Example: A pair of fair six-sided dice are rolled until the numbers they show sum to 7 . Let X denote the number of rolls that are needed to get a sum of 7 . Let Y be a random variable that denotes the number of rolls that had a sum of 2,3 , or 12 . Compute the joint PMF for X an Y.

Solution: We wish to compute $p_{X, Y}(j, k)=P(X=j, Y=k)$. Observe first that $p_{X, Y}(j, k)=0$ if $j<k$. Suppose then that $j>k$. By the Multiplication Rule:

$$
p_{X, Y}(j, k)=P(X=j, Y=k)=\underbrace{P(X=j)}_{(1)} \cdot \underbrace{P(Y=k \mid X=j)}_{(2)}
$$

We will compute each of these probabilities separately.
(1) The random variable X counts how many trials (rolls) are required the first success (sum of 7). Therefore, $X \sim \operatorname{Geom}(p)$, where $p=P($ sum of 7$)=\frac{6}{36}=\frac{1}{6}$. Thus,

$$
P(X=j)=\left(\frac{5}{6}\right)^{j-1}\left(\frac{1}{6}\right)
$$

(2) The random variable Y counts the number of trials (rolls) that result is a success (sum of 2 , 3 , or 12). We are assuming that $X=j$, that means there are a total of j rolls, none of which result in a sum of 7 except for the last one. (So, in particular, the last roll cannot be 2,3 , or 12 .) Therefore, $Y \mid(X=j)$ is a binomial random variable with number of trials $n=j-1$ and probability of success

$$
p=P(\operatorname{sum} \text { of } 2,3, \text { or } 12 \mid \operatorname{sum} \text { is not } 7)=\frac{4}{30}=\frac{2}{15} .
$$

(Since the sum was not 7 , there were only $36-6=30$ possible outcomes.) Consequently,

$$
P(Y=k \mid X=j)=\binom{j-1}{k}\left(\frac{2}{15}\right)^{k}\left(\frac{13}{15}\right)^{j-1-k}
$$

Therefore,

$$
p_{X, Y}(j, k)=\left(\frac{5}{6}\right)^{j-1}\left(\frac{1}{6}\right)\binom{j-1}{k}\left(\frac{2}{15}\right)^{k}\left(\frac{13}{15}\right)^{j-1-k},
$$

if $j>k$, and zero otherwise.

