Etale cohomology of algebraic varieties over the maximal cyclotomic extension of a global field

Abstract:

Let k be a global field, that is, a number field of finite degree over \mathbb{Q} or the function field of a smooth projective curve C over a finite field F. Let X be a smooth projective variety over k, and let K be the maximal cyclotomic extension of k, obtained by adjoining all roots of unity. If X is an abelian variety, a famous theorem, due to Ribet in the number field case and Lang-Neron in the function field case when X has trace zero over the constant subfield of K, asserts that the torsion subgroup of the Mordell-Weil group of X over K is finite. Denoting by k^{sep} a separable closure of k, this result is equivalent to finiteness of the fixed part by $G = \text{Gal}(k^{sep}/K)$ of the etale cohomology group $H^1(X_{k^{sep}}, \mathbb{Q}/\mathbb{Z})$, where we ignore the p-part in positive characteristic p. In a recent paper, Roessler-Szamuely generalize this result to all odd cohomology groups. The trace zero assumption in the function field case is replaced by a "large variation" assumption on the characteristic polynomials of Frobenius acting on the cohomology of the fibres of a morphism $f : \mathcal{X} \to C$ from a smooth projective variety \mathcal{X} over a finite field to C with generic fibre X. In this talk, I will discuss the case of even degree, proving some positive results in the number field case and negative results in the function field case.

Special Note:
There will be a preparatory talk for graduate students and postdocs 3:20-3:50pm in the seminar room.

Host: Cristian Popescu

Tuesday, May 21, 2019
4:00 PM
AP&M 6402