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1 Complex Numbers

1.1 Introduction

What are numbers? Your first reaction to this question is probably: “What a silly question;
everyone knows what numbers are!” However, a moment’s thought will reveal that the question
is not nearly as trivial as it first appears. It’s not so hard to give examples of numbers: natural
numbers, integers, rational numbers, and real numbers come to mind. But why are there so many
different types of numbers and what distinguishes them? Are there any more types of numbers? A
complete answer to these questions would take us too far afield; however, it will be worthwhile to
come up with brief answers to these questions.

Historically, the different types of numbers arose to address increasingly sophisticated mathematical
problems. The natural numbers provide a mechanism for counting objects. The integers provide
the capability to carry out subtraction in order to solve simple equations, such as x+ 5 = 2. The
rational numbers provide the capability to perform division and solve equations such as 7x+3 = 1.
Finally, the real numbers allow one to compute the limit of sequences of rational numbers, such as
limn→∞

(
1 + 1

n

)n
= e.

The real number system is a very powerful number system and provides the foundation for calculus.
However, the real number system does not allow one to solve certain simple equations, such as
x2 + 1 = 0. To solve this equation, one must expand the real number system by introducing a
new number called i with the property that i2 = −1. Your first reaction to this might be: “What
an absurd idea! You can’t just make up numbers with imaginary properties!” That’s exactly the
reaction most people had when the idea was first proposed; in fact, to this day i is still called an
imaginary number. Despite this, people soon found that the idea of introducing a number i such
that i2 = −1 is a very far-reaching idea,1 the type of idea Albert Einstein had in mind when he
said: “If at first the idea is not absurd, then there is no hope for it.” In fact, this seemingly absurd
idea led to the development of the complex number system: a number system so rich that a whole
branch of mathematics, known as complex analysis, grew out of the study of its structure and the
properties of its functions.

1.2 Definition and Basic Properties

Definition 1.1. A complex number is a number of the form a+ bi (or, equivalently, a+ ib), where
a and b are real numbers and i2 = −1. The real number a is called the real part of a+ bi and the
real number b is called the imaginary part of a+ bi.

It is important to notice that the real and imaginary parts of a complex number are real numbers.

1This is a simplification: it was the unavoidable appearance of complex numbers in the formula for solving the

general cubic equation ax3 + bx2 + cx+ d = 0 that provided the main initial impetus for accepting complex numbers.
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For example, the real part of 3 − 4i is 3 and the imaginary part of 3 − 4i is −4.

The arithmetic of complex numbers is the same as for polynomials where we treat i as an unknown
(like x) with the property that i2 = −1. Thus, if α = a+ bi and β = c+ di are complex numbers,
then

α+ β = (a+ c) + (b+ d)i

α− β = (a− c) + (b− d)i

α β = (ac− bd) + (ad+ bc)i

since (a+ bi)(c + di) = ac+ ad i+ bc i+ bd i2 and i2 = −1.

Thus addition, subtraction and multiplication of complex numbers is simple enough, but how do
we divide complex numbers? The quotient α

β
= a+bi

c+di
, so what’s the problem? The problem is that

a+bi
c+di

is not in the form A+ Bi where A and B are real numbers. Since we agreed that a complex

number is a number of the form A + Bi with A and B real numbers, we must write a+bi
c+di

in that
form in order to verify that it is also a complex number. But this is easy to do:

a+ bi

c+ di
=

(
a+ bi

c+ di

)(
c− di

c− di

)
=

(
ac+ bd

c2 + d2

)
+

(−ad+ bc

c2 + d2

)
i

In order to write the quotient a+bi
c+di

as a complex number, we used the fact that (c+ di)(c − di) =

c2 + d2, a positive real number. This turns out to be an important observation and leads us to
define the complex conjugate of c + di to be the complex number c − di. More formally, we have
the following

Definition 1.2. Let α = a+ bi be a complex number.
(a) The complex conjugate of α is the complex number α = a− bi.
(b) The magnitude of α, written |α|, is given by |α| =

√
αα =

√
a2 + b2.

|α| is also called the modulus, length or absolute value of α.

It is not difficult to verify that conjugation commutes with the arithmetic operations; that is,
conjugation and the arithmetic operations may be carried out in either order without affecting the
result of the computation. More formally, we have the following

Theorem 1.3. Let z and w be complex variables. Then,

z + w = z + w, z − w = z − w, zw = z w and
( z
w

)
=
z

w
.

For example, if z = x+ iy and w = u+ iv, then z +w = (x+ u) + i(y + v) and the statement that
z + w = z + w just says that (x + u) − i(y + v) = (x − iy) + (u − iv). The other three equations
can be verified in a similar manner.
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It is worth mentioning that there are conventions regarding which letters to use for representing
complex numbers. While a and b are commonly used to represent real numbers, you will often see
α and β used to represent complex numbers, as we have done here. Also, instead of x and y (used
to represent real variables), you will see z and w used to represent complex variables.

1.3 Geometric Properties

Real numbers are geometrically represented by points on a line; we call this the real number line.
Complex numbers are geometrically represented as points (or, more precisely, vectors) in a plane;
we call this the complex plane.

x

y

a

b
a + ib

To emphasize this, we could represent the complex numbers α = a+ bi and β = c+ di as ordered
pairs by α = (a, b) and β = (c, d), and the arithmetic properties could be summarized by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) − (c, d) = (a− c, b− d)

(a, b)(c, d) = (ac− bd, ad+ bc)

(a, b)

(c, d)
=

(
ac+ bd

c2 + d2
,
−ad+ bc

c2 + d2

)

We will not pursue this method of representing complex numbers, except to mention that it empha-
sizes the fact that complex numbers provide a way of making the set of points in the plane into a
number system. In fact, the realization that complex numbers can be represented in the plane did
much to promote their acceptance; moreover, advanced calculators, such as the TI-86, represent
complex numbers as ordered pairs. Despite this, we will prefer to represent complex numbers in
the form a+ bi.

It is also worth mentioning that, given α = a+ bi, α = a− bi is the reflection of α about the x-axis
and |α| is the distance between from the origin (0, 0) to the point (a, b). Note also that |α| = |α|.
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x

y

b

−b

a

a+ib

a+ib = a−ib

Addition of complex numbers also has a nice geometric interpretation. Given complex numbers
α = a+ bi and β = c+di, the number α+β is represented by the fourth point of the parallelogram
determined by the points (0, 0), (a, b) and (c, d). For those familiar with vectors, this is just vector
addition. Subtraction has a similar geometric interpretation.

x

y

a + ib

c + id

(a + c) + i(b + d)

What about the geometric interpretation of multiplication? It turns out that multiplication of
complex numbers involves rotations and is best described using polar coordinates.

