 + z)
g � f1

2
(1� z � s)g

� f2 + ! + z(2 + ! + 2z)� !s

2(! + z)(1 + z)
g+ f1

2
!(1 + z + s)g � f1 + ! + !zg

� f 2(1 + z + z2)

(1� ! + z)(1 + z � s)
g � f1 + 2! + z � s

2(! + z)
g+ f !

z + !
g

� f 2(1 + z + z2)

1 + ! + !z + z2 + (1� ! + z)s
g+ f 2!

�1 + 2! � z + s
g+ f�!

2
(1 + z + s)g

+ f 2(1 + z + z2)

(1� ! + z)(1 + z + s)
g � f z

z � !
g+ f 1

! � z
g+ f�zg + f1 + ! + !zg

(4.115)
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Term number in (4.104) Term value Simplex representing

Term i in Fig. 4.13

1 z(1+z�s)

2(1+z+z2)
fb1; t; z2; z4g

2 � 2!
1+z+s

f1; z4; b1; tg
3 !z f1; z4; t; z2g
4 2(1+z)

1�2!+z+s
f1; b1; z

2; tg
Left hand side 2!z(1+z)

1�2!+z+s
f1; z2; z4; b1g

of (4.104)

Table 4.10: The cocycle relation used to prove that the linear fractional transfor-

mation f1(
1�f2(f1)

1�f1(f1)
) = 2!(x+1=z)z(1+z)

(x�!3)(1�2!+z+s)
obeys (4.43). t = z(! + z � !z2).

Term number in (4.104) Term value Simplex representing
Term i in Fig. 4.13

1 !3z fg1; z2; z4; zg
2 �2!(1+z+z2)

1+z+s
fb1; g1; z2; zg

3 z(1+z+s)

2(1+z+z2)
fg1; b1; z2; z4g

4 2(1+z)

1�2!+z+s
fb1; g1; z; z4g

Left hand side z(1+z)(1+z+s)

(1+z+z2)(1�2!+z+s)
fb1; z2; z; z4g

of (4.104)

Table 4.11: The cocycle relation used to prove that the linear fractional transfor-
mation f1(

1�f2(f1)

1�f1(f1)
)=f2(

1�f2(f1)

1�f1(f1)
) = (x + 1=z)z(1 + z)(1 + z + s)=((1 + z + z2)(1 �

2! + z + s)(x + 1+z+s
2(1+z+z2)

) obeys (4.43). g1 =
z(1+z�!z3)

1�!+z
.

h h(1) Simplex representing

fh(1)g in Fig. 4.13

f1(
f1

f2
) = � (x�!=z)(x�!3=z)z2

x(1+x)(z+1)
� z2

z+1
f0; z; z4; z2g

f2(
f1

f2
) = x�1

x(z+1)
1

z+1
f0; z; 1; z2g

f1(
f1
f2
)

f2(
f1
f2
)
= � (x�!=z)(x�!3=z)z2

(x2�1)
�z2 f0; 1; z4; z2g

1�f2(
f1
f2
)

1�f1(
f1
f2
)
= (1+x)(x+1=z)z

p(x)
z

1+z+z2
f1; z; z4; z2g

f1(
f1
f2
)(1�f2(

f1
f2
)

f2(
f1
f2
)(1�f1(

f1
f2
)
= � (x�!=z)(x�!2=z)(x�!3=z)z3

(x�1)p(x)
� z3

1+z+z2
f0; 1; z4; zg

Table 4.12: Expanding f�z3=(1+z+z2)g by the cocycle relation; a = �1=z, b = 1,

d = 0.
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h h(1) Simplex representing

fh(1)g in Fig. 4.13

f1(
f1(

f1
f2
)

f2(
f1
f2
)
) = � (x�!=z)z

x(z�!)
z

z�!
fg2; 0; 1; z4g

f2(
f1(

f1
f2
)

f2(
f1
f2
)
) = �!(1+x)

x(z�!)
� !

z�!
fg2; z2; 1; z4g

f1(
f1(

f1
f2

)

f2(
f1
f2

)
)

f2(
f1(

f1
f2

)

f2(
f1
f2

)
)

= !(x�!=z)

x+1
!z fg2; 0; z2; z4g

1�f2(
f1(

f1
f2

)

f2(
f1
f2

)
)

