
Notes on Continuous Random Variables

Continuous random variables are random quantities that are measured on a continuous scale.
They can usually take on any value over some interval, which distinguishes them from discrete
random variables, which can take on only a sequence of values, usually integers. Typically random
variables that represent, for example, time or distance will be continuous rather than discrete.

Just as we describe the probability distribution of a discrete random variable by specifying
the probability that the random variable takes on each possible value, we describe the probability
distribution of a continuous random variable by giving its density function. A density function
is a function f which satisfies the following two properties:

1. f(x) ≥ 0 for all x.

2.

∫

∞

−∞

f(x) dx = 1.

The first condition says that the density function is always nonnegative, so the graph of the
density function always lies on or above the x-axis. The second condition ensures that the area
under the density curve is 1. We think of a continuous random variable with density function f
as being a random variable that can be obtained by picking a point at random from under the
density curve and then reading off the x-coordinate of that point. Because the total area under
the density curve is 1, the probability that the random variable takes on a value between a and
b is the area under the curve between a and b. More precisely, if X is a random variable with
density function f and a < b, then

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx.

Example 1: Suppose the income (in tens of thousands of dollars) of people in a community can
be approximated by a continuous distribution with density

f(x) =

{

2x−2 if x ≥ 2
0 if x < 2

a) Find the probability that a randomly chosen person has an income between $30, 000
and $50, 000.

b) Find the probability that a randomly chosen person has an income of at least $60, 000.
c) Find the probability that a randomly chosen person has an income of at most $40, 000.

Solution: Let X be the income of a randomly chosen person. The probability that a randomly
chosen person has an income between $30, 000 and $50, 000 is

P (3 ≤ X ≤ 5) =

∫ 5

3
f(x) dx =

∫ 5

3
2x−2 dx = −2x−1

∣

∣

∣

∣

x=5

x=3

= −2

5
−

(

− 2

3

)

=
2

3
− 2

5
=

4

15
.

The probability that a randomly chosen person has an income of at least $60, 000 is

P (X ≥ 6) =

∫

∞

6
f(x) dx =

∫

∞

6
2x−2 dx = lim

n→∞

∫ n

6
2x−2 dx

= lim
n→∞

−2x−1

∣

∣

∣

∣

x=n

x=6

= lim
n→∞

(

− 2

n
+

2

6

)

=
1

3
.
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Finally, for part c), we get

P (X ≤ 4) =

∫ 4

−∞

f(x) dx =

∫ 2

−∞

0 dx +

∫ 4

2
2x−2 dx = 0 − 2x−1

∣

∣

∣

∣

x=4

x=2

= −2

4
+

2

2
=

1

2
.

Remark 1: Note that part b) required evaluating an improper integral, in which the upper
endpoint was infinity. This integral could be evaluated by integrating the density f(x) from 6 to
n and taking a limit as n → ∞. Evaluation of improper integrals is often required when working
with unbounded random variables that can take on any positive number as a value.

Remark 2: When the density function of a continuous random variable is defined in two pieces,
it is important to be careful about the limits of integration. In part c), we needed to integrate
the density from −∞ to 4. However, since the density is zero to the left of 2, we only integrated
2x−1 from 2 to 4. It is often useful to draw pictures of the density to avoid mistakenly integrating
over the wrong interval.

Remark 3: If we were interested in finding the probability that the random variable X in the
Example 1 were exactly equal to 3, then we would be integrating from 3 to 3, and we would get
zero. This is a general fact about continuous random variables that helps to distinguish them
from discrete random variables. A discrete random variable takes on certain values with positive
probability. However, if X is a continuous random variable with density f , then

P (X = y) = 0 for all y.

This may seem counterintuitive at first, since after all X will end up taking some value, but the
point is that since X can take on a continuum of values, the probability that it takes on any one
particular value is zero.

Expected value and standard deviation

The procedure for finding expected values and standard deviations for continuous random
variables of continuous random variables is similar to the procedure used to calculate expected
values and standard deviations for discrete random variables. The differences are that sums in
the formula for discrete random variables get replaced by integrals (which are the continuous
analogs of sums), while probabilities in the formula for discrete random variables get replaced by
densities. More precisely, if X is a random variable with density f(x), then the expected value
of X is given by

µ = E[X] =

∫

∞

−∞

xf(x) dx,

while the variance is given by

Var(X) = E[(X − µ)2] =

∫

∞

−∞

(x − µ)2f(x) dx.