1.4 Polar Form

As we have seen, a complex variable z = x+ iy is represented geometrically by a point (x, y) in the
plane. Any point in the plane can be represented in polar coordinates (r, θ) with r ≥ 0, and

x = r cos(θ) y = r sin(θ).
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Thus, every complex number z can be written in the form

z = r [cos (θ) + i sin (θ)] .

This is called the polar form of z. Note that |z| = r since |z| =
√

[r cos (θ)]2 + [r sin (θ)]2 = r. The

angle θ is called the argument of z, written θ = arg(z). It is important to realize that θ = arg(z) is
not uniquely determined; for, if θ is an argument of z, then so is θ + 2kπ for any integer k. Thus,
calling θ = arg(z) the argument of z is technically not correct: θ = arg(z) is an equivalence class
of arguments of z. However, there is little chance of confusion as long as one understands that θ
and θ + 2kπ are essentially the “same” angle (more precisely, they are coterminal angles).

x

y

r
r sin(θ)

r cos(θ)

θ

Example 1.4. Write
√

3 + i in polar form.

Solution: r = |
√

3 + i| =
√

(
√

3)2 + (1)2 = 2. Thus, cos(θ) =
√

3
2 and sin(θ) = 1

2 and we can take

arg(z) = π
6 . Therefore, the polar form of

√
3 + i is 2

[
cos
(

π
6

)
+ i sin

(
π
6

)]
.

x

y

1

√

3 + i

1

6
π

√

3

2
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We mentioned earlier that the geometric interpretation of multiplication is best described using
polar coordinates. Let’s investigate this. Suppose z1 and z2 are complex numbers expressed in
polar form as z1 = r1 [cos (θ1) + i sin (θ1)] and z2 = r2 [cos (θ2) + i sin (θ2)]. Then,

z1z2 = r1r2 {[cos (θ1) cos (θ2) − sin (θ1) sin (θ2)] + i [sin (θ1) cos (θ2) + cos (θ1) sin (θ2)]}
Applying the addition formulas for the sine and cosine, we conclude that

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)] .

This tells us that multiplying z1 = r1 [cos (θ1) + i sin (θ1)] by z2 = r2 [cos (θ2) + i sin (θ2)] results in
a scaling by a factor of r2 and a rotation by an angle of θ2. In other words, magnitudes multiply
and arguments add.

x

y

z1 = r1[cos(θ1) + i sin(θ1)]

z2 = r2[cos(θ2) + i sin(θ2)]

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

θ1

r1

r2

r1r2

θ2θ1 + θ2

A similar computation shows that

z1
z2

=
r1
r2

[cos (θ1 − θ2) + i sin (θ1 − θ2)] .

This tells us that dividing z1 by z2 results in a scaling by a factor of 1
r2

and a rotation by an angle
of −θ. This should not be a surprise: since division is the reverse of multiplication, we divide
magnitudes and subtract arguments.

x

y

z1

z2

=

(

r1

r2

)

[cos(θ1 − θ2) + i sin(θ1 − θ2)]

z2 = r2[cos(θ2) + i sin(θ2)]

z1 = r1[cos(θ1) + i sin(θ1)]

θ1 − θ2

r1/r2

r2

r1

θ2θ1
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Example 1.5. Let α = 1 + i. By what angle will multiplication by β = −
√

3
2 + 1

2 i rotate α?
Compute αβ directly and verify that the result is a complex number with the same length as α
and rotated by arg(β).

Solution: β = −
√

3
2 + 1

2 i = cos
(

5π
6

)
+ i sin

(
5π
6

)
, thus multiplication by β produces a rotation

by 5π
6 . Then

αβ = (1 + i)

(
−
√

3

2
+

1

2
i

)
= −

√
3 + 1

2
−

√
3 − 1

2
i ,

|αβ| =
1

2

√(√
3 + 1

)2
+
(√

3 − 1
)2

=
√

2

and |α| =
√

(1)2 + (1)2 =
√

2 .

Thus, |αβ| = |α|. To verify that αβ is α rotated by 5π
6 , first observe that α =

√
2
[
cos
(

π
4

)
+ i sin

(
π
4

)]
.

Since π
4 + 5π

6 = 13π
12 , we are required to verify that αβ =

√
2
[
cos
(

13π
12

)
+ i sin

(
13π
12

)]
. By the half

angle identities,

cos

(
13π

12

)
= −

√
1 + cos

(
13π
6

)

2
= −

√
1 +

√
3

2

2
= −

√
2 +

√
3

2

sin

(
13π

12

)
= −

√
1 − cos

(
13π
6

)

2
= −

√
1 −

√
3

2

2
= −

√
2 −

√
3

2

Thus,
√

2
[
cos
(

13π
12

)
+ i sin

(
13π
12

)]
= −

√
2
√

2+
√

3
2 −

√
2
√

2−
√

3
2 i = −

√
4+2

√
3

2 −
√

4−2
√

3
2 i.

Since we have
(√

3 + 1
)2

= 4 + 2
√

3 and
(√

3 − 1
)2

= 4 − 2
√

3, we conclude that

αβ =
√

2
[
cos
(

13π
12

)
+ i sin

(
13π
12

)]
.

1.5 de Moivre’s Theorem

We have seen that when two complex numbers are multiplied together, their magnitudes multiply
and their arguments add. Thus, if we raise a complex number to an integral power n, its magnitude
will be raised to the power n and its argument will be multiplied by n. This is de Moivre’s theorem:

Theorem 1.6. Let z = r [cos (θ) + i sin (θ)] be a complex number in polar form and let n be an
integer. Then,

zn = rn [cos (nθ) + i sin (nθ)] .

Although a formal proof of de Moivre’s theorem would require mathematical induction, it essentially
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follows from repeated application of the multiplication formula for complex numbers in polar form:

z = r [cos (θ) + i sin (θ)]

z2 = z z = r2 [cos (2θ) + i sin (2θ)]

z3 = z2 z = r3 [cos (3θ) + i sin (3θ)]

· · ·
zn = zn−1 z = rn [cos (nθ) + i sin (nθ)]

Thus, de Moivre’s theorem holds for positive integers. What about negative integers? To see that
de Moivre’s theorem holds for negative integers, observe that de Moivre’s theorem holds for n = 0
since z0 = r0 [cos (0) + i sin (0)] = 1 (1 + i 0) = 1. Finally, z−n = r−n [cos (−nθ) + i sin (−nθ)] since
z−n zn = r−n+n [cos (−nθ + nθ) + i sin (−nθ + nθ)] = 1, which verifies de Moivre’s theorem for all
integers.

Although de Moivre’s theorem follows easily from the formulas for multiplication and division of
complex numbers, it is a powerful result that makes raising a complex number to a power nearly
as easy as raising a real number to a power.

Example 1.7. Compute
(
1 +

√
3 i
)8

and write the result in standard (a+ bi) form.

