Abstract:

Let $(X, T^{1,0}X)$ be a compact CR manifold and (L, h) be a Hermitian CR line bundle over X. When X is Levi-flat and L is positive, Ohsawa and Sibony constructed for every $\kappa \in \mathbb{N}$ a CR projective embedding of C^κ-smooth of the Levi-flat CR manifold. Adachi constructed a counterexample to show that the C^k-smooth can not be generalized to C^∞-smooth. The difficulty comes from the fact that the Kohn Laplacian is not hypoelliptic on Levi flat manifolds.

In this talk, we will consider CR manifold X with a transversal CR G-action where G is a compact Lie group and G can be lifted to a CR line bundle L over X. The talk will be divided into two parts. In the first part, we will talk about the Morse inequalities for the Fourier components of Kohn-Rossi cohomology on CR manifolds with transversal CR S^1-action. By studying the partial Szegő kernel on $(0, q)$-forms with values in L^k we obtain the Morse inequalities on X without any Levi form assumption. In the second part, when the CR line bundle L is positive, the Kodaira embedding theorems for CR manifold with G-action when G is S^1, Torus and \mathbb{R} will be presented. As an application, this will generalize Ohsawa and Sibony’s result to C^∞-smooth in our setting.