Note that

Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2] − 2µE[X] + µ2

= E[X2] − 2µ2 + µ2 = E[X2] − µ2.
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This formula for the variance (which is valid for all random variables) is often easier to use in
computations, so we may calculate

Var(X) = E[X2] − µ2 =

(
∫

∞

−∞

x2f(x) dx

)

− µ2.

As in the case of discrete random variables, the standard deviation of X is the square root of the
variance of X.

Example 2: Suppose a train arrives shortly after 1:00 PM each day, and that the number of
minutes after 1:00 that the train arrives can be modeled as a continuous random variable with
density

f(x) =

{

2(1 − x) if 0 ≤ x ≤ 1
0 otherwise

Find the mean and standard deviation of the number of minutes after 1:00 that the train arrives.

Solution: Let X be the number of minutes after 1:00 that the train arrives. The mean (or,
equivalently, the expected value) of X is given by

µ = E[X] =

∫

∞

−∞

xf(x) dx =

∫ 1

0
x · 2(1 − x) dx =

∫ 1

0
2x − 2x2 dx =

(

x2 − 2x3

3

)
∣

∣

∣

∣

x=1

x=0

=
1

3
.

Also, we have

E[X2] =

∫

∞

−∞

x2f(x)dx =

∫ 1

0
x2 · 2(1−x) =

∫ 1

0
2x2 − 2x3 dx =

(

2x3

3
− 2x4

4

)
∣

∣

∣

∣

x=1

x=0

=
2

3
− 2

4
=

1

6
.

Therefore,

Var(X) =
1

6
−

(

1

3

)2

=
1

6
− 1

9
=

1

18
,

and the standard deviation is
√

1/18 ≈ 0.24.

Special Continuous Distributions

As was the case with discrete random variables, when we gave special attention to the ge-
ometric, binomial, and Poisson distributions, some continuous distributions occur repeatedly
in applications. Probably the three most important continuous distributions are the uniform
distribution, the exponential distribution, and the normal distribution.

Uniform Distribution: If a < b, then we say a random variable X has the uniform distribution
on [a, b] if

f(x) =

{

1
b−a if a ≤ x ≤ b

0 otherwise

Note that the density function is zero outside [a, b], so a random variable having the uniform
distribution on [a, b] always falls between a and b. Because the density is flat between a and b,
we can think of the uniform distribution as representing a number chosen uniformly at random
from the interval [a, b].
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Example 3: If X has the uniform distribution on [2, 5], calculate P (X > 4).

Solution: The density of X is given by

f(x) =

{

1
3 if 2 ≤ x ≤ 5
0 otherwise

Therefore,

P (X ≥ 4) =

∫

∞

4
f(x) dx =

∫ 5

4

1

3
dx =

x

3

∣

∣

∣

∣

x=5

x=4

=
5

3
− 4

3
=

1

3
.

Alternatively, we could observe that the area under the density function between x = 4 and x = 5
is a rectangle of length 1 and height 1/3, which has area 1/3.

Exponential Distribution: If λ > 0, then we say a random variable X has the exponential
distribution with rate λ if its density is given by

f(x) =

{

λe−λx if x ≥ 0
0 otherwise

The exponential distribution is a model of the amount of time we have to wait for an event that
happens at rate λ per unit time. Exponential distributions are sometimes reasonable models of
the lifetimes of mechanical devices. The exponential distribution should also describe the time
we have to wait for a customer to arrive in a store, a goal to be scored in a hockey game, a
radioactive particle to be emitted, an accident to occur on a roadway, or an earthquake to occur
in California.

The exponential distribution arises in the same circumstances under which the Poisson dis-
tribution arises. However, whereas the number of events that occur in a certain time interval
has the Poisson distribution, the amount of time to wait for the next event has the exponential
distribution. Because the Poisson distribution is integer-valued and the exponential distribution
is a continuous distribution, one should be able to keep the two distributions straight.

The most important property of the exponential distribution is known as the memoryless
property, which says that if the time to wait for an event to occur has the exponential distribution,
then the probability that we have to wait an additional time t is the same no matter how long
we have already waited. More formally, if X has an exponential distribution with rate λ, then

P (X ≥ s + t|X ≥ s) = P (X ≥ t).

That is, the probability that we have to wait for an additional time t (and therefore a total time
of s + t) given that we have already waited for time s is the same as the probability at the start
that we would have had to wait for time t. This is true for all s, that is, no matter how long we
have already waited.