Solution:
∣∣1 +

√
3 i
∣∣ =

√
(1)2 + (

√
3)2 = 2. Thus, 1+

√
3 i = 2

(
1
2 +

√
3

2 i
)

= 2
[
cos
(

π
3

)
+ i sin

(
π
3

)]
.

Hence,
(
1 +

√
3 i
)8

= 28
[
cos
(

8π
3

)
+ i sin

(
8π
3

)]
= 256

(
−1

2 +
√

3
2 i
)

= −128 + 128
√

3 i.

We can also use de Moivre’s theorem to find the roots of a complex number. An nth root of a complex
number z is a complex numberw such that wn = z. In order to find the solutions to this equation, we
write z and w in polar form: z = r [cos (θ) + i sin (θ)] and w = s [cos (φ) + i sin (φ)]. By de Moivre’s
theorem, wn = z is equivalent to the equation sn [cos (nφ) + i sin (nφ)] = r [cos (θ) + i sin (θ)]. Thus,
sn = r and nφ = θ+2πm, where m is any integer. Since r and s are positive and since it is sufficient
to find the values of φ in the interval [0, 2π), we have

s = r
1

n , the positive nth root of r;

φ =
θ + 2πk

n
, where k = 0, 1, . . . , n− 1.

We have proved the following

Theorem 1.8. Let z = r [cos (θ) + i sin (θ)] be a complex number in polar form and let n be a
positive integer. Then z has the n distinct nth roots

wk = r
1

n

[
cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

)]
,

where k = 0, 1, . . . , n− 1.
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It is worth observing that |wk| = r
1

n and arg(wk+1) − argwk = 2π
n

for each k. Thus, the nth roots

of z lie equally spaced along the circle of radius r
1

n .

Example 1.9. Find the sixth roots of −64.

Solution: −64 = 26 [cos (π) + i sin (π)]. Thus, the 6th roots of −64 are given by

wk = 2

[
cos

(
π + 2πk

6

)
+ i sin

(
π + 2πk

6

)]
, k = 0, 1, 2, 3, 4 or 5.

Thus, the explicit list of 6th roots of −64 is as follows:

w0 = 2
[
cos
(π

6

)
+ i sin

(π
6

)]
=

√
3 + i

w1 = 2
[
cos
(π

2

)
+ i sin

(π
2

)]
= 2i

w2 = 2

[
cos

(
5π

6

)
+ i sin

(
5π

6

)]
= −

√
3 + i

w3 = 2

[
cos

(
7π

6

)
+ i sin

(
7π

6

)]
= −

√
3 − i

w4 = 2

[
cos

(
3π

2

)
+ i sin

(
3π

2

)]
= −2i

w5 = 2

[
cos

(
11π

6

)
+ i sin

(
11π

6

)]
=

√
3 − i

y

x

w0

w1

w2

w3

w4

w5
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1.6 Exercises

1. Simplify the following expressions and write the result in rectangular form a+ bi.

(a) 5 − 3
2 i− (8 + 5

2 i)

(b) (−2 + 7i)(5 − 4i)

(c) 3i(6 − i)

(d) 1+i
2−3i

2. Let z = 1 +
√

3 i and w = −1 − i.

(a) Write z and w in the polar form r(cos(θ) + i sin(θ)).

(b) Compute zw, z
w

and 1
z
, and write the results in polar form.

3. Simplify the following expressions and write the results in the polar form r(cos(θ) + i sin(θ)).

(a) (1 + i)13

(b) (−
√

3 + i)15

(c) (32 − 32i)−6

4. Find each of the following roots and sketch them in the complex plane.

(a) the cube roots of 1

(b) the fourth roots of 1 + i

(c) the sixth roots of −64
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2 Complex Exponentials

How should we define ea+bi where a and b are real numbers? In other words, what is eα when α is
a complex number? We would like the nice properties of the exponential to still be true. The most
basic properties of an exponential we would like to retain are that for any complex numbers α and
β we have

eα+β = eα eβ and
d

dx
eαx = αeαx. (2.1)

It turns out that the following definition produces a function with these properties.

Definition of complex exponential: ea+bi = ea [cos (b) + i sin (b)] = ea cos(b) + iea sin(b)

In particular, for any real number x, Euler’s formula holds true:

eix = cos(x) + i sin(x). (2.2)

We now prove the first key property in (2.1).

Theorem 2.1. If α and w are complex numbers, then

eα+β = eαeβ.

Proof. Let α = a+ ib and β = h+ ik. Then,

eαeβ = ea [cos (b) + i sin (b)] eh [cos (k) + i sin (k)]

= eaeh {[cos (b) cos (k) − sin (b) sin (k)] + i [cos (b) sin (k) + sin (b) cos (k)]}
= ea+h [cos (b+ k) + i sin (b+ k)]

= e[a+h+i(b+k)]

= eα+β

We leave checking the second property to the exercises. For those who are interested, there is an
appendix, Section 7, which discusses what we mean by the derivative of a function of complex
variables and explains how to obtain the second property as well.

It’s easy to get formulas for the trigonometric functions in terms of the exponential. Look at Euler’s
formula (2.2) with x replaced by −x:

e−ix = cos(x) − i sin(x).

We now have two equations in cos(x) and sin(x), namely

cos(x) + i sin(x) = eix

cos(x) − i sin(x) = e−ix.
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Adding and dividing by 2 gives us cos(x) whereas subtracting and dividing by 2i gives us sin(x):

Exponential form of sine and cosine: cos(x) =
eix + e−ix

2
sin(x) =

eix − e−ix

2i

Setting x = z = a + bi gives formulas for the sine and cosine of complex numbers. We can do
a variety of things with these formulas. Here are some worth mentioning:

• Since the other trigonometric functions are rational functions of sine and cosine, this gives us
formulas for all the trigonometric functions.

• Hyperbolic and trigonometric functions are related: cosh(ix) = cos(x) and sinh(ix) = i sin(x).

2.1 Complex Exponentials Yield Trigonometric Identities

The exponential formulas we just derived, together with ez+w = ezew imply the identities

sin2(α) + cos2(α) = 1

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β) − sin(α) sin(β).

These three identities are the basis for deriving trigonometric identities; that is, we can derive
trigonometric identities by using the exponential formulas and ez+w = ezew. We now illustrate this
with some examples.

Example 2.2. Show that cos2(x) + sin2(x) = 1. Indeed, we have
(
eix + e−ix

2

)2

+

(
eix − e−ix

2i

)2

=
1

4

[
(eix)2 + 2 + (e−ix)2 +

(eix)2 − 2 + (e−ix)2

i2

]

=
1

4

[
2 + 2

]
= 1,

wherein we have used the fact that i2 = −1.

