Name: \qquad PID: \qquad

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- No calculators, tablets, phones, or other electronic devices are allowed during this exam. You may use one page of handwritten notes, but no books or other assistance.
(1 pt) 0 . Follow the instructions on this exam and any additional instructions given during the exam.
(6 pt) 1. Let $f(x)=\frac{1}{x}+x-x^{3}$ defined on the interval $(-\infty, 0)$.
(a) Find the most general antiderivative of f on the interval $(-\infty, 0)$.
(b) Find the antiderivative $F(x)$ on the interval $(-\infty, 0)$ that satisfies $F(-1)=\frac{3}{4}$.
(8 pt) 2. Evaluate the integrals.
(a) $\int_{0}^{1}\left(x^{2}+1\right)(\sqrt{x}-2) d x$
(b) $\int_{-5}^{2}|2 x+4| d x$
$(6 \mathrm{pt})$ 3. A particle moves along a straight line so that its acceleration at time t is $a(t)=2 \cos (t) \mathrm{ft} / \mathrm{sec}^{2}$. Suppose the initial velocity of the particle is $0 \mathrm{ft} / \mathrm{sec}$.
(a) At what time during the interval $0<t<2 \pi$ does the particle change direction?
(b) Find the total distance traveled during $0 \leq t \leq 2 \pi$.
(8 pt) 4. Let $F(x)=\int_{0}^{x} f(t) d t$, where the graph of f is given below.

(a) Fill in the following table of values of $F(x)$.

$F(0)$	$F(1)$	$F(2)$	$F(3)$	$F(5)$

(b) Suppose the domain of F is $[0,5]$. List all intervals where F is increasing.
(c) Evaluate the integral $\int_{2}^{5} f(x) d x$
(d) Evaluate the integral $\int_{2}^{0} f(x) d x$
(6 pt) 5. Suppose that f is a continuous function for which

$$
\int_{1}^{x^{2}} f(t) d t=e^{x} \ln (x)
$$

for all $x>0$. Find the value of $f(1)$.

