Math 269 - Combinatorics

Chris Cox
Carnegie Mellon University

Periodic words, common subsequences and frogs

Abstract:

Let $W^{(n)}$ be the n-letter word obtained by repeating a fixed word W, and let R_n be a random n-letter word over the same alphabet. We show several results about the length of the longest common subsequence (LCS) between $W^{(n)}$ and R_n; in particular, we show that its expectation is $\gamma_W n - O(\sqrt{n})$ for an efficiently-computable constant γ_W.

This is done by relating the problem to a new interacting particle system, which we dub “frog dynamics”. In this system, the particles (‘frogs’) hop over one another in the order given by their labels. Stripped of the labeling, the frog dynamics reduces to a variant of the PushASEP.

In the special case when all symbols of W are distinct, we obtain an explicit formula for the constant γ_W and a closed-form expression for the stationary distribution of the associated frog dynamics.

Froggies on a pond
They get scared and hop along
Scaring others too.

Their erratic gait
Gives us tools to calculate
LCS of words.

(Joint work with Boris Bukh)

Host: Jacques Verstraete

Tuesday, February 11, 2020
2:00 PM
AP&M 7321