Example 2.3.

sin(2x) =
ei2x − e−i2x

2i

=
1

2i

[
(eix)2 − (e−ix)2

]

= 2
[eix − e−ix]

2i

[eix + e−ix]

2
= 2 sin(x) cos(x)

It should be noted that since the addition formulas for trigonometric functions were used to prove
Theorem 2.1, these “derivations” of trigonometric identities are, strictly speaking, not proofs.
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2.2 Exercises

1. Simplify the following expressions and write the results in the polar form r eiθ.

(a) (
√

3 + i)5

(b) (5 − 5i)4/(
√

3 + i)3

2. We know that cos2(x) = 1
2 + 1

2 cos(2x). Use the relationship between the sine, cosine and
exponential functions to express cos3(x) as a sum of sines and cosines.

3. Show that eπi+1 = 0. This uses several basic concepts in mathematics, such as π, e, addition,
multiplication and exponentiation of complex numbers, all in one compact equation.

4. What are the Cartesian coordinates x and y of the complex number x+ iy = e2+3i?

5. Use the fact that
d

dx
[cos(bx) + i sin(bx)] = b[− sin(bx) + i cos(bx)]

and the product rule to show that

d

dx
[e(a+ib)x] = (a+ ib)e(a+ib)x.

This is the key differentiation property for complex exponentials.

6. The trigonometric functions given by

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i

are defined for all complex numbers z.

(a) Compute cos (i ln (2)).

(b) Solve the equation cos(z) = 5
3 . (Hint: write w = eiz; then, eiz+e−iz

2 = 5
3 becomes

1
2

(
w + 1

w

)
= 5

3 .)
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3 Integration of Functions which Take Complex Values

This supplements Sections 7.2 and 7.4 of Rogawski Ed. 2.

Now we turn to the problem of integrating functions which take complex values. Of course this
is bound up with what we mean by antiderivatives of complex functions. A function, such as
f(x) = (1+ 2i)x+ i3x2, may have complex values but the variable x is only allowed to take on real
values and we only define definite integrals for this type of function. In this case nothing differs
from what we already learned about integrals of real-valued functions.

• The Riemann sum definition of an integral still applies.

• The Fundamental Theorem of Calculus is still true.

• The properties of integrals, including substitution and integration by parts, still work.

• The formulas we have derived and those in the table at the back of the book are all still
valid when the complex functions are defined appropriately (as we did for ea+bi), with one
important exception: all absolute values must be removed from logarithms. For example,∫

dx
x+i

= ln(x+ i) + C (and not ln |x+ i| + C).2

As an example,

∫ 2

0

[
(1 + 2i) x+ 3ix2

]
dx =

∫ 2

0
x dx+ 2i

∫ 2

0
x dx+ 3i

∫ 2

0
x2 dx =

(1 + 2i)x2

2
+ ix3

]2

0

= (1 + 2i)2 + 8i = 2 + 12i.

3.1 Integrating Products of Sines, Cosines and Exponentials

In Rogawski Chapter 7.2, products of sines and cosines were integrated using trigonometric identi-
ties. There are other ways to do this now that we have complex exponentials. Examples will make
this clearer.

Example 3.1. Let’s integrate 8 cos(3x) sin(x).

8 cos(3x) sin(x) = 8

(
e3ix + e−3ix

2

)(
eix − e−ix

2i

)

=
2

i

(
e4ix + e−2ix − e2ix − e−4ix

)
.

2You can see that ln |x + i| will not work because it is always a real number so it’s derivative can’t be a complex

number. So how is the logarithm of a complex number defined? We won’t discuss this here, but if you want to think

about it and ask your professor or TA, here’s a hint: remember that the logarithm is the inverse of the exponential

and that x + iy = reiθ.
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It is not difficult to integrate this:

∫
8 cos(3x) sin(x) dx =

2

i

∫
e4ix + e−2ix − e2ix − e−4ix dx

=
2

i

[
e4ix

4i
− e−2ix

2i
− e2ix

2i
+
e−4ix

4i

]
+ C

=
2

i

[
e4ix

4i
+
e−4ix

4i
− e−2ix

2i
− e2ix

2i

]
+ C

= −
(
e4ix + e−4ix

2

)
+ 2

(
e2ix + e−2ix

2

)
+ C

= − cos(4x) + 2 cos(2x) + C

Example 3.2. Let’s integrate e2x sin(x). Problems like this were solved in Rogawski Chapter 7.1
by using integration by parts twice. Here is another way. Using the formula for sine and integrating
we have

∫
e2x sin(x) dx =

1

2i

∫
e2x(eix − e−ix) dx

=
1

2i

∫
(e(2+i)x − e(2−i)x) dx

=
1

2i

(
e(2+i)x

2 + i
− e(2−i)x

2 − i

)
+ C

= −e
2x

2

(
eix

1 − 2i
+

e−ix

1 + 2i

)
+ C

= −e
2x

2

[
(1 + 2i)eix

5
+

(1 − 2i)e−ix

5

]
+ C

= −e
2x

5

[(
eix + e−ix

2

)
− 2

(
eix − e−ix

2i

)]
+C

= −e
2x

5
[cos (x) − 2 sin (x)]

This method works for integrals of products of sines, cosines and exponentials, and often for quo-
tients of them, (though this requires more advanced methods, such as partial fractions). The
advantage of using complex exponentials is that it takes the guess out of computing such integrals.
The method, however, could be messier than the one presented in the book, though it is often
simpler.
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3.2 Exercises

Compute the following integrals using complex exponentials.

1.

∫ π

−π

7 sin(5x) cos(3x) dx

2.

∫
ei7x cos(2x) dx

3.

∫
e−7x cos(2x) dx

4.

∫
e−7x sin(2x) dx

5.

∫
cos2(x) e−3x dx

6.

∫
cos3(x) cos(7x) dx

7.

∫
sin2(x)e

√
5x dx

8.

∫
x cos3(x) dx

9.

∫
sin3(x) cos(10x) dx
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4 The Fundamental Theorem of Algebra

This supplements Section 7.5 of Rogawski Ed. 2.

A polynomial p of degree n is a function of the form

Q(x) = a0 + a1x+ a2x
2 + · · · + anx

n. (4.1)

where the coefficients aj can be either real or complex numbers. The following is a basic fact which
is hard to prove (and we shall not attempt a proof here).

Fundamental Theorem of Algebra: Any nonconstant polynomial can be factored
as a complex constant times a product of linear factors of the form x − β, where β is a
complex number, that is,

Q(x) = c (x− β1)
n1 (x− β2)

n2 · · · (x− βk)
nk , (4.2)

where the βj are k distinct complex numbers.

