Name: \qquad PID: \qquad

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- No calculators, tablets, phones, or other electronic devices are allowed during this exam. You may use one page of handwritten notes, but no books or other assistance.
(1 pt) 0 . Follow the instructions on this exam and any additional instructions given during the exam.
$(6 \mathrm{pt})$ 1. Give an explicit solution to the differential equation: $\quad t y^{\prime}-y=t^{2} e^{t}, \quad t>0$.
(6 pt) 2. (a) Find the general solution to the autonomous differential equation $\frac{d y}{d t}=y^{2}-1$. You may use the fact that $\frac{1}{y^{2}-1}=\frac{1 / 2}{y-1}-\frac{1 / 2}{y+1}$, and leave your answer in implicit form.
(b) Use a phase line/phase diagram to compute $\lim _{t \rightarrow \infty} \phi(t)$ for the solution ϕ to the initial value problem $\frac{d y}{d t}=y^{2}-1, \quad y(0)=3$
(6 pt) 3. Use the integrating factor $\mu(x, y)=2 y$ to solve the IVP. Leave your answer in implicit form. $\frac{x^{3}}{2 y}+y e^{x}+\left(1+2 e^{x}\right) \frac{d y}{d x}=0, \quad y(0)=1$.
(6 pt) 4. Solve the initial value problem: $\quad y^{\prime \prime}-y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=3$.

