Math 288 - Probability & Statistics

Nick Cook
UCLA

The maximum of the characteristic polynomial for a random permutation matrix

Abstract:
Let P be a uniform random permutation matrix of size N and let $\chi_N(z) = \det(zI - P)$ denote its characteristic polynomial. We prove a law of large numbers for the maximum modulus of χ_N on the unit circle, specifically,

$$\sup_{|z|=1} |\chi_N(z)| = N^{x_c + o(1)}$$

with probability tending to one as $N \to \infty$, for a numerical constant $x_c \approx 0.677$. The main idea of the proof is to uncover an approximate branching structure in the distribution of (the logarithm of) χ_N, viewed as a random field on the circle, and to adapt a well-known second moment argument for the maximum of the branching random walk. Unlike the well-studied CUE field in which P_N is replaced with a Haar unitary, the distribution of $\chi_N(z)$ is sensitive to Diophantine properties of the argument of z. To deal with this we borrow tools from the Hardy–Littlewood circle method in analytic number theory. Based on joint work with Ofer Zeitouni.

Host: Tianyi Zheng
Thursday, April 19, 2018
10:00 AM
AP&M 7218