1�f1(
f1(

f1
f2

)

f2(
f1
f2

)
)

= !(x�!3=z)z

x�1
!z fg2; 1; z2; 0g

f1(
f1(

f1
f2

)

f2(
f1
f2

)
)(1�f2(

f1(
f1
f2

)

f2(
f1
f2

)
)

f2(
f1(

f1
f2

)

f2(
f1
f2

)
)(1�f1(

f1(
f1
f2

)

f2(
f1
f2

)
)

= � (x�!=z)(x�!3=z)z2

x2�1
�z2 f0; 1; z4; z2g

Table 4.13: Expanding f�z2g by the cocycle relation; a = !3=z, b = �1, d = 0.

g2 = !z3=(z2 + z! � 1).

After cancellation of terms, (4.115) becomes the generalized Kubert identity for

the case n = 4,

fz4g = 4[fzg+ f!zg+ f!2zg + f!3zg];

where ! =
p
�1. Note that a total of six new points, bi and gi with i = 1; 2; 3

had to be added to the diagram in Figure 4.7. Just as in the case of the n = 3

generalized Kubert identity, several points, including b1, were used more than once.

This is not obvious from Dupont and Sah's proof.
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h h(1) Simplex representing
fh(1)g in Fig. 4.13

f1(
1�f2(

f1
f2
)

1�f1(
f1
f2
)
) =

2(x+1=z)z

x(�1+z�s)
2z

�1+z�s
fb2; z; z2; z4g

f2(
1�f2(

f1
f2
)

1�f1(
f1
f2
)
) = 2(1+z+z2)x+1+z+s

x(1+z+2z2�s)

2(1+z+z2)

1+z+2z2�s
fb2; z2; 1; zg

f1(
1�f2(

f1
f2

)

1�f1(
f1
f2

)
)

f2(
1�f2(

f1
f2

)

1�f1(
f1
f2

)
)

=
2(1+xz)

2+x(1+z�s)

z(1+z+s)

2(1+z+z2)
fb2; 1; z2; z4g

1�f2(
1�f2(

f1
f2

)

1�f1(
f1
f2

)
)

1�f1(
1�f2(

f1
f2

)

1�f1(
f1
f2

)
)

= 2(1+x)

2+x(1+z+s)
2

1+z+s
fb2; z; 1; z4g

f1(
1�f2(

f1
f2

)

1�f1(
f1
f2

)
)(1�f2(

1�f2(
f1
f2

)

1�f1(
f1
f2

)
)

f2(
1�f2(

f1
f2

)

1�f1(
f1
f2

)
)(1�f1(

1�f2(
f1
f2

)

1�f1(
f1
f2

)
)

= (1+x)(x+1=z)z

p(x)
z

1+z+z2
f1; z; z4; z2g

Table 4.14: Expanding fz=(1 + z + z2)g by the cocycle relation; a = �1, b =

�(1+z+s)=2=(1+z+z2), d = 0. b2 = z(1+3z+z2+z3+(z2�1)s)=2=(1+z+z2)

h h(1) Simplex rep-
resenting fh(1)g
in Fig. 4.13

f1(
1�f2
1�f1

) = p(x)

x(!+z)(1+x(1�!+z))
1+z+z2

1+!+z+z2
f1; z; r; z4g

f2(
1�f2
1�f1

) = !(x�!)

x(!+z)
!

!+z
f1; z; r; 1g

f1(
1�f2
1�f1

)

f2(
1�f2
1�f1

)
= � !p(x)

(x�!)(1+x(1�!+z))
�!(1+z+z2)

1�!+z
f1; r; z4; zg

1�f2(
1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
= �!z(x�1=z)(1+x(1�!+z))

!+(1+!)x+x2
�!z(1� ! + z) f1; 1; r; z4g

f1(
1�f2
1�f1

)(1�f2(
1�f2
1�f1

))

f2(
f1�f2
1�f1

)(1�f1(
1�f2
1�f1

))
= � z(x�1=z)p(x)

(x�!)(x�!2)(x�!3)
�z(1 + z + z2) f1; 1; z; z4g

Table 4.15: Expanding f�z(1 + z + z2)g by the cocycle relation; a = 1=z, b = !,

d = 0. r = z + !3(z2 � z)
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h h(1) Simplex rep-
resenting fh(1)g
in Fig. 4.13

f1(f1(
1�f2
1�f1

)) =
(1+z+2z2+s)(x+ 1+z+s

2(1+z+z2)