To see why the memoryless property holds, note that for all t ≥ 0, we have

P (X ≥ t) =

∫

∞

t
λe−λx dx = −e−λx

∣

∣

∣

∣

∞

t

= e−λt.

It follows that

P (X ≥ s + t|X ≥ s) =
P (X ≥ s + t and X ≥ s)

P (X ≥ s)
=

P (X ≥ s + t)

P (X ≥ s)

=
e−λ(s+t)

e−λs
=

e−λse−λt

e−λs
= e−λt = P (X ≥ t),
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which verifies the memoryless property.
If X has an exponential distribution with parameter λ, then E[X] = 1/λ. Thus, the expected

time to wait for an event to occur is inversely proportional to the rate at which the event occurs,
as would be expected.

Example 4: If customers arrive in a store at the rate of 4 per hour, what is the probability that
we will have to wait between 15 and 30 minutes for the next customer to arrive.

Solution: Let X be the time we have to wait for the next customer to arrive. Then X has the
exponential distribution with parameter λ = 4, so X has density

f(x) =

{

4e−4x if x ≥ 0
0 otherwise

The probability that we have to wait between 15 and 30 minutes is

P (1/4 ≤ X ≤ 1/2) =

∫ 1/2

1/4
4e−4x dx = −e−4x

∣

∣

∣

∣

x=1/2

x=1/4

= −e−4/2 − (−e−4/4) = e−1 − e−2 ≈ .233.

Normal Distribution: A random variable has a normal distribution with mean µ and standard
deviation σ if its density is given by

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

The normal distribution is the most important distribution in statistics, arising in numerous
applications because of a famous result known as the Central Limit Theorem. Because the
normal distribution is discussed in our textbook, we do not pursue it further here.

Problems

1: Suppose X is a random variable with density function

f(x) =

{

2x if 0 < x < 1
0 otherwise.

a) Find P (X ≤ 1/2).
b) Find P (X ≥ 3/4).
c) Find P (X ≥ 2).
d) Find E[X].
e) Find the standard deviation of X.

2: Suppose X is a random variable with density function

f(x) =

{

cx2 if 0 < x < 2
0 otherwise

for some positive number c. What is c?
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3: Suppose the number of years that a television set lasts has density

f(x) =

{

18x−3 if x ≥ 3
0 otherwise.

a) Find the probability that the television set lasts between 5 and 6 years.
b) Find the probability that the television set lasts at least 4 years.
c) Find the probability that the television set lasts less than 2.5 years.
d) Find the probability that the television set lasts exactly 3.76 years.
e) Find the expected value of the number of years that the television set lasts.

4: Suppose that the number of hours that it takes for a student to finish an exam has density

f(x) =

{

2
5(x + 1) if 1 < x < 2
0 otherwise.

a) Find the probability that the student finishes the exam in less than 1.5 hours.
b) Find the mean and standard deviation of the number of hours it takes to finish the exam.

5: Suppose that if you arrive at a bus stop at 8:00, the amount of time that you will have to wait
for the next bus (in minutes) is uniformly distributed on [0, 3].

a) Find the probability that you will have to wait at least 1 minute for the bus.
b) Find the probability that you will have to wait between 30 seconds and 2 minutes.
c) Find the expected value and standard deviation of the amount of time that you have to

wait for the next bus.

6: Suppose the random variable X has the uniform distribution on [a, b]. Find expressions
involving a and b for the expected value, variance, and standard deviation of X. Check that your
expressions when a = 0 and b = 3 agree with what you got in part c) of problem 5.

7: Suppose that the amount of time (in months) that a light bulb lasts before it burns out has
an exponential distribution with parameter λ = 1/4.

a) What is the probability that it lasts at least three months?
b) If it has already lasted two months, what is the probability that it will last at least three

more months?
c) On average, how many months will the light bulb last?

8: Suppose major earthquakes in a region occur independently of one another at the rate of one
every ten years. Find the probability that the next major earthquake will occur between 5 and
10 years from now.

9: Accidents occur at a busy intersection at the rate of three per year. What is the probability
that it will be at least one year before the next accident at the intersection? Compute the answer
using the following two methods:

a) Let X be the number of accidents in the next year. Find the distribution of X and calculate
P (X = 0).

b) Let T be the amount of time until the next accident. Find the distribution of T and
calculate P (T > 1).
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