Name: \qquad PID: \qquad

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tablets, phones, or other electronic devices are allowed during this exam. You may use one page of handwritten notes, but no books or other assistance.
- Sit in your assigned seat.

Do not turn over this page until instructed to do so.

(1 pt) 0. (Question Zero) Follow the instructions on this exam and any additional instructions given during the exam.

NAME:
(5 pt) 1. Suppose that $y=\phi(t)$ is a solution to the initial value problem

$$
\frac{d y}{d t}=e^{3 t}\left(y^{2}-4\right), \quad y(0)=-3 .
$$

(a) List the equilibrium solutions of the differential equation. (b) Compute $\lim _{t \rightarrow \infty} \phi(t)$.
(6 pt) 2. Suppose the following differential equation is exact:

$$
\left(x^{2} y^{3}-2 x y\right) d x+\left(x^{3} y^{2}+g(x)+\frac{1}{1+y^{2}}\right) d y=0
$$

Find $g(x)$ and solve the differential equation. (Leave your answer in implicit form.)
$(6 \mathrm{pt}) \quad$ 3. Find the general solution of the second order differential equation: $\quad y^{\prime \prime}+3 y^{\prime}=4 t$
(6 pt) 4. Find the general solution: $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 3 \\ -3 & -5\end{array}\right) \mathbf{x}$
(6 pt) 5. Solve the initial value problem using a power series centered at $x=0$. Write out the first three nonzero terms of the infinite series: $\quad y^{\prime \prime}+x y=0, \quad y(0)=3, \quad y^{\prime}(0)=0$.
(6 pt) 6. Compute $\mathcal{L}^{-1}\left\{\frac{2 s}{s^{2}+4 s+13}\right\}$.
(7 pt) 7. Solve the following initial value problem. (Use the hint on the cover page.)

$$
y^{\prime \prime}+4 y=\left\{\begin{array}{ll}
0 & \text { if } t<3 \\
t-3 & \text { if } t \geq 3
\end{array} ; \quad y(0)=1, \quad y^{\prime}(0)=1 .\right.
$$

(7 pt) 8. Find the general solution for the differential equation, given that y_{1} is known to be a solution:

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=0, \quad y_{1}=e^{t}, \quad t>0 .
$$

You may use this page for scratch paper, but nothing written on this page may be used as supporting work.