This tells us that we can factor a polynomial of degree n into a product of n linear factors. For
example,

• 3x2 + 2x− 1 = 3(x− 1
3)(x+ 1) (n = 2 here),

• x3 − 8 = (x− 2)(x + α)(x+ α) where α = 1 ± i
√

3 (n = 3 here),

• (x2 + 1)2 = (x+ i)2(x− i)2 (n = 4 here).

4.1 Zeroes and their multiplicity

Notice that a very important feature of the factorization is:

Each factor x− β of p corresponds to a number β which is a zero of the polynomial

p, that is,
Q(β) = 0.

To see this, just consider the factorization of p evaluated at β, namely

Q(β) = c(β − β1)(β − β2) . . . (β − βn).

This is equal to zero if and only if one of the factors is 0; say the jth factor is zero, which gives
β − βj = 0. Thus β = βj for some j.
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For some polynomials a factor x− βj will appear more than once, for example, in

Q(x) = 7(x− 2)5(x− 3)(x − 8)2

the x− 2 factor appears 5 times, the x− 3 factor appears once, the x− 8 factor appears twice. The
terminology for this is

2 is a zero of p of multiplicity 5

3 is a zero of p of multiplicity 1

8 is a zero of p of multiplicity 2.

The general form for a factored polynomial is

Q(x) = k(x− β1)
m1(x− β2)

m2 · · · (x− βℓ)
mℓ (4.3)

where βj is called a zero of Q of multiplicity mj and k is a constant.

4.2 Real Coefficients

All polynomials which you see in math 20B have real coefficients. So it is useful to give a version
of the Fundamental Theorem of Algebra all numbers in the factoring are real.

Fundamental Theorem of Algebra: real factors Any nonconstant polynomial p
with real coefficients can be factored as constant times a product of linear factors and
quadratic factors all having real coefficients, that is,

Q(x) = c(x− r1)
m1 · · · (x− rℓ)

mℓ (x2 + b1x+ c1)
n1 · · · (x2 + bkx+ ck)

nk , (4.4)

where the rj are l distinct real numbers and the x2+bjx+cj are k distinct real polynomials
with no real roots.

Later we shall study rational functions f = P
Q

. The partial fraction expansions in Chapter 7.6 of
Rogawski are based on this version of the Fundamental Theorem of Algebra. Thus, if we allow
complex numbers, partial fractions can be done with only linear factors. When we only allowed
real numbers as coefficients of the factors, we obtained both linear and quadratic factors, as does
Rogawski.

Proof. A useful fact is:

If all the coefficients Qj of the polynomial Q are real numbers, then

Q(β) = 0 implies Q(β) = 0.
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To see this, think of x as a real number and suppose (x − α)k is a factor of Q; then, (x − α)k is
also a factor:

(a) Since (x− α)k is a factor of Q(x), we have Q(x) = (x− α)kr(x) for some polynomial r(x).

(b) Taking complex conjugates, Q(x) = (x− α)kr(x).

(c) Since Q(x) has real coefficients, Q(x) = Q(x) and so by (b), (x− α)k is a factor of Q(x).

This and the Fundamental Theorem of Algebra (with complex factors) implies a polynomial Q with
real coefficients has a factorization

Q(x) = (x− β1)(x− β1) · · · (x− βk)(x− βk)(x− r1) · · · (x− rℓ) (4.5)

or, equivalently,

Q(x) = (x2 + b1x+ c1) · · · (x2 + bkx+ ck)(x− r1) · · · (x− rℓ) (4.6)

where b1, . . . , bk and c1, · · · , ck and r1, . . . , rℓ are real numbers. In fact, you can check that bj =
2Re βj and cj = |βj |2.

The advantage of the first version of the Fundamental Theorem Algebra is that all terms in the
factorization are linear in x; the disadvantage is that some of them may contain numbers βj which
are not real. The advantage of the second version of the Fundamental Theorem Algebra is that all
numbers in the factorization are real.

4.3 Rational Functions and Poles

The quotient of two polynomials P
Q

is called a rational function. For a rational function f we
call any point β for which lim

x→β
|f(x)| = ∞ a pole of f . For example,

f(x) =
x7

(x− 1)2(x− 9)3

has poles at 1, 9 and ∞. You might think calling ∞ a pole peculiar, but lim
x→∞

|f(x)| = ∞, as the

definition requires. This should not be interpreted as saying that ∞ is a number (notice that we
used the word “point” in the definition of a pole: a justification for calling ∞ a “point” is made in
in a course on complex analysis). Poles have multiplicity; in this case

1 is a pole of p of multiplicity 2

9 is a pole of p of multiplicity 3

∞ is a pole of p of multiplicity 2, since f(x) ∼ x2 as x→ ∞.
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A rational function is called proper if lim
x→∞

|f(x)| = 0. This occurs when the degree of the

polynomial in the denominator exceeds the degree of the polynomial in the numerator of the rational

function. For example, f(x) =
x+ 1

x2 + x+ 1
is a proper rational function; whereas g(x) =

x2 + 3x+ 5

x2 + x+ 1
is not proper.

The growth rate of f near a high multiplicity pole exceeds that of f near a low multiplicity pole. For

example, lim
x→1

∣∣∣∣
1

x− 1

∣∣∣∣ and lim
x→1

∣∣∣∣
1

(x− 1)4

∣∣∣∣ are both infinite; however, lim
x→1

∣∣∣∣∣

1
x−1

1
(x−1)4

∣∣∣∣∣ = lim
x→1

|x−1|3 = 0.
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4.4 Exercises

1. Expand Q(x) = (x− 2)(x− 3)(x2 + 1) in the form (4.1).

2. Show that if P is a polynomial and P (5) = 0, then P (x)
x−5 is a polynomial.

3. (a) How many poles does the rational function r(x) = 3
5x3+x+6

have? Does it have a “pole
at ∞”?

(b) What are the pole locations and their multiplicities for r(x) = 3−2x
(x−2)(x2+5x+7)

?

4. The following is the simplest mathematical model used for a building hit by an earthquake.
If the bottom of the building is displaced horizontally from rest a distance b(t) at time t, then
the roof of the building is displaced from vertical by a distance r(t). The problem is how to
describe the relationship between b and r in a simple way. Fortunately, there is a rational
function T (s) called the transfer function of the building with the property that when b is
a pure sine wave

b(t) = sin(wt)

at frequency w
2π

, then r(t) is a sine wave of the same frequency and with amplitude |T (iw)|:
it has the form r(t) = |T (iw)| sin(wt+ ψ(iw)).

While earthquakes are not pure sine waves, they can be modeled by combinations of sine
waves.

If

T (s) =
s2

(s+ 3i+ .01)(s − 3i+ .01)(s + 7i+ .1)(s − 7i+ .1)
,

then at approximately what frequency does the building shake the most? At approximately
what frequency does the building shake the second most?

