0. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

1. (3 points) Compute \(\frac{dy}{dx} \) if \(y = \tan(2x) \).

2. Let \(f(x) = x^3 \).
 (a) (5 points) Find the linearization of the function \(f \) at the point \(a = 2 \).
 (b) (1 point) Use part (a) to estimate the value of \(2.1^3 \).
 (c) (2 points) Write an expression for the percentage error for your approximation in (b).
 (You do not need to compute it.)

3. Let \(g(x) = x^2e^{-x} \). The second derivative of \(g \) is \(g''(x) = (2 - x^2)e^{-x} \).
 (a) (4 points) Compute \(g'(x) \), the first derivative of \(g \).
 (b) (4 points) Over which interval or intervals is \(g \) decreasing?
 (c) (4 points) Over which interval or intervals is \(g \) concave up?

4. (7 points) Define a function \(h \) according to the following rule:
 \[
 h(x) = \begin{cases}
 \frac{1 - \cos(3x)}{x^2} & \text{if } x \neq 0, \\
 3/2 & \text{if } x = 0.
 \end{cases}
 \]
 Is \(h \) continuous at \(x = 0 \)? Justify your answer.

5. (9 points) Use implicit differentiation to find the slope of the tangent line at \((1,1) \) to the curve
 \[
 \frac{\pi}{4} + \ln(2 - x^2) = \arctan(y^3).
 \]

(This exam is worth 40 points.)