A p-adically entire function with integral values on \mathbb{Q}_p and the exponential of perfectoid fields

Abstract:

We give an essentially self-contained proof of the fact that a certain p-adic power series

$$\Psi = \Psi_p(T) \in T + T^2 \mathbb{Z}[[T]] ,$$

which trivializes the addition law of the formal group of Witt p-covectors \widehat{CW}_p, is p-adically entire and assumes values in \mathbb{Z}_p all over \mathbb{Q}_p. We also carefully examine its valuation and Newton polygons. We will recall and use the isomorphism between the Witt and hyperexponential groups over \mathbb{Z}_p, and the properties of Ψ_p, to show that, for any perfectoid field extension $(K, ||)$ of $(\mathbb{Q}_p, ||_p)$, and to a choice of a pseudo-uniformizer $\varpi = (\varpi(i))_{i\geq 0}$ of K^\times, we can associate a continuous additive character $\Psi_\varpi : \mathbb{Q}_p \to 1 + K^{\infty}$, and we will give a formula to calculate it. The character Ψ_ϖ extends the map $x \mapsto \exp \pi x$, where

$$\pi := \sum_{i \geq 0} \varpi(i) p^i + \sum_{i < 0} (\varpi(0)) p^{-i} \in K .$$

I will also present numerical computation of the first coefficients of Ψ_p, for small p, due to M. Candilera.

Host: Kiran Kedlaya

Thursday, June 11, 2015
2:00 PM
AP&M 7421