(1+x)(�1�2!�z+s)
1+z+2z2+s
�1�2!�z+s

fr; b1; z4; zg
f2(f1(

1�f2
1�f1

)) = x(1+z+2z2+s)

(1+x)(�1�z+s)
1�z�s

2
f1; r; b1; zg

f1(f1(
1�f2
1�f1

))

f2(f1(
1�f2
1�f1

))
= 2+x(1+z�s)

x(1+2!+z�s)

2+!+z(2+!+2z)�!s

2(!+z)(1+z)
f1; b1; z

4; zg
1�f2(f1(

1�f2
1�f1

))

1�f1(f1(
1�f2
1�f1

))
=

1+2!+(2+!)x(1+z)+z+2xz2+!(!+x)s

2(!+z)(1+x(1�!+z))

2+!+z(2+!+2z)+!s

2(!+1+z+z2)
f1; b1; r; z

4g
f1(f1(

1�f2
1�f1

))(1�f2(f1(
1�f2
1�f1

))

f2(f1(
1�f2
1�f1

))(1�f1(f1(
1�f2
1�f1

))
=

p(x)

x(!+z)(1+x(1�!+z))
1+z+z2

1+!+z+z2
f1; z; r; z4g

Table 4.16: Expanding f(1 + z + z2)=(1 + ! + z + z2)g by the cocycle relation;
a = (�1 � z + s)=2=(1 + z + z2), b = 0, d = �1. r = z + !3(z2 � z), b1 =
z(2 + ! � !z2 � !(z � 1)s)=2

Term number in (4.104) Term value Simplex representing
Term i in Fig. 4.13

1 2(1+z+z2)

(1�!+z)(1+z+s)
fz4; g3; b1; rg

2 1
1�!+z

fg3; z; z4; rg
3 1+z�s

2
fg3; b1; z; rg

4 1�2!+z�s
2(1+z)

fg3; z; b1; z4g
Left hand side 1+z+2z2+s

�1�2!�z+s
fr; b1; z4; zg

of (4.104)

Table 4.17: The cocycle relation used to prove that the linear fractional transforma-

tion f1(f1(
1�f2
1�f1

)) obeys (4.43). r = z+!3(z2�z), b1 = z(2+!�!z2�!(z�1)s)=2,
g3 = !(1� z3) + z.
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Term number in (4.104) Term value Simplex representing

Term i in Fig. 4.13

1
!(1+z+s)

2
f1; z4; t; b1g

2 1 + ! + !z f1; z4; t; rg
3

2(1+z+z2)

(1�!+z)(1+z�s)
fb1; r; t; z4g

4 1+2!+z�s
2(z+!)

f1; r; b1; tg
Left hand side

2+!+z(2+!+2z)+!s

2(!+1+z+z2)
f1; b1; r; z

4g
of (4.104)

Table 4.18: The cocycle relation used to prove that the linear fractional trans-

formation (1 � f2(f1(
1�f2
1�f1

)))=(1� f1(f1(
1�f2
1�f1

))) obeys (4.43). r = z + !3(z2 � z),

b1 = z(2 + ! � !z2 � !(z � 1)s)=2.

h h(1) Simplex repre-
senting fh(1)g
in Fig. 4.13

f1(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
) = � !(2(1+z+z2)x+1+z�s)

x(1�!+z�!z2�!(1�!+z)s

2(1+z+z2)

1+!+!z+z2+(1�!+z)s
fb3; r; 1; zg

f2(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
) = (x�!)(1+z+s)

(x(1+2!+(1+2!+2!z)z+s
2!

�1+2!�z+s
fb3; z; r; z4g

f1(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
)

f2(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
)

= �!(2+x(1+z+s))

2(x�!)
�!