5. Electric circuits behave similarly and are typically described by their transfer function T . If
c(t), a sinusoidal current of frequency w/2π is imposed, and v(t) is the voltage one measures
it is a sine wave of the same frequency with amplitude |T (iw)|. If

T (s) =
1

(s+ 3i+ .01)(s − 3i+ .01)
+

2

s− 10
,

then approximately how much accuracy do we lose in predicting the amplitude for our output
with the simpler mathematical model

T̃ (s) =
1

(s+ 3i+ .01)(s − 3i+ .01)

when a sine wave at frequency w
2π

is put in?

Hint: You may use the fact that
∣∣∣|T̃ (s)| − |T (s)|

∣∣∣ ≤ |T̃ (s) − T (s)|, even though we have not

proved it.
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5 Partial Fraction Expansions (PFE)

This supplements Chapter 7.6 of Rogawski Ed. 2.

The method we use for computing the required constants in the partial fraction expansion (PFE)
of a rational function is similar to the one found in the text; we expand that discussion here. Later,
in Section 5.4, we discuss the form of a partial fraction expansion. This should help you determine
the appropriate form of the PFE in the problems you come across.

5.1 A Shortcut when there are no Repeated Factors

Finding the PFE is easiest when there are no repeated factors in the denominator. In what follows,
we discuss the general principle behind the PFE and then exhibit some specific examples.

Theorem 5.1. Suppose that the n numbers α1, . . . , αn are pairwise distinct and that P (x) is a
polynomial with degree less than n. Then, there are constants C1, . . . , Cn such that

P (x)

(x− α1) · · · (x− αn)
=

C1

x− α1
+ · · · + Cn

x− αn
. (5.1)

To determine the constants C1, . . . , Cn; we carry out the following steps:

• Multiply both sides of (5.1) by x− αj and then set x = −αj.
The left side will evaluate to a number N .

• The right side evaluates to Cj, since the other terms have
a factor of x− αj which is 0 when x = αj.

• We conclude that N = Cj.

Now for some illustrations.

Example 5.2. (Proper rational functions with distinct linear factors)

Let’s expand f(x) := x2+2
(x−1)(x+2)(x+3) by partial fractions. By Theorem 5.1,

f(x) =
x2 + 2

(x− 1)(x + 2)(x+ 3)
=

C1

x− 1
+

C2

x+ 2
+

C3

x+ 3

Multiply by x− 1 to eliminate the pole at x = 1 and get

(x− 1)f(x) =
x2 + 2

(x+ 2)(x+ 3)
= C1 +

C2(x− 1)

x+ 2
+
C3(x− 1)

x+ 3
.
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Set x = 1 and obtain
1 + 2

(1 + 2)(1 + 3)
= C1.

and so C1 = 1
4 . Similarly,

C2 = (x+ 2)f(x)
]
x=−2

=
x2 + 2

(x− 1)(x+ 3)

]
x=−2

=
4 + 2

(−3)1
= −2.

and

C3 = (x+ 3)f(x)
]
x=−3

=
x2 + 2

(x− 1)(x+ 2)

]
x=−3

=
9 + 2

(−4)(−1)
=

11

4
.

We conclude that

f(x) =
x2 + 2

(x− 1)(x+ 2)(x + 3)
=

1

4(x− 1)
− 2

(x+ 2)
+

11

4(x+ 3)
.

A cultural aside is that the numbers C1, C2, C3 are often (though not in Rogawski) called the
residues of the poles at 1,−2,−3; many of you will see them later in your career under that name.

If we wish to find the antiderivatives of f from this, we immediately get
∫
f(x) dx =

1

4
ln |x− 1| + 2 ln |x+ 2| + 11

4
ln |x+ 3| +K

5.2 The Difficulty with Repeated Factors

Let us apply the previous method to

f(x) =
1

(x− 1)2(x− 3)

whose partial fraction expansion we know (by Rogawski’s book) has the form

f(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

x− 3
. (5.2)

We can find C quickly from

C = (x− 3)f(x)
]
x=3

=
1

(3 − 1)2
=

1

4

and A from

A = (x− 1)2f(x)
]
x=1

=
1

1 − 3
= −1

2
.

However, B does not succumb to this technique; we must use other means to find it. What we have
gotten from our method are just the coefficients of the “highest terms” at each pole.
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There are several ways to find B; in fact, Rogawski shows two methods. One of these is to plug in
a convenient value of x, say x = 0 and obtain

f(0) =
1

(−1)2(−3)
= −1

2
−B −

(
1

3

)(
1

4

)

B =
1

3
− 1

2
− 1

12
= −1

4
.

To summarize

f(x) = −1

2

1

(x− 1)2
− 1

4

1

(x− 1)
+

1

4

1

(x− 3)
.

The antiderivative of f is
∫
f(x) dx =

1

2

1

(x− 1)
− 1

4
ln |x− 1| + 1

4
ln |x− 3| +K.

5.3 Every Rational Function has a Partial Fraction Expansion

Now we mention a pleasant fact.

Theorem 5.3. Every rational function f = P
Q

has a partial fraction expansion.

The core of the reason is the Fundamental Theorem of Algebra, which can be used to factor Q as
in formula (4.3). This produces

f(x) =
P (x)

(x− β1)m1(x− β2)m2(x− βℓ)mℓ

.

If the numerator and denominator polynomials defining f have real coefficients, then f can always
be written

f(x) =
P (x)

(x− r1)m1 · · · (x− rℓ)mℓ (x2 + b1x+ c1)n1 · · · (x2 + bkx+ ck)n1

with all the coefficients in the factors real numbers. This is the factoring behind the various cases
treated in Rogawski Chapter 7.6. One then needs to write out the appropriate form for the PFE
and then identify the coefficients as has been explained in Rogawski Chapter 7.6 and in these notes
for cases where all factors are linear (even with high multiplicity) and where there is a multiplicity
one quadratic factor.

5.4 The Form of the Partial Fraction Expansion

We have seen that if a proper rational function has the form f(x) = P (x)
(x−a)kQ(x)

, then the PFE has

the form

f(x) =
C1

(x− a)
+

C2

(x− a)2
+ · · · + Ck

(x− a)k
+ g(x),
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where g(x) = r(x)
Q(x) does not depend on (x−a). It is natural to ask why the PFE has this particular

form: why, in general, can’t the PFE be written in the form

f(x) =
Ck

(x− a)k
+ g(x)?

Specifically, why do we need to include the lower order terms (lower multiplicity poles)? Here is
one way to view the form of the PFE. Recall that a high multiplicity pole has a “faster growth
rate” than a lower multiplicity pole: it can “overshadow” the lower multiplicity pole.

Example 5.4. The function f(x) = 1
(x−1)2(x−3) has a multiplicity 2 pole at 1 and a multiplicity 1

pole at 3. Thus the PFE has the form

f(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

x− 3
.

