Food For Thought

Jason O’Neill
UCSD

On the Union of Sets in Extremal Combinatorics

Abstract:
Given s finite sets A_1, \ldots, A_s, determining the size of the union of the s sets is an easy problem. Determining the maximum number of size k subsets of an n element set for which there does not exist s sets which union has size q is a very hard problem in general. Many problems in extremal set theory can be restated in this language for particular choices of s, k, q. For instance, the case where $s = 2$ is equivalent to the complete intersection theorem, and when $sk = q$, this is equivalent to the Erdős matching conjecture; one of the biggest open problems in the field. This talk is based off a recent paper of Peter Frankl and Andrey Kupavskii.

Friday, October 25, 2019
12:00 PM
AP&M 5402