2
(1 + z + s) fb3; z4; r; 1g

1�f2(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
)

1�f1(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
)

= 2+x(1+z�s)

2+2x(1�!+z)
1+z�s

2(1�!+z)
fb3; 1; z; z4g

f1(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
)(1�f2(

f1(
1�f2
1�f1

)

f2(
1�f2
1�f1

)
)

f2(
f1(

1�f2
1�f1

)

f2(
1�f2
1�f1

)
)(1�f1(

f1(
1�f2
1�f1

)

f2(
1�f2
1�f1

)
)

= �!(1+z+z2)

1�!+z
f1; r; z4; zg

� !p(x)

(x�!)(1+x(1�!+z))

Table 4.19: Expanding f�!(1 + z + z2)=(1 � ! + z)g by the cocycle relation;

a = �(1 + z + s)=2=(1 + z + z2), b = !, d = 0. r = z + !3(z2 � z), b3 =

z(1� ! + (2� !)z + z2 + 2z3 + (1� ! + z)s)=(2 + z(1� ! + z)(1 + z + s))
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h h(1) Simplex repre-

senting fh(1)g
in Fig. 4.13

f1(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
) = z(x�1=z)

x(z�!)
z

z�!
f1; t; 1; z4g

f2(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
) = x+1

x(!�z)
1

!�z
f1; z4; r; tg

f1(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)

f2(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)

= � z(x�1=z)

x+1
�z f1; 1; r; tg

1�f2(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)

1�f1(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)

= !(1+x(1�!+z))

x+!
1 + ! + !z f1; t; r; z4g

f1(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)(1�f2(

1�f2(
1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)

f2(
1�f2(

1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)(1�f1(

1�f2(
1�f2
1�f1

)

1�f1(
1�f2
1�f1

)
)

= �!z(1� ! + z) f1; 1; r; z4g

�!z(x�1=z)(1+x(1�!+z))

!+(1+!)x+x2

Table 4.20: Expanding f�!z(1�!+z)g by the cocycle relation; a = 1=(!�1�z),
b = �1, d = 0. r = z + !3(z2 � z)



Chapter 5

Conclusion

This dissertation started with a discussion of volume formulas for hyperbolic

polyhedra and their connection to scissors congruence problems. At this point in

time, there is no dearth of volume formulas in terms of the Lobachevsky function,

but the reasons for their equivalence to each other are frequently far from obvious.

The equivalence of two volume formulas for a hyperbolic polyhedron can be viewed

as a scissors congruence and also as an identity on the Lobachevsky function.

As far as scissors congruence in hyperbolic space, a great deal is still unknown.

The conjecture that the volume and Dehn invariant form a complete system of

invariants for scissors congruence in hyperbolic space is still open. In this work

we have shown several examples of scissors congruences in H 3 which support this

conjecture. However, a proof of the conjecture, as well as an algorithm for proving

scissors congruence in Euclidean space, where the conjecture was shown to be true

by Sydler, are still unknown. In particular, there still exists no constructive proof

that the family of Regge symmetric tetrahedra in Euclidean space are scissors

congruent. Their Dehn invariants and volumes agree, as shown by Roberts in [13],

so by Sydler's theorem they are scissors congruent. It would be a natural extension

of this work to specialize the proof presented in Chapter 3 to this problem.

As for the identities of the Lobachevsky function, there is a great deal to explore

in this area as well. For example, the following conjecture of Milnor ([10]) has not
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yet been solved:

Conjecture. If we consider only angles � which are rational multiples of �, then

every Q -linear relation

q1L(�1) + � � �+ qnL(�n) = 0

is a consequence of the relations

L(� + �) = L(�); L(��) = L(�); L(n�) =
X

k mod n

L(� + k�=n):

Milnor's conjecture hints at the key role of the Kubert identities in this �eld. In [5]

Dupont and Sah have shown that the Kubert identities are a scissors congruence,

and in Chapter 4 we have produced an actual simplicial complex illustrating their

proof. While one could write an algorithm to produce these complexes for any n

by following Dupont and Sah's proof, the complexes in Chapter 4 were constructed

so that they use fewer vertices than the hypothetical \computer-generated" ones.

This raises the question of the existence of the most eÆcient geometric proof of

the Kubert identities. Speci�cally, it is doubtful that following through the steps

of the inductive proof of Dupont and Sah provides the most eÆcient algorithm

for the geometric proof of the Kubert identities. For example, the proofs in x4.3.3
used a proper subset of the vertices which arose from geometrizing Dupont and

Sah's proof. From an algebraic point of view, using the key relation (4.43) led to

a very elegant proof of the generalized Kubert identities. Whether there exists a

proof of (4.43) di�erent from that of Dupont, Sah and Poulsen remains to be seen.
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