The role of the multiplicity 1 pole at 3 is obvious. Let us turn to the multiplicity 2 pole at 1. Its

coefficient A = 1
(x−3)

]
x=1

= −1
2 Thus, the “strength” of the multiplicity 2 pole at 1 is −1

2
1

(x−1)2
.

However, when we subtract this pole from f , we obtain

e(x) = f(x) −
[
−1

2

1

(x− 1)2

]

=
1

(x− 1)2

[
1

(x− 3)
+

1

2

]

=
1

(x− 1)2

[
1

2

(x− 1)

(x− 3)

]

=
1

2

1

(x− 1)(x − 3)

which still has a pole at 1, though now it is a pole of multiplicity 1. This illustrates why both
A

(x−1)2
and B

(x−1) must be included in the PFE and what we meant earlier by saying that a high

multiplicity pole can “overshadow” a low multiplicity pole.

Similar intuition tells us that f(x) = x7

(x−1)2(x−9)3 has a PFE of the form

f(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

(x− 9)3
+

D

(x− 9)2
+

E

x− 9
+ Fx2 +Gx+H,

since it has poles at 1 of multiplicity 2, at 9 of multiplicity 3 and at ∞ of multiplicity 2.

5.5 More Examples: Non-proper Rational Functions and Quadratic Factors

Example 5.5. (Rational functions with a pole at infinity and all linear factors with none repeated.)

Let’s expand f(x) = x3+2
(x−1)(x+2) by partial fractions. Clearly, f has a pole at 1, -2 and ∞, each with
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multiplicity one. The form of the PFE is

f(x) =
x3 + 2

(x− 1)(x+ 2)
=

C1

x− 1
+

C2

x+ 2
+Ax+B (5.3)

where Ax + B is included to represent the pole at ∞. Indeed, Ax + B is the simplest form of a
rational function with a general multiplicity one pole at infinity. Beware: you must include the
constant term B.

Now solve for A,B,C1 and C2: multiply by x− 1 to eliminate the pole at x = 1 and obtain

(x− 1)f(x)
]
x=1

=
x3 + 2

(x+ 2)

]
x=1

= C1.

That is,

C1 =
1 + 2

(1 + 2)
= 1

Similarly,

C2 = (x+ 2)f(x)
]
x=−2

=
x3 + 2

(x− 1)

]
x=−2

=
−8 + 2

(−3)
= 2.

Finding A is easy since it is the “highest order term” at infinity. First observe that

lim
x→∞

f(x)

x
= A.

Then,

A = lim
x→∞

f(x)

x
= lim

x→∞

x2 + 2/x

(x− 1)(x + 2)
= lim

x→∞

x2

x2
= 1

Now we must only find B. As usual there are several ways to do this. For example, plug x = 0
into (5.3) and obtain

2

(−1)(2)
= f(0) =

C1

−1
+
C2

2
+B =

1

−1
+

2

2
+B = B

Thus, B = −1.

Example 5.6. (Proper rational functions with an irreducible quadratic factor but no repeated factors)

Let’s find the PFE for x+1
x3+x

. Note that f(x) = x+1
x3+x

has two natural forms of partial fraction

expansions corresponding to whether we factor the denominator x3 + x in the form (4.6) with real
coefficients or (4.5) with complex coefficients. Rogawski Chapter 7.6 uses (4.6) so we emphasize
and recommend that one, namely

f(x) =
A

x
+
Bx+ C

x2 + 1
.

We proceed like Rogawski and obtain

A = xf(x)
]
x=0

=
1

1
= 1.
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Next, multiply by x(x2 + 1) to get x+ 1 = x(x2 + 1)f(x) = x2 + 1 + x(Bx+ C). Cancel ones and
divide by x, to get

1 = x+Bx+ C.

Set x = 0 to get C = 1 and so B = −1. Thus, the PFE is

f(x) =
x+ 1

x3 + x
=

1

x
+

−x+ 1

x2 + 1
.

If we want antiderivatives, this gives

∫
f(x) dx = ln |x| − 1

2
ln |x2 + 1| + arctan(x) +K

This solves the problem completely.

Although using the (4.6) form of expansion suffices to solve the problem, for the sake of completeness
(and the curious), we show how to use the (4.5) form of expansion.

f(x) =
x+ 1

(x3 + x)
=

x+ 1

x(x− i)(x+ i)
=
C1

x
+

C2

x− i
+

C3

x+ i
.

Since x = x− 0,

xf(x)
]
x=0

= C1 =
1

(−i)i = 1.

Also

(x− i)f(x)
]
x=i

= C2 =
i+ 1

i(2i)
=

−1 − i

2
and (x+ i)f(x)

]
x=−i

= C3 =
−i+ 1

(−i)(−2i)
=

−1 + i

2
.

Note that C3 = C̄2 and we can get the first PFE from this PFE by

f(x) =
1

x
+

C2

x− i
+

C3

x+ i
=

1

x
+
C2(x+ i) + C3(x− i)

x2 + 1
=

1

x
+

2ReC2x+ (−2)ImC2

x2 + 1

f(x) =
1

x
+

−x+ 1

x2 + 1
.

which is what we got before.

We will not consider higher multiplicity quadratic factors here.
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5.6 Exercises

1. Find the partial fraction expansion of 2x+1
(x−1)2(x+2)

.

2. Given f(x) = 3
(x−1)(x−2)2

. What value of A makes f(x)− A
x−1 have its only pole located at 2?

3. Find the partial fraction expansion of x3+2
x(x2+1)(x2+4)

.

4. Find the partial fraction expansion of x3+2
x(x2−1)(x2−4)

.

5. Consider the PFE of r in (5.2). We claim that

d

dx
[(x− 1)2f(x)]

]

x=1

is either A B, or C in the partial fraction expansion.

(a) Which one is it?

(b) Does such a formula hold for any rational function with a second order pole? Justify
your answer.

(c) Find a similar formula for a rational function with a third order pole.
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6 Improving on Euler’s Method

This supplements Chapter 9.3 of Rogawski Ed. 2.

Suppose we are given the differential equation y′ = F (x, y) with initial condition y(x0) = y0. Euler’s
method, discussed in Rogawski Chapter 9.2, produces a sequence of approximations y1, y2, . . . to
y(x1), y(x2), . . . where xn = x0 + nh are equally spaced points.

This is almost the left endpoint approximation in numerical integration (Chapter 7 of Rogawski).
To see this, suppose that we have an approximation yn−1 for y(xn−1), and that we want an approx-
imation for y(xn). Integrate y′ = F (x, y) from xn−1 to xn and use the left endpoint approximation:

y(xn) − y(xn−1) =

∫ xn

xn−1

F (x, y) dx ≈ hF (xn−1, y(xn−1)).

