Oka Principles and the Linearization Problem.

Abstract:
This is a talk for a general audience. Let G be a complex Lie group and let Q be a Stein manifold (closed complex submanifold of some \mathbb{C}^n). Suppose that X and Y are holomorphic principal G-bundles over Q which admit an isomorphism Φ as topological principal G-bundles. Then the famous Oka principle of Grauert says that there is a homotopy Φ_t of topological isomorphisms of the principal G-bundles X and Y with $\Phi_0 = \Phi$ and Φ_1 biholomorphic. We prove generalizations of Grauert’s Oka principle in the following situation: G is reductive, X and Y are Stein G-manifolds whose (categorical) quotients are biholomorphic to the same Stein space Q.

We give an application to the Holomorphic Linearization Problem. Let G act holomorphically on \mathbb{C}^n. When is there a biholomorphic map $\Phi : \mathbb{C}^n \to \mathbb{C}^n$ such that $\Phi^{-1} \circ g \circ \Phi \in \text{GL}(n, \mathbb{C})$ for all $g \in G$? We describe a condition which is necessary and sufficient for “most” G-actions.

This is joint work with F. Kutzschebauch and F. Larusson.