Name: \qquad PID: \qquad

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- No calculators, tablets, phones, or other electronic devices are allowed during this exam. You may use one page of handwritten notes, but no books or other assistance.
(1 pt) 0 . Follow the instructions on this exam and any additional instructions given during the exam.
(5 pt) 1. Find a possible formula for the polynomial function graphed below.

(4 pt) 2. Solve the equation for x. Leave your answer in exact form.

$$
9 \cdot\left(3^{x}\right)^{2}=5^{x-4}
$$

(5 pt) 3. The graph given here is for the function

$$
f(x)= \begin{cases}3-(x+1)^{2} & \text { if } x<-1 \\ 0 & \text { if } x=-1 \\ \frac{3}{2}(1-x) & \text { if }-1<x \leq 1 \\ (x-1)^{2}-2 & \text { if } x \geq 1\end{cases}
$$

(a) Does $\lim _{x \rightarrow-1} f(x)$ exist? Explain why or why not.
(b) Is f left-continuous, right-continuous, or continuous at $x=-1$? Justify your answer.
(c) Is f left-continuous, right-continuous, or continuous at $x=+1$? Justify your answer.
(d) If $g(x)=1+x^{2}$, then find the formula for $(f \circ g)(x)$. What is the domain of $f \circ g$?
(5 pt) 4. Find all values of a and b that make the function f continuous:

$$
f(x)= \begin{cases}4+a x^{2} & \text { if } x<-1 \\ a x+b & \text { if }-1 \leq x \leq 1 \\ (x-b)^{2}-3 & \text { if } x>1\end{cases}
$$

(5 pt) 5. In the theory of relativity, the mass of a particle with speed v is

$$
m=f(v)=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

where m_{0} is the rest mass of the particle and c is the speed of light in a vacuum.
(a) What is the domain of f ?
(b) Find a formula for f^{-1}.
(c) What is the domain of f^{-1} ?