Now we have a problem that did not arise in numerical integration: We don’t know y(xn−1). What
can we do? We replace y(xn−1) with the approximation yn−1 to obtain

y(xn) − yn−1 ≈ hF (xn−1, yn−1).

Rearranging and calling the approximation to y(xn) thus obtained yn we have Euler’s method:

yn = yn−1 + hF (xn−1, yn−1). (6.1)

We know that the left endpoint approximation is a poor way to estimate integrals and that the
Trapezoidal Rule is better. Can we use it here? Adapting the argument that led to (6.1) for use
with the Trapezoidal Rule gives us

yn = yn−1 +
h

2

(
F (xn−1, yn−1) + F (xn, yn)

)
. (6.2)

You should carry out the steps. Unfortunately, (6.2) can’t be used: We need yn on the right side
in order to compute it on the left!

Here is a way around this problem: First, use (6.1) to estimate (“predict”) the value of yn and
call this prediction y∗n. Second, use y∗n in place of yn in the right side of (6.2) to obtain a better
estimate, called the “correction”. The formulas are

(predictor) y∗n = yn−1 + hF (xn−1, yn−1) (6.3)

(corrector) yn = yn−1 +
h

2

(
F (xn−1, yn−1) + F (xn, y

∗
n)
)
.

This is an example of a predictor-corrector method for differential equations. Here are results for
Example 9.2.3, the differential equation y′ = x+ y with initial condition y(0) = 1:



Supplement to Rogawski 32

step
size y(1) by (6.1) y(1) by (6.3)

0.50 2.500000 3.281250

0.20 2.976640 3.405416

0.10 3.187485 3.428162

0.05 3.306595 3.434382

0.02 3.383176 3.436207

0.01 3.409628 3.436474

The correct value is 3.436564, so (6.3) is much better than Euler’s method for this problem.
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6.1 Exercises

1. Write down a predictor-corrector method based on Simpson’s Rule for numerical integration.
Hint: a bit tricky is that we consider not two, but three grid points xn−2, xn−1, xn and assume we
know fn−2 and fn−1. The problem for you is to give an algorithm for producing fn.
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7 Appendix: Differentiation of Complex Functions

Suppose we have a function f(z) whose values are complex numbers and whose variable z may also
be a complex number. We can define limits and derivatives as Rogawski did for real numbers. Just
as for real numbers, we say the complex numbers z and w are “close” if |z − w| is small, where
|z − w| is the absolute value of a complex number.

• We say that limz→α f(z) = L if, for every real number ǫ > 0 there is a corresponding real
number δ > 0 such that

|f(z) − L| < ǫ whenever 0 < |z − α| < δ.

• The derivative is defined by f ′(α) = lim
z→α

f(z) − f(α)

z − α
.

The definitions are nearly copies of those in Rogawski Chapters 2.2 and 2.8. We have used z and α
instead of x and a to emphasize the fact that they are complex numbers and have called attention
to the fact that δ and ǫ are real numbers. Our variables will usually be real numbers, in which
case z and α are real numbers. Nevertheless the value of a function can still be a complex number
because our functions contain complex constants; for example, f(x) = (1 + 2i)x + 3ix2.

Since our definitions are the same, the formulas for the derivative of the sum, product, quotient
and composition of functions still hold. Of course, before we can begin to calculate the derivative
of a particular function, we have to know how to calculate the function.

What functions can we calculate? Of course, we still have all the functions that we studied with real
numbers. So far, all we know how to do with complex numbers is basic arithmetic. Thus we can

differentiate a function like f(x) =
1 + ix

x2 + 2i
or a function like g(x) =

√
1 + i ex since f(x) involves

only the basic arithmetic operations and g(x) involves a (complex) constant times a real function,
ex, that we know how to differentiate. On the other hand, we cannot differentiate a function like
eix because we don’t even know how to calculate them.

7.1 Deriving the Formula for e
z Using Differentiation

Two questions left dangling in Section 2 were

• How did you come up with the definition of complex exponential?

• How do you know it satisfies the simple differential equation properties?

We consider each of these in turn.
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From the first of formula in (2.1) with α = a and β = b, ea+bi should equal ea ebi. Thus we only
need to know how to compute ebi when b is a real number.

Think of b as a variable and write f(x) = exi = eix. By the second property in (2.1) with α = i,
we have f ′(x) = if(x) and f ′′(x) = if ′(x) = i2f(x) = −f(x). It may not seem like we’re getting
anywhere, but we are!

Look at the equation f ′′(x) = −f(x). There’s not a complex number in sight, so let’s forget about
them for a moment. Do you know of any real functions f(x) with
f ′′(x) = −f(x)? Yes. Two such functions are cos(x) and sin(x). In fact,

If f(x) = A cos(x) +B sin(x), then f ′′(x) = −f(x).

We need constants (probably complex) so that it’s reasonable to let eix = A cos(x)+B sin(x). How
can we find A and B? When x = 0, eix = e0 = 1. Since

A cos(x) +B sin(x) = A cos(0) +B sin(0) = A,

we want A = 1. We can get B by looking at (eix)′ at x = 0. You should check that this gives
B = i. (Remember that we want the derivative of eix to equal ieix.) Thus we get

Euler’s formula: eix = cos(x) + i sin(x)

Putting it all together we finally have our definition for ea+bi.

We still need to verify that our definition for ez satisfies (2.1). The verification that eα+β = eαeβ is
left as an exercise. We will prove that (ez)′ = ez for complex numbers. Then, by the Chain Rule,
(eαx)′ = (eαx)(αx)′ = αeαx, which is what we wanted to prove.

Example 7.1. (A proof that (ez)′ = ez)

By the definition of derivative and the fact that eα+β = eαeβ with α = z and β = w, we have

(ez)′ = lim
w→0

ez+w − ez

w
= lim

w→0

ez(ew − 1)

w
= ez lim

w→0

ew − 1

w
.

Let w = x + iy where x and y are small real numbers. Then, using the definition of complex
exponential, we get

ew − 1

w
=
ex(cos(y) + i sin(y)) − 1

x+ iy
.

Since x and y are small, we can use linear approximations (discussed in Chapter 4.1 of Rogawski)
for ex, cos(y) and sin(y), namely 1 + x, 1 and y. (The approximation cos(y) ≈ 1 comes from

(cos(y))′ = 0 at y = 0.) Thus (ew−1)
w

is approximately equal to

(1 + x)(1 + iy) − 1

x+ iy
=

(1 + x) + i(1 + x)y − 1

x+ iy
=

(x+ iy) + ixy

x+ iy
= 1 +

ixy

x+ iy

When x and y are very small, their product is much smaller than either one of them. Thus
lim
w→0

ixy
x+iy

= 0 and so lim
w→0

(ew−1)
w

= 1. This shows that (ez)′ = ez.


