A pointwise ergodic theorem for quasi-pmp graphs

Abstract:
We prove a pointwise ergodic theorem for locally countable ergodic quasi-pmp (nonsingular) graphs, which gives an increasing sequence of Borel subgraphs with finite connected components, averages over which converge a.e. to the expectations of L^1-functions. This can be viewed as a random analogue of pointwise ergodic theorems for group actions: instead of taking a (deterministic) sequence of subsets of the group and using it at every point to compute the averages, we allow every point to coherently choose such a sequence at random with a strong condition that the sets in the sequence determine a connected subgraph of the Schreier graph of the action.

Host: Adrian Ioana

Wednesday, November 14, 2018
3:00 PM
AP&M 6402