Instructions
1. Write your Name, PID, Section, and Exam Version on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use one page of notes, but no books or other assistance during this exam.
4. Read each question carefully, and answer each question completely.
5. Write your solutions clearly in your Blue Book.
 (a) Carefully indicate the number and letter of each question and question part.
 (b) Present your answers in the same order they appear in the exam.
 (c) Start each problem on a new page.
6. Show all of your work. No credit will be given for unsupported answers, even if correct.
7. Turn in your exam paper with your Blue Book.

0. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

1. (6 points) Define a function f by the following formula:
 \[
 f(x) = \begin{cases}
 x^2 - a & \text{if } x < -2 \\
 a + bx & \text{if } -2 \leq x \leq 3 \\
 \frac{3b}{x} & \text{if } x > 3
 \end{cases}
 \]
 Find all values of a and b that make the function f continuous.

2. (8 points) Define a function g by the following formula:
 \[
 g(x) = \begin{cases}
 3x^2 + 4 & \text{if } x > 2 \\
 15 & \text{if } x = 2 \\
 9x - 4 & \text{if } x < 2
 \end{cases}

 In parts (a)–(c), compute the limit or write “DNE” if the limit does not exist.
 (a) $\lim_{x \to 2^+} g(x)$.
 (b) $\lim_{x \to 2^-} g(x)$.
 (c) $\lim_{x \to 2} g(x)$.
 (d) Is g continuous at $x = 2$? If not, is the discontinuity a removable discontinuity, a jump discontinuity, or an infinite discontinuity?

3. (9 points) Compute the following limits:
 (a) $\lim_{x \to 0} \frac{1}{\sqrt{x} - 3} - \frac{6}{x - 9}$
 (b) $\lim_{x \to 0} \frac{\tan(3x)}{x}$
 (c) $\lim_{x \to 0^+} \frac{x - 10}{\sqrt{x} - \sqrt{25 - x}}$

4. (8 points) Compute the derivative of $f(x) = x^{1/3} - x^{3/2} + 3^x - 9$.

5. (8 points) Find all values of x for which $y = x^3e^{-x}$ has a horizontal tangent line.

(This exam is worth 40 points.)