Name:	PID:
- Print your NAM	E on every page and write your PID in the space provided above.
- Show all of your even if correct.	work in the spaces provided. No credit will be given for unsupported answers,
- Supporting work will be accepted.	for a problem must be on the page containing that problem. No scratch paper
	ablets, phones, or other electronic devices are allowed during this exam. You e of handwritten notes, but no books or other assistance.
	Do not turn over this page until instructed to do so.
0. (Question Zeta during the exa	ero) Follow the instructions on this exam and any additional instructions given m.

(1 pt)

- (6 pt) 1. Let $f(x, y, z) = x^2 + e^{2y} + \cos(3z)$.
 - (a) Compute the gradient of f at the point (2,1,0).
 - (b) What is the maximal rate of change in f at the point (2,1,0)?

(6 pt) 2. Let $f(x, y, z) = xe^{yz} - 2x^3 \ln(z)$. Find the rate of change in f at the point (1, 0, 1) in the direction normal to the surface $x^2z + xy^2 + 2yz^2 = 1$ at the point (1, 0, 1).

(6 pt) 3. In polar coordinates, Laplace's Equation has the form

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 0.$$

Find the value (or values) for the constant a for which $u = 3r^{-2}\cos(a\theta)$ is a solution to this differential equation, or show that there is no value for which it is a solution.

(7 pt) 4. Suppose that $f: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $f(x,y) = (x^2 + y, xy^2)$, and suppose the path $\mathbf{c}: \mathbb{R} \to \mathbb{R}^2$ is such that $\mathbf{c}(0) = (1,2)$ and $\mathbf{c}'(0) = (3,4)$. Find the tangent vector to the path $f \circ \mathbf{c}$ at t = 0.

- (9 pt) 5. Let $f(x,y) = -x^4 2y^2 + 4xy$.
 - (a) Find the critical points of f
 - (b) Use the second derivatives test to classify the critical points of f, of show it is inconclusive.