University of California, San Diego Department of Mathematics

Instructions

1. Write your Name, PID, Section, and Exam Version on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use one page of notes, but no books or other assistance during this exam.
4. Read each question carefully, and answer each question completely.
5. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each problem on a new page.
6. Show all of your work. No credit will be given for unsupported answers, even if correct.
7. Turn in your exam paper with your Blue Book.

DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO

Question Zero:

0 . Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

1. Find the area of the cardioid $r=3+3 \cos \theta$.

2. Compute the value of the improper integral or show that it does not converge:

$$
\int_{2}^{\infty} \frac{\ln (7 x)}{x^{2}} d x
$$

3. Let B be the shaded region bounded by $y=x^{2}, y=2-x$, and the y-axis. Find the volume of the solid whose base is B and whose cross-sections perpendicular to the y-axis are squares.

$$
B
$$

4. Compute the definite integral:

$$
\int \frac{x^{3}+2}{x^{2}(x-1)} d x
$$

5. Show that the following series converges or diverges:

$$
\sum_{n=2}^{\infty} \frac{n!}{n^{n}}
$$

Hint: What is the value of $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$?
6. Write the following complex number in polar form:

$$
\frac{(2+2 i)^{4}}{(1+\sqrt{3} i)^{3}}
$$

7. Determine if the following series converges absolutely, conditionally, or not at all. (Justify your answer.)

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n}}{(\ln n)^{2}}
$$

8. Find the radius of convergence and the interval of convergence for the following power series:

$$
\sum_{n=2}^{\infty} \frac{(x-7)^{n}}{n \cdot 10^{n}}
$$

9. The region in the first quadrant between $x=0$ and $x=1$ and below the graph of $y=\frac{\sqrt{\arcsin (x)}}{\left(1-x^{2}\right)^{1 / 4}}$ is rotated about the x-axis to obtain a solid of revolution. Compute the volume of this region.

$$
V=\int_{0}^{1} \pi r^{2} d x